
Asterisk Reference Information
Version 1.6.1.19-rc1

Asterisk Development Team
Asterisk.org

April 5, 2010

Contents

1 Introduction 8
1.1 License Information . 8

1.1.1 Hold Music . 9
1.2 Security . 10

1.2.1 Introduction . 10
1.2.2 Network Security . 10
1.2.3 Dialplan Security . 10
1.2.4 Log Security . 11

1.3 Hardware . 11
1.3.1 Introduction . 11
1.3.2 DAHDI compatible hardware 12
1.3.3 Non-DAHDI compatible hardware 13
1.3.4 mISDN compatible hardware 13
1.3.5 Miscellaneous other interfaces 14

2 Configuration 15
2.1 General Configuration Information 15

2.1.1 Configuration Parser 15
2.1.2 Asterisk.conf . 19
2.1.3 CLI Prompt . 21
2.1.4 Extensions . 22
2.1.5 IP Quality of Service 24
2.1.6 MP3 Support . 27
2.1.7 ICES . 28

2.2 Database Support . 28

1

2.2.1 Realtime Database Configuration 28
2.2.2 FreeTDS . 31

2.3 Privacy . 31
2.3.1 First of all . 32
2.3.2 Next, Fight against autodialers!! 32
2.3.3 Next, Fight against the empty CALLERID! 32
2.3.4 Next, use a WELCOME MENU ! 33
2.3.5 Next: Torture Them! 34
2.3.6 Using Call Screening 35
2.3.7 The ’N’ and ’n’ options 36
2.3.8 Recorded Introductions 37

3 Channel Variables 40
3.1 Introduction . 40
3.2 Parameter Quoting . 40
3.3 Variables . 41
3.4 Variable Inheritance . 41

3.4.1 Example . 42
3.5 Selecting Characters from Variables 42
3.6 Expressions . 43

3.6.1 Spaces Inside Variables Values 43
3.6.2 Operators . 44
3.6.3 Floating Point Numbers 46
3.6.4 Functions . 47
3.6.5 Examples . 48
3.6.6 Numbers Vs. Strings 50
3.6.7 Conditionals . 50
3.6.8 Parse Errors . 51
3.6.9 NULL Strings . 51
3.6.10 Warning . 51
3.6.11 Incompatabilities . 52
3.6.12 Debugging Hints . 53

3.7 Asterisk standard channel variables 55
3.7.1 Application return values 56
3.7.2 Various application variables 57
3.7.3 The MeetMe Conference Bridge 58
3.7.4 The VoiceMail() application 58
3.7.5 The VMAuthenticate() application 58

2

3.7.6 DUNDiLookup() . 58
3.7.7 chan dahdi . 58
3.7.8 chan sip . 59
3.7.9 chan agent . 59
3.7.10 The Dial() application 59
3.7.11 The chanisavail() application 60
3.7.12 Dialplan Macros . 60
3.7.13 The ChanSpy() application 60
3.7.14 OSP . 60

4 AEL: Asterisk Extension Language 62
4.1 Introduction . 62
4.2 Asterisk in a Nutshell . 63

4.2.1 Contexts . 63
4.2.2 Extensions and priorities 63
4.2.3 Macros . 64
4.2.4 Applications . 64

4.3 Getting Started . 65
4.4 Debugging . 65
4.5 About ”aelparse” . 65
4.6 General Notes about Syntax 66
4.7 Keywords . 67
4.8 Procedural Interface and Internals 69

4.8.1 AEL version 2 BNF . 69
4.9 AEL Example USAGE . 72

4.9.1 Comments . 72
4.9.2 Context . 73
4.9.3 Extensions . 73
4.9.4 Includes . 74
4.9.5 #include . 75
4.9.6 Dialplan Switches . 75
4.9.7 Ignorepat . 75
4.9.8 Variables . 75
4.9.9 Local Variables . 76
4.9.10 Loops . 77
4.9.11 Conditionals . 77
4.9.12 Break, Continue, and Return 79
4.9.13 goto, jump, and labels 79

3

4.9.14 Macros . 81
4.10 Examples . 81
4.11 Semantic Checks . 82
4.12 Differences with the original version of AEL 84
4.13 Hints and Bugs . 86
4.14 The Full Power of AEL . 87

5 SLA: Shared Line Appearances 88
5.1 Introduction . 88
5.2 Configuration . 88

5.2.1 Summary . 88
5.2.2 Dialplan . 88
5.2.3 Trunks . 89
5.2.4 Stations . 90

5.3 Configuration Examples . 91
5.3.1 Basic SLA . 91
5.3.2 SLA and Voicemail . 92

5.4 Call Handling . 94
5.4.1 Summary . 94
5.4.2 Station goes off hook (not ringing) 94
5.4.3 Station goes off hook (ringing) 94
5.4.4 Line button on a station is pressed 95

6 Channel Drivers 96
6.1 IAX2 . 96

6.1.1 Introduction . 96
6.1.2 Why IAX2? . 96
6.1.3 Configuration . 98
6.1.4 IAX2 Jitterbuffer . 98

6.2 mISDN . 101
6.2.1 Introduction . 101
6.2.2 Features . 101
6.2.3 Fast Installation Guide 102
6.2.4 Pre-Requisites . 102
6.2.5 Configuration . 102
6.2.6 mISDN CLI commands 105
6.2.7 mISDN Variables . 105
6.2.8 Debugging and sending bug reports 106

4

6.2.9 Examples . 106
6.2.10 Known Problems . 106

6.3 Local . 106
6.3.1 Introduction . 106
6.3.2 Examples . 107
6.3.3 Trivial Local channel example 107
6.3.4 Delay dialing devices 109
6.3.5 Dialing destinations with different information 110
6.3.6 Using callfiles and Local channels 111
6.3.7 Understanding When To Use /n 113
6.3.8 Local channel modifiers 115

7 Distributed Universal Number Discovery (DUNDi) 117
7.1 Introduction . 117
7.2 DUNDIQUERY and DUNDIRESULT 118
7.3 Peering Agreement . 118

8 ENUM 132
8.1 The ENUMLOOKUP dialplan function 132

8.1.1 Arguments . 133
8.1.2 Examples . 134
8.1.3 Usage notes and subtle features 136
8.1.4 Some more Examples 138

9 AMI: Asterisk Manager Interface 140
9.1 The Asterisk Manager TCP/IP API 140
9.2 Device status reports . 141
9.3 Command Syntax . 141
9.4 Manager commands . 141
9.5 Examples . 141
9.6 Some standard AMI headers 142
9.7 Asynchronous Javascript Asterisk Manger (AJAM) 146

9.7.1 Setup the Asterisk HTTP server 146
9.7.2 Allow Manager Access via HTTP 147
9.7.3 Integration with other web servers 148

5

10 CDR: Call Detail Records 149
10.1 Applications . 149
10.2 Fields of the CDR in Asterisk 149
10.3 CDR Variables . 151
10.4 MSSQL . 152

10.4.1 ODBC using cdr odbc 152
10.4.2 TDS, using cdr tds . 154

10.5 MYSQL . 155
10.6 PGSQL . 155
10.7 SQLLITE . 156
10.8 RADIUS . 156

10.8.1 What is needed . 156
10.8.2 Steps to follow in order to have RADIUS support . . . 156

10.9 Logged Values . 159

11 Voicemail 161
11.1 ODBC Storage . 161
11.2 IMAP Storage . 162

11.2.1 Installation Notes . 162
11.2.2 Modify voicemail.conf 164
11.2.3 IMAP Folders . 165
11.2.4 Separate vs. Shared Email Accounts 165
11.2.5 IMAP Server Implementations 165
11.2.6 Quota Support . 166
11.2.7 Application Notes . 166

12 SMS 168
12.1 Introduction . 168
12.2 Background . 168
12.3 Typical use with Asterisk . 169
12.4 Terminology . 169
12.5 Sub address . 170
12.6 extensions.conf . 170
12.7 Using smsq . 171
12.8 File formats . 177
12.9 Delivery reports . 179

6

13 Queues 180
13.1 Introduction . 180
13.2 Configuring Call Queues . 180

13.2.1 queues.conf . 180
13.2.2 Routing incoming Calls to Queues 181
13.2.3 Assigning agents to Queues 184
13.2.4 Controlling The Way Queues Call the Agents 187
13.2.5 Pre Acknowledgement Message 189
13.2.6 Caveats . 189

13.3 Queue Logs . 190

14 Phone Provisioning 193
14.1 Introduction . 193
14.2 Configuration of phoneprov.conf 193

14.2.1 The [general] section 193
14.2.2 Creating phone profiles 194

14.3 Configuration of users.conf . 195
14.3.1 The [general] section 195
14.3.2 Invdividual Users . 196

14.4 Templates . 196
14.5 Putting it all together . 198

15 Development 200
15.1 Backtrace . 200

7

Chapter 1
Introduction

This document contains various pieces of information that are useful for
reference purposes.

1.1 License Information
Asterisk is distributed under the GNU General Public License version 2 and is
also available under alternative licenses negotiated directly with Digium, Inc.
If you obtained Asterisk under the GPL, then the GPL applies to all loadable
Asterisk modules used on your system as well, except as defined below. The
GPL (version 2) is included in this source tree in the file COPYING.

This package also includes various components that are not part of As-
terisk itself; these components are in the ’contrib’ directory and its subdirec-
tories. These components are also distributed under the GPL version 2 as
well.

Digium, Inc. (formerly Linux Support Services) holds copyright and/or
sufficient licenses to all components of the Asterisk package, and therefore
can grant, at its sole discretion, the ability for companies, individuals, or or-
ganizations to create proprietary or Open Source (even if not GPL) modules
which may be dynamically linked at runtime with the portions of Asterisk
which fall under our copyright/license umbrella, or are distributed under
more flexible licenses than GPL.

If you wish to use our code in other GPL programs, don’t worry – there
is no requirement that you provide the same exception in your GPL’d prod-

8

ucts (although if you’ve written a module for Asterisk we would strongly
encourage you to make the same exception that we do).

Specific permission is also granted to link Asterisk with OpenSSL, OpenH323
and/or the UW IMAP Toolkit and distribute the resulting binary files.

In addition, Asterisk implements two management/control protocols: the
Asterisk Manager Interface (AMI) and the Asterisk Gateway Interface (AGI).
It is our belief that applications using these protocols to manage or control an
Asterisk instance do not have to be licensed under the GPL or a compatible
license, as we believe these protocols do not create a ’derivative work’ as
referred to in the GPL. However, should any court or other judiciary body
find that these protocols do fall under the terms of the GPL, then we hereby
grant you a license to use these protocols in combination with Asterisk in
external applications licensed under any license you wish.

The ’Asterisk’ name and logos are trademarks owned by Digium, Inc., and
use of them is subject to our trademark licensing policies. If you wish to use
these trademarks for purposes other than simple redistribution of Asterisk
source code obtained from Digium, you should contact our licensing depart-
ment to determine the necessary steps you must take. For more information
on this policy, please read:

http://www.digium.com/en/company/profile/trademarkpolicy.php
If you have any questions regarding our licensing policy, please contact

us:
+1.877.344.4861 (via telephone in the USA) +1.256.428.6000 (via tele-

phone outside the USA) +1.256.864.0464 (via FAX inside or outside the
USA) IAX2/pbx.digium.com (via IAX2) licensing@digium.com (via email)

Digium, Inc. 445 Jan Davis Drive Huntsville, AL 35806 USA

1.1.1 Hold Music
Digium has licensed the music included with the Asterisk distribution From
opsound.org for use and distribution with Asterisk. It is licensed ONLY for
use as hold music within an Asterisk based PBX.

9

1.2 Security

1.2.1 Introduction
PLEASE READ THE FOLLOWING IMPORTANT SECURITY RELATED
INFORMATION. IMPROPER CONFIGURATION OF ASTERISK COULD
ALLOW UNAUTHORIZED USE OF YOUR FACILITIES, POTENTIALLY
INCURRING SUBSTANTIAL CHARGES.

Asterisk security involves both network security (encryption, authentica-
tion) as well as dialplan security (authorization - who can access services in
your pbx). If you are setting up Asterisk in production use, please make sure
you understand the issues involved.

1.2.2 Network Security
If you install Asterisk and use the ”make samples” command to install a
demonstration configuration, Asterisk will open a few ports for accepting
VoIP calls. Check the channel configuration files for the ports and IP ad-
dresses.

If you enable the manager interface in manager.conf, please make sure
that you access manager in a safe environment or protect it with SSH or
other VPN solutions.

For all TCP/IP connections in Asterisk, you can set ACL lists that will
permit or deny network access to Asterisk services. Please check the ”permit”
and ”deny” configuration options in manager.conf and the VoIP channel
configurations - i.e. sip.conf and iax.conf.

The IAX2 protocol supports strong RSA key authentication as well as
AES encryption of voice and signalling. The SIP channel does not support
encryption in this version of Asterisk.

1.2.3 Dialplan Security
First and foremost remember this:

USE THE EXTENSION CONTEXTS TO ISOLATE OUTGOING OR
TOLL SERVICES FROM ANY INCOMING CONNECTIONS.

You should consider that if any channel, incoming line, etc can enter an
extension context that it has the capability of accessing any extension within
that context.

10

Therefore, you should NOT allow access to outgoing or toll services in
contexts that are accessible (especially without a password) from incoming
channels, be they IAX channels, FX or other trunks, or even untrusted sta-
tions within you network. In particular, never ever put outgoing toll services
in the ”default” context. To make things easier, you can include the ”default”
context within other private contexts by using:

include => default

in the appropriate section. A well designed PBX might look like this:

[longdistance]

exten => _91NXXNXXXXXX,1,Dial(DAHDI/g2/${EXTEN:1})

include => local

[local]

exten => _9NXXNXXX,1,Dial(DAHDI/g2/${EXTEN:1})

include => default

[default]

exten => 6123,Dial(DAHDI/1)

DON’T FORGET TO TAKE THE DEMO CONTEXT OUT OF YOUR
DEFAULT CONTEXT. There isn’t really a security reason, it just will keep
people from wanting to play with your Asterisk setup remotely.

1.2.4 Log Security
Please note that the Asterisk log files, as well as information printed to the
Asterisk CLI, may contain sensitive information such as passwords and call
history. Keep this in mind when providing access to these resources.

1.3 Hardware

1.3.1 Introduction
A PBX is only really useful if you can get calls into it. Of course, you can
use Asterisk with VoIP calls (SIP, H.323, IAX, etc.), but you can also talk
to the real PSTN through various cards.

Supported Hardware is divided into two general groups: DAHDI de-
vices and non-DAHDI devices. The DAHDI compatible hardware supports
pseudo-TDM conferencing and all call features through chan dahdi, whereas
non-DAHDI compatible hardware may have different features.

11

1.3.2 DAHDI compatible hardware
• Digium, Inc. (Primary Developer of Asterisk) http://www.digium.com

– Analog Interfaces

∗ TDM400P - The TDM400P is a half-length PCI 2.2-compliant
card that supports FXS and FXO station interfaces for con-
necting analog telephones and analog POTS lines through a
PC.

∗ TDM800P - The TDM800P is a half-length PCI 2.2-compliant,
8 port card using Digium’s VoiceBus technology that supports
FXS and FXO station interfaces for connecting analog tele-
phones and analog POTS lines through a PC.

∗ TDM2400P - The TDM2400P is a full-length PCI 2.2-compliant
card for connecting analog telephones and analog POTS lines
through a PC. It supports a combination of up to 6 FXS
and/or FXO modules for a total of 24 lines.

– Digital Interfaces

∗ TE412P - The TE412P offers an on-board DSP-based echo
cancellation module. It supports E1, T1, and J1 environments
and is selectable on a per-card or per-port basis.

∗ TE410P - The TE410P improves performance and scalability
through bus mastering architecture. It supports E1, T1, and
J1 environments and is selectable on a per-card or per-port
basis.

∗ TE407P - The TE407P offers an on-board DSP-based echo
cancellation module. It supports E1, T1, and J1 environments
and is selectable on a per-card or per-port basis.

∗ TE405P - The TE405P improves performance and scalability
through bus mastering architecture. It supports both E1, T1,
J1 environments and is selectable on a per-card or per-port
basis.

∗ TE212P - The TE212P offers an on-board DSP-based echo
cancellation module. It supports E1, T1, and J1 environments
and is selectable on a per-card or per-port basis.

∗ TE210P - The TE210P improves performance and scalability
through bus mastering architecture. It supports E1, T1, and

12

http://www.digium.com

J1 environments and is selectable on a per-card or per-port
basis.

∗ TE207P - The TE207P offers an on-board DSP-based echo
cancellation module. It supports E1, T1, and J1 environments
and is selectable on a per-card or per-port basis.

∗ TE205P - The TE205P improves performance and scalability
through bus mastering architecture. It supports both E1 and
T1/J1 environments and is selectable on a per-card or per-
port basis.

∗ TE120P - The TE120P is a single span, selectable T1, E1,
or J1 card and utilizes Digium’s VoiceBusTMtechnology. It
supports both voice and data modes.

∗ TE110P - The TE110P brings a high-performance, cost-effective,
and flexible single span togglable T1, E1, J1 interface to the
Digium line-up of telephony interface devices.

1.3.3 Non-DAHDI compatible hardware
• QuickNet, Inc. http://www.quicknet.net

– Internet PhoneJack - Single FXS interface. Supports Linux tele-
phony interface. DSP compression built-in.

– Internet LineJack - Single FXS or FXO interface. Supports Linux
telephony interface.

1.3.4 mISDN compatible hardware
mISDN homepage: http://www.misdn.org/

Any adapter with an mISDN driver should be compatible with chan misdn.
See the mISDN section for more information.

• Digium, Inc. (Primary Developer of Asterisk) http://www.digium.com

– B410P - 4 Port BRI card (TE/NT)

• beroNet http://www.beronet.com

– BN4S0 - 4 Port BRI card (TE/NT)

13

http://www.quicknet.net
http://www.misdn.org/
http://www.digium.com
http://www.beronet.com

– BN8S0 - 8 Port BRI card (TE/NT)

– Billion Card - Single Port BRI card (TE (/NT with crossed cable))

1.3.5 Miscellaneous other interfaces
• Digium, Inc. (Primary Developer of Asterisk)

– TC400B - The TC400B is a half-length, low-profile PCI 2.2-compliant
card for transforming complex VoIP codecs (G.729) into simple
codecs.

• ALSA http://www.alsa-project.org

– Any ALSA compatible full-duplex sound card

• OSS http://www.opensound.com

– Any OSS compatible full-duplex sound card

14

http://www.alsa-project.org
http://www.opensound.com

Chapter 2
Configuration

2.1 General Configuration Information

2.1.1 Configuration Parser
Introduction

The Asterisk configuration parser in the 1.2 version and beyond series has
been improved in a number of ways. In addition to the realtime architecture,
we now have the ability to create templates in configuration files, and use
these as templates when we configure phones, voicemail accounts and queues.

These changes are general to the configuration parser, and works in all
configuration files.

General syntax

Asterisk configuration files are defined as follows:

[section]

label = value

label2 = value

In some files, (e.g. mgcp.conf, dahdi.conf and agents.conf), the syntax is
a bit different. In these files the syntax is as follows:

[section]

label1 = value1

label2 = value2

object => name

15

label3 = value3

label2 = value4

object2 => name2

In this syntax, we create objects with the settings defined above the object
creation. Note that settings are inherited from the top, so in the example
above object2 has inherited the setting for ”label1” from the first object.

For template configurations, the syntax for defining a section is changed
to:

[section](options)

label = value

The options field is used to define templates, refer to templates and hide
templates. Any object can be used as a template.

No whitespace is allowed between the closing ”]” and the parenthesis ”(”.

Comments

All lines that starts with semi-colon ”;” is treated as comments and is not
parsed.

The ”;--” is a marker for a multi-line comment. Everything after that
marker will be treated as a comment until the end-marker ”--;” is found.
Parsing begins directly after the end-marker.

;This is a comment

label = value

;-- This is

a comment --;

;-- Comment --; exten=> 1000,1,dial(SIP/lisa)

Including other files

In all of the configuration files, you may include the content of another file
with the #include statement. The content of the other file will be included
at the row that the #include statement occurred.

#include myusers.conf

You may also include the output of a program with the #exec directive,
if you enable it in asterisk.conf

In asterisk.conf, add the execincludes = yes statement in the options
section:

16

[options]

execincludes=yes

The exec directive is used like this:

#exec /usr/local/bin/myasteriskconfigurator.sh

Adding to an existing section
[section]

label = value

[section](+)

label2 = value2

In this case, the plus sign indicates that the second section (with the
same name) is an addition to the first section. The second section can be in
another file (by using the #include statement). If the section name referred
to before the plus is missing, the configuration will fail to load.

Defining a template-only section
[section](!)

label = value

The exclamation mark indicates to the config parser that this is a only
a template and should not itself be used by the Asterisk module for config-
uration. The section can be inherited by other sections (see section ”Using
templates” below) but is not used by itself.

Using templates (or other configuration sections)
[section](name[,name])

label = value

The name within the parenthesis refers to other sections, either templates
or standard sections. The referred sections are included before the configura-
tion engine parses the local settings within the section as though their entire
contents (and anything they were previously based upon) were included in
the new section. For example consider the following:

[foo]

disallow=all

allow=ulaw

allow=alaw

17

[bar]

allow=gsm

allow=g729

permit=192.168.2.1

[baz](foo,bar)

type=friend

permit=192.168.3.1

context=incoming

host=bnm

The [baz] section will be processed as though it had been written in the
following way:

[baz]

disallow=all

allow=ulaw

allow=alaw

allow=gsm

allow=g729

permit=192.168.2.1

type=friend

permit=192.168.3.1

context=incoming

host=bnm

It should also be noted that there are no guaranteed overriding semantics,
meaning that if you define something in one template, you should not expect
to be able to override it by defining it again in another template.

Additional Examples

(in top-level sip.conf)

[defaults](!)

type=friend

nat=yes

qualify=on

dtmfmode=rfc2833

disallow=all

allow=alaw

#include accounts/*/sip.conf

(in accounts/customer1/sip.conf)

[def-customer1](!,defaults)

secret=this_is_not_secret

context=from-customer1

callerid=Customer 1 <300>

accountcode=0001

18

[phone1](def-customer1)

mailbox=phone1@customer1

[phone2](def-customer1)

mailbox=phone2@customer1

This example defines two phones - phone1 and phone2 with settings inher-
ited from ”def-customer1”. The ”def-customer1” is a template that inherits
from ”defaults”, which also is a template.

2.1.2 Asterisk.conf
Asterisk Main Configuration File

Below is a sample of the main Asterisk configuration file, asterisk.conf. Note
that this file is not provided in sample form, because the Makefile creates it
when needed and does not touch it when it already exists.

[directories]

; Make sure these directories have the right permissions if not

; running Asterisk as root

; Where the configuration files (except for this one) are located

astetcdir => /etc/asterisk

; Where the Asterisk loadable modules are located

astmoddir => /usr/lib/asterisk/modules

; Where additional ’library’ elements (scripts, etc.) are located

astvarlibdir => /var/lib/asterisk

; Where AGI scripts/programs are located

astagidir => /var/lib/asterisk/agi-bin

; Where spool directories are located

; Voicemail, monitor, dictation and other apps will create files here

; and outgoing call files (used with pbx_spool) must be placed here

astspooldir => /var/spool/asterisk

; Where the Asterisk process ID (pid) file should be created

astrundir => /var/run/asterisk

; Where the Asterisk log files should be created

astlogdir => /var/log/asterisk

[options]

;Under "options" you can enter configuration options

;that you also can set with command line options

; Verbosity level for logging (-v)

19

verbose = 0

; Debug: "No" or value (1-4)

debug = 3

; Background execution disabled (-f)

nofork=yes | no

; Always background, even with -v or -d (-F)

alwaysfork=yes | no

; Console mode (-c)

console= yes | no

; Execute with high priority (-p)

highpriority = yes | no

; Initialize crypto at startup (-i)

initcrypto = yes | no

; Disable ANSI colors (-n)

nocolor = yes | no

; Dump core on failure (-g)

dumpcore = yes | no

; Run quietly (-q)

quiet = yes | no

; Force timestamping in CLI verbose output (-T)

timestamp = yes | no

; User to run asterisk as (-U) NOTE: will require changes to

; directory and device permissions

runuser = asterisk

; Group to run asterisk as (-G)

rungroup = asterisk

; Enable internal timing support (-I)

internal_timing = yes | no

; These options have no command line equivalent

; Cache record() files in another directory until completion

cache_record_files = yes | no

record_cache_dir = <dir>

; Build transcode paths via SLINEAR

transcode_via_sln = yes | no

; send SLINEAR silence while channel is being recorded

transmit_silence_during_record = yes | no

; The maximum load average we accept calls for

maxload = 1.0

20

; The maximum number of concurrent calls you want to allow

maxcalls = 255

; Stop accepting calls when free memory falls below this amount specified in MB

minmemfree = 256

; Allow #exec entries in configuration files

execincludes = yes | no

; Don’t over-inform the Asterisk sysadm, he’s a guru

dontwarn = yes | no

; System name. Used to prefix CDR uniqueid and to fill \${SYSTEMNAME}

systemname = <a_string>

; Should language code be last component of sound file name or first?

; when off, sound files are searched as <path>/<lang>/<file>

; when on, sound files are search as <lang>/<path>/<file>

; (only affects relative paths for sound files)

languageprefix = yes | no

; Locking mode for voicemail

; - lockfile: default, for normal use

; - flock: for where the lockfile locking method doesn’t work

; eh. on SMB/CIFS mounts

lockmode = lockfile | flock

; Entity ID. This is in the form of a MAC address. It should be universally

; unique. It must be unique between servers communicating with a protocol

; that uses this value. The only thing that uses this currently is DUNDi,

; but other things will use it in the future.

; entityid=00:11:22:33:44:55

[files]

; Changing the following lines may compromise your security

; Asterisk.ctl is the pipe that is used to connect the remote CLI

; (asterisk -r) to Asterisk. Changing these settings change the

; permissions and ownership of this file.

; The file is created when Asterisk starts, in the "astrundir" above.

;astctlpermissions = 0660

;astctlowner = root

;astctlgroup = asterisk

;astctl = asterisk.ctl

2.1.3 CLI Prompt
Changing the CLI Prompt

The CLI prompt is set with the ASTERISK PROMPT UNIX environment
variable that you set from the Unix shell before starting Asterisk

You may include the following variables, that will be replaced by the

21

current value by Asterisk:

• %d - Date (year-month-date)

• %s - Asterisk system name (from asterisk.conf)

• %h - Full hostname

• %H - Short hostname

• %t - Time

• %u - Username

• %g - Groupname

• %% - Percent sign

• %# - ’#’ if Asterisk is run in console mode, ’>’ if running as remote
console

• %Cn[;n] - Change terminal foreground (and optional background) color
to specified A full list of colors may be found in include/asterisk/

term.h

On systems which implement getloadavg(3), you may also use:

• %l1 - Load average over past minute

• %l2 - Load average over past 5 minutes

• %l3 - Load average over past 15 minutes

2.1.4 Extensions
The Asterisk dialplan

The Asterisk dialplan is divided into contexts. A context is simply a group
of extensions. For each ”line” that should be able to be called, an extension
must be added to a context. Then, you configure the calling ”line” to have
access to this context.

22

If you change the dialplan, you can use the Asterisk CLI command ”di-
alplan reload” to load the new dialplan without disrupting service in your
PBX.

Extensions are routed according to priority and may be based on any
set of characters (a-z), digits, #, and *. Please note that when matching a
pattern, ”N”, ”X”, and ”Z” are interpreted as classes of digits.

For each extension, several actions may be listed and must be given a
unique priority. When each action completes, the call continues at the next
priority (except for some modules which use explicitly GOTO’s).

Extensions frequently have data they pass to the executing application
(most frequently a string). You can see the available dialplan applications
by entering the ”core show applications” command in the CLI.

In this version of Asterisk, dialplan functions are added. These can be
used as arguments to any application. For a list of the installed functions in
your Asterisk, use the ”core show functions” command.

Example dialplan

The example dial plan, in the configs/extensions.conf.sample file is in-
stalled as extensions.conf if you run ”make samples” after installation of
Asterisk. This file includes many more instructions and examples than this
file, so it’s worthwhile to read it.

Special extensions

There are some extensions with important meanings:

• s

– What to do when an extension context is entered (unless over-
ridden by the low level channel interface) This is used in macros,
and some special cases. ”s” is not a generic catch-all wildcard
extension.

• i

– What to do if an invalid extension is entered

• h

23

– The hangup extension, executed at hangup

• t

– What to do if nothing is entered in the requisite amount of time.

• T

– This is the extension that is executed when the ’absolute’ time-
out is reached. See ”core show function TIMEOUT” for more
information on setting timeouts.

• e

– This extension will substitute as a catchall for any of the ’i’, ’t’,
or ’T’ extensions, if any of them do not exist and catching the
error in a single routine is desired. The function EXCEPTION
may be used to query the type of exception or the location where
it occurred.

And finally, the extension context ”default” is used when either a) an
extension context is deleted while an extension is in use, or b) a specific
starting extension handler has not been defined (unless overridden by the
low level channel interface).

2.1.5 IP Quality of Service
Introduction

Asterisk support different QoS settings on application level on various pro-
tocol on any of signaling and media. Type of Service (TOS) byte can be set
on outgoing IP packets for various protocols. The TOS byte is used by the
network to provide some level of Quality of Service (QoS) even if the network
is congested with other traffic.

Also asterisk running on Linux can set 802.1p CoS marks in VLAN pack-
ets for all used VoIP protocols. It is useful when you are working in switched
environment. In fact asterisk only set priority for Linux socket. For mapping
this priority and VLAN CoS mark you need to use this command:

vconfig set_egress_map [vlan-device] [skb-priority] [vlan-qos]

24

In table behind shown all voice channels and other modules of asterisk,
that support QoS settings for network traffic and type of traffic which can
have QoS settings.

Channel Drivers

+==============+===========+=====+=====+=====+

| | Signaling |Audio|Video| Text|

+==============+===========+=====+=====+=====+

|chan_sip | + | + | + | + |

|--------------+-----------+-----+-----+-----+

|chan_skinny | + | + | + | |

|--------------+-----------+-----+-----+-----+

|chan_mgcp | + | + | | |

|--------------+-----------+-----+-----+-----+

|chan_unistim | + | + | | |

|--------------+-----------+-----+-----+-----+

|chan_h323 | | + | | |

|--------------+-----------+-----+-----+-----+

|chan_iax2 | + |

+==============+=============================+

Other

+==============+=============================+

| dundi.conf | + (tos setting) |

|--------------+-----------------------------+

| iaxprov.conf | + (tos setting) |

+==============+=============================+

IP TOS values

The allowable values for any of the tos* parameters are: CS0, CS1, CS2,
CS3, CS4, CS5, CS6, CS7, AF11, AF12, AF13, AF21, AF22, AF23, AF31,
AF32, AF33, AF41, AF42, AF43 and ef (expedited forwarding),

The tos* parameters also take numeric values.
Note, that on Linux system you can use ef value in case your asterisk is

running from a user other then root only when you have compiled asterisk
with libcap.

The lowdelay, throughput, reliability, mincost, and none values are re-
moved in current releases.

25

802.1p CoS values

As far as 802.1p uses 3 bites from VLAN header, there are parameter can
take integer values from 0 to 7.

Recommended values

Recommended values shown above and also included in sample configuration
files:

+============+=========+======+

| | tos | cos |

+============+=========+======+

|Signaling | cs3 | 3 |

|Audio | ef | 5 |

|Video | af41 | 4 |

|Text | af41 | 3 |

|Other | ef | |

+============+=========+======+

IAX2

In iax.conf, there is a ”tos” parameter that sets the global default TOS
for IAX packets generated by chan iax2. Since IAX connections combine
signalling, audio, and video into one UDP stream, it is not possible to set
the TOS separately for the different types of traffic.

In iaxprov.conf, there is a ”tos” parameter that tells the IAXy what
TOS to set on packets it generates. As with the parameter in iax.conf, IAX
packets generated by an IAXy cannot have different TOS settings based upon
the type of packet. However different IAXy devices can have different TOS
settings.

SIP

In sip.conf, there are three parameters that control the TOS settings: ”tos sip”,
”tos audio”, ”tos video” and ”tos text”. tos sip controls what TOS SIP call
signaling packets are set to. tos audio, tos video and tos text controls what
TOS RTP audio, video or text accordingly packets are set to.

There are four parameters to control 802.1p CoS: ”cos sip”, ”cos audio”,
”cos video” and ”cos text”. It behavior the same as written above.

26

Other RTP channels

chan mgcp, chan h323, chan skinny and chan unistim also support TOS and
CoS via setting tos and cos parameters in correspond to module config files.
Naming style and behavior same as for chan sip.

Reference

IEEE 802.1Q Standard: http://standards.ieee.org/getieee802/download/

802.1Q-1998.pdf Related protocols: IEEE 802.3, 802.2, 802.1D, 802.1Q
RFC 2474 - ”Definition of the Differentiated Services Field (DS field) in

the IPv4 and IPv6 Headers”, Nichols, K., et al, December 1998.
IANA Assignments, DSCP registry Differentiated Services Field Code-

points http://www.iana.org/assignments/dscp-registry

To get the most out of setting the TOS on packets generated by Asterisk,
you will need to ensure that your network handles packets with a TOS prop-
erly. For Cisco devices, see the previously mentioned ”Enterprise QoS Solu-
tion Reference Network Design Guide”. For Linux systems see the ”Linux
Advanced Routing & Traffic Control HOWTO” at http://www.lartc.org/.

For more information on Quality of Service for VoIP networks see the
”Enterprise QoS Solution Reference Network Design Guide” version 3.3 from
Cisco at: http://www.cisco.com/application/pdf/en/us/guest/netsol/ns432/
c649/ccmigration_09186a008049b062.pdf

2.1.6 MP3 Support
MP3 Music On Hold

Use of the mpg123 for your music on hold is no longer recommended and is
now officially deprecated. You should now use one of the native formats for
your music on hold selections.

However, if you still need to use mp3 as your music on hold format, a
format driver for reading MP3 audio files is available in the asterisk-addons
SVN repository on svn.digium.com or in the asterisk-addons release at http:
//downloads.digium.com/pub/telephony/asterisk/.

27

http://standards.ieee.org/getieee802/download/802.1Q-1998.pdf
http://standards.ieee.org/getieee802/download/802.1Q-1998.pdf
http://www.iana.org/assignments/dscp-registry
http://www.lartc.org/
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns432/c649/ccmigration_09186a008049b062.pdf
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns432/c649/ccmigration_09186a008049b062.pdf
http://downloads.digium.com/pub/telephony/asterisk/
http://downloads.digium.com/pub/telephony/asterisk/

2.1.7 ICES
The advent of icecast into Asterisk allows you to do neat things like have a
caller stream right into an ice-cast stream as well as using chan local to place
things like conferences, music on hold, etc. into the stream.

You’ll need to specify a config file for the ices encoder. An example is
included in contrib/asterisk-ices.xml.

2.2 Database Support

2.2.1 Realtime Database Configuration
Introduction

The Asterisk Realtime Architecture is a new set of drivers and functions
implemented in Asterisk.

The benefits of this architecture are many, both from a code management
standpoint and from an installation perspective.

The ARA is designed to be independent of storage. Currently, most
drivers are based on SQL, but the architecture should be able to handle
other storage methods in the future, like LDAP.

The main benefit comes in the database support. In Asterisk v1.0 some
functions supported MySQL database, some PostgreSQL and other ODBC.
With the ARA, we have a unified database interface internally in Asterisk,
so if one function supports database integration, all databases that has a
realtime driver will be supported in that function.

Currently there are three realtime database drivers:

• ODBC: Support for UnixODBC, integrated into Asterisk The UnixODBC
subsystem supports many different databases, please check www.unixodbc.

org for more information.

• MySQL: Found in the asterisk-addons subversion repository on svn.

digium.com

• PostgreSQL: Native support for Postgres, integrated into Asterisk

28

www.unixodbc.org
www.unixodbc.org
svn.digium.com
svn.digium.com

Two modes: Static and Realtime

The ARA realtime mode is used to dynamically load and update objects.
This mode is used in the SIP and IAX2 channels, as well as in the voicemail
system. For SIP and IAX2 this is similar to the v1.0 MYSQL FRIENDS
functionality. With the ARA, we now support many more databases for
dynamic configuration of phones.

The ARA static mode is used to load configuration files. For the Asterisk
modules that read configurations, there’s no difference between a static file
in the file system, like extensions.conf, and a configuration loaded from a
database.

You just have to always make sure the var metric values are properly set
and ordered as you expect in your database server if you’re using the static
mode with ARA (either sequentially or with the same var metric value for
everybody).

If you have an option that depends on another one in a given config-
uration file (i.e, ’musiconhold’ depending on ’agent’ from agents.conf) but
their var metric are not sequential you’ll probably get default values being
assigned for those options instead of the desired ones. You can still use the
same var metric for all entries in your DB, just make sure the entries are
recorded in an order that does not break the option dependency.

That doesn’t happen when you use a static file in the file system. Al-
though this might be interpreted as a bug or limitation, it is not.

Realtime SIP friends

The SIP realtime objects are users and peers that are loaded in memory
when needed, then deleted. This means that Asterisk currently can’t handle
voicemail notification and NAT keepalives for these peers. Other than that,
most of the functionality works the same way for realtime friends as for the
ones in static configuration.

With caching, the device stays in memory for a specified time. More
information about this is to be found in the sip.conf sample file.

If you specify a separate family called ”sipregs” SIP registration data will
be stored in that table and not in the ”sippeers” table.

29

Realtime H.323 friends

Like SIP realtime friends, H.323 friends also can be configured using dynamic
realtime objects.

New function in the dial plan: The Realtime Switch

The realtime switch is more than a port of functionality in v1.0 to the new
architecture, this is a new feature of Asterisk based on the ARA. The real-
time switch lets your Asterisk server do database lookups of extensions in
realtime from your dial plan. You can have many Asterisk servers sharing a
dynamically updated dial plan in real time with this solution.

Note that this switch does NOT support Caller ID matching, only exten-
sion name or pattern matching.

Capabilities

The realtime Architecture lets you store all of your configuration in databases
and reload it whenever you want. You can force a reload over the AMI,
Asterisk Manager Interface or by calling Asterisk from a shell script with

asterisk -rx ”reload”
You may also dynamically add SIP and IAX devices and extensions and

making them available without a reload, by using the realtime objects and
the realtime switch.

Configuration in extconfig.conf

You configure the ARA in extconfig.conf (yes, it’s a strange name, but is was
defined in the early days of the realtime architecture and kind of stuck).

The part of Asterisk that connects to the ARA use a well defined family
name to find the proper database driver. The syntax is easy:

<family> => <realtime driver>,<db name>[,<table>]

The options following the realtime driver identified depends on the driver.
Defined well-known family names are:

• sippeers, sipusers - SIP peers and users

• iaxpeers, iaxusers - IAX2 peers and users

30

• voicemail - Voicemail accounts

• queues - Queues

• queue members - Queue members

• extensions - Realtime extensions (switch)

Voicemail storage with the support of ODBC described in file docs/

odbcstorage.tex (11.1).

Limitations

Currently, realtime extensions do not support realtime hints. There is a
workaround available by using func odbc. See the sample func odbc.conf for
more information.

FreeTDS supported with connection pooling

In order to use a FreeTDS-based database with realtime, you need to turn
connection pooling on in res odbc.conf. This is due to a limitation within
the FreeTDS protocol itself. Please note that this includes databases such as
MS SQL Server and Sybase. This support is new in the current release.

2.2.2 FreeTDS
The cdr tds module now works with most modern release versions of FreeTDS
(from at least 0.60 through 0.82). Although versions of FreeTDS prior to 0.82
will work, we recommend using the latest available version for performance
and stability reasons.

The latest release of FreeTDS is available from http://www.freetds.org/

2.3 Privacy
So, you want to avoid talking to pesky telemarketers/charity seekers/poll
takers/magazine renewers/etc?

31

2.3.1 First of all
the FTC ”Don’t call” database, this alone will reduce your telemarketing call
volume considerably. (see: https://www.donotcall.gov/default.aspx) But,
this list won’t protect from the Charities, previous business relationships, etc.

2.3.2 Next, Fight against autodialers!!
Zapateller detects if callerid is present, and if not, plays the da-da-da tones
that immediately precede messages like, ”I’m sorry, the number you have
called is no longer in service.”

Most humans, even those with unlisted/callerid-blocked numbers, will not
immediately slam the handset down on the hook the moment they hear the
three tones. But autodialers seem pretty quick to do this.

I just counted 40 hangups in Zapateller over the last year in my CDR’s.
So, that is possibly 40 different telemarketers/charities that have hopefully
slashed my back-waters, out-of-the-way, humble home phone number from
their lists.

I highly advise Zapateller for those seeking the nirvana of ”privacy”.

2.3.3 Next, Fight against the empty CALLERID!
A considerable percentage of the calls you don’t want, come from sites that
do not provide CallerID.

Null callerid’s are a fact of life, and could be a friend with an unlisted
number, or some charity looking for a handout. The PrivacyManager appli-
cation can help here. It will ask the caller to enter a 10-digit phone number.
They get 3 tries(configurable), and this is configurable, with control being
passed to next priority where you can check the channelvariable PRIVA-
CYMGRSTATUS. If the callerid was valid this variable will have the value
SUCCESS, otherwise it will have the value FAILED.

PrivacyManager can’t guarantee that the number they supply is any good,
tho, as there is no way to find out, short of hanging up and calling them back.
But some answers are obviously wrong. For instance, it seems a common
practice for telemarketers to use your own number instead of giving you
theirs. A simple test can detect this. More advanced tests would be to look
for -555- numbers, numbers that count up or down, numbers of all the same
digit, etc.

32

https://www.donotcall.gov/default.aspx

PrivacyManager can be told about a context where you can have patterns
that describe valid phone numbers. If none of the patterns match the input,
it will be considered a non-valid phonenumber and the user can try again
until the retry counter is reached. This helps in resolving the issues stated
in the previous paragraph.

My logs show that 39 have hung up in the PrivacyManager script over
the last year.

(Note: Demanding all unlisted incoming callers to enter their CID may
not always be appropriate for all users. Another option might be to use call
screening. See below.)

2.3.4 Next, use a WELCOME MENU !
Experience has shown that simply presenting incoming callers with a set of
options, no matter how simple, will deter them from calling you. In the vast
majority of situations, a telemarketer will simply hang up rather than make
a choice and press a key.

This will also immediately foil all autodialers that simply belch a message
in your ear and hang up.

Example usage of Zapateller and PrivacyManager
[homeline]

exten => s,1,Answer

exten => s,2,SetVar,repeatcount=0

exten => s,3,Zapateller,nocallerid

exten => s,4,PrivacyManager

;; do this if they don’t enter a number to Privacy Manager

exten => s,5,GotoIf($["${PRIVACYMGRSTATUS}" = "FAILED"]?s,105)

exten => s,6,GotoIf($["${CALLERID(num)}" = "7773334444" & "${CALLERID(name)}" : "Privacy Manager"]?callerid-liar,s,1:s,7)

exten => s,7,Dial(SIP/yourphone)

exten => s,105,Background(tt-allbusy)

exten => s,106,Background(tt-somethingwrong)

exten => s,107,Background(tt-monkeysintro)

exten => s,108,Background(tt-monkeys)

exten => s,109,Background(tt-weasels)

exten => s,110,Hangup

I suggest using Zapateller at the beginning of the context, before anything
else, on incoming calls.This can be followed by the PrivacyManager App.

Make sure, if you do the PrivacyManager app, that you take care of the
error condition! or their non-compliance will be rewarded with access to the
system. In the above, if they can’t enter a 10-digit number in 3 tries, they get

33

the humorous ”I’m sorry, but all household members are currently helping
other telemarketers...”, ”something is terribly wrong”, ”monkeys have carried
them away...”, various loud monkey screechings, ”weasels have...”, and a
hangup. There are plenty of other paths to my torture scripts, I wanted to
have some fun.

In nearly all cases now, the telemarketers/charity-seekers that usually get
thru to my main intro, hang up. I guess they can see it’s pointless, or the
average telemarketer/charity-seeker is instructed not to enter options when
encountering such systems. Don’t know.

2.3.5 Next: Torture Them!
I have developed an elaborate script to torture Telemarketers, and enter-
tain friends. (See http://www.voip-info.org/wiki-Asterisk+Telemarketer+

Torture)
While mostly those that call in and traverse my teletorture scripts are

those we know, and are doing so out of curiosity, there have been these
others from Jan 1st,2004 thru June 1st, 2004: (the numbers may or may not
be correct.)

• 603890zzzz – hung up telemarket options.

• ”Integrated Sale” – called a couple times. hung up in telemarket options

• ”UNITED STATES GOV” – maybe a military recruiter, trying to lure
one of my sons.

• 800349zzzz – hung up in charity intro

• 800349zzzz – hung up in charity choices, intro, about the only one who
actually travelled to the bitter bottom of the scripts!

• 216377zzzz – hung up the magazine section

• 626757zzzz = ”LIR ” (pronounced ”Liar”?) hung up in telemarket
intro, then choices

• 757821zzzz – hung up in new magazine subscription options.

34

http://www.voip-info.org/wiki-Asterisk+Telemarketer+Torture
http://www.voip-info.org/wiki-Asterisk+Telemarketer+Torture

That averages out to maybe 1 a month. That puts into question whether
the ratio of the amount of labor it took to make the scripts versus the benefits
of lower call volumes was worth it, but, well, I had fun, so what the heck.

but, that’s about it. Not a whole lot. But I haven’t had to say ”NO” or
”GO AWAY” to any of these folks for about a year now ...!

2.3.6 Using Call Screening
Another option is to use call screening in the Dial command. It has two main
privacy modes, one that remembers the CID of the caller, and how the callee
wants the call handled, and the other, which does not have a ”memory”.

Turning on these modes in the dial command results in this sequence of
events, when someone calls you at an extension:

1. The caller calls the Asterisk system, and at some point, selects an
option or enters an extension number that would dial your extension.

2. Before ringing your extension, the caller is asked to supply an intro-
duction. The application asks them: ”After the tone, say your name”.
They are allowed 4 seconds of introduction.

3. After that, they are told ”Hang on, we will attempt to connect you
to your party. Depending on your dial options, they will hear ringing
indications, or get music on hold. I suggest music on hold.

4. Your extension is then dialed. When (and if) you pick up, you are told
that a caller presenting themselves as <their recorded intro is played>
is calling, and you have options, like being connected, sending them to
voicemail, torture, etc.

5. You make your selection, and the call is handled as you chose.

There are some variations, and these will be explained in due course.
To use these options, set your Dial to something like:

exten => 3,3,Dial(DAHDI/5r3&DAHDI/6r3,35,tmPA(beep))

or

exten => 3,3,Dial(DAHDI/5r3&DAHDI/6r3,35,tmP(something)A(beep))

or

exten => 3,3,Dial(DAHDI/5r3&DAHDI/6r3,35,tmpA(beep))

35

The ’t’ allows the dialed party to transfer the call using ’#’. It’s optional.
The ’m’ is for music on hold. I suggest it. Otherwise, the calling party

gets to hear all the ringing, and lack thereof. It is generally better to use
Music On Hold. Lots of folks hang up after the 3rd or 4th ring, and you
might lose the call before you can enter an option!

The ’P’ option alone will database everything using the extension as a
default ’tree’. To get multiple extensions sharing the same database, use
P(some-shared-key). Also, if the same person has multiple extensions, use
P(unique-id) on all their dial commands.

Use little ’p’ for screening. Every incoming call will include a prompt for
the callee’s choice.

the A(beep), will generate a ’beep’ that the callee will hear if they choose
to talk to the caller. It’s kind of a prompt to let the callee know that he has
to say ’hi’. It’s not required, but I find it helpful.

When there is no CallerID, P and p options will always record an in-
tro for the incoming caller. This intro will be stored temporarily in the
/var/lib/asterisk/sounds/priv-callerintros dir, under the name NO-
CALLERID <extension> <channelname> and will be erased after the callee
decides what to do with the call.

Of course, NOCALLERID is not stored in the database. All those with
no CALLERID will be considered ”Unknown”.

2.3.7 The ’N’ and ’n’ options
Two other options exist, that act as modifiers to the privacy options ’P’ and
’p’. They are ’N’ and ’n’. You can enter them as dialing options, but they
only affect things if P or p are also in the options.

’N’ says, ”Only screen the call if no CallerID is present”. So, if a callerID
were supplied, it will come straight thru to your extension.

’n’ says, ”Don’t save any introductions”. Folks will be asked to supply
an introduction (”At the tone, say your name”) every time they call. Their
introductions will be removed after the callee makes a choice on how to handle
the call. Whether the P option or the p option is used, the incoming caller
will have to supply their intro every time they call.

36

2.3.8 Recorded Introductions
Philosophical Side Note

The ’P’ option stores the CALLERID in the database, along with the callee’s
choice of actions, as a convenience to the CALLEE, whereas introductions
are stored and re-used for the convenience of the CALLER.

Introductions

Unless instructed to not save introductions (see the ’n’ option above), the
screening modes will save the recordings of the caller’s names in the directory
/var/lib/asterisk/sounds/priv-callerintros, if they have a CallerID.
Just the 10-digit callerid numbers are used as filenames, with a ”.gsm” at
the end.

Having these recordings around can be very useful, however...
First of all, if a callerid is supplied, and a recorded intro for that number

is already present, the caller is spared the inconvenience of having to supply
their name, which shortens their call a bit.

Next of all, these intros can be used in voicemail, played over loudspeak-
ers, and perhaps other nifty things. For instance:

exten => s,6,Set(PATH=/var/lib/asterisk/sounds/priv-callerintros)

exten => s,7,System(/usr/bin/play ${PATH}/${CALLERID(num)}.gsm&,0)

When a call comes in at the house, the above priority gets executed, and
the callers intro is played over the phone systems speakers. This gives us a
hint who is calling.

(Note: the ,0 option at the end of the System command above, is a local
mod I made to the System command. It forces a 0 result code to be returned,
whether the play command successfully completed or not. Therefore, I don’t
have to ensure that the file exists or not. While I’ve turned this mod into
the developers, it hasn’t been incorporated yet. You might want to write an
AGI or shell script to handle it a little more intelligently)

And one other thing. You can easily supply your callers with an option
to listen to, and re-record their introductions. Here’s what I did in the home
system’s extensions.conf. (assume that a Goto(home-introduction,s,1) exists
somewhere in your main menu as an option):

[home-introduction]

exten => s,1,Background(intro-options) ;; Script:

37

;; To hear your Introduction, dial 1.

;; to record a new introduction, dial 2.

;; to return to the main menu, dial 3.

;; to hear what this is all about, dial 4.

exten => 1,1,Playback,priv-callerintros/${CALLERID(num)}

exten => 1,2,Goto(s,1)

exten => 2,1,Goto(home-introduction-record,s,1)

exten => 3,1,Goto(homeline,s,7)

exten => 4,1,Playback(intro-intro)

;; Script:

;; This may seem a little strange, but it really is a neat

;; thing, both for you and for us. I’ve taped a short introduction

;; for many of the folks who normally call us. Using the Caller ID

;; from each incoming call, the system plays the introduction

;; for that phone number over a speaker, just as the call comes in.

;; This helps the folks

;; here in the house more quickly determine who is calling.

;; and gets the right ones to gravitate to the phone.

;; You can listen to, and record a new intro for your phone number

;; using this menu.

exten => 4,2,Goto(s,1)

exten => t,1,Goto(s,1)

exten => i,1,Background(invalid)

exten => i,2,Goto(s,1)

exten => o,1,Goto(s,1)

[home-introduction-record]

exten => s,1,Background(intro-record-choices) ;; Script:

;; If you want some advice about recording your

;; introduction, dial 1.

;; otherwise, dial 2, and introduce yourself after

;; the beep.

exten => 1,1,Playback(intro-record)

;; Your introduction should be short and sweet and crisp.

;; Your introduction will be limited to 4 seconds.

;; This is NOT meant to be a voice mail message, so

;; please, don’t say anything about why you are calling.

;; After we are done making the recording, your introduction

;; will be saved for playback.

;; If you are the only person that would call from this number,

;; please state your name. Otherwise, state your business

;; or residence name instead. For instance, if you are

;; friend of the family, say, Olie McPherson, and both

;; you and your kids might call here a lot, you might

;; say: "This is the distinguished Olie McPherson Residence!"

;; If you are the only person calling, you might say this:

;; "This is the illustrious Kermit McFrog! Pick up the Phone, someone!!"

;; If you are calling from a business, you might pronounce a more sedate introduction,like,

;; "Fritz from McDonalds calling.", or perhaps the more original introduction:

;; "John, from the Park County Morgue. You stab ’em, we slab ’em!".

;; Just one caution: the kids will hear what you record every time

;; you call. So watch your language!

;; I will begin recording after the tone.

;; When you are done, hit the # key. Gather your thoughts and get

;; ready. Remember, the # key will end the recording, and play back

;; your intro. Good Luck, and Thank you!"

exten => 1,2,Goto(2,1)

38

exten => 2,1,Background(intro-start)

;; OK, here we go! After the beep, please give your introduction.

exten => 2,2,Background(beep)

exten => 2,3,Record(priv-callerintros/${CALLERID(num)}:gsm,4)

exten => 2,4,Background(priv-callerintros/${CALLERID(num)})

exten => 2,5,Goto(home-introduction,s,1)

exten => t,1,Goto(s,1)

exten => i,1,Background(invalid)

exten => i,2,Goto(s,1)

exten => o,1,Goto(s,1)

In the above, you’d most likely reword the messages to your liking, and
maybe do more advanced things with the ’error’ conditions (i,o,t priorities),
but I hope it conveys the idea.

39

Chapter 3
Channel Variables

3.1 Introduction
There are two levels of parameter evaluation done in the Asterisk dial plan
in extensions.conf.

1. The first, and most frequently used, is the substitution of variable ref-
erences with their values.

2. Then there are the evaluations of expressions done in $[..]. This will
be discussed below.

Asterisk has user-defined variables and standard variables set by various
modules in Asterisk. These standard variables are listed at the end of this
document.

3.2 Parameter Quoting
exten => s,5,BackGround,blabla

The parameter (blabla) can be quoted (”blabla”). In this case, a comma does
not terminate the field. However, the double quotes will be passed down to
the Background command, in this example.

Also, characters special to variable substitution, expression evaluation,
etc (see below), can be quoted. For example, to literally use a $ on the string

40

”$1231”, quote it with a preceding \. Special characters that must be quoted
to be used, are [] $ ” \. (to write \itself, use \).

These Double quotes and escapes are evaluated at the level of the asterisk
config file parser.

Double quotes can also be used inside expressions, as discussed below.

3.3 Variables
Parameter strings can include variables. Variable names are arbitrary strings.
They are stored in the respective channel structure.

To set a variable to a particular value, do:

exten => 1,2,Set(varname=value)

You can substitute the value of a variable everywhere using ${variablename}.
For example, to stringwise append $lala to $blabla and store result in $koko,
do:

exten => 1,2,Set(koko=${blabla}${lala})

There are two reference modes - reference by value and reference by name.
To refer to a variable with its name (as an argument to a function that
requires a variable), just write the name. To refer to the variable’s value,
enclose it inside ${}. For example, Set takes as the first argument (before
the =) a variable name, so:

exten => 1,2,Set(koko=lala)

exten => 1,3,Set(${koko}=blabla)

stores to the variable ”koko” the value ”lala” and to variable ”lala” the value
”blabla”.

In fact, everything contained ${here} is just replaced with the value of
the variable ”here”.

3.4 Variable Inheritance
Variable names which are prefixed by ” ” will be inherited to channels that
are created in the process of servicing the original channel in which the
variable was set. When the inheritance takes place, the prefix will be removed
in the channel inheriting the variable. If the name is prefixed by ” ” in the

41

channel, then the variable is inherited and the ” ” will remain intact in the
new channel.

In the dialplan, all references to these variables refer to the same variable,
regardless of having a prefix or not. Note that setting any version of the
variable removes any other version of the variable, regardless of prefix.

3.4.1 Example
Set(__FOO=bar) ; Sets an inherited version of "FOO" variable

Set(FOO=bar) ; Removes the inherited version and sets a local

; variable.

However, NoOp(${ FOO}) is identical to NoOp(${FOO})

3.5 Selecting Characters from Variables
The format for selecting characters from a variable can be expressed as:

${variable_name[:offset[:length]]}

If you want to select the first N characters from the string assigned to a
variable, simply append a colon and the number of characters to skip from
the beginning of the string to the variable name.

; Remove the first character of extension, save in "number" variable

exten => _9X.,1,Set(number=${EXTEN:1})

Assuming we’ve dialed 918005551234, the value saved to the ’number’ vari-
able would be 18005551234. This is useful in situations when we require
users to dial a number to access an outside line, but do not wish to pass the
first digit.

If you use a negative offset number, Asterisk starts counting from the
end of the string and then selects everything after the new position. The
following example will save the numbers 1234 to the ’number’ variable, still
assuming we’ve dialed 918005551234.

; Remove everything before the last four digits of the dialed string

exten => _9X.,1,Set(number=${EXTEN:-4})

We can also limit the number of characters from our offset position that we
wish to use. This is done by appending a second colon and length value to
the variable name. The following example will save the numbers 555 to the
’number’ variable.

42

; Only save the middle numbers 555 from the string 918005551234

exten => _9X.,1,Set(number=${EXTEN:5:3})

The length value can also be used in conjunction with a negative offset.
This may be useful if the length of the string is unknown, but the trailing
digits are. The following example will save the numbers 555 to the ’number’
variable, even if the string starts with more characters than expected (unlike
the previous example).

; Save the numbers 555 to the ’number’ variable

exten => _9X.,1,Set(number=${EXTEN:-7:3})

If a negative length value is entered, Asterisk will remove that many charac-
ters from the end of the string.

; Set pin to everything but the trailing #.

exten => _XXXX#,1,Set(pin=${EXTEN:0:-1})

3.6 Expressions
Everything contained inside a bracket pair prefixed by a $ (like $[this]) is
considered as an expression and it is evaluated. Evaluation works similar
to (but is done on a later stage than) variable substitution: the expression
(including the square brackets) is replaced by the result of the expression
evaluation.

For example, after the sequence:

exten => 1,1,Set(lala=$[1 + 2])

exten => 1,2,Set(koko=$[2 * ${lala}])

the value of variable koko is ”6”.
and, further:

exten => 1,1,Set,(lala=$[1 + 2]);

will parse as intended. Extra spaces are ignored.

3.6.1 Spaces Inside Variables Values
If the variable being evaluated contains spaces, there can be problems.

For these cases, double quotes around text that may contain spaces will
force the surrounded text to be evaluated as a single token. The double
quotes will be counted as part of that lexical token.

As an example:

43

exten => s,6,GotoIf($["${CALLERID(name)}" : "Privacy Manager"]?callerid-liar,s,1:s,7)

The variable CALLERID(name) could evaluate to ”DELOREAN MO-
TORS” (with a space) but the above will evaluate to:

"DELOREAN MOTORS" : "Privacy Manager"

and will evaluate to 0.
The above without double quotes would have evaluated to:

DELOREAN MOTORS : Privacy Manager

and will result in syntax errors, because token DELOREAN is immedi-
ately followed by token MOTORS and the expression parser will not know
how to evaluate this expression, because it does not match its grammar.

3.6.2 Operators
Operators are listed below in order of increasing precedence. Operators with
equal precedence are grouped within { } symbols.

• expr1 | expr2

Return the evaluation of expr1 if it is neither an empty string nor zero;
otherwise, returns the evaluation of expr2.

• expr1 & expr2

Return the evaluation of expr1 if neither expression evaluates to an
empty string or zero; otherwise, returns zero.

• expr1 {=, >, >=, <, <=, !=} expr2

Return the results of floating point comparison if both arguments are
numbers; otherwise, returns the results of string comparison using the
locale-specific collation sequence. The result of each comparison is 1 if
the specified relation is true, or 0 if the relation is false.

• expr1 {+, -} expr2

Return the results of addition or subtraction of floating point-valued
arguments.

44

• expr1 {*, /, %} expr2

Return the results of multiplication, floating point division, or remain-
der of arguments.

• - expr1

Return the result of subtracting expr1 from 0. This, the unary minus
operator, is right associative, and has the same precedence as the !
operator.

• ! expr1

Return the result of a logical complement of expr1. In other words, if
expr1 is null, 0, an empty string, or the string ”0”, return a 1. Oth-
erwise, return a 0. It has the same precedence as the unary minus
operator, and is also right associative.

• expr1 : expr2

The ‘:’ operator matches expr1 against expr2, which must be a regular
expression. The regular expression is anchored to the beginning of the
string with an implicit ‘̂’.

If the match succeeds and the pattern contains at least one regular
expression subexpression ‘...’, the string corresponing to ‘\1’ is re-
turned; otherwise the matching operator returns the number of char-
acters matched. If the match fails and the pattern contains a regular
expression subexpression the null string is returned; otherwise 0.

Normally, the double quotes wrapping a string are left as part of the
string. This is disastrous to the : operator. Therefore, before the
regex match is made, beginning and ending double quote characters
are stripped from both the pattern and the string.

• expr1 =~ expr2

Exactly the same as the ’:’ operator, except that the match is not an-
chored to the beginning of the string. Pardon any similarity to seem-
ingly similar operators in other programming languages! The ”:” and
”=”̃ operators share the same precedence.

• expr1 ? expr2 :: expr3

45

Traditional Conditional operator. If expr1 is a number that evaluates
to 0 (false), expr3 is result of the this expression evaluation. Otherwise,
expr2 is the result. If expr1 is a string, and evaluates to an empty string,
or the two characters (””), then expr3 is the result. Otherwise, expr2 is
the result. In Asterisk, all 3 exprs will be ”evaluated”; if expr1 is ”true”,
expr2 will be the result of the ”evaluation” of this expression. expr3
will be the result otherwise. This operator has the lowest precedence.

• expr1 ~~ expr2

Concatenation operator. The two exprs are evaluated and turned into
strings, stripped of surrounding double quotes, and are turned into a
single string with no invtervening spaces. This operator is new to trunk
after 1.6.0; it is not needed in existing extensions.conf code. Because of
the way asterisk evaluates and[] constructs (recursively, bottom- up),
no []or is ever present when the contents of a or[] is evaluated. Thus,
tokens are usually already merged at evaluation time. But, in AEL,
various exprs are evaluated raw, and and[] are gathered and treated
as tokens. And in AEL, no two tokens can sit side by side without
an intervening operator. So, in AEL, concatenation must be explic-
itly specified in expressions. This new operator will play well into
future plans, where expressions ([]constructs, andvariablereferences(
constructs) are merged into a single grammar.

Parentheses are used for grouping in the usual manner.
Operator precedence is applied as one would expect in any of the C or C

derived languages.

3.6.3 Floating Point Numbers
In 1.6 and above, we shifted the $[...] expressions to be calculated via float-
ing point numbers instead of integers. We use ’long double’ numbers when
possible, which provide around 16 digits of precision with 12 byte numbers.

To specify a floating point constant, the number has to have this format:
D.D, where D is a string of base 10 digits. So, you can say 0.10, but you
can’t say .10 or 20.– we hope this is not an excessive restriction!

Floating point numbers are turned into strings via the ’%g’/’%Lg’ format
of the printf function set. This allows numbers to still ’look’ like integers to
those counting on integer behavior. If you were counting on 1/4 evaluating to

46

0, you need to now say TRUNC(1/4). For a list of all the truncation/rounding
capabilities, see the next section.

3.6.4 Functions
In 1.6 and above, we upgraded the $[] expressions to handle floating point
numbers. Because of this, folks counting on integer behavior would be dis-
rupted. To make the same results possible, some rounding and integer trun-
cation functions have been added to the core of the Expr2 parser. Indeed,
dialplan functions can be called from $[..] expressions without the ${...} op-
erators. The only trouble might be in the fact that the arguments to these
functions must be specified with a comma. If you try to call the MATH
function, for example, and try to say 3 + MATH(7*8), the expression parser
will evaluate 7*8 for you into 56, and the MATH function will most likely
complain that its input doesn’t make any sense.

We also provide access to most of the floating point functions in the C
library. (but not all of them).

While we don’t expect someone to want to do Fourier analysis in the
dialplan, we don’t want to preclude it, either.

Here is a list of the ’builtin’ functions in Expr2. All other dialplan func-
tions are available by simply calling them (read-only). In other words, you
don’t need to surround function calls in $[...] expressions with ${...}. Don’t
jump to conclusions, though! – you still need to wrap variable names in curly
braces!

1. COS(x) x is in radians. Results vary from -1 to 1.

2. SIN(x) x is in radians. Results vary from -1 to 1.

3. TAN(x) x is in radians.

4. ACOS(x) x should be a value between -1 and 1.

5. ASIN(x) x should be a value between -1 and 1.

6. ATAN(x) returns the arc tangent in radians; between -PI/2 and PI/2.

7. ATAN2(x,y) returns a result resembling y/x, except that the signs of
both args are used to determine the quadrant of the result. Its result
is in radians, between -PI and PI.

47

8. POW(x,y) returns the value of x raised to the power of y.

9. SQRT(x) returns the square root of x.

10. FLOOR(x) rounds x down to the nearest integer.

11. CEIL(x) rounds x up to the nearest integer.

12. ROUND(x) rounds x to the nearest integer, but round halfway cases
away from zero.

13. RINT(x) rounds x to the nearest integer, rounding halfway cases to the
nearest even integer.

14. TRUNC(x) rounds x to the nearest integer not larger in absolute value.

15. REMAINDER(x,y) computes the remainder of dividing x by y. The
return value is x - n*y, where n is the value x/y, rounded to the nearest
integer. If this quotient is 1/2, it is rounded to the nearest even number.

16. EXP(x) returns e to the x power.

17. EXP2(x) returns 2 to the x power.

18. LOG(x) returns the natural logarithm of x.

19. LOG2(x) returns the base 2 log of x.

20. LOG10(x) returns the base 10 log of x.

3.6.5 Examples
"One Thousand Five Hundred" =~ "(T[^]+)"

returns: Thousand

"One Thousand Five Hundred" =~ "T[^]+"

returns: 8

"One Thousand Five Hundred" : "T[^]+"

returns: 0

"8015551212" : "(...)"

returns: 801

"3075551212":"...(...)"

returns: 555

48

! "One Thousand Five Hundred" =~ "T[^]+"

returns: 0 (because it applies to the string, which is non-null,

which it turns to "0", and then looks for the pattern

in the "0", and doesn’t find it)

!("One Thousand Five Hundred" : "T[^]+")

returns: 1 (because the string doesn’t start with a word starting

with T, so the match evals to 0, and the ! operator

inverts it to 1).

2 + 8 / 2

returns 6. (because of operator precedence; the division is done first, then the addition).

2+8/2

returns 6. Spaces aren’t necessary.

(2+8)/2

returns 5, of course.

(3+8)/2

returns 5.5 now.

TRUNC((3+8)/2)

returns 5.

FLOOR(2.5)

returns 2

FLOOR(-2.5)

returns -3

CEIL(2.5)

returns 3.

CEIL(-2.5)

returns -2.

ROUND(2.5)

returns 3.

ROUND(3.5)

returns 4.

ROUND(-2.5)

returns -3

RINT(2.5)

returns 2.

RINT(3.5)

returns 4.

RINT(-2.5)

returns -2.

RINT(-3.5)

returns -4.

49

TRUNC(2.5)

returns 2.

TRUNC(3.5)

returns 3.

TRUNC(-3.5)

returns -3.

Of course, all of the above examples use constants, but would work the
same if any of the numeric or string constants were replaced with a variable
reference ${CALLERID(num)}, for instance.

3.6.6 Numbers Vs. Strings
Tokens consisting only of numbers are converted to ’long double’ if possible,
which are from 80 bits to 128 bits depending on the OS, compiler, and
hardware. This means that overflows can occur when the numbers get above
18 digits (depending on the number of bits involved). Warnings will appear
in the logs in this case.

3.6.7 Conditionals
There is one conditional application - the conditional goto :

exten => 1,2,GotoIf(condition?label1:label2)

If condition is true go to label1, else go to label2. Labels are interpreted
exactly as in the normal goto command.

”condition” is just a string. If the string is empty or ”0”, the condition
is considered to be false, if it’s anything else, the condition is true. This is
designed to be used together with the expression syntax described above, eg
:

exten => 1,2,GotoIf($[${CALLERID(all)} = 123456]?2,1:3,1)

Example of use :

exten => s,2,Set(vara=1)

exten => s,3,Set(varb=$[${vara} + 2])

exten => s,4,Set(varc=$[${varb} * 2])

exten => s,5,GotoIf($[${varc} = 6]?99,1:s,6)

50

3.6.8 Parse Errors
Syntax errors are now output with 3 lines.

If the extensions.conf file contains a line like:

exten => s,6,GotoIf($["${CALLERID(num)}" = "3071234567" & & "${CALLERID(name)}" : "Privacy Manager"]?callerid-liar,s,1:s,7)

You may see an error in /var/log/asterisk/messages like this:

Jul 15 21:27:49 WARNING[1251240752]: ast_yyerror(): syntax error: parse error, unexpected TOK_AND, expecting TOK_MINUS or TOK_LP or TOKEN; Input:

"3072312154" = "3071234567" & & "Steves Extension" : "Privacy Manager"

^

The log line tells you that a syntax error was encountered. It now also
tells you (in grand standard bison format) that it hit an ”AND” (&) token
unexpectedly, and that was hoping for for a MINUS (-), LP (left parenthesis),
or a plain token (a string or number).

The next line shows the evaluated expression, and the line after that, the
position of the parser in the expression when it became confused, marked
with the ””̂ character.

3.6.9 NULL Strings
Testing to see if a string is null can be done in one of two different ways:

exten => _XX.,1,GotoIf($["${calledid}" != ""]?3)

or

exten => _XX.,1,GotoIf($[foo${calledid} != foo]?3)

The second example above is the way suggested by the WIKI. It will work
as long as there are no spaces in the evaluated value.

The first way should work in all cases, and indeed, might now be the
safest way to handle this situation.

3.6.10 Warning
If you need to do complicated things with strings, asterisk expressions is
most likely NOT the best way to go about it. AGI scripts are an excellent
option to this need, and make available the full power of whatever language
you desire, be it Perl, C, C++, Cobol, RPG, Java, Snobol, PL/I, Scheme,
Common Lisp, Shell scripts, Tcl, Forth, Modula, Pascal, APL, assembler,
etc.

51

3.6.11 Incompatabilities
The asterisk expression parser has undergone some evolution. It is hoped
that the changes will be viewed as positive.

The ”original” expression parser had a simple, hand-written scanner, and
a simple bison grammar. This was upgraded to a more involved bison gram-
mar, and a hand-written scanner upgraded to allow extra spaces, and to
generate better error diagnostics. This upgrade required bison 1.85, and
part of the user community felt the pain of having to upgrade their bison
version.

The next upgrade included new bison and flex input files, and the makefile
was upgraded to detect current version of both flex and bison, conditionally
compiling and linking the new files if the versions of flex and bison would
allow it.

If you have not touched your extensions.conf files in a year or so, the above
upgrades may cause you some heartburn in certain circumstances, as several
changes have been made, and these will affect asterisk’s behavior on legacy
extension.conf constructs. The changes have been engineered to minimize
these conflicts, but there are bound to be problems.

The following list gives some (and most likely, not all) of areas of possible
concern with ”legacy” extension.conf files:

1. Tokens separated by space(s). Previously, tokens were separated by
spaces. Thus, ’ 1 + 1 ’ would evaluate to the value ’2’, but ’1+1’ would
evaluate to the string ’1+1’. If this behavior was depended on, then
the expression evaluation will break. ’1+1’ will now evaluate to ’2’,
and something is not going to work right. To keep such strings from
being evaluated, simply wrap them in double quotes: ’ ”1+1” ’

2. The colon operator. In versions previous to double quoting, the colon
operator takes the right hand string, and using it as a regex pattern,
looks for it in the left hand string. It is given an implicit ôperator at the
beginning, meaning the pattern will match only at the beginning of the
left hand string. If the pattern or the matching string had double quotes
around them, these could get in the way of the pattern match. Now,
the wrapping double quotes are stripped from both the pattern and the
left hand string before applying the pattern. This was done because
it recognized that the new way of scanning the expression doesn’t use
spaces to separate tokens, and the average regex expression is full of

52

operators that the scanner will recognize as expression operators. Thus,
unless the pattern is wrapped in double quotes, there will be trouble.
For instance, ${VAR1} : (Who|What*)+ may have have worked before,
but unless you wrap the pattern in double quotes now, look out for
trouble! This is better: ”${VAR1}” : ”(Who|What*)+” and should
work as previous.

3. Variables and Double Quotes Before these changes, if a variable’s value
contained one or more double quotes, it was no reason for concern. It
is now!

4. LE, GE, NE operators removed. The code supported these operators,
but they were not documented. The symbolic operators, <=, >=, and
!= should be used instead.

5. Added the unary ’-’ operator. So you can 3+ -4 and get -1.

6. Added the unary ’ !’ operator, which is a logical complement. Basically,
if the string or number is null, empty, or ’0’, a ’1’ is returned. Otherwise
a ’0’ is returned.

7. Added the ’= ’ operator, just in case someone is just looking for match
anywhere in the string. The only diff with the ’:’ is that match doesn’t
have to be anchored to the beginning of the string.

8. Added the conditional operator ’expr1 ? true expr : false expr’ First,
all 3 exprs are evaluated, and if expr1 is false, the ’false expr’ is returned
as the result. See above for details.

9. Unary operators ’-’ and ’ !’ were made right associative.

3.6.12 Debugging Hints
There are two utilities you can build to help debug the $[] in your exten-
sions.conf file.

The first, and most simplistic, is to issue the command:

make testexpr2

in the top level asterisk source directory. This will build a small executable,
that is able to take the first command line argument, and run it thru the

53

expression parser. No variable substitutions will be performed. It might be
safest to wrap the expression in single quotes...

testexpr2 ’2*2+2/2’

is an example.
And, in the utils directory, you can say:

make check_expr

and a small program will be built, that will check the file mentioned in
the first command line argument, for any expressions that might be have
problems when you move to flex-2.5.31. It was originally designed to help
spot possible incompatibilities when moving from the pre-2.5.31 world to the
upgraded version of the lexer.

But one more capability has been added to check expr, that might make
it more generally useful. It now does a simple minded evaluation of all
variables, and then passes the $[] exprs to the parser. If there are any parse
errors, they will be reported in the log file. You can use check expr to do
a quick sanity check of the expressions in your extensions.conf file, to see if
they pass a crude syntax check.

The ”simple-minded” variable substitution replaces ${varname} variable
references with ’555’. You can override the 555 for variable values, by entering
in var=val arguments after the filename on the command line. So...

check_expr /etc/asterisk/extensions.conf CALLERID(num)=3075551212 DIALSTATUS=TORTURE EXTEN=121

will substitute any ${CALLERID(num)} variable references with 3075551212,
any ${DIALSTATUS} variable references with ’TORTURE’, and any ${EXTEN}
references with ’121’. If there is any fancy stuff going on in the reference,
like ${EXTEN:2}, then the override will not work. Everything in the ${...}
has to match. So, to substitute ${EXTEN:2} references, you’d best say:

check_expr /etc/asterisk/extensions.conf CALLERID(num)=3075551212 DIALSTATUS=TORTURE EXTEN:2=121

on stdout, you will see something like:

OK -- $["${DIALSTATUS}" = "TORTURE" | "${DIALSTATUS}" = "DONTCALL"] at line 416

In the expr2 log file that is generated, you will see:

line 416, evaluation of $["TORTURE" = "TORTURE" | "TORTURE" = "DONTCALL"] result: 1

check expr is a very simplistic algorithm, and it is far from being guar-
anteed to work in all cases, but it is hoped that it will be useful.

54

3.7 Asterisk standard channel variables
There are a number of variables that are defined or read by Asterisk. Here is
a list of them. More information is available in each application’s help text.
All these variables are in UPPER CASE only.

Variables marked with a * are builtin functions and can’t be set, only
read in the dialplan. Writes to such variables are silently ignored.

${CDR(accountcode)} * Account code (if specified)

${BLINDTRANSFER} The name of the channel on the other side of a blind transfer

${BRIDGEPEER} Bridged peer

${BRIDGEPVTCALLID} Bridged peer PVT call ID (SIP Call ID if a SIP call)

${CALLERID(ani)} * Caller ANI (PRI channels)

${CALLERID(ani2)} * ANI2 (Info digits) also called Originating line information or OLI

${CALLERID(all)} * Caller ID

${CALLERID(dnid)} * Dialed Number Identifier

${CALLERID(name)} * Caller ID Name only

${CALLERID(num)} * Caller ID Number only

${CALLERID(rdnis)} * Redirected Dial Number ID Service

${CALLINGANI2} * Caller ANI2 (PRI channels)

${CALLINGPRES} * Caller ID presentation for incoming calls (PRI channels)

${CALLINGTNS} * Transit Network Selector (PRI channels)

${CALLINGTON} * Caller Type of Number (PRI channels)

${CHANNEL} * Current channel name

${CONTEXT} * Current context

${DATETIME} * Current date time in the format: DDMMYYYY-HH:MM:SS

(Deprecated; use ${STRFTIME(${EPOCH},,%d%m%Y-%H:%M:%S)})

${DB_RESULT} Result value of DB_EXISTS() dial plan function

${EPOCH} * Current unix style epoch

${EXTEN} * Current extension

${ENV(VAR)} Environmental variable VAR

${GOTO_ON_BLINDXFR} Transfer to the specified context/extension/priority

after a blind transfer (use ^ characters in place of

| to separate context/extension/priority when setting

this variable from the dialplan)

${HANGUPCAUSE} * Asterisk cause of hangup (inbound/outbound)

${HINT} * Channel hints for this extension

${HINTNAME} * Suggested Caller*ID name for this extension

55

${INVALID_EXTEN} The invalid called extension (used in the "i" extension)

${LANGUAGE} * Current language (Deprecated; use ${LANGUAGE()})

${LEN(VAR)} * String length of VAR (integer)

${PRIORITY} * Current priority in the dialplan

${PRIREDIRECTREASON} Reason for redirect on PRI, if a call was directed

${TIMESTAMP} * Current date time in the format: YYYYMMDD-HHMMSS

(Deprecated; use ${STRFTIME(${EPOCH},,%Y%m%d-%H%M%S)})

${TRANSFER_CONTEXT} Context for transferred calls

${FORWARD_CONTEXT} Context for forwarded calls

${UNIQUEID} * Current call unique identifier

${SYSTEMNAME} * value of the systemname option of asterisk.conf

${ENTITYID} * Global Entity ID set automatically, or from asterisk.conf

3.7.1 Application return values
Many applications return the result in a variable that you read to get the
result of the application. These status fields are unique for each application.
For the various status values, see each application’s help text.

${AGISTATUS} * agi()

${AQMSTATUS} * addqueuemember()

${AVAILSTATUS} * chanisavail()

${CHECKGROUPSTATUS} * checkgroup()

${CHECKMD5STATUS} * checkmd5()

${CPLAYBACKSTATUS} * controlplayback()

${DIALSTATUS} * dial()

${DBGETSTATUS} * dbget()

${ENUMSTATUS} * enumlookup()

${HASVMSTATUS} * hasnewvoicemail()

${LOOKUPBLSTATUS} * lookupblacklist()

${OSPAUTHSTATUS} * ospauth()

${OSPLOOKUPSTATUS} * osplookup()

${OSPNEXTSTATUS} * ospnext()

${OSPFINISHSTATUS} * ospfinish()

${PARKEDAT} * parkandannounce()

${PLAYBACKSTATUS} * playback()

${PQMSTATUS} * pausequeuemember()

${PRIVACYMGRSTATUS} * privacymanager()

56

${QUEUESTATUS} * queue()

${RQMSTATUS} * removequeuemember()

${SENDIMAGESTATUS} * sendimage()

${SENDTEXTSTATUS} * sendtext()

${SENDURLSTATUS} * sendurl()

${SYSTEMSTATUS} * system()

${TRANSFERSTATUS} * transfer()

${TXTCIDNAMESTATUS} * txtcidname()

${UPQMSTATUS} * unpausequeuemember()

${VMSTATUS} * voicmail()

${VMBOXEXISTSSTATUS} * vmboxexists()

${WAITSTATUS} * waitforsilence()

3.7.2 Various application variables
${CURL} * Resulting page content for curl()

${ENUM} * Result of application EnumLookup

${EXITCONTEXT} Context to exit to in IVR menu (app background())

or in the RetryDial() application

${MONITOR} * Set to "TRUE" if the channel is/has been monitored (app monitor())

${MONITOR_EXEC} Application to execute after monitoring a call

${MONITOR_EXEC_ARGS} Arguments to application

${MONITOR_FILENAME} File for monitoring (recording) calls in queue

${QUEUE_PRIO} Queue priority

${QUEUE_MAX_PENALTY} Maximum member penalty allowed to answer caller

${QUEUE_MIN_PENALTY} Minimum member penalty allowed to answer caller

${QUEUESTATUS} Status of the call, one of:

(TIMEOUT | FULL | JOINEMPTY | LEAVEEMPTY | JOINUNAVAIL | LEAVEUNAVAIL)

${RECORDED_FILE} * Recorded file in record()

${TALK_DETECTED} * Result from talkdetect()

${TOUCH_MONITOR} The filename base to use with Touch Monitor (auto record)

${TOUCH_MONITOR_PREF} * The prefix for automonitor recording filenames.

${TOUCH_MONITOR_FORMAT} The audio format to use with Touch Monitor (auto record)

${TOUCH_MONITOR_OUTPUT} * Recorded file from Touch Monitor (auto record)

${TOUCH_MONITOR_MESSAGE_START} Recorded file to play for both channels at start of monitoring session

${TOUCH_MONITOR_MESSAGE_STOP} Recorded file to play for both channels at end of monitoring session

${TXTCIDNAME} * Result of application TXTCIDName

${VPB_GETDTMF} chan_vpb

57

3.7.3 The MeetMe Conference Bridge
${MEETME_RECORDINGFILE} Name of file for recording a conference with

the "r" option

${MEETME_RECORDINGFORMAT} Format of file to be recorded

${MEETME_EXIT_CONTEXT} Context for exit out of meetme meeting

${MEETME_AGI_BACKGROUND} AGI script for Meetme (DAHDI only)

${MEETMESECS} * Number of seconds a user participated in a MeetMe conference

${CONF_LIMIT_TIMEOUT_FILE} File to play when time is up. Used with the L() option.

${CONF_LIMIT_WARNING_FILE} File to play as warning if ’y’ is defined.

The default is to say the time remaining. Used with the L() option.

3.7.4 The VoiceMail() application
${VM_CATEGORY} Sets voicemail category

${VM_NAME} * Full name in voicemail

${VM_DUR} * Voicemail duration

${VM_MSGNUM} * Number of voicemail message in mailbox

${VM_CALLERID} * Voicemail Caller ID (Person leaving vm)

${VM_CIDNAME} * Voicemail Caller ID Name

${VM_CIDNUM} * Voicemail Caller ID Number

${VM_DATE} * Voicemail Date

${VM_MESSAGEFILE} * Path to message left by caller

3.7.5 The VMAuthenticate() application
${AUTH_MAILBOX} * Authenticated mailbox

${AUTH_CONTEXT} * Authenticated mailbox context

3.7.6 DUNDiLookup()
${DUNDTECH} * The Technology of the result from a call to DUNDiLookup()

${DUNDDEST} * The Destination of the result from a call to DUNDiLookup()

3.7.7 chan dahdi
${ANI2} * The ANI2 Code provided by the network on the incoming call.

(ie, Code 29 identifies call as a Prison/Inmate Call)

58

${CALLTYPE} * Type of call (Speech, Digital, etc)

${CALLEDTON} * Type of number for incoming PRI extension

i.e. 0=unknown, 1=international, 2=domestic, 3=net_specific,

4=subscriber, 6=abbreviated, 7=reserved

${CALLINGSUBADDR} * Caller’s PRI Subaddress

${FAXEXTEN} * The extension called before being redirected to "fax"

${PRIREDIRECTREASON} * Reason for redirect, if a call was directed

${SMDI_VM_TYPE} * When an call is received with an SMDI message, the ’type’

of message ’b’ or ’u’

3.7.8 chan sip
${SIPCALLID} * SIP Call-ID: header verbatim (for logging or CDR matching)

${SIPDOMAIN} * SIP destination domain of an inbound call (if appropriate)

${SIPUSERAGENT} * SIP user agent (deprecated)

${SIPURI} * SIP uri

${SIP_CODEC} Set the SIP codec for a call

${SIP_URI_OPTIONS} * additional options to add to the URI for an outgoing call

${RTPAUDIOQOS} RTCP QoS report for the audio of this call

${RTPVIDEOQOS} RTCP QoS report for the video of this call

3.7.9 chan agent
${AGENTMAXLOGINTRIES} Set the maximum number of failed logins

${AGENTUPDATECDR} Whether to update the CDR record with Agent channel data

${AGENTGOODBYE} Sound file to use for "Good Bye" when agent logs out

${AGENTACKCALL} Whether the agent should acknowledge the incoming call

${AGENTAUTOLOGOFF} Auto logging off for an agent

${AGENTWRAPUPTIME} Setting the time for wrapup between incoming calls

${AGENTNUMBER} * Agent number (username) set at login

${AGENTSTATUS} * Status of login (fail | on | off)

${AGENTEXTEN} * Extension for logged in agent

3.7.10 The Dial() application
${DIALEDPEERNAME} * Dialed peer name

${DIALEDPEERNUMBER} * Dialed peer number

${DIALEDTIME} * Time for the call (seconds). Is only set if call was answered.

59

${ANSWEREDTIME} * Time from answer to hangup (seconds)

${DIALSTATUS} * Status of the call, one of:

(CHANUNAVAIL | CONGESTION | BUSY | NOANSWER

| ANSWER | CANCEL | DONTCALL | TORTURE)

${DYNAMIC_FEATURES} * The list of features (from the [applicationmap] section of

features.conf) to activate during the call, with feature

names separated by ’#’ characters

${LIMIT_PLAYAUDIO_CALLER} Soundfile for call limits

${LIMIT_PLAYAUDIO_CALLEE} Soundfile for call limits

${LIMIT_WARNING_FILE} Soundfile for call limits

${LIMIT_TIMEOUT_FILE} Soundfile for call limits

${LIMIT_CONNECT_FILE} Soundfile for call limits

${OUTBOUND_GROUP} Default groups for peer channels (as in SetGroup)

* See "show application dial" for more information

3.7.11 The chanisavail() application
${AVAILCHAN} * the name of the available channel if one was found

${AVAILORIGCHAN} * the canonical channel name that was used to create the channel

${AVAILSTATUS} * Status of requested channel

3.7.12 Dialplan Macros
${MACRO_EXTEN} * The calling extensions

${MACRO_CONTEXT} * The calling context

${MACRO_PRIORITY} * The calling priority

${MACRO_OFFSET} Offset to add to priority at return from macro

3.7.13 The ChanSpy() application
${SPYGROUP} * A ’:’ (colon) separated list of group names.

(To be set on spied on channel and matched against the g(grp) option)

3.7.14 OSP
${OSPINHANDLE} OSP handle of in_bound call

${OSPINTIMELIMIT} Duration limit for in_bound call

${OSPOUTHANDLE} OSP handle of out_bound call

60

${OSPTECH} OSP technology

${OSPDEST} OSP destination

${OSPCALLING} OSP calling number

${OSPOUTTOKEN} OSP token to use for out_bound call

${OSPOUTTIMELIMIT} Duration limit for out_bound call

${OSPRESULTS} Number of remained destinations

61

Chapter 4
AEL: Asterisk Extension Language

4.1 Introduction
AEL is a specialized language intended purely for describing Asterisk dial
plans.

The current version was written by Steve Murphy, and is a rewrite of the
original version.

This new version further extends AEL, and provides more flexible syntax,
better error messages, and some missing functionality.

AEL is really the merger of 4 different ’languages’, or syntaxes:

• The first and most obvious is the AEL syntax itself. A BNF is provided
near the end of this document.

• The second syntax is the Expression Syntax, which is normally handled
by Asterisk extension engine, as expressions enclosed in $[...]. The right
hand side of assignments are wrapped in $[...] by AEL, and so are
the if and while expressions, among others.

• The third syntax is the Variable Reference Syntax, the stuff enclosed in
${..} curly braces. It’s a bit more involved than just putting a variable
name in there. You can include one of dozens of ’functions’, and their
arguments, and there are even some string manipulation notation in
there.

• The last syntax that underlies AEL, and is not used directly in AEL,
is the Extension Language Syntax. The extension language is what

62

you see in extensions.conf, and AEL compiles the higher level AEL
language into extensions and priorities, and passes them via function
calls into Asterisk. Embedded in this language is the Application/AGI
commands, of which one application call per step, or priority can be
made. You can think of this as a ”macro assembler” language, that
AEL will compile into.

Any programmer of AEL should be familiar with its syntax, of course, as
well as the Expression syntax, and the Variable syntax.

4.2 Asterisk in a Nutshell
Asterisk acts as a server. Devices involved in telephony, like DAHDI cards,
or Voip phones, all indicate some context that should be activated in their
behalf. See the config file formats for IAX, SIP, dahdi.conf, etc. They all help
describe a device, and they all specify a context to activate when somebody
picks up a phone, or a call comes in from the phone company, or a voip
phone, etc.

4.2.1 Contexts
Contexts are a grouping of extensions.

Contexts can also include other contexts. Think of it as a sort of merge
operation at runtime, whereby the included context’s extensions are added
to the contexts making the inclusion.

4.2.2 Extensions and priorities
A Context contains zero or more Extensions. There are several predefined
extensions. The ”s” extension is the ”start” extension, and when a device
activates a context the ”s” extension is the one that is going to be run.
Other extensions are the timeout ”t” extension, the invalid response, or ”i”
extension, and there’s a ”fax” extension. For instance, a normal call will
activate the ”s” extension, but an incoming FAX call will come into the
”fax” extension, if it exists. (BTW, asterisk can tell it’s a fax call by the
little ”beep” that the calling fax machine emits every so many seconds.).

Extensions contain several priorities, which are individual instructions to
perform. Some are as simple as setting a variable to a value. Others are as

63

complex as initiating the Voicemail application, for instance. Priorities are
executed in order.

When the ’s” extension completes, asterisk waits until the timeout for
a response. If the response matches an extension’s pattern in the context,
then control is transferred to that extension. Usually the responses are tones
emitted when a user presses a button on their phone. For instance, a context
associated with a desk phone might not have any ”s” extension. It just plays
a dialtone until someone starts hitting numbers on the keypad, gather the
number, find a matching extension, and begin executing it. That extension
might Dial out over a connected telephone line for the user, and then connect
the two lines together.

The extensions can also contain ”goto” or ”jump” commands to skip to
extensions in other contexts. Conditionals provide the ability to react to
different stimuli, and there you have it.

4.2.3 Macros
Think of a macro as a combination of a context with one nameless extension,
and a subroutine. It has arguments like a subroutine might. A macro call
can be made within an extension, and the individual statements there are
executed until it ends. At this point, execution returns to the next statement
after the macro call. Macros can call other macros. And they work just like
function calls.

4.2.4 Applications
Application calls, like ”Dial()”, or ”Hangup()”, or ”Answer()”, are available
for users to use to accomplish the work of the dialplan. There are over 145
of them at the moment this was written, and the list grows as new needs
and wants are uncovered. Some applications do fairly simple things, some
provide amazingly complex services.

Hopefully, the above objects will allow you do anything you need to in
the Asterisk environment!

64

4.3 Getting Started
The AEL parser (res ael.so) is completely separate from the module that
parses extensions.conf (pbx config.so). To use AEL, the only thing that has
to be done is the module res ael.so must be loaded by Asterisk. This will
be done automatically if using ’autoload=yes’ in /etc/asterisk/modules.

conf. When the module is loaded, it will look for ’extensions.ael’ in /etc/

asterisk/. extensions.conf and extensions.ael can be used in conjunction
with each other if that is what is desired. Some users may want to keep
extensions.conf for the features that are configured in the ’general’ section of
extensions.conf.

To reload extensions.ael, the following command can be issued at the CLI:
*CLI¿ ael reload

4.4 Debugging
Right at this moment, the following commands are available, but do nothing:

Enable AEL contexts debug
*CLI> ael debug contexts
Enable AEL macros debug
*CLI> ael debug macros
Enable AEL read debug
*CLI> ael debug read
Enable AEL tokens debug
*CLI> ael debug tokens
Disable AEL debug messages
*CLI> ael no debug
If things are going wrong in your dialplan, you can use the following

facilities to debug your file:
1. The messages log in /var/log/asterisk. (from the checks done at

load time). 2. the ”show dialplan” command in asterisk 3. the standalone
executable, ”aelparse” built in the utils/ dir in the source.

4.5 About ”aelparse”
You can use the ”aelparse” program to check your extensions.ael file before
feeding it to asterisk. Wouldn’t it be nice to eliminate most errors before

65

giving the file to asterisk?
aelparse is compiled in the utils directory of the asterisk release. It isn’t

installed anywhere (yet). You can copy it to your favorite spot in your PATH.
aelparse has two optional arguments:

• -d

– Override the normal location of the config file dir, (usually /etc/

asterisk), and use the current directory instead as the config file
dir. Aelparse will then expect to find the file ”./extensions.ael” in
the current directory, and any included files in the current direc-
tory as well.

• -n

– don’t show all the function calls to set priorities and contexts
within asterisk. It will just show the errors and warnings from the
parsing and semantic checking phases.

4.6 General Notes about Syntax
Note that the syntax and style are now a little more free-form. The opening
’’ (curly-braces) do not have to be on the same line as the keyword that
precedes them. Statements can be split across lines, as long as tokens are
not broken by doing so. More than one statement can be included on a single
line. Whatever you think is best!

You can just as easily say,

if(${x}=1) { NoOp(hello!); goto s,3; } else { NoOp(Goodbye!); goto s,12; }

as you can say:

if(${x}=1)

{

NoOp(hello!);

goto s,3;

}

else

{

NoOp(Goodbye!);

goto s,12;

}

66

or:

if(${x}=1) {

NoOp(hello!);

goto s,3;

} else {

NoOp(Goodbye!);

goto s,12;

}

or:

if (${x}=1) {

NoOp(hello!); goto s,3;

} else {

NoOp(Goodbye!); goto s,12;

}

4.7 Keywords
The AEL keywords are case-sensitive. If an application name and a keyword
overlap, there is probably good reason, and you should consider replacing
the application call with an AEL statement. If you do not wish to do so,
you can still use the application, by using a capitalized letter somewhere in
its name. In the Asterisk extension language, application names are NOT
case-sensitive.

The following are keywords in the AEL language:

• abstract

• context

• macro

• globals

• ignorepat

• switch

• if

• ifTime

• else

67

• random

• goto

• jump

• local

• return

• break

• continue

• regexten

• hint

• for

• while

• case

• pattern

• default NOTE: the ”default” keyword can be used as a context name,
for those who would like to do so.

• catch

• switches

• eswitches

• includes

68

4.8 Procedural Interface and Internals
AEL first parses the extensions.ael file into a memory structure representing
the file. The entire file is represented by a tree of ”pval” structures linked
together.

This tree is then handed to the semantic check routine.
Then the tree is handed to the compiler.
After that, it is freed from memory.
A program could be written that could build a tree of pval structures,

and a pretty printing function is provided, that would dump the data to a
file, or the tree could be handed to the compiler to merge the data into the
asterisk dialplan. The modularity of the design offers several opportunities
for developers to simplify apps to generate dialplan data.

4.8.1 AEL version 2 BNF
(hopefully, something close to bnf).

First, some basic objects

<word> a lexical token consisting of characters matching this pattern: [-a-zA-Z0-9"_/.\<\>*\+!$#\[\]][-a-zA-Z0-9"_/.!*\+\<\>\{\}$#\[\]]*

<word3-list> a concatenation of up to 3 <word>s.

<collected-word> all characters encountered until the character that follows the <collected-word> in the grammar.

<file> :== <objects>

<objects> :== <object>

| <objects> <object>

<object> :== <context>

| <macro>

| <globals>

| ’;’

<context> :== ’context’ <word> ’{’ <elements> ’}’

| ’context’ <word> ’{’ ’}’

| ’context’ ’default’ ’{’ <elements> ’}’

| ’context’ ’default’ ’{’ ’}’

| ’abstract’ ’context’ <word> ’{’ <elements> ’}’

| ’abstract’ ’context’ <word> ’{’ ’}’

| ’abstract’ ’context’ ’default’ ’{’ <elements> ’}’

| ’abstract’ ’context’ ’default’ ’{’ ’}’

69

<macro> :== ’macro’ <word> ’(’ <arglist> ’)’ ’{’ <macro_statements> ’}’

| ’macro’ <word> ’(’ <arglist> ’)’ ’{’ ’}’

| ’macro’ <word> ’(’ ’)’ ’{’ <macro_statements> ’}’

| ’macro’ <word> ’(’ ’)’ ’{’ ’}’

<globals> :== ’globals’ ’{’ <global_statements> ’}’

| ’globals’ ’{’ ’}’

<global_statements> :== <global_statement>

| <global_statements> <global_statement>

<global_statement> :== <word> ’=’ <collected-word> ’;’

<arglist> :== <word>

| <arglist> ’,’ <word>

<elements> :== <element>

| <elements> <element>

<element> :== <extension>

| <includes>

| <switches>

| <eswitches>

| <ignorepat>

| <word> ’=’ <collected-word> ’;’

| ’local’ <word> ’=’ <collected-word> ’;’

| ’;’

<ignorepat> :== ’ignorepat’ ’=>’ <word> ’;’

<extension> :== <word> ’=>’ <statement>

| ’regexten’ <word> ’=>’ <statement>

| ’hint’ ’(’ <word3-list> ’)’ <word> ’=>’ <statement>

| ’regexten’ ’hint’ ’(’ <word3-list> ’)’ <word> ’=>’ <statement>

<statements> :== <statement>

| <statements> <statement>

<if_head> :== ’if’ ’(’ <collected-word> ’)’

<random_head> :== ’random’ ’(’ <collected-word> ’)’

<ifTime_head> :== ’ifTime’ ’(’ <word3-list> ’:’ <word3-list> ’:’ <word3-list> ’|’ <word3-list> ’|’ <word3-list> ’|’ <word3-list> ’)’

| ’ifTime’ ’(’ <word> ’|’ <word3-list> ’|’ <word3-list> ’|’ <word3-list> ’)’

<word3-list> :== <word>

70

| <word> <word>

| <word> <word> <word>

<switch_head> :== ’switch’ ’(’ <collected-word> ’)’ ’{’

<statement> :== ’{’ <statements> ’}’

| <word> ’=’ <collected-word> ’;’

| ’local’ <word> ’=’ <collected-word> ’;’

| ’goto’ <target> ’;’

| ’jump’ <jumptarget> ’;’

| <word> ’:’

| ’for’ ’(’ <collected-word> ’;’ <collected-word> ’;’ <collected-word> ’)’ <statement>

| ’while’ ’(’ <collected-word> ’)’ <statement>

| <switch_head> ’}’

| <switch_head> <case_statements> ’}’

| ’&’ macro_call ’;’

| <application_call> ’;’

| <application_call> ’=’ <collected-word> ’;’

| ’break’ ’;’

| ’return’ ’;’

| ’continue’ ’;’

| <random_head> <statement>

| <random_head> <statement> ’else’ <statement>

| <if_head> <statement>

| <if_head> <statement> ’else’ <statement>

| <ifTime_head> <statement>

| <ifTime_head> <statement> ’else’ <statement>

| ’;’

<target> :== <word>

| <word> ’|’ <word>

| <word> ’|’ <word> ’|’ <word>

| ’default’ ’|’ <word> ’|’ <word>

| <word> ’,’ <word>

| <word> ’,’ <word> ’,’ <word>

| ’default’ ’,’ <word> ’,’ <word>

<jumptarget> :== <word>

| <word> ’,’ <word>

| <word> ’,’ <word> ’@’ <word>

| <word> ’@’ <word>

| <word> ’,’ <word> ’@’ ’default’

| <word> ’@’ ’default’

<macro_call> :== <word> ’(’ <eval_arglist> ’)’

| <word> ’(’ ’)’

<application_call_head> :== <word> ’(’

<application_call> :== <application_call_head> <eval_arglist> ’)’

| <application_call_head> ’)’

<eval_arglist> :== <collected-word>

| <eval_arglist> ’,’ <collected-word>

| /* nothing */

| <eval_arglist> ’,’ /* nothing */

71

<case_statements> :== <case_statement>

| <case_statements> <case_statement>

<case_statement> :== ’case’ <word> ’:’ <statements>

| ’default’ ’:’ <statements>

| ’pattern’ <word> ’:’ <statements>

| ’case’ <word> ’:’

| ’default’ ’:’

| ’pattern’ <word> ’:’

<macro_statements> :== <macro_statement>

| <macro_statements> <macro_statement>

<macro_statement> :== <statement>

| ’catch’ <word> ’{’ <statements> ’}’

<switches> :== ’switches’ ’{’ <switchlist> ’}’

| ’switches’ ’{’ ’}’

<eswitches> :== ’eswitches’ ’{’ <switchlist> ’}’

| ’eswitches’ ’{’ ’}’

<switchlist> :== <word> ’;’

| <switchlist> <word> ’;’

<includeslist> :== <includedname> ’;’

| <includedname> ’|’ <word3-list> ’:’ <word3-list> ’:’ <word3-list> ’|’ <word3-list> ’|’ <word3-list> ’|’ <word3-list> ’;’

| <includedname> ’|’ <word> ’|’ <word3-list> ’|’ <word3-list> ’|’ <word3-list> ’;’

| <includeslist> <includedname> ’;’

| <includeslist> <includedname> ’|’ <word3-list> ’:’ <word3-list> ’:’ <word3-list> ’|’ <word3-list> ’|’ <word3-list> ’|’ <word3-list> ’;’

| <includeslist> <includedname> ’|’ <word> ’|’ <word3-list> ’|’ <word3-list> ’|’ <word3-list> ’;’

<includedname> :== <word>

| ’default’

<includes> :== ’includes’ ’{’ <includeslist> ’}’

| ’includes’ ’{’ ’}’

4.9 AEL Example USAGE

4.9.1 Comments
Comments begin with // and end with the end of the line.

Comments are removed by the lexical scanner, and will not be recognized
in places where it is busy gathering expressions to wrap in $[] , or inside
application call argument lists. The safest place to put comments is after
terminating semicolons, or on otherwise empty lines.

72

4.9.2 Context
Contexts in AEL represent a set of extensions in the same way that they do
in extensions.conf.

context default {

}

A context can be declared to be ”abstract”, in which case, this declaration
expresses the intent of the writer, that this context will only be included by
another context, and not ”stand on its own”. The current effect of this
keyword is to prevent ”goto ” statements from being checked.

abstract context longdist {

_1NXXNXXXXXX => NoOp(generic long distance dialing actions in the US);

}

4.9.3 Extensions
To specify an extension in a context, the following syntax is used. If more
than one application is be called in an extension, they can be listed in order
inside of a block.

context default {

1234 => Playback(tt-monkeys);

8000 => {

NoOp(one);

NoOp(two);

NoOp(three);

};

_5XXX => NoOp(it’s a pattern!);

}

Two optional items have been added to the AEL syntax, that allow the
specification of hints, and a keyword, regexten, that will force the numbering
of priorities to start at 2.

The ability to make extensions match by CID is preserved in AEL; just
use ’/’ and the CID number in the specification. See below.

context default {

regexten _5XXX => NoOp(it’s a pattern!);

}

context default {

hint(Sip/1) _5XXX => NoOp(it’s a pattern!);

}

73

context default {

regexten hint(Sip/1) _5XXX => NoOp(it’s a pattern!);

}

The regexten must come before the hint if they are both present.
CID matching is done as with the extensions.conf file. Follow the exten-

sion name/number with a slash (/) and the number to match against the
Caller ID:

context zoombo

{

819/7079953345 => { NoOp(hello, 3345); }

}

In the above, the 819/7079953345 extension will only be matched if the
CallerID is 7079953345, and the dialed number is 819. Hopefully you have
another 819 extension defined for all those who wish 819, that are not so
lucky as to have 7079953345 as their CallerID!

4.9.4 Includes
Contexts can be included in other contexts. All included contexts are listed
within a single block.

context default {

includes {

local;

longdistance;

international;

}

}

Time-limited inclusions can be specified, as in extensions.conf format,
with the fields described in the wiki page Asterisk cmd GotoIfTime.

context default {

includes {

local;

longdistance|16:00-23:59|mon-fri|*|*;

international;

}

}

74

4.9.5 #include
You can include other files with the #include ”filepath” construct.

#include "/etc/asterisk/testfor.ael"

An interesting property of the #include, is that you can use it almost
anywhere in the .ael file. It is possible to include the contents of a file in a
macro, context, or even extension. The #include does not have to occur at
the beginning of a line. Included files can include other files, up to 50 levels
deep. If the path provided in quotes is a relative path, the parser looks in
the config file directory for the file (usually /etc/asterisk).

4.9.6 Dialplan Switches
Switches are listed in their own block within a context. For clues as to
what these are used for, see Asterisk - dual servers, and Asterisk config
extensions.conf.

context default {

switches {

DUNDi/e164;

IAX2/box5;

};

eswitches {

IAX2/context@${CURSERVER};

}

}

4.9.7 Ignorepat
ignorepat can be used to instruct channel drivers to not cancel dialtone upon
receipt of a particular pattern. The most commonly used example is ’9’.

context outgoing {

ignorepat => 9;

}

4.9.8 Variables
Variables in Asterisk do not have a type, so to define a variable, it just has
to be specified with a value.

Global variables are set in their own block.

75

globals {

CONSOLE=Console/dsp;

TRUNK=DAHDI/g2;

}

Variables can be set within extensions as well.

context foo {

555 => {

x=5;

y=blah;

divexample=10/2

NoOp(x is ${x} and y is ${y} !);

}

}

NOTE: AEL wraps the right hand side of an assignment with $[] to
allow expressions to be used If this is unwanted, you can protect the right
hand side from being wrapped by using the Set() application. Read the
README.variables about the requirements and behavior of $[] expressions.

NOTE: These things are wrapped up in a $[] expression: The while()
test; the if() test; the middle expression in the for(x; y; z) statement (the y
expression); Assignments - the right hand side, so a = b -¿ Set(a=$[b])

Writing to a dialplan function is treated the same as writing to a variable.

context blah {

s => {

CALLERID(name)=ChickenMan;

NoOp(My name is ${CALLERID(name)} !);

}

}

You can declare variables in Macros, as so:

Macro myroutine(firstarg, secondarg)

{

Myvar=1;

NoOp(Myvar is set to ${myvar});

}

4.9.9 Local Variables
In 1.2, and 1.4, ALL VARIABLES are CHANNEL variables, including the
function arguments and associated ARG1, ARG2, etc variables. Sorry.

In trunk (1.6 and higher), we have made all arguments local variables to
a macro call. They will not affect channel variables of the same name. This
includes the ARG1, ARG2, etc variables.

Users can declare their own local variables by using the keyword ’local’
before setting them to a value;

76

Macro myroutine(firstarg, secondarg)

{

local Myvar=1;

NoOp(Myvar is set to ${Myvar}, and firstarg is ${firstarg}, and secondarg is ${secondarg});

}

In the above example, Myvar, firstarg, and secondarg are all local vari-
ables, and will not be visible to the calling code, be it an extension, or another
Macro.

If you need to make a local variable within the Set() application, you can
do it this way:

Macro myroutine(firstarg, secondarg)

{

Set(LOCAL(Myvar)=1);

NoOp(Myvar is set to ${Myvar}, and firstarg is ${firstarg}, and secondarg is ${secondarg});

}

4.9.10 Loops
AEL has implementations of ’for’ and ’while’ loops.

context loops {

1 => {

for (x=0; ${x} < 3; x=${x} + 1) {

Verbose(x is ${x} !);

}

}

2 => {

y=10;

while (${y} >= 0) {

Verbose(y is ${y} !);

y=${y}-1;

}

}

}

NOTE: The conditional expression (the ”${y} >= 0” above) is wrapped
in $[] so it can be evaluated. NOTE: The for loop test expression (the ”$x
< 3” above) is wrapped in $[] so it can be evaluated.

4.9.11 Conditionals
AEL supports if and switch statements, like AEL, but adds ifTime, and ran-
dom. Unlike the original AEL, though, you do NOT need to put curly braces
around a single statement in the ”true” branch of an if(), the random(), or
an ifTime() statement. The if(), ifTime(), and random() statements allow
optional else clause.

77

context conditional {

_8XXX => {

Dial(SIP/${EXTEN});

if ("${DIALSTATUS}" = "BUSY")

{

NoOp(yessir);

Voicemail(${EXTEN},b);

}

else

Voicemail(${EXTEN},u);

ifTime (14:00-25:00,sat-sun,*,*)

Voicemail(${EXTEN},b);

else

{

Voicemail(${EXTEN},u);

NoOp(hi, there!);

}

random(51) NoOp(This should appear 51% of the time);

random(60)

{

NoOp(This should appear 60% of the time);

}

else

{

random(75)

{

NoOp(This should appear 30% of the time!);

}

else

{

NoOp(This should appear 10% of the time!);

}

}

}

_777X => {

switch (${EXTEN}) {

case 7771:

NoOp(You called 7771!);

break;

case 7772:

NoOp(You called 7772!);

break;

case 7773:

NoOp(You called 7773!);

// fall thru-

pattern 777[4-9]:

NoOp(You called 777 something!);

default:

NoOp(In the default clause!);

}

}

}

NOTE: The conditional expression in if() statements (the ”${DIALSTATUS}”
= ”BUSY” above) is wrapped by the compiler in $[] for evaluation.

78

NOTE: Neither the switch nor case values are wrapped in $[]; they can
be constants, or ${var} type references only.

NOTE: AEL generates each case as a separate extension. case clauses
with no terminating ’break’, or ’goto’, have a goto inserted, to the next
clause, which creates a ’fall thru’ effect.

NOTE: AEL introduces the ifTime keyword/statement, which works just
like the if() statement, but the expression is a time value, exactly like that
used by the application GotoIfTime(). See Asterisk cmd GotoIfTime

NOTE: The pattern statement makes sure the new extension that is cre-
ated has an ’ ’ preceding it to make sure asterisk recognizes the extension
name as a pattern.

NOTE: Every character enclosed by the switch expression’s parenthesis
are included verbatim in the labels generated. So watch out for spaces!

NOTE: NEW: Previous to version 0.13, the random statement used the
”Random()” application, which has been deprecated. It now uses the RAND()
function instead, in the GotoIf application.

4.9.12 Break, Continue, and Return
Three keywords, break, continue, and return, are included in the syntax to
provide flow of control to loops, and switches.

The break can be used in switches and loops, to jump to the end of the
loop or switch.

The continue can be used in loops (while and for) to immediately jump
to the end of the loop. In the case of a for loop, the increment and test will
then be performed. In the case of the while loop, the continue will jump to
the test at the top of the loop.

The return keyword will cause an immediate jump to the end of the
context, or macro, and can be used anywhere.

4.9.13 goto, jump, and labels
This is an example of how to do a goto in AEL.

context gotoexample {

s => {

begin:

NoOp(Infinite Loop! yay!);

Wait(1);

goto begin; // go to label in same extension

79

}

3 => {

goto s,begin; // go to label in different extension

}

4 => {

goto gotoexample,s,begin; // overkill go to label in same context

}

}

context gotoexample2 {

s => {

end:

goto gotoexample,s,begin; // go to label in different context

}

}

You can use the special label of ”1” in the goto and jump statements.
It means the ”first” statement in the extension. I would not advise trying
to use numeric labels other than ”1” in goto’s or jumps, nor would I advise
declaring a ”1” label anywhere! As a matter of fact, it would be bad form to
declare a numeric label, and it might conflict with the priority numbers used
internally by asterisk.

The syntax of the jump statement is: jump extension[,priority][@context]
If priority is absent, it defaults to ”1”. If context is not present, it is assumed
to be the same as that which contains the ”jump”.

context gotoexample {

s => {

begin:

NoOp(Infinite Loop! yay!);

Wait(1);

jump s; // go to first extension in same extension

}

3 => {

jump s,begin; // go to label in different extension

}

4 => {

jump s,begin@gotoexample; // overkill go to label in same context

}

}

context gotoexample2 {

s => {

end:

jump s@gotoexample; // go to label in different context

}

}

NOTE: goto labels follow the same requirements as the Goto() applica-
tion, except the last value has to be a label. If the label does not exist, you

80

will have run-time errors. If the label exists, but in a different extension, you
have to specify both the extension name and label in the goto, as in: goto
s,z; if the label is in a different context, you specify context,extension,label.
There is a note about using goto’s in a switch statement below...

NOTE AEL introduces the special label ”1”, which is the beginning con-
text number for most extensions.

4.9.14 Macros
A macro is defined in its own block like this. The arguments to the macro
are specified with the name of the macro. They are then referred to by that
same name. A catch block can be specified to catch special extensions.

macro std-exten(ext , dev) {

Dial(${dev}/${ext},20);

switch(${DIALSTATUS) {

case BUSY:

Voicemail(${ext},b);

break;

default:

Voicemail(${ext},u);

}

catch a {

VoiceMailMain(${ext});

return;

}

}

A macro is then called by preceding the macro name with an amper-
sand. Empty arguments can be passed simply with nothing between com-
ments(0.11).

context example {

_5XXX => &std-exten(${EXTEN}, "IAX2");

_6XXX => &std-exten(, "IAX2");

_7XXX => &std-exten(${EXTEN},);

_8XXX => &std-exten(,);

}

4.10 Examples
context demo {

s => {

Wait(1);

Answer();

TIMEOUT(digit)=5;

81

TIMEOUT(response)=10;

restart:

Background(demo-congrats);

instructions:

for (x=0; ${x} < 3; x=${x} + 1) {

Background(demo-instruct);

WaitExten();

}

}

2 => {

Background(demo-moreinfo);

goto s,instructions;

}

3 => {

LANGUAGE()=fr;

goto s,restart;

}

500 => {

Playback(demo-abouttotry);

Dial(IAX2/guest@misery.digium.com);

Playback(demo-nogo);

goto s,instructions;

}

600 => {

Playback(demo-echotest);

Echo();

Playback(demo-echodone);

goto s,instructions;

}

=> {

hangup:

Playback(demo-thanks);

Hangup();

}

t => goto #,hangup;

i => Playback(invalid);

}

4.11 Semantic Checks
AEL, after parsing, but before compiling, traverses the dialplan tree, and
makes several checks:

• Macro calls to non-existent macros.

• Macro calls to contexts.

• Macro calls with argument count not matching the definition.

• application call to macro. (missing the ’&’)

82

• application calls to ”GotoIf”, ”GotoIfTime”, ”while”, ”endwhile”, ”Ran-
dom”, and ”execIf”, will generate a message to consider converting the
call to AEL goto, while, etc. constructs.

• goto a label in an empty extension.

• goto a non-existent label, either a within-extension, within-context, or
in a different context, or in any included contexts. Will even check
”sister” context references.

• All the checks done on the time values in the dial plan, are done on
the time values in the ifTime() and includes times: o the time range
has to have two times separated by a dash; o the times have to be in
range of 0 to 24 hours. o The weekdays have to match the internal list,
if they are provided; o the day of the month, if provided, must be in
range of 1 to 31; o the month name or names have to match those in
the internal list.

• (0.5) If an expression is wrapped in $[...], and the compiler will wrap
it again, a warning is issued.

• (0.5) If an expression had operators (you know, +,-,*,/,issued. Maybe
someone forgot to wrap a variable name?

• (0.12) check for duplicate context names.

• (0.12) check for abstract contexts that are not included by any context.

• (0.13) Issue a warning if a label is a numeric value.

There are a subset of checks that have been removed until the proposed
AAL (Asterisk Argument Language) is developed and incorporated into As-
terisk. These checks will be:

• (if the application argument analyzer is working: the presence of the
’j’ option is reported as error.

• if options are specified, that are not available in an application.

• if you specify too many arguments to an application.

• a required argument is not present in an application call.

83

• Switch-case using ”known” variables that applications set, that does
not cover all the possible values. (a ”default” case will solve this prob-
lem. Each ”unhandled” value is listed.

• a Switch construct is used, which is uses a known variable, and the
application that would set that variable is not called in the same ex-
tension. This is a warning only...

• Calls to applications not in the ”applist” database (installed in /var/

lib/asterisk/applist” on most systems).

• In an assignment statement, if the assignment is to a function, the
function name used is checked to see if it one of the currently known
functions. A warning is issued if it is not.

4.12 Differences with the original version of AEL
1. The $[...] expressions have been enhanced to include the ==, ||, and

&& operators. These operators are exactly equivalent to the =, |, and
& operators, respectively. Why? So the C, Java, C++ hackers feel at
home here.

2. It is more free-form. The newline character means very little, and is
pulled out of the white-space only for line numbers in error messages.

3. It generates more error messages – by this I mean that any difference
between the input and the grammar are reported, by file, line number,
and column.

4. It checks the contents of $[] expressions (or what will end up being $[
] expressions!) for syntax errors. It also does matching paren/bracket
counts.

5. It runs several semantic checks after the parsing is over, but before the
compiling begins, see the list above.

6. It handles #include ”filepath” directives. – ALMOST anywhere, in
fact. You could easily include a file in a context, in an extension, or at
the root level. Files can be included in files that are included in files,
down to 50 levels of hierarchy...

84

7. Local Goto’s inside Switch statements automatically have the extension
of the location of the switch statement appended to them.

8. A pretty printer function is available within pbx ael.so.

9. In the utils directory, two standalone programs are supplied for debug-
ging AEL files. One is called ”aelparse”, and it reads in the /etc/

asterisk/extensions.ael file, and shows the results of syntax and
semantic checking on stdout, and also shows the results of compilation
to stdout. The other is ”aelparse1”, which uses the original ael compiler
to do the same work, reading in ”/etc/asterisk/extensions.ael”,
using the original ’pbx ael.so’ instead.

10. AEL supports the ”jump” statement, and the ”pattern” statement in
switch constructs. Hopefully these will be documented in the AEL
README.

11. Added the ”return” keyword, which will jump to the end of an exten-
sion/Macro.

12. Added the ifTime (<time range>|<days of week>|<days of month>|<months>
) [else] construct, which executes much like an if () statement, but the
decision is based on the current time, and the time spec provided in the
ifTime. See the example above. (Note: all the other time-dependent
Applications can be used via ifTime)

13. Added the optional time spec to the contexts in the includes construct.
See examples above.

14. You don’t have to wrap a single ”true” statement in curly braces, as in
the original AEL. An ”else” is attached to the closest if. As usual, be
careful about nested if statements! When in doubt, use curlies!

15. Added the syntax [regexten] [hint(channel)] to precede an extension
declaration. See examples above, under ”Extension”. The regexten
keyword will cause the priorities in the extension to begin with 2 instead
of 1. The hint keyword will cause its arguments to be inserted in the
extension under the hint priority. They are both optional, of course,
but the order is fixed at the moment– the regexten must come before
the hint, if they are both present.

85

16. Empty case/default/pattern statements will ”fall thru” as expected.
(0.6)

17. A trailing label in an extension, will automatically have a NoOp()
added, to make sure the label exists in the extension on Asterisk. (0.6)

18. (0.9) the semicolon is no longer required after a closing brace! (i.e. ”];”
===> ”}”. You can have them there if you like, but they are not
necessary. Someday they may be rejected as a syntax error, maybe.

19. (0.9) the // comments are not recognized and removed in the spots
where expressions are gathered, nor in application call arguments. You
may have to move a comment if you get errors in existing files.

20. (0.10) the random statement has been added. Syntax: random (
<expr>) <lucky-statement> [else <unlucky-statement>]. The prob-
ability of the lucky-statement getting executed is <expr>, which should
evaluate to an integer between 0 and 100. If the <lucky-statement>
isn’t so lucky this time around, then the <unlucky-statement> gets
executed, if it is present.

4.13 Hints and Bugs
The safest way to check for a null strings is to say $[”${x}” = ””] The
old way would do as shell scripts often do, and append something on both
sides, like this: $[${x}foo = foo]. The trouble with the old way, is that, if x
contains any spaces, then problems occur, usually syntax errors. It is better
practice and safer wrap all such tests with double quotes! Also, there are
now some functions that can be used in a variable reference, ISNULL(), and
LEN(), that can be used to test for an empty string: ${ISNULL(${x})} or
$[${LEN(${x})} = 0].

Assignment vs. Set(). Keep in mind that setting a variable to value can
be done two different ways. If you choose say ’x=y;’, keep in mind that AEL
will wrap the right-hand-side with $[]. So, when compiled into extension
language format, the end result will be ’Set(x=$[y])’. If you don’t want this
effect, then say ”Set(x=y);” instead.

86

4.14 The Full Power of AEL
A newcomer to Asterisk will look at the above constructs and descriptions,
and ask, ”Where’s the string manipulation functions?”, ”Where’s all the cool
operators that other languages have to offer?”, etc.

The answer is that the rich capabilities of Asterisk are made available
through AEL, via:

• Applications: See Asterisk - documentation of application commands

• Functions: Functions were implemented inside ${ .. } variable refer-
ences, and supply many useful capabilities.

• Expressions: An expression evaluation engine handles items wrapped
inside $[...]. This includes some string manipulation facilities, arith-
metic expressions, etc.

• Application Gateway Interface: Asterisk can fork external processes
that communicate via pipe. AGI applications can be written in any
language. Very powerful applications can be added this way.

• Variables: Channels of communication have variables associated with
them, and asterisk provides some global variables. These can be ma-
nipulated and/or consulted by the above mechanisms.

87

Chapter 5
SLA: Shared Line Appearances

5.1 Introduction
The ”SLA” functionality in Asterisk is intended to allow a setup that emu-
lates a simple key system. It uses the various abstraction layers already built
into Asterisk to emulate key system functionality across various devices, in-
cluding IP channels.

5.2 Configuration

5.2.1 Summary
An SLA system is built up of virtual trunks and stations mapped to real
Asterisk devices. The configuration for all of this is done in three different
files: extensions.conf, sla.conf, and the channel specific configuration file such
as sip.conf or dahdi.conf.

5.2.2 Dialplan
The SLA implementation can automatically generate the dialplan necessary
for basic operation if the ”autocontext” option is set for trunks and stations in
sla.conf. However, for reference, here is an automatically generated dialplan
to help with custom building of the dialplan to include other features, such
as voicemail (5.3.2).

88

However, note that there is a little bit of additional configuration needed
if the trunk is an IP channel. This is discussed in the section on trunks
(5.2.3).

There are extensions for incoming calls on a specific trunk, which execute
the SLATrunk application, as well as incoming calls from a station, which
execute SLAStation. Note that there are multiple extensions for incoming
calls from a station. This is because the SLA system has to know whether
the phone just went off hook, or if the user pressed a specific line button.

Also note that there is a hint for every line on every station. This lets
the SLA system control each individual light on every phone to ensure that
it shows the correct state of the line. The phones must subscribe to the state
of each of their line appearances.

Please refer to the examples section for full dialplan samples for SLA.

5.2.3 Trunks
An SLA trunk is a mapping between a virtual trunk and a real Asterisk
device. This device may be an analog FXO line, or something like a SIP
trunk. A trunk must be configured in two places. First, configure the device
itself in the channel specific configuration file such as dahdi.conf or sip.conf.
Once the trunk is configured, then map it to an SLA trunk in sla.conf.

[line1]

type=trunk

device=DAHDI/1

Be sure to configure the trunk’s context to be the same one that is set
for the ”autocontext” option in sla.conf if automatic dialplan configuration is
used. This would be done in the regular device entry in dahdi.conf, sip.conf,
etc. Note that the automatic dialplan generation creates the SLATrunk()
extension at extension ’s’. This is perfect for DAHDI channels that are FXO
trunks, for example. However, it may not be good enough for an IP trunk,
since the call coming in over the trunk may specify an actual number.

If the dialplan is being built manually, ensure that calls coming in on a
trunk execute the SLATrunk() application with an argument of the trunk
name, as shown in the dialplan example before.

IP trunks can be used, but they require some additional configuration to
work.

For this example, let’s say we have a SIP trunk called ”mytrunk” that is
going to be used as line4. Furthermore, when calls come in on this trunk,

89

they are going to say that they are calling the number ”12564286000”. Also,
let’s say that the numbers that are valid for calling out this trunk are NANP
numbers, of the form 1NXXNXXXXXX.

In sip.conf, there would be an entry for [mytrunk]. For [mytrunk], set
context=line4.

[line4]

type=trunk

device=Local/disa@line4_outbound

[line4]

exten => 12564286000,1,SLATrunk(line4)

[line4_outbound]

exten => disa,1,Disa(no-password,line4_outbound)

exten => _1NXXNXXXXXX,1,Dial(SIP/${EXTEN}@mytrunk)

So, when a station picks up their phone and connects to line 4, they are
connected to the local dialplan. The Disa application plays dialtone to the
phone and collects digits until it matches an extension. In this case, once
the phone dials a number like 12565551212, the call will proceed out the SIP
trunk.

5.2.4 Stations
An SLA station is a mapping between a virtual station and a real Asterisk
device. Currently, the only channel driver that has all of the features nec-
essary to support an SLA environment is chan sip. So, to configure a SIP
phone to use as a station, you must configure sla.conf and sip.conf.

[station1]

type=station

device=SIP/station1

trunk=line1

trunk=line2

Here are some hints on configuring a SIP phone for use with SLA:

1. Add the SIP channel as a [station] in sla.conf.

2. Configure the phone in sip.conf. If automatic dialplan configuration
was used by enabling the ”autocontext” option in sla.conf, then this
entry in sip.conf should have the same context setting.

90

3. On the phone itself, there are various things that must be configured
to make everything work correctly:

Let’s say this phone is called ”station1” in sla.conf, and it uses trunks
named ”line1” and line2”.

(a) Two line buttons must be configured to subscribe to the state of
the following extensions: - station1 line1 - station1 line2

(b) The line appearance buttons should be configured to dial the ex-
tensions that they are subscribed to when they are pressed.

(c) If you would like the phone to automatically connect to a trunk
when it is taken off hook, then the phone should be automatically
configured to dial ”station1” when it is taken off hook.

5.3 Configuration Examples

5.3.1 Basic SLA
This is an example of the most basic SLA setup. It uses the automatic
dialplan generation so the configuration is minimal.

sla.conf:

[line1]

type=trunk

device=DAHDI/1

autocontext=line1

[line2]

type=trunk

device=DAHDI/2

autocontext=line2

[station](!)

type=station

trunk=line1

trunk=line2

autocontext=sla_stations

[station1](station)

device=SIP/station1

[station2](station)

device=SIP/station2

[station3](station)

device=SIP/station3

91

With this configuration, the dialplan is generated automatically. The first
DAHDI channel should have its context set to ”line1” and the second should
be set to ”line2” in dahdi.conf. In sip.conf, station1, station2, and station3
should all have their context set to ”sla stations”.

For reference, here is the automatically generated dialplan for this situa-
tion:

[line1]

exten => s,1,SLATrunk(line1)

[line2]

exten => s,2,SLATrunk(line2)

[sla_stations]

exten => station1,1,SLAStation(station1)

exten => station1_line1,hint,SLA:station1_line1

exten => station1_line1,1,SLAStation(station1_line1)

exten => station1_line2,hint,SLA:station1_line2

exten => station1_line2,1,SLAStation(station1_line2)

exten => station2,1,SLAStation(station2)

exten => station2_line1,hint,SLA:station2_line1

exten => station2_line1,1,SLAStation(station2_line1)

exten => station2_line2,hint,SLA:station2_line2

exten => station2_line2,1,SLAStation(station2_line2)

exten => station3,1,SLAStation(station3)

exten => station3_line1,hint,SLA:station3_line1

exten => station3_line1,1,SLAStation(station3_line1)

exten => station3_line2,hint,SLA:station3_line2

exten => station3_line2,1,SLAStation(station3_line2)

5.3.2 SLA and Voicemail
This is an example of how you could set up a single voicemail box for the
phone system. The voicemail box number used in this example is 1234, which
would be configured in voicemail.conf.

For this example, assume that there are 2 trunks and 3 stations. The
trunks are DAHDI/1 and DAHDI/2. The stations are SIP/station1, SIP/station2,
and SIP/station3.

In dahdi.conf, channel 1 has context=line1 and channel 2 has context=line2.
In sip.conf, all three stations are configured with context=sla stations.
When the stations pick up their phones to dial, they are allowed to dial

NANP numbers for outbound calls, or 8500 for checking voicemail.
sla.conf:

[line1]

92

type=trunk

device=Local/disa@line1_outbound

[line2]

type=trunk

device=Local/disa@line2_outbound

[station](!)

type=station

trunk=line1

trunk=line2

[station1](station)

device=SIP/station1

[station2](station)

device=SIP/station2

[station3](station)

device=SIP/station3

extensions.conf:

[macro-slaline]

exten => s,1,SLATrunk(${ARG1})

exten => s,n,Goto(s-${SLATRUNK_STATUS},1)

exten => s-FAILURE,1,Voicemail(1234,u)

exten => s-UNANSWERED,1,Voicemail(1234,u)

[line1]

exten => s,1,Macro(slaline,line1)

[line2]

exten => s,2,Macro(slaline,line2)

[line1_outbound]

exten => disa,1,Disa(no-password,line1_outbound)

exten => _1NXXNXXXXXX,1,Dial(DAHDI/1/${EXTEN})

exten => 8500,1,VoicemailMain(1234)

[line2_outbound]

exten => disa,1,Disa(no-password|line2_outbound)

exten => _1NXXNXXXXXX,1,Dial(DAHDI/2/${EXTEN})

exten => 8500,1,VoicemailMain(1234)

[sla_stations]

exten => station1,1,SLAStation(station1)

exten => station1_line1,hint,SLA:station1_line1

exten => station1_line1,1,SLAStation(station1_line1)

exten => station1_line2,hint,SLA:station1_line2

exten => station1_line2,1,SLAStation(station1_line2)

exten => station2,1,SLAStation(station2)

exten => station2_line1,hint,SLA:station2_line1

exten => station2_line1,1,SLAStation(station2_line1)

93

exten => station2_line2,hint,SLA:station2_line2

exten => station2_line2,1,SLAStation(station2_line2)

exten => station3,1,SLAStation(station3)

exten => station3_line1,hint,SLA:station3_line1

exten => station3_line1,1,SLAStation(station3_line1)

exten => station3_line2,hint,SLA:station3_line2

exten => station3_line2,1,SLAStation(station3_line2)

5.4 Call Handling

5.4.1 Summary
This section is intended to describe how Asterisk handles calls inside of the
SLA system so that it is clear what behavior is expected.

5.4.2 Station goes off hook (not ringing)
When a station goes off hook, it should initiate a call to Asterisk with the
extension that indicates that the phone went off hook without specifying
a specific line. In the examples in this document, for the station named
”station1”, this extension is simply named, ”station1”.

Asterisk will attempt to connect this station to the first available trunk
that is not in use. Asterisk will check the trunks in the order that they were
specified in the station entry in sla.conf. If all trunks are in use, the call will
be denied.

If Asterisk is able to acquire an idle trunk for this station, then trunk is
connected to the station and the station will hear dialtone. The station can
then proceed to dial a number to call. As soon as a trunk is acquired, all
appearances of this line on stations will show that the line is in use.

5.4.3 Station goes off hook (ringing)
When a station goes off hook while it is ringing, it should simply answer
the call that had been initiated to it to make it ring. Once the station has
answered, Asterisk will figure out which trunk to connect it to. It will connect
it to the highest priority trunk that is currently ringing. Trunk priority is
determined by the order that the trunks are listed in the station entry in
sla.conf.

94

5.4.4 Line button on a station is pressed
When a line button is pressed on a station, the station should initiate a call
to Asterisk with the extension that indicates which line button was pressed.
In the examples given in this document, for a station named ”station1” and
a trunk named ”line1”, the extension would be ”station1 line1”.

If the specified trunk is not in use, then the station will be connected to
it and will hear dialtone. All appearances of this trunk will then show that
it is now in use.

If the specified trunk is on hold by this station, then this station will be
reconnected to the trunk. The line appearance for this trunk on this station
will now show in use. If this was the only station that had the call on hold,
then all appearances of this trunk will now show that it is in use. Otherwise,
all stations that are not currently connected to this trunk will show it on
hold.

If the specified trunk is on hold by a different station, then this station
will be connected to the trunk only if the trunk itself and the station(s)
that have it on hold do not have private hold enabled. If connected, the
appeareance of this trunk on this station will then show in use. All stations
that are not currently connected to this trunk will show it on hold.

95

Chapter 6
Channel Drivers

6.1 IAX2

6.1.1 Introduction
This section is intended as an introduction to the Inter-Asterisk eXchange
v2 (or simply IAX2) protocol. It provides both a theoretical background and
practical information on its use.

6.1.2 Why IAX2?
The first question most people are thinking at this point is ”Why do you
need another VoIP protocol? Why didn’t you just use SIP or H.323?”

Well, the answer is a fairly complicated one, but in a nutshell it’s like
this... Asterisk is intended as a very flexible and powerful communications
tool. As such, the primary feature we need from a VoIP protocol is the ability
to meet our own goals with Asterisk, and one with enough flexibility that
we could use it as a kind of laboratory for inventing and implementing new
concepts in the field. Neither H.323 or SIP fit the roles we needed, so we
developed our own protocol, which, while not standards based, provides a
number of advantages over both SIP and H.323, some of which are:

• Interoperability with NAT/PAT/Masquerade firewalls

– IAX seamlessly interoperates through all sorts of NAT and PAT
and other firewalls, including the ability to place and receive calls,

96

and transfer calls to other stations.

• High performance, low overhead protocol

– When running on low-bandwidth connections, or when running
large numbers of calls, optimized bandwidth utilization is imper-
ative. IAX uses only 4 bytes of overhead

• Internationalization support

– IAX transmits language information, so that remote PBX content
can be delivered in the native language of the calling party.

• Remote dialplan polling

– IAX allows a PBX or IP phone to poll the availability of a number
from a remote server. This allows PBX dialplans to be centralized.

• Flexible authentication

– IAX supports cleartext, md5, and RSA authentication, providing
flexible security models for outgoing calls and registration services.

• Multimedia protocol

– IAX supports the transmission of voice, video, images, text, HTML,
DTMF, and URL’s. Voice menus can be presented in both audibly
and visually.

• Call statistic gathering

– IAX gathers statistics about network performance (including la-
tency and jitter, as well as providing end-to-end latency measure-
ment.

• Call parameter communication

– Caller*ID, requested extension, requested context, etc are all com-
municated through the call.

• Single socket design

97

– IAX’s single socket design allows up to 32768 calls to be multi-
plexed.

While we value the importance of standards based (i.e. SIP) call handling,
hopefully this will provide a reasonable explanation of why we developed IAX
rather than starting with SIP.

6.1.3 Configuration
For examples of a configuration, please see the iax.conf.sample in your the
/configs directory of you source code distribution.

6.1.4 IAX2 Jitterbuffer
The new jitterbuffer

You must add ”jitterbuffer=yes” to either the [general] part of iax.conf, or
to a peer or a user. (just like the old jitterbuffer). Also, you can set ”maxjit-
terbuffer=n”, which puts a hard-limit on the size of the jitterbuffer of ”n
milliseconds”. It is not necessary to have the new jitterbuffer on both sides
of a call; it works on the receive side only.

PLC

The new jitterbuffer detects packet loss. PLC is done to try to recreate these
lost packets in the codec decoding stage, as the encoded audio is translated
to slinear. PLC is also used to mask jitterbuffer growth.

This facility is enabled by default in iLBC and speex, as it has no addi-
tional cost. This facility can be enabled in adpcm, alaw, g726, gsm, lpc10,
and ulaw by setting genericplc => true in the [plc] section of codecs.conf.

Trunktimestamps

To use this, both sides must be using Asterisk v1.2 or later. Setting ”trunk-
timestamps=yes” in iax.conf will cause your box to send 16-bit timestamps
for each trunked frame inside of a trunk frame. This will enable you to use
jitterbuffer for an IAX2 trunk, something that was not possible in the old
architecture.

98

The other side must also support this functionality, or else, well, bad
things will happen. If you don’t use trunktimestamps, there’s lots of ways
the jitterbuffer can get confused because timestamps aren’t necessarily sent
through the trunk correctly.

Communication with Asterisk v1.0.x systems

You can set up communication with v1.0.x systems with the new jitterbuffer,
but you can’t use trunks with trunktimestamps in this communication.

If you are connecting to an Asterisk server with earlier versions of the
software (1.0.x), do not enable both jitterbuffer and trunking for the involved
peers/users in order to be able to communicate. Earlier systems will not
support trunktimestamps.

You may also compile chan iax2.c without the new jitterbuffer, enabling
the old backwards compatible architecture. Look in the source code for
instructions.

Testing and monitoring

You can test the effectiveness of PLC and the new jitterbuffer’s detection
of loss by using the new CLI command ”iax2 test losspct <n>”. This will
simulate n percent packet loss coming in to chan iax2. You should find
that with PLC and the new JB, 10 percent packet loss should lead to just a
tiny amount of distortion, while without PLC, it would lead to silent gaps in
your audio.

”iax2 show netstats” shows you statistics for each iax2 call you have up.
The columns are ”RTT” which is the round-trip time for the last PING, and
then a bunch of s tats for both the local side (what you’re receiving), and the
remote side (what the other end is telling us they are seeing). The remote
stats may not be complete if the remote end isn’t using the new jitterbuffer.

The stats shown are:

• Jit: The jitter we have measured (milliseconds)

• Del: The maximum delay imposed by the jitterbuffer (milliseconds)

• Lost: The number of packets we’ve detected as lost.

• %: The percentage of packets we’ve detected as lost recently.

99

• Drop: The number of packets we’ve purposely dropped (to lower la-
tency).

• OOO: The number of packets we’ve received out-of-order

• Kpkts: The number of packets we’ve received / 1000.

Reporting problems

There’s a couple of things that can make calls sound bad using the jitter-
buffer:

1. The JB and PLC can make your calls sound better, but they can’t fix
everything. If you lost 10 frames in a row, it can’t possibly fix that. It
really can’t help much more than one or two consecutive frames.

2. Bad timestamps: If whatever is generating timestamps to be sent to
you generates nonsensical timestamps, it can confuse the jitterbuffer.
In particular, discontinuities in timestamps will really upset it: Things
like timestamps sequences which go 0, 20, 40, 60, 80, 34000, 34020,
34040, 34060... It’s going to think you’ve got about 34 seconds of jitter
in this case, etc.. The right solution to this is to find out what’s causing
the sender to send us such nonsense, and fix that. But we should also
figure out how to make the receiver more robust in cases like this.

chan iax2 will actually help fix this a bit if it’s more than 3 seconds or
so, but at some point we should try to think of a better way to detect
this kind of thing and resynchronize.

Different clock rates are handled very gracefully though; it will actually
deal with a sender sending 20% faster or slower than you expect just
fine.

3. Really strange network delays: If your network ”pauses” for like 5
seconds, and then when it restarts, you are sent some packets that
are 5 seconds old, we are going to see that as a lot of jitter. We
already throw away up to the worst 20 frames like this, though, and
the ”maxjitterbuffer” parameter should put a limit on what we do in
this case.

100

6.2 mISDN

6.2.1 Introduction
This package contains the mISDN Channel Driver for the Asterisk PBX. It
supports every mISDN Hardware and provides an interface for Asterisk.

6.2.2 Features
• NT and TE mode

• PP and PMP mode

• BRI and PRI (with BNE1 and BN2E1 Cards)

• Hardware bridging

• DTMF detection in HW+mISDNdsp

• Display messages on phones (on those that support it)

• app SendText

• HOLD/RETRIEVE/TRANSFER on ISDN phones :)

• Allow/restrict user number presentation

• Volume control

• Crypting with mISDNdsp (Blowfish)

• Data (HDLC) callthrough

• Data calling (with app ptyfork +pppd)

• Echo cancellation

• Call deflection

• Some others

101

6.2.3 Fast Installation Guide
It is easy to install mISDN and mISDNuser. This can be done by:

• You can download latest stable releases from http://www.misdn.org/

downloads/

• Just fetch the newest head of the GIT (mISDN project moved from
CVS) In details this process described here: http://www.misdn.org/

index.php/GIT

then compile and install both with:
cd mISDN ;

make && make install

(you will need at least your kernel headers to compile mISDN).
cd mISDNuser ;

make && make install

Now you can compile chan misdn, just by making Asterisk:
cd asterisk ;

./configure && make && make install

That’s all!
Follow the instructions in the mISDN Package for how to load the Kernel

Modules. Also install process described in http://www.misdn.org/index.

php/Installing_mISDN

6.2.4 Pre-Requisites
To compile and install this driver, you’ll need at least one mISDN Driver and
the mISDNuser package. Chan misdn works with both, the current release
version and the development (svn trunk) version of Asterisk.

You should use Kernels >= 2.6.9

6.2.5 Configuration
First of all you must configure the mISDN drivers, please follow the instruc-
tions in the mISDN package to do that, the main config file and config script
is:

/etc/init.d/misdn-init and

/etc/misdn-init.conf

Now you will want to configure the misdn.conf file which resides in the As-
terisk config directory (normally /etc/asterisk).

102

http://www.misdn.org/downloads/
http://www.misdn.org/downloads/
http://www.misdn.org/index.php/GIT
http://www.misdn.org/index.php/GIT
http://www.misdn.org/index.php/Installing_mISDN
http://www.misdn.org/index.php/Installing_mISDN

misdn.conf: [general]

The misdn.conf file contains a ”general” subsection, and user subsections
which contain misdn port settings and different Asterisk contexts.

In the general subsection you can set options that are not directly port
related. There is for example the very important debug variable which you
can set from the Asterisk cli (command line interface) or in this configuration
file, bigger numbers will lead to more debug output. There’s also a trace file
option, which takes a path+filename where debug output is written to.

misdn.conf: [default] subsection

The default subsection is another special subsection which can contain all
the options available in the user/port subsections. The user/port subsections
inherit their parameters from the default subsection.

misdn.conf: user/port subsections

The user subsections have names which are unequal to ”general”. Those
subsections contain the ports variable which mean the mISDN Ports. Here
you can add multiple ports, comma separated.

Especially for TE-Mode Ports there is a msns option. This option tells
the chan misdn driver to listen for incoming calls with the given msns, you
can insert a ’*’ as single msn, which leads to getting every incoming call.
If you want to share on PMP TE S0 with Asterisk and a phone or ISDN
card you should insert here the msns which you assign to Asterisk. Finally a
context variable resides in the user subsections, which tells chan misdn where
to send incoming calls to in the Asterisk dial plan (extension.conf).

Dial and Options String

The dial string of chan misdn got more complex, because we added more
features, so the generic dial string looks like:

mISDN/<port>[:bchannel]|g:<group>/<extension>[/<OPTIONSSTRING>]

The Optionsstring looks Like:

:<optchar><optarg>:<optchar><optarg>...

the ":" character is the delimiter.

The available options are:

103

a - Have Asterisk detect DTMF tones on called channel

c - Make crypted outgoing call, optarg is keyindex

d - Send display text to called phone, text is the optarg

e - Perform echo cancelation on this channel,

takes taps as optarg (32,64,128,256)

e! - Disable echo cancelation on this channel

f - Enable fax detection

h - Make digital outgoing call

h1 - Make HDLC mode digital outgoing call

i - Ignore detected DTMF tones, don’t signal them to Asterisk,

they will be transported inband.

jb - Set jitter buffer length, optarg is length

jt - Set jitter buffer upper threshold, optarg is threshold

jn - Disable jitter buffer

n - Disable mISDN DSP on channel.

Disables: echo cancel, DTMF detection, and volume control.

p - Caller ID presentation,

optarg is either ’allowed’ or ’restricted’

s - Send Non-inband DTMF as inband

vr - Rx gain control, optarg is gain

vt - Tx gain control, optarg is gain

chan misdn registers a new dial plan application ”misdn set opt” when
loaded. This application takes the Optionsstring as argument. The Syntax
is:

misdn_set_opt(<OPTIONSSTRING>)

When you set options in the dialstring, the options are set in the external
channel. When you set options with misdn set opt, they are set in the current
incoming channel. So if you like to use static encryption, the scenario looks
as follows:

Phone1 --> * Box 1 --> PSTN_TE

PSTN_TE --> * Box 2 --> Phone2

The encryption must be done on the PSTN sides, so the dialplan on the
boxes are:

* Box 1:

exten => _${CRYPT_PREFIX}X.,1,Dial(mISDN/g:outbound/:c1)

* Box 2:

exten => ${CRYPT_MSN},1,misdn_set_opt(:c1)

exten => ${CRYPT_MSN},2,dial(${PHONE2})

104

6.2.6 mISDN CLI commands
At the Asterisk cli you can try to type in:

misdn <tab> <tab>

Now you should see the misdn cli commands:

- clean

-> pid (cleans a broken call, use with care, leads often

to a segmentation fault)

- send

-> display (sends a Text Message to a Asterisk channel,

this channel must be an misdn channel)

- set

-> debug (sets debug level)

- show

-> config (shows the configuration options)

-> channels (shows the current active misdn channels)

-> channel (shows details about the given misdn channels)

-> stacks (shows the current ports, their protocols and states)

-> fullstacks (shows the current active and inactive misdn channels)

- restart

-> port (restarts given port (L2 Restart))

- reload (reloads misdn.conf)

You can only use ”misdn send display” when an Asterisk channel is cre-
ated and isdn is in the correct state. ”correct state” means that you have
established a call to another phone (must not be isdn though).

Then you use it like this:
misdn send display mISDN/1/101 ”Hello World!”
where 1 is the Port of the Card where the phone is plugged in, and 101

is the msn (callerid) of the Phone to send the text to.

6.2.7 mISDN Variables
mISDN Exports/Imports a few Variables:

- MISDN_ADDRESS_COMPLETE : Is either set to 1 from the Provider, or you

can set it to 1 to force a sending complete.

105

6.2.8 Debugging and sending bug reports
If you encounter problems, you should set up the debugging flag, usually
debug=2 should be enough. The messages are divided into Asterisk and
mISDN parts. mISDN Debug messages begin with an ’I’, Asterisk messages
begin with an ’*’, the rest is clear I think.

Please take a trace of the problem and open a report in the Asterisk
issue tracker at http://bugs.digium.com in the ”channel drivers” project,
”chan misdn” category. Read the bug guidelines to make sure you provide
all the information needed.

6.2.9 Examples
Here are some examples of how to use chan misdn in the dialplan (exten-
sions.conf):

[globals]

OUT_PORT=1 ; The physical Port of the Card

OUT_GROUP=ExternE1 ; The Group of Ports defined in misdn.conf

[misdnIn]

exten => _X.,1,Dial(mISDN/${OUT_PORT}/${EXTEN})

exten => _0X.,1,Dial(mISDN/g:${OUT_GROUP}/${EXTEN:1})

exten => _1X.,1,Dial(mISDN/g:${OUT_GROUP}/${EXTEN:1}/:dHello)

exten => _1X.,1,Dial(mISDN/g:${OUT_GROUP}/${EXTEN:1}/:dHello Test:n)

On the last line, you will notice the last argument (Hello); this is sent as
Display Message to the Phone.

6.2.10 Known Problems
Q: I cannot hear any tone after a successful CONNECT to the other end.

A: You forgot to load mISDNdsp, which is now needed by chan misdn for
switching and DTMF tone detection.

6.3 Local

6.3.1 Introduction
In Asterisk, Local channels are a method used to treat an extension in the
dialplan as if it were an external device. In essense, Asterisk will send the

106

http://bugs.digium.com

call back into the dialplan as the destination of the call, versus sending the
call to a device.

Two of the most common areas where Local channels are used include
members configured for queues, and in use with callfiles. There are also other
uses where you want to ring two destinations, but with different information,
such as different callerID for each outgoing request.

6.3.2 Examples
Local channels are best demonstrated through the use of an example. Our
first example isn’t terribly useful, but will demonstrate how Local channels
can execute dialplan logic by dialing from the Dial() application.

6.3.3 Trivial Local channel example
In our dialplan (extensions.conf), we can Dial() another part of the dialplan
through the use Local channels. To do this, we can use the following dialplan:

[devices]

exten => 201,1,Verbose(2,Dial another part of the dialplan via the Local chan)

exten => 201,n,Verbose(2,Outside channel: ${CHANNEL})

exten => 201,n,Dial(Local/201@extensions)

exten => 201,n,Hangup()

[extensions]

exten => 201,1,Verbose(2,Made it to the Local channel)

exten => 201,n,Verbose(2,Inside channel: ${CHANNEL})

exten => 201,n,Dial(SIP/some-named-extension,30)

exten => 201,n,Hangup()

The output of the dialplan would look something like the following. The
output has been broken up with some commentary to explain what we’re
looking at.

-- Executing [201@devices:1] Verbose("SIP/my_desk_phone-00000014", "2,Dial another part of the dialplan via the

Local chan") in new stack

== Dial another part of the dialplan via the Local chan

We dial extension 201 from SIP/my desk phone which has entered the
[devices] context. The first line simply outputs some information via the
Verbose() application.

-- Executing [201@devices:2] Verbose("SIP/my_desk_phone-00000014",

"2,Outside channel: SIP/my_desk_phone-00000014") in new stack

== Outside channel: SIP/my_desk_phone-00000014

107

The next line is another Verbose() application statement that tells us our
current channel name. We can see that the channel executing the current
dialplan is a desk phone (aptly named ’my desk phone’).

-- Executing [201@devices:3] Dial("SIP/my_desk_phone-00000014", "Local/201@extensions") in new stack

-- Called 201@extensions

Now the third step in our dialplan executes the Dial() application which
calls extension 201 in the [extensions] context of our dialplan. There is no
requirement that we use the same extension number – we could have just
as easily used a named extension, or some other number. Remember that
we’re dialing another channel, but instead of dialing a device, we’re ”dialing”
another part of the dialplan.

-- Executing [201@extensions:1] Verbose("Local/201@extensions-7cf4;2", "2,Made it to the Local

channel") in new stack

== Made it to the Local channel

Now we’ve verified we’ve dialed another part of the dialplan. We can see
the channel executing the dialplan has changed to Local/201@extensions-
7cf4;2. The part ’-7cf4;2’ is just the unique identifier, and will be different
for you.

-- Executing [201@extensions:2] Verbose("Local/201@extensions-7cf4;2", "2,Inside channel:

Local/201@extensions-7cf4;2") in new stack

== Inside channel: Local/201@extensions-7cf4;2

Here we use the Verbose() application to see what our current channel
name is. As you can see the current channel is a Local channel which we
created from our SIP channel.

-- Executing [201@extensions:3] Dial("Local/201@extensions-7cf4;2", "SIP/some-named-extension,30") in new stack

And from here, we’re using another Dial() application to call a SIP device
configured in sip.conf as [some-named-extension].

Now that we understand a simple example of calling the Local channel,
let’s expand upon this example by using Local channels to call two devices
at the same time, but delay calling one of the devices.

108

6.3.4 Delay dialing devices
Lets say when someone calls extension 201, we want to ring both the desk
phone and their cellphone at the same time, but we want to wait about 6
seconds to start dialing the cellphone. This is useful in a situation when
someone might be sitting at their desk, but don’t want both devices ringing
at the same time, but also doesn’t want to wait for the full ring cycle to
execute on their desk phone before rolling over to their cellphone.

The dialplan for this would look something like the following:

[devices]

exten => 201,1,Verbose(2,Call desk phone and cellphone but with delay)

exten => 201,n,Dial(Local/deskphone-201@extensions&Local/cellphone-201@extensions,30)

exten => 201,n,Voicemail(201@default,${IF($[${DIALSTATUS} = BUSY]?b:u)})

exten => 201,n,Hangup()

[extensions]

; Dial the desk phone

exten => deskphone-201,1,Verbose(2,Dialing desk phone of extension 201)

exten => deskphone-201,n,Dial(SIP/0004f2040001) ; SIP device with MAC address

; of 0004f2040001

; Dial the cellphone

exten => cellphone-201,1,Verbose(2,Dialing cellphone of extension 201)

exten => cellphone-201,n,Verbose(2,-- Waiting 6 seconds before dialing)

exten => cellphone-201,n,Wait(6)

exten => cellphone-201,n,Dial(DAHDI/g0/14165551212)

When someone dials extension 201 in the [devices] context, it will execute
the Dial() application, and call two Local channels at the same time:

• Local/deskphone-201@extensions

• Local/cellphone-201@extensions

It will then ring both of those extensions for 30 seconds before rolling over
to the Voicemail() application and playing the appropriate voicemail record-
ing depending on whether the ${DIALSTATUS} variable returned BUSY or
not.

When reaching the deskphone-201 extension, we execute the Dial() ap-
plication which calls the SIP device configured as ’0004f204001’ (the MAC
address of the device). When reaching the cellphone-201 extension, we dial
the cellphone via the DAHDI channel using group zero (g0) and dialing phone
number 1-416-555-1212.

109

6.3.5 Dialing destinations with different information
With Asterisk, we can place a call to multiple destinations by separating
the technology/destination pair with an ampersand (&). For example, the
following Dial() line would ring two separate destinations for 30 seconds:

exten => 201,1,Dial(SIP/0004f2040001&DAHDI/g0/14165551212,30)

That line would dial both the SIP/0004f2040001 device (likely a SIP
device on the network) and dial the phone number 1-416-555-1212 via a
DAHDI interface. In our example though, we would be sending the same
callerID information to both end points, but perhaps we want to send a
different callerID to one of the destinations?

We can send different callerIDs to each of the destinations if we want by
using the Local channel. The following example shows how this is possible
because we would Dial() two different Local channels from our top level
Dial(), and that would then execute some dialplan before sending the call off
to the final destinations.

[devices]

exten => 201,1,NoOp()

exten => 201,n,Dial(Local/201@internal&Local/201@external,30)

exten => 201,n,Voicemail(201@default,${IF($[${DIALSTATUS} = BUSY]?b:u)})

exten => 201,n,Hangup()

[internal]

exten => 201,1,Verbose(2,Placing internal call for extension 201)

exten => 201,n,Set(CALLERID(name)=From Sales)

exten => 201,n,Dial(SIP/0004f2040001,30)

[external]

exten => 201,1,Verbose(2,Placing external call for extension 201)

exten => 201,n,Set(CALLERID(name)=Acme Cleaning)

exten => 201,n,Dial(DAHDI/g0/14165551212)

With the dialplan above, we’ve sent two different callerIDs to the desti-
nations:

• ”From Sales” was sent to the local device SIP/0004f2040001

• ”Acme Cleaning” was sent to the remote number 1-416-555-1212 via
DAHDI

Because each of the channels is independent from the other, you could
perform any other call manipulation you need. Perhaps the 1-416-555-1212

110

number is a cell phone and you know you can only ring that device for 18
seconds before the voicemail would pick up. You could then limit the length
of time the external number is dialed, but still allow the internal device to
be dialed for a longer period of time.

6.3.6 Using callfiles and Local channels
Another example is to use callfiles and Local channels so that you can execute
some dialplan prior to performing a Dial(). We’ll construct a callfile which
will then utilize a Local channel to lookup a bit of information in the AstDB
and then place a call via the channel configured in the AstDB.

First, lets construct our callfile that will use the Local channel to do some
lookups prior to placing our call. More information on constructing callfiles
is located in the doc/callfiles.txt file of your Asterisk source.

Our callfile will simply look like the following:

Channel: Local/201@devices

Application: Playback

Data: silence/1&tt-weasels

Add the callfile information to a file such as ’callfile.new’ or some other
appropriately named file.

Our dialplan will perform a lookup in the AstDB to determine which
device to call, and will then call the device, and upon answer, Playback() the
silence/1 (1 second of silence) and the tt-weasels sound files.

Before looking at our dialplan, lets put some data into AstDB that we
can then lookup from the dialplan. From the Asterisk CLI, run the following
command:

*CLI> database put phones 201/device SIP/0004f2040001

We’ve now put the device destination (SIP/0004f2040001) into the 201/de-
vice key within the phones family. This will allow us to lookup the device
location for extension 201 from the database.

We can then verify our entry in the database using the ’database show’
CLI command:

*CLI> database show

/phones/201/device : SIP/0004f2040001

111

Now lets create the dialplan that will allow us to call SIP/0004f2040001
when we request extension 201 from the [extensions] context via our Local
channel.

[devices]

exten => 201,1,NoOp()

exten => 201,n,Set(DEVICE=${DB(phones/${EXTEN}/device)})

exten => 201,n,GotoIf($[${ISNULL(${DEVICE})}]?hangup) ; if nothing returned,

; then hangup

exten => 201,n,Dial(${DEVICE},30)

exten => 201,n(hangup(),Hangup()

Then, we can perform a call to our device using the callfile by moving it
into the /var/spool/asterisk/outgoing/ directory.

mv callfile.new /var/spool/asterisks/outgoing

Then after a moment, you should see output on your console similar to
the following, and your device ringing. Information about what is going on
during the output has also been added throughout.

-- Attempting call on Local/201@devices for application Playback(silence/1&tt-weasels) (Retry 1)

You’ll see the line above as soon as Asterisk gets the request from the
callfile.

-- Executing [201@devices:1] NoOp("Local/201@devices-ecf0;2", "") in new stack

-- Executing [201@devices:2] Set("Local/201@devices-ecf0;2", "DEVICE=SIP/0004f2040001") in new stack

This is where we performed our lookup in the AstDB. The value of
SIP/0004f2040001 was then returned and saved to the DEVICE channel vari-
able.

-- Executing [201@devices:3] GotoIf("Local/201@devices-ecf0;2", "0?hangup") in new stack

We perform a check to make sure ${DEVICE} isn’t NULL. If it is, we’ll
just hangup here.

-- Executing [201@devices:4] Dial("Local/201@devices-ecf0;2", "SIP/0004f2040001,30") in new stack

-- Called 000f2040001

-- SIP/0004f2040001-00000022 is ringing

Now we call our device SIP/0004f2040001 from the Local channel.

-- SIP/0004f2040001-00000022 answered Local/201@devices-ecf0;2

112

We answer the call.

> Channel Local/201@devices-ecf0;1 was answered.

> Launching Playback(silence/1&tt-weasels) on Local/201@devices-ecf0;1

We then start playing back the files.

-- <Local/201@devices-ecf0;1> Playing ’silence/1.slin’ (language ’en’)

== Spawn extension (devices, 201, 4) exited non-zero on ’Local/201@devices-ecf0;2’

At this point we now see the Local channel has been optimized out of
the call path. This is important as we’ll see in examples later. By default,
the Local channel will try to optimize itself out of the call path as soon as it
can. Now that the call has been established and audio is flowing, it gets out
of the way.

-- <SIP/0004f2040001-00000022> Playing ’tt-weasels.ulaw’ (language ’en’)

[Mar 1 13:35:23] NOTICE[16814]: pbx_spool.c:349 attempt_thread: Call completed to Local/201@devices

We can now see the tt-weasels file is played directly to the destination
(instead of through the Local channel which was optimized out of the call
path) and then a NOTICE stating the call was completed.

6.3.7 Understanding When To Use /n
Lets take a look at an example that demonstrates when the use of the /n
directive is necessary. If we spawn a Local channel which does a Dial() to a
SIP channel, but we use the L() option (which is used to limit the amount of
time a call can be active, along with warning tones when the time is nearly
up), it will be associated with the Local channel, which is then optimized
out of the call path, and thus won’t perform as expected.

This following dialplan will not perform as expected.
[services] exten =¿ 2,1,Dial(SIP/PHONE B,,L(60000:45000:15000))
[internal] exten =¿ 4,1,Dial(Local/2@services);
By default, the Local channel will try to optimize itself out of the call

path. This means that once the Local channel has established the call be-
tween the destination and Asterisk, the Local channel will get out of the way
and let Asterisk and the end point talk directly, instead of flowing through
the Local channel.

This can have some adverse effects when you’re expecting information
to be available during the call that gets associated with the Local channel.

113

When the Local channel is optimized out of the call path, any Dial() flags, or
channel variables associated with the Local channel are also destroyed and
are no longer available to Asterisk.

We can force the Local channel to remain in the call path by utilizing the
/n directive. By adding /n to the end of the channel definition, we can keep
the Local channel in the call path, along with any channel variables, or other
channel specific information.

In order to make this behave as we expect (limiting the call), we would
change:

[internal]

exten => 4,1,Dial(Local/2@services)

...into the following:

[internal]

exten => 4,1,Dial(Local/2@services/n)

By adding /n to the end, our Local channel will now stay in the call path
and not go away.

Why does adding the /n option all of a suddon make the ’L’ option work?
First we need to show an overview of the call flow that doesn’t work properly,
and discuss the information associated with the channels:

1. SIP device PHONE A calls Asterisk via a SIP INVITE

2. Asterisk accepts the INVITE and then starts processing dialplan logic
in the [internal] context

3. Our dialplan calls Dial(Local/2@services) – notice no /n

4. The Local channel then executes dialplan at extension 2 within the
[services] context

5. Extension 2 within [services] then performs Dial() to PHONE B with
the line: Dial(SIP/PHONE B,,L(60000:45000:15000))

6. SIP/PHONE B then answers the call

7. Even though the L option was given when dialing the SIP device, the
L information is stored in the channel that is doing the Dial() which is
the Local channel, and not the endpoint SIP channel.

114

8. The Local channel in the middle, containing the information for track-
ing the time allowance of the call, is then optimized out of the call
path, losing all information about when to terminate the call.

9. SIP/PHONE A and SIP/PHONE B then continue talking indefinitely.

Now, if we were to add /n to our dialplan at step three (3) then we
would force the Local channel to stay in the call path, and the L() option
associated with the Dial() from the Local channel would remain, and our
warning sounds and timing would work as expected.

There are two workarounds for the above described scenario:

1. Use what we just described, Dial(Local/2@services/n) to cause the Lo-
cal channel to remain in the call path so that the L() option used inside
the Local channel is not discarded when optimization is performed.

2. Place the L() option at the outermost part of the path so that when
the middle is optimized out of the call path, the information required
to make L() work is associated with the outside channel. The L infor-
mation will then be stored on the calling channel, which is PHONE A.
For example:

[services]

exten => 2,1,Dial(SIP/PHONE_B)

[internal]

exten => 4,1,Dial(Local/2@services,,L(60000:45000:15000));

6.3.8 Local channel modifiers
There are additional modifiers for the Local channel as well. They include:

• ’n’ – Adding ”/n” at the end of the string will make the Local channel
not do a native transfer (the ”n” stands for ”n”o release) upon the
remote end answering the line. This is an esoteric, but important
feature if you expect the Local channel to handle calls exactly like a
normal channel. If you do not have the ”no release” feature set, then
as soon as the destination (inside of the Local channel) answers the
line and one audio frame passes, the variables and dial plan will revert

115

back to that of the original call, and the Local channel will become a
zombie and be removed from the active channels list. This is desirable
in some circumstances, but can result in unexpected dialplan behavior
if you are doing fancy things with variables in your call handling.

• ’j’ – Adding ”/j” at the end of the string allows you to use the generic
jitterbuffer on incoming calls going to Asterisk applications. For exam-
ple, this would allow you to use a jitterbuffer for an incoming SIP call
to Voicemail by putting a Local channel in the middle. The ’j’ option
must be used in conjunction with the ’n’ option to make sure that the
Local channel does not get optimized out of the call.

This option is available starting in the Asterisk 1.6.0 branch.

• ’m’ – Using the ”/m” option will cause the Local channel to forward
music on hold (MoH) start and stop requests. Normally the Local
channel acts on them and it is started or stopped on the Local channel
itself. This options allows those requests to be forwarded through the
Local channel.

This option is available starting in the Asterisk 1.4 branch.

• ’b’ – The ”/b” option causes the Local channel to return the actual
channel that is behind it when queried. This is useful for transfer sce-
narios as the actual channel will be transferred, not the Local channel.

This option is available starting in the Asterisk 1.6.0 branch.

116

Chapter 7
Distributed Universal Number
Discovery (DUNDi)

7.1 Introduction
http://www.dundi.com

Mark Spencer, Digium, Inc.
DUNDi is essentially a trusted, peer-to-peer system for being able to call

any phone number from the Internet. DUNDi works by creating a network of
nodes called the ”DUNDi E.164 Trust Group” which are bound by a common
peering agreement known as the General Peering Agreement or GPA. The
GPA legally binds the members of the Trust Group to provide good-faith
accurate information to the other nodes on the network, and provides stan-
dards by which the community can insure the integrity of the information on
the nodes themselves. Unlike ENUM or similar systems, DUNDi is explicitly
designed to preclude any necessity for a single centralized system which could
be a source of fees, regulation, etc.

Much less dramatically, DUNDi can also be used within a private enter-
prise to share a dialplan efficiently between multiple nodes, without incurring
a risk of a single point of failure. In this way, administrators can locally add
extensions which become immediately available to the other nodes in the
system.

For more information visit http://www.dundi.com

117

http://www.dundi.com
http://www.dundi.com

7.2 DUNDIQUERY and DUNDIRESULT
The DUNDIQUERY and DUNDIRESULT dialplan functions will let you
initiate a DUNDi query from the dialplan, see how many results there are,
and access each one. Here is some example usage:

exten => 1,1,Set(ID=${DUNDIQUERY(1,dundi_test,b)})

exten => 1,n,Set(NUM=${DUNDIRESULT(${ID},getnum)})

exten => 1,n,NoOp(There are ${NUM} results)

exten => 1,n,Set(X=1)

exten => 1,n,While($[${X} <= ${NUM}])

exten => 1,n,NoOp(Result ${X} is ${DUNDIRESULT(${ID},${X})})

exten => 1,n,Set(X=$[${X} + 1])

exten => 1,n,EndWhile

7.3 Peering Agreement

DIGIUM GENERAL PEERING AGREEMENT (TM)

Version 1.0.0, September 2004

Copyright (C) 2004 Digium, Inc.

445 Jan Davis Drive, Huntsville, AL 35806 USA

Everyone is permitted to copy and distribute complete verbatim copies

of this General Peering Agreement provided it is not modified in any

manner.

--

DIGIUM GENERAL PEERING AGREEMENT

PREAMBLE

For most of the history of telecommunications, the power of being able

to locate and communicate with another person in a system, be it across

a hall or around the world, has always centered around a centralized

authority -- from a local PBX administrator to regional and national

RBOCs, generally requiring fees, taxes or regulation. By contrast,

DUNDi is a technology developed to provide users the freedom to

communicate with each other without the necessity of any centralized

118

authority. This General Peering Agreement ("GPA") is used by individual

parties (each, a "Participant") to allow them to build the E164 trust

group for the DUNDi protocol.

To protect the usefulness of the E164 trust group for those who use

it, while keeping the system wholly decentralized, it is necessary to

replace many of the responsibilities generally afforded to a company or

government agency, with a set of responsibilities implemented by the

parties who use the system, themselves. It is the goal of this document

to provide all the protections necessary to keep the DUNDi E164 trust

group useful and reliable.

The Participants wish to protect competition, promote innovation and

value added services and make this service valuable both commercially

and non-commercially. To that end, this GPA provides special terms and

conditions outlining some permissible and non-permissible revenue

sources.

This GPA is independent of any software license or other license

agreement for a program or technology employing the DUNDi protocol. For

example, the implementation of DUNDi used by Asterisk is covered under a

separate license. Each Participant is responsible for compliance with

any licenses or other agreements governing use of such program or

technology that they use to peer.

You do not have to execute this GPA to use a program or technology

employing the DUNDi protocol, however if you do not execute this GPA,

you will not be able to peer using DUNDi and the E164 context with

anyone who is a member of the trust group by virtue of their having

executed this GPA with another member.

The parties to this GPA agree as follows:

0. DEFINITIONS. As used herein, certain terms shall be defined as

follows:

(a) The term "DUNDi" means the DUNDi protocol as published by

Digium, Inc. or its successor in interest with respect to the

119

DUNDi protocol specification.

(b) The terms "E.164" and "E164" mean ITU-T specification E.164 as

published by the International Telecommunications Union (ITU) in

May, 1997.

(c) The term "Service" refers to any communication facility (e.g.,

telephone, fax, modem, etc.), identified by an E.164-compatible

number, and assigned by the appropriate authority in that

jurisdiction.

(d) The term "Egress Gateway" refers an Internet facility that

provides a communications path to a Service or Services that may

not be directly addressable via the Internet.

(e) The term "Route" refers to an Internet address, policies, and

other characteristics defined by the DUNDi protocol and

associated with the Service, or the Egress Gateway which

provides access to the specified Service.

(f) The term "Propagate" means to accept or transmit Service and/or

Egress Gateway Routes only using the DUNDi protocol and the

DUNDi context "e164" without regard to case, and does not apply

to the exchange of information using any other protocol or

context.

(g) The term "Peering System" means the network of systems that

Propagate Routes.

(h) The term "Subscriber" means the owner of, or someone who

contracts to receive, the services identified by an E.164

number.

(i) The term "Authorizing Individual" means the Subscriber to a

number who has authorized a Participant to provide Routes

regarding their services via this Peering System.

(j) The term "Route Authority" refers to a Participant that provides

120

an original source of said Route within the Peering System.

Routes are propagated from the Route Authorities through the

Peering System and may be cached at intermediate points. There

may be multiple Route Authorities for any Service.

(k) The term "Participant" (introduced above) refers to any member

of the Peering System.

(l) The term "Service Provider" refers to the carrier (e.g.,

exchange carrier, Internet Telephony Service Provider, or other

reseller) that provides communication facilities for a

particular Service to a Subscriber, Customer or other End User.

(m) The term "Weight" refers to a numeric quality assigned to a

Route as per the DUNDi protocol specification. The current

Weight definitions are shown in Exhibit A.

1. PEERING. The undersigned Participants agree to Propagate Routes

with each other and any other member of the Peering System and further

agree not to Propagate DUNDi Routes with a third party unless they have

first have executed this GPA (in its unmodified form) with such third

party. The Participants further agree only to Propagate Routes with

Participants whom they reasonably believe to be honoring the terms of

the GPA. Participants may not insert, remove, amend, or otherwise

modify any of the terms of the GPA.

2. ACCEPTABLE USE POLICY. The DUNDi protocol contains information

that reflect a Subscriber’s or Egress Gateway’s decisions to receive

calls. In addition to the terms and conditions set forth in this GPA,

the Participants agree to honor the intent of restrictions encoded in

the DUNDi protocol. To that end, Participants agree to the following:

(a) A Participant may not utilize or permit the utilization of

Routes for which the Subscriber or Egress Gateway provider has

indicated that they do not wish to receive "Unsolicited Calls"

for the purpose of making an unsolicited phone call on behalf of

any party or organization.

121

(b) A Participant may not utilize or permit the utilization of

Routes which have indicated that they do not wish to receive

"Unsolicited Commercial Calls" for the purpose of making an

unsolicited phone call on behalf of a commercial organization.

(c) A Participant may never utilize or permit the utilization of any

DUNDi route for the purpose of making harassing phone calls.

(d) A Party may not utilize or permit the utilization of DUNDi

provided Routes for any systematic or random calling of numbers

(e.g., for the purpose of locating facsimile, modem services, or

systematic telemarketing).

(e) Initial control signaling for all communication sessions that

utilize Routes obtained from the Peering System must be sent

from a member of the Peering System to the Service or Egress

Gateway identified in the selected Route. For example, ’SIP

INVITES’ and IAX2 "NEW" commands must be sent from the

requesting DUNDi node to the terminating Service.

(f) A Participant may not disclose any specific Route, Service or

Participant contact information obtained from the Peering System

to any party outside of the Peering System except as a

by-product of facilitating communication in accordance with

section 2e (e.g., phone books or other databases may not be

published, but the Internet addresses of the Egress Gateway or

Service does not need to be obfuscated.)

(g) The DUNDi Protocol requires that each Participant include valid

contact information about itself (including information about

nodes connected to each Participant). Participants may use or

disclose the contact information only to ensure enforcement of

legal furtherance of this Agreement.

3. ROUTES. The Participants shall only propagate valid Routes, as

defined herein, through the Peering System, regardless of the original

source. The Participants may only provide Routes as set forth below,

and then only if such Participant has no good faith reason to believe

122

such Route to be invalid or unauthorized.

(a) A Participant may provide Routes if each Route has as its

original source another member of the Peering System who has

duly executed the GPA and such Routes are provided in accordance

with this Agreement; provided that the Routes are not modified

(e.g., with regards to existence, destination, technology or

Weight); or

(b) A Participant may provide Routes for Services with any Weight

for which it is the Subscriber; or

(c) A Participant may provide Routes for those Services whose

Subscriber has authorized the Participant to do so, provided

that the Participant is able to confirm that the Authorizing

Individual is the Subscriber through:

i. a written statement of ownership from the Authorizing

Individual, which the Participant believes in good faith

to be accurate (e.g., a phone bill with the name of the

Authorizing Individual and the number in question); or

ii. the Participant’s own direct personal knowledge that the

Authorizing Individual is the Subscriber.

(d) A Participant may provide Routes for Services, with Weight in

accordance with the Current DUNDi Specification, if it can in

good faith provide an Egress Gateway to that Service on the

traditional telephone network without cost to the calling party.

4. REVOCATION. A Participant must provide a free, easily accessible

mechanism by which a Subscriber may revoke permission to act as a Route

Authority for his Service. A Participant must stop acting as a Route

Authority for that Service within 7 days after:

(a) receipt of a revocation request;

(b) receiving other notice that the Service is no longer valid; or

123

(c) determination that the Subscriber’s information is no longer

accurate (including that the Subscriber is no longer the service

owner or the service owner’s authorized delegate).

5. SERVICE FEES. A Participant may charge a fee to act as a Route

Authority for a Service, with any Weight, provided that no Participant

may charge a fee to propagate the Route received through the Peering

System.

6. TOLL SERVICES. No Participant may provide Routes for any Services

that require payment from the calling party or their customer for

communication with the Service. Nothing in this section shall prohibit

a Participant from providing routes for Services where the calling party

may later enter into a financial transaction with the called party

(e.g., a Participant may provide Routes for calling cards services).

7. QUALITY. A Participant may not intentionally impair communication

using a Route provided to the Peering System (e.g. by adding delay,

advertisements, reduced quality). If for any reason a Participant is

unable to deliver a call via a Route provided to the Peering System,

that Participant shall return out-of-band Network Congestion

notification (e.g. "503 Service Unavailable" with SIP protocol or

"CONGESTION" with IAX protocol).

8. PROTOCOL COMPLIANCE. Participants agree to Propagate Routes in

strict compliance with current DUNDi protocol specifications.

9. ADMINISTRATIVE FEES. A Participant may charge (but is not required

to charge) another Participant a reasonable fee to cover administrative

expenses incurred in the execution of this Agreement. A Participant may

not charge any fee to continue the relationship or to provide Routes to

another Participant in the Peering System.

10. CALLER IDENTIFICATION. A Participant will make a good faith effort

to ensure the accuracy and appropriate nature of any caller

identification that it transmits via any Route obtained from the Peering

System. Caller identification shall at least be provided as a valid

124

E.164 number.

11. COMPLIANCE WITH LAWS. The Participants are solely responsible for

determining to what extent, if any, the obligations set forth in this

GPA conflict with any laws or regulations their region. A Participant

may not provide any service or otherwise use DUNDi under this GPA if

doing so is prohibited by law or regulation, or if any law or regulation

imposes requirements on the Participant that are inconsistent with the

terms of this GPA or the Acceptable Use Policy.

12. WARRANTY. EACH PARTICIPANT WARRANTS TO THE OTHER PARTICIPANTS THAT

IT MADE, AND WILL CONTINUE TO MAKE, A GOOD FAITH EFFORT TO AUTHENTICATE

OTHERS IN THE PEERING SYSTEM AND TO PROVIDE ACCURATE INFORMATION IN

ACCORDANCE WITH THE TERMS OF THIS GPA. THIS WARRANTY IS MADE BETWEEN

THE PARTICIPANTS, AND THE PARTICIPANTS MAY NOT EXTEND THIS WARRANTY TO

ANY NON-PARTICIPANT INCLUDING END-USERS.

13. DISCLAIMER OF WARRANTIES. THE PARTICIPANTS UNDERSTAND AND AGREE

THAT ANY SERVICE PROVIDED AS A RESULT OF THIS GPA IS "AS IS." EXCEPT FOR

THOSE WARRANTIES OTHERWISE EXPRESSLY SET FORTH HEREIN, THE PARTICIPANTS

DISCLAIM ANY REPRESENTATIONS OR WARRANTIES OF ANY KIND OR NATURE,

EXPRESS OR IMPLIED, AS TO THE CONDITION, VALUE OR QUALITIES OF THE

SERVICES PROVIDED HEREUNDER, AND SPECIFICALLY DISCLAIM ANY

REPRESENTATION OR WARRANTY OF MERCHANTABILITY, SUITABILITY OR FITNESS

FOR A PARTICULAR PURPOSE OR AS TO THE CONDITION OR WORKMANSHIP THEREOF,

OR THE ABSENCE OF ANY DEFECTS THEREIN, WHETHER LATENT OR PATENT,

INCLUDING ANY WARRANTIES ARISING FROM A COURSE OF DEALING, USAGE OR

TRADE PRACTICE. EXCEPT AS EXPRESSLY PROVIDED HEREIN, THE PARTICIPANTS

EXPRESSLY DISCLAIM ANY REPRESENTATIONS OR WARRANTIES THAT THE PEERING

SERVICE WILL BE CONTINUOUS, UNINTERRUPTED OR ERROR-FREE, THAT ANY DATA

SHARED OR OTHERWISE MADE AVAILABLE WILL BE ACCURATE OR COMPLETE OR

OTHERWISE COMPLETELY SECURE FROM UNAUTHORIZED ACCESS.

14. LIMITATION OF LIABILITIES. NO PARTICIPANT SHALL BE LIABLE TO ANY

OTHER PARTICIPANT FOR INCIDENTAL, INDIRECT, CONSEQUENTIAL, SPECIAL,

PUNITIVE OR EXEMPLARY DAMAGES OF ANY KIND (INCLUDING LOST REVENUES OR

PROFITS, LOSS OF BUSINESS OR LOSS OF DATA) IN ANY WAY RELATED TO THIS

GPA, WHETHER IN CONTRACT OR IN TORT, REGARDLESS OF WHETHER SUCH

125

PARTICIPANT WAS ADVISED OF THE POSSIBILITY THEREOF.

15. END-USER AGREEMENTS. The Participants may independently enter

into agreements with end-users to provide certain services (e.g., fees

to a Subscriber to originate Routes for that Service). To the extent

that provision of these services employs the Peering System, the Parties

will include in their agreements with their end-users terms and

conditions consistent with the terms of this GPA with respect to the

exclusion of warranties, limitation of liability and Acceptable Use

Policy. In no event may a Participant extend the warranty described in

Section 12 in this GPA to any end-users.

16. INDEMNIFICATION. Each Participant agrees to defend, indemnify and

hold harmless the other Participant or third-party beneficiaries to this

GPA (including their affiliates, successors, assigns, agents and

representatives and their respective officers, directors and employees)

from and against any and all actions, suits, proceedings,

investigations, demands, claims, judgments, liabilities, obligations,

liens, losses, damages, expenses (including, without limitation,

attorneys’ fees) and any other fees arising out of or relating to (i)

personal injury or property damage caused by that Participant, its

employees, agents, servants, or other representatives; (ii) any act or

omission by the Participant, its employees, agents, servants or other

representatives, including, but not limited to, unauthorized

representations or warranties made by the Participant; or (iii) any

breach by the Participant of any of the terms or conditions of this GPA.

17. THIRD PARTY BENEFICIARIES. This GPA is intended to benefit those

Participants who have executed the GPA and who are in the Peering

System. It is the intent of the Parties to this GPA to give to those

Participants who are in the Peering System standing to bring any

necessary legal action to enforce the terms of this GPA.

18. TERMINATION. Any Participant may terminate this GPA at any time,

with or without cause. A Participant that terminates must immediately

cease to Propagate.

19. CHOICE OF LAW. This GPA and the rights and duties of the Parties

126

hereto shall be construed and determined in accordance with the internal

laws of the State of New York, United States of America, without regard

to its conflict of laws principles and without application of the United

Nations Convention on Contracts for the International Sale of Goods.

20. DISPUTE RESOLUTION. Unless otherwise agreed in writing, the

exclusive procedure for handling disputes shall be as set forth herein.

Notwithstanding such procedures, any Participant may, at any time, seek

injunctive relief in addition to the process described below.

(a) Prior to mediation or arbitration the disputing Participants

shall seek informal resolution of disputes. The process shall be

initiated with written notice of one Participant to the other

describing the dispute with reasonable particularity followed

with a written response within ten (10) days of receipt of

notice. Each Participant shall promptly designate an executive

with requisite authority to resolve the dispute. The informal

procedure shall commence within ten (10) days of the date of

response. All reasonable requests for non-privileged information

reasonably related to the dispute shall be honored. If the

dispute is not resolved within thirty (30) days of commencement

of the procedure either Participant may proceed to mediation or

arbitration pursuant to the rules set forth in (b) or (c) below.

(b) If the dispute has not been resolved pursuant to (a) above or,

if the disputing Participants fail to commence informal dispute

resolution pursuant to (a) above, either Participant may, in

writing and within twenty (20) days of the response date noted

in (a) above, ask the other Participant to participate in a one

(1) day mediation with an impartial mediator, and the other

Participant shall do so. Each Participant will bear its own

expenses and an equal share of the fees of the mediator. If the

mediation is not successful the Participants may proceed with

arbitration pursuant to (c) below.

(c) If the dispute has not been resolved pursuant to (a) or (b)

above, the dispute shall be promptly referred, no later than one

(1) year from the date of original notice and subject to

127

applicable statute of limitations, to binding arbitration in

accordance with the UNCITRAL Arbitration Rules in effect on the

date of this contract. The appointing authority shall be the

International Centre for Dispute Resolution. The case shall be

administered by the International Centre for Dispute Resolution

under its Procedures for Cases under the UNCITRAL Arbitration

Rules. Each Participant shall bear its own expenses and shall

share equally in fees of the arbitrator. All arbitrators shall

have substantial experience in information technology and/or in

the telecommunications business and shall be selected by the

disputing participants in accordance with UNCITRAL Arbitration

Rules. If any arbitrator, once selected is unable or unwilling

to continue for any reason, replacement shall be filled via the

process described above and a re-hearing shall be conducted. The

disputing Participants will provide each other with all

requested documents and records reasonably related to the

dispute in a manner that will minimize the expense and

inconvenience of both parties. Discovery will not include

depositions or interrogatories except as the arbitrators

expressly allow upon a showing of need. If disputes arise

concerning discovery requests, the arbitrators shall have sole

and complete discretion to resolve the disputes. The parties and

arbitrator shall be guided in resolving discovery disputes by

the Federal Rules of Civil Procedure. The Participants agree

that time of the essence principles shall guide the hearing and

that the arbitrator shall have the right and authority to issue

monetary sanctions in the event of unreasonable delay. The

arbitrator shall deliver a written opinion setting forth

findings of fact and the rationale for the award within thirty

(30) days following conclusion of the hearing. The award of the

arbitrator, which may include legal and equitable relief, but

which may not include punitive damages, will be final and

binding upon the disputing Participants, and judgment may be

entered upon it in accordance with applicable law in any court

having jurisdiction thereof. In addition to award the

arbitrator shall have the discretion to award the prevailing

Participant all or part of its attorneys’ fees and costs,

including fees associated with arbitrator, if the arbitrator

128

determines that the positions taken by the other Participant on

material issues of the dispute were without substantial

foundation. Any conflict between the UNCITRAL Arbitration Rules

and the provisions of this GPA shall be controlled by this GPA.

21. INTEGRATED AGREEMENT. This GPA, constitutes the complete

integrated agreement between the parties concerning the subject matter

hereof. All prior and contemporaneous agreements, understandings,

negotiations or representations, whether oral or in writing, relating to

the subject matter of this GPA are superseded and canceled in their

entirety.

22. WAIVER. No waiver of any of the provisions of this GPA shall be

deemed or shall constitute a waiver of any other provision of this GPA,

whether or not similar, nor shall such waiver constitute a continuing

waiver unless otherwise expressly so provided in writing. The failure

of either party to enforce at any time any of the provisions of this

GPA, or the failure to require at any time performance by either party

of any of the provisions of this GPA, shall in no way be construed to be

a present or future waiver of such provisions, nor in any way affect the

ability of a Participant to enforce each and every such provision

thereafter.

23. INDEPENDENT CONTRACTORS. Nothing in this GPA shall make the

Parties partners, joint venturers, or otherwise associated in or with

the business of the other. Parties are, and shall always remain,

independent contractors. No Participant shall be liable for any debts,

accounts, obligations, or other liabilities of the other Participant,

its agents or employees. No party is authorized to incur debts or other

obligations of any kind on the part of or as agent for the other. This

GPA is not a franchise agreement and does not create a franchise

relationship between the parties, and if any provision of this GPA is

deemed to create a franchise between the parties, then this GPA shall

automatically terminate.

24. CAPTIONS AND HEADINGS. The captions and headings used in this GPA

are used for convenience only and are not to be given any legal effect.

129

25. EXECUTION. This GPA may be executed in counterparts, each of which

so executed will be deemed to be an original and such counterparts

together will constitute one and the same Agreement. The Parties shall

transmit to each other a signed copy of the GPA by any means that

faithfully reproduces the GPA along with the Signature. For purposes of

this GPA, the term "signature" shall include digital signatures as

defined by the jurisdiction of the Participant signing the GPA.

Exhibit A

Weight Range Requirements

0-99 May only be used under authorization of Owner

100-199 May only be used by the Owner’s service

provider, regardless of authorization.

200-299 Reserved -- do not use for e164 context.

300-399 May only be used by the owner of the code under

which the Owner’s number is a part of.

400-499 May be used by any entity providing access via

direct connectivity to the Public Switched

Telephone Network.

500-599 May be used by any entity providing access via

indirect connectivity to the Public Switched

Telephone Network (e.g. Via another VoIP

provider)

600- Reserved-- do not use for e164 context.

Participant Participant

Company:

Address:

130

Email:

_________________________ _________________________

Authorized Signature Authorized Signature

Name:

END OF GENERAL PEERING AGREEMENT

--

How to Peer using this GPA If you wish to exchange routing information

with parties using the e164 DUNDi context, all you must do is execute

this GPA with any member of the Peering System and you will become a

member of the Peering System and be able to make Routes available in

accordance with this GPA.

DUNDi, IAX, Asterisk and GPA are trademarks of Digium, Inc.

131

Chapter 8
ENUM

8.1 The ENUMLOOKUP dialplan function
The ENUMLOOKUP function is more complex than it first may appear,
and this guide is to give a general overview and set of examples that may
be well-suited for the advanced user to evaluate in their consideration of
ENUM or ENUM-like lookup strategies. This document assumes a famil-
iarity with ENUM (RFC3761) or ENUM-like methods, as well as familiarity
with NAPTR DNS records (RFC2915, RFC3401-3404). For an overview
of NAPTR records, and the use of NAPTRs in the ENUM global phone-
number-to-DNS mapping scheme, please see http://www.voip-info.org/tiki-index.
php?page=ENUM for more detail.

Using ENUM within Asterisk can be simple or complex, depending on
how many failover methods and redundancy procedures you wish to utilize.
Implementation of ENUM paths is supposedly defined by the person creat-
ing the NAPTR records, but the local administrator may choose to ignore
certain NAPTR response methods (URI types) or prefer some over others,
which is in contradiction to the RFC. The ENUMLOOKUP method simply
provides administrators a method for determining NAPTR results in either
the globally unique ENUM (e164.arpa) DNS tree, or in other ENUM-like
DNS trees which are not globally unique. The methods to actually create
channels (”dial”) results given by the ENUMLOOKUP function is then up to
the administrator to implement in a way that best suits their environment.

Function: ENUMLOOKUP(number[,Method-type[,options[,record#[,zone-suffix]]]])

132

http://www.voip-info.org/tiki-index.php?page=ENUM
http://www.voip-info.org/tiki-index.php?page=ENUM

Performs an ENUM tree lookup on the specified number, method type,
and ordinal record offset, and returns one of four different values:

1. post-parsed NAPTR of one method (URI) type

2. count of elements of one method (URI) type

3. count of all method types

4. full URI of method at a particular point in the list of all possible meth-
ods

8.1.1 Arguments
• number

– telephone number or search string. Only numeric values within
this string are parsed; all other digits are ignored for search, but
are re-written during NAPTR regexp expansion.

• service type

– tel, sip, h323, iax2, mailto, ...[any other string], ALL. Default type
is ”sip”. Special name of ”ALL” will create a list of method types
across all NAPTR records for the search number, and then put the
results in an ordinal list starting with 1. The position ¡number¿
specified will then be returned, starting with 1 as the first record
(lowest value) in the list. The service types are not hardcoded
in Asterisk except for the default (sip) if no other service type
specified; any method type string (IANA-approved or not) may
be used except for the string ”ALL”.

• options

– c

∗ count. Returns the number of records of this type are returned
(regardless of order or priority.) If ”ALL” is the specified
service type, then a count of all methods will be returned for
the DNS record.

• record#

133

– which record to present if multiple answers are returned ¡integer¿
= The record in priority/order sequence based on the total count
of records passed back by the query. If a service type is specified,
all entries of that type will be sorted into an ordinal list starting
with 1 (by order first, then priority). The default of ¡options¿ is
”1”

• zone suffix

– allows customization of the ENUM zone. Default is e164.arpa.

8.1.2 Examples
Let’s use this ENUM list as an example (note that these examples exist in
the DNS, and will hopefully remain in place as example destinations, but
they may change or become invalid over time. The end result URIs are not
guaranteed to actually work, since some of these hostnames or SIP proxies
are imaginary. Of course, the tel: replies go to directory assistance for New
York City and San Francisco...) Also note that the complex SIP NAPTR at
weight 30 will strip off the leading ”+” from the dialed string if it exists. This
is probably a better NAPTR than hard-coding the number into the NAPTR,
and it is included as a more complex regexp example, though other simpler
NAPTRs will work just as well.

0.2.0.1.1.6.5.1.0.3.1.loligo.com. 3600 IN NAPTR 10 100 "u"

"E2U+tel" "!^\\+13015611020$!tel:+12125551212!" .

0.2.0.1.1.6.5.1.0.3.1.loligo.com. 3600 IN NAPTR 21 100 "u"

"E2U+tel" "!^\\+13015611020$!tel:+14155551212!" .

0.2.0.1.1.6.5.1.0.3.1.loligo.com. 3600 IN NAPTR 25 100 "u"

"E2U+sip" "!^\\+13015611020$!sip:2203@sip.fox-den.com!" .

0.2.0.1.1.6.5.1.0.3.1.loligo.com. 3600 IN NAPTR 26 100 "u"

"E2U+sip" "!^\\+13015611020$!sip:1234@sip-2.fox-den.com!" .

0.2.0.1.1.6.5.1.0.3.1.loligo.com. 3600 IN NAPTR 30 100 "u"

"E2U+sip" "!^\\+*([^*]*)!sip:\\1@sip-3.fox-den.com!" .

0.2.0.1.1.6.5.1.0.3.1.loligo.com. 3600 IN NAPTR 55 100 "u"

"E2U+mailto" "!^\\+13015611020$!mailto:jtodd@fox-den.com!" .

Example 1: Simplest case, using first SIP return (use all defaults except
for domain name)

134

exten => 100,1,Set(foo=${ENUMLOOKUP(+13015611020,,,,loligo.com)})

returns: ${foo}="2203@sip.fox-den.com"

Example 2: What is the first ”tel” pointer type for this number? (after
sorting by order/preference; default of ”1” is assumed in options field)

exten => 100,1,Set(foo=${ENUMLOOKUP(+13015611020,tel,,,loligo.com)})

returns: ${foo}="+12125551212"

Example 3: How many ”sip” pointer type entries are there for this num-
ber?

exten => 100,1,Set(foo=${ENUMLOOKUP(+13015611020,sip,c,,loligo.com)})

returns: ${foo}=3

Example 4: For all the ”tel” pointer type entries, what is the second one
in the list? (after sorting by preference)

exten => 100,1,Set(foo=${ENUMLOOKUP(+13015611020,tel,,2,loligo.com)})

returns: ${foo}="+14155551212"

Example 5: How many NAPTRs (tel, sip, mailto, etc.) are in the list for
this number?

exten => 100,1,Set(foo=${ENUMLOOKUP(+13015611020,ALL,c,,loligo.com)})

returns: ${foo}=6

Example 6: Give back the second full URI in the sorted list of all NAPTR
URIs:

exten => 100,1,Set(foo=${ENUMLOOKUP(+13015611020,ALL,,2,loligo.com)})

returns: ${foo}="tel:+14155551212" [note the "tel:" prefix in the string]

Example 7: Look up first SIP entry for the number in the e164.arpa zone
(all defaults)

exten => 100,1,Set(foo=${ENUMLOOKUP(+437203001721)})

returns: ${foo}="enum-test@sip.nemox.net" [note: this result is

subject to change as it is "live" DNS and not under my control]

Example 8: Look up the ISN mapping in freenum.org alpha test zone

135

exten => 100,1,Set(foo=${ENUMLOOKUP(1234*256,,,,freenum.org)})

returns: ${foo}="1234@204.91.156.10" [note: this result is subject

to change as it is "live" DNS]

Example 9: Give back the first SIP pointer for a number in the

enum.yoydynelabs.com zone (invalid lookup)

exten => 100,1,Set(foo=${ENUMLOOKUP(1234567890,sip,,1,enum.yoyodynelabs.com)})

returns: ${foo}=""

8.1.3 Usage notes and subtle features
• The use of ”+” in lookups is confusing, and warrants further explana-

tion. All E.164 numbers (”global phone numbers”) by definition need
a leading ”+” during ENUM lookup. If you neglect to add a leading
”+”, you may discover that numbers that seem to exist in the DNS
aren’t getting matched by the system or are returned with a null string
result. This is due to the NAPTR reply requiring a ”+” in the regular
expression matching sequence. Older versions of Asterisk add a ”+”
from within the code, which may confuse administrators converting to
the new function. Please ensure that all ENUM (e164.arpa) lookups
contain a leading ”+” before lookup, so ensure your lookup includes
the leading plus sign. Other DNS trees may or may not require a lead-
ing ”+” - check before using those trees, as it is possible the parsed
NAPTRs will not provide correct results unless you have the correct
dialed string. If you get console messages like ”WARNING[24907]:
enum.c:222 parse naptr: NAPTR Regex match failed.” then it is very
possible that the returned NAPTR expects a leading ”+” in the search
string (or the returned NAPTR is mis-formed.)

• If a query is performed of type ”c” (”count”) and let’s say you get
back 5 records and then some seconds later a query is made against
record 5 in the list, it may not be the case that the DNS resolver has
the same answers as it did a second or two ago - maybe there are only
4 records in the list in the newest query. The resolver should be the
canonical storage location for DNS records, since that is the intent of
ENUM. However, some obscure future cases may have wildly changing
NAPTR records within several seconds. This is a corner case, and
probably only worth noting as a very rare circumstance. (note: I do

136

not object to Asterisk’s dnsmgr method of locally caching DNS replies,
but this method needs to honor the TTL given by the remote zone
master. Currently, the ENUMLOOKUP function does not use the
dnsmgr method of caching local DNS replies.)

• If you want strict NAPTR value ordering, then it will be necessary
to use the ”ALL” method to incrementally step through the different
returned NAPTR pointers. You will need to use string manipulation
to strip off the returned method types, since the results will look like
”sip:12125551212” in the returned value. This is a non-trivial task,
though it is required in order to have strict RFC compliance and to
comply with the desires of the remote party who is presenting NAPTRs
in a particular order for a reason.

• Default behavior for the function (even in event of an error) is to move
to the next priority, and the result is a null value. Most ENUM lookups
are going to be failures, and it is the responsibility of the dialplan
administrator to manage error conditions within their dialplan. This
is a change from the old app enumlookup method and it’s arbitrary
priority jumping based on result type or failure.

• Anything other than digits will be ignored in lookup strings. Example:
a search string of ”+4372030blah01721” will turn into 1.2.7.1.0.0.3.0.2.7.3.4.e164.arpa.
for the lookup. The NAPTR parsing may cause unexpected results if
there are strings inside your NAPTR lookups.

• If there exist multiple records with the same weight and order as a result
of your query, the function will RANDOMLY select a single NAPTR
from those equal results.

• Currently, the function ignores the settings in enum.conf as the search
zone name is now specified within the function, and the H323 driver
can be chosen by the user via the dialplan. There were no other values
in this file, and so it becomes deprecated.

• The function will digest and return NAPTRs which use older (depre-
cated) style, reversed method strings such as ”sip+E2U” instead of the
more modern ”E2U+sip”

137

• There is no provision for multi-part methods at this time. If there are
multiple NAPTRs with (as an example) a method of ”E2U+voice:sip”
and then another NAPTR in the same DNS record with a method of
””E2U+sip”, the system will treat these both as method ”sip” and they
will be separate records from the perspective of the function. Of course,
if both records point to the same URI and have equal priority/weight
(as is often the case) then this will cause no serious difficulty, but it
bears mentioning.

• ISN (ITAD Subscriber Number) usage: If the search number is of the
form ABC*DEF (where ABC and DEF are at least one numeric digit)
then perform an ISN-style lookup where the lookup is manipulated
to C.B.A.DEF.domain.tld (all other settings and options apply.) See
http://www.freenum.org/ for more details on ISN lookups. In the un-
likely event you wish to avoid ISN re-writes, put an ”n” as the first
digit of the search string - the ”n” will be ignored for the search.

8.1.4 Some more Examples
All examples below except where noted use ”e164.arpa” as the referenced
domain, which is the default domain name for ENUMLOOKUP. All numbers
are assumed to not have a leading ”+” as dialed by the inbound channel,
so that character is added where necessary during ENUMLOOKUP function
calls.

; example 1

;

; Assumes North American international dialing (011) prefix.

; Look up the first SIP result and send the call there, otherwise

; send the call out a PRI. This is the most simple possible

; ENUM example, but only uses the first SIP reply in the list of

; NAPTR(s).

;

exten => _011.,1,Set(enumresult=${ENUMLOOKUP(+${EXTEN:3})})

exten => _011.,n,Dial(SIP/${enumresult})

exten => _011.,n,Dial(DAHDI/g1/${EXTEN})

;

; end example 1

; example 2

;

; Assumes North American international dialing (011) prefix.

; Check to see if there are multiple SIP NAPTRs returned by

; the lookup, and dial each in order. If none work (or none

; exist) then send the call out a PRI, group 1.

138

http://www.freenum.org/

;

exten => _011.,1,Set(sipcount=${ENUMLOOKUP(${EXTEN:3},sip,c)}|counter=0)

exten => _011.,n,While($["${counter}"<"${sipcount}"])

exten => _011.,n,Set(counter=$[${counter}+1])

exten => _011.,n,Dial(SIP/${ENUMLOOKUP(+${EXTEN:3},sip,,${counter})})

exten => _011.,n,EndWhile

exten => _011.,n,Dial(DAHDI/g1/${EXTEN})

;

; end example 2

; example 3

;

; This example expects an ${EXTEN} that is an e.164 number (like

; 14102241145 or 437203001721)

; Search through e164.arpa and then also search through e164.org

; to see if there are any valid SIP or IAX termination capabilities.

; If none, send call out via DAHDI channel 1.

;

; Start first with e164.arpa zone...

;

exten => _X.,1,Set(sipcount=${ENUMLOOKUP(+${EXTEN},sip,c)}|counter=0)

exten => _X.,2,GotoIf($["${counter}"<"${sipcount}"]?3:6)

exten => _X.,3,Set(counter=$[${counter}+1])

exten => _X.,4,Dial(SIP/${ENUMLOOKUP(+${EXTEN},sip,,${counter})})

exten => _X.,5,GotoIf($["${counter}"<"${sipcount}"]?3:6)

;

exten => _X.,6,Set(iaxcount=${ENUMLOOKUP(+${EXTEN},iax2,c)}|counter=0)

exten => _X.,7,GotoIf($["${counter}"<"${iaxcount}"]?8:11)

exten => _X.,8,Set(counter=$[${counter}+1])

exten => _X.,9,Dial(IAX2/${ENUMLOOKUP(+${EXTEN},iax2,,${counter})})

exten => _X.,10,GotoIf($["${counter}"<"${iaxcount}"]?8:11)

;

exten => _X.,11,NoOp("No valid entries in e164.arpa for ${EXTEN} - checking in e164.org")

;

; ...then also try e164.org, and look for SIP and IAX NAPTRs...

;

exten => _X.,12,Set(sipcount=${ENUMLOOKUP(+${EXTEN},sip,c,,e164.org)}|counter=0)

exten => _X.,13,GotoIf($["${counter}"<"${sipcount}"]?14:17)

exten => _X.,14,Set(counter=$[${counter}+1])

exten => _X.,15,Dial(SIP/${ENUMLOOKUP(+${EXTEN},sip,,${counter},e164.org)})

exten => _X.,16,GotoIf($["${counter}"<"${sipcount}"]?14:17)

;

exten => _X.,17,Set(iaxcount=${ENUMLOOKUP(+${EXTEN},iax2,c,,e164.org)}|counter=0)

exten => _X.,18,GotoIf($["${counter}"<"${iaxcount}"]?19:22)

exten => _X.,19,Set(counter=$[${counter}+1])

exten => _X.,20,Dial(IAX2/${ENUMLOOKUP(+${EXTEN},iax2,,${counter},e164.org)})

exten => _X.,21,GotoIf($["${counter}"<"${iaxcount}"]?19:22)

;

; ...then send out PRI.

;

exten => _X.,22,NoOp("No valid entries in e164.org for ${EXTEN} - sending out via DAHDI")

exten => _X.,23,Dial(DAHDI/g1/${EXTEN})

;

; end example 3

139

Chapter 9
AMI: Asterisk Manager Interface

9.1 The Asterisk Manager TCP/IP API
The manager is a client/server model over TCP. With the manager interface,
you’ll be able to control the PBX, originate calls, check mailbox status,
monitor channels and queues as well as execute Asterisk commands.

AMI is the standard management interface into your Asterisk server. You
configure AMI in manager.conf. By default, AMI is available on TCP port
5038 if you enable it in manager.conf.

AMI receive commands, called ”actions”. These generate a ”response”
from Asterisk. Asterisk will also send ”Events” containing various infor-
mation messages about changes within Asterisk. Some actions generate an
initial response and data in the form list of events. This format is created to
make sure that extensive reports do not block the manager interface fully.

Management users are configured in the configuration file manager.conf
and are given permissions for read and write, where write represents their
ability to perform this class of ”action”, and read represents their ability to
receive this class of ”event”.

If you develop AMI applications, treat the headers in Actions, Events
and Responses as local to that particular message. There is no cross-message
standardization of headers.

If you develop applications, please try to reuse existing manager head-
ers and their interpretation. If you are unsure, discuss on the asterisk-dev
mailing list.

140

9.2 Device status reports
Manager subscribes to extension status reports from all channels, to be able
to generate events when an extension or device changes state. The level
of details in these events may depend on the channel and device configura-
tion. Please check each channel configuration file for more information. (in
sip.conf, check the section on subscriptions and call limits)

9.3 Command Syntax
Management communication consists of tags of the form ”header: value”,
terminated with an empty newline (\r\n) in the style of SMTP, HTTP, and
other headers.

The first tag MUST be one of the following:

• Action: An action requested by the CLIENT to the Asterisk SERVER.
Only one ”Action” may be outstanding at any time.

• Response: A response to an action from the Asterisk SERVER to the
CLIENT.

• Event: An event reported by the Asterisk SERVER to the CLIENT

9.4 Manager commands
To see all of the available manager commands, use the ”manager show com-
mands” CLI command.

You can get more information about a manager command with the ”man-
ager show command <command>” CLI command in Asterisk.

9.5 Examples
Login - Log a user into the manager interface.

Action: Login

Username: testuser

Secret: testsecret

141

Originate - Originate a call from a channel to an extension.

Action: Originate

Channel: sip/12345

Exten: 1234

Context: default

Originate - Originate a call from a channel to an extension without waiting
for call to complete.

Action: Originate

Channel: sip/12345

Exten: 1234

Context: default

Async: yes

Redirect with ExtraChannel:
Attempted goal: Have a ’robot’ program Redirect both ends of an already-

connected call to a meetme room using the ExtraChannel feature through
the management interface.

Action: Redirect

Channel: DAHDI/1-1

ExtraChannel: SIP/3064-7e00 (varies)

Exten: 680

Priority: 1

Where 680 is an extension that sends you to a MeetMe room.
There are a number of GUI tools that use the manager interface, please

search the mailing list archives and the documentation page on the http:

//www.asterisk.org web site for more information.

9.6 Some standard AMI headers
Account: -- Account Code (Status)

AccountCode: -- Account Code (cdr_manager)

ACL: <Y | N> -- Does ACL exist for object ?

Action: <action> -- Request or notification of a particular action

142

http://www.asterisk.org
http://www.asterisk.org

Address-IP: -- IPaddress

Address-Port: -- IP port number

Agent: <string> -- Agent name

AMAflags: -- AMA flag (cdr_manager, sippeers)

AnswerTime: -- Time of answer (cdr_manager)

Append: <bool> -- CDR userfield Append flag

Application: -- Application to use

Async: -- Whether or not to use fast setup

AuthType: -- Authentication type (for login or challenge)

"md5"

BillableSeconds: -- Billable seconds for call (cdr_manager)

CallerID: -- Caller id (name and number in Originate & cdr_manager)

CallerID: -- CallerID number

Number or "<unknown>" or "unknown"

(should change to "<unknown>" in app_queue)

CallerID1: -- Channel 1 CallerID (Link event)

CallerID2: -- Channel 2 CallerID (Link event)

CallerIDName: -- CallerID name

Name or "<unknown>" or "unknown"

(should change to "<unknown>" in app_queue)

Callgroup: -- Call group for peer/user

CallsTaken: <num> -- Queue status variable

Cause: <value> -- Event change cause - "Expired"

Cause: <value> -- Hangupcause (channel.c)

CID-CallingPres: -- Caller ID calling presentation

Channel: <channel> -- Channel specifier

Channel: <dialstring> -- Dialstring in Originate

Channel: <tech/[peer/username]> -- Channel in Registry events (SIP, IAX2)

Channel: <tech> -- Technology (SIP/IAX2 etc) in Registry events

ChannelType: -- Tech: SIP, IAX2, DAHDI, MGCP etc

Channel1: -- Link channel 1

Channel2: -- Link channel 2

ChanObjectType: -- "peer", "user"

Codecs: -- Codec list

CodecOrder: -- Codec order, separated with comma ","

Command: -- Cli command to run

Context: -- Context

Count: <num> -- Number of callers in queue

143

Data: -- Application data

Default-addr-IP: -- IP address to use before registration

Default-Username: -- Username part of URI to use before registration

Destination: -- Destination for call (Dialstring) (dial, cdr_manager)

DestinationContext: -- Destination context (cdr_manager)

DestinationChannel: -- Destination channel (cdr_manager)

DestUniqueID: -- UniqueID of destination (dial event)

Disposition: -- Call disposition (CDR manager)

Domain: <domain> -- DNS domain

Duration: <secs> -- Duration of call (cdr_manager)

Dynamic: <Y | N> -- Device registration supported?

Endtime: -- End time stamp of call (cdr_manager)

EventList: <flag> -- Flag being "Start", "End", "Cancelled" or "ListObject"

Events: <eventmask> -- Eventmask filter ("on", "off", "system", "call", "log")

Exten: -- Extension (Redirect command)

Extension: -- Extension (Status)

Family: <string> -- ASTdb key family

File: <filename> -- Filename (monitor)

Format: <format> -- Format of sound file (monitor)

From: <time> -- Parking time (ParkedCall event)

Hint: -- Extension hint

Incominglimit: -- SIP Peer incoming limit

Key:

Key: -- ASTdb Database key

LastApplication: -- Last application executed (cdr_manager)

LastCall: <num> -- Last call in queue

LastData: -- Data for last application (cdr_manager)

Link: -- (Status)

ListItems: <number> -- Number of items in Eventlist (Optionally sent in "end" packet)

Location: -- Interface (whatever that is -maybe tech/name in app_queue)

Loginchan: -- Login channel for agent

Logintime: <number> -- Login time for agent

Mailbox: -- VM Mailbox (id@vmcontext) (mailboxstatus, mailboxcount)

MD5SecretExist: <Y | N> -- Whether secret exists in MD5 format

Membership: <string> -- "Dynamic" or "static" member in queue

Message: <text> -- Text message in ACKs, errors (explanation)

Mix: <bool> -- Boolean parameter (monitor)

NewMessages: <count> -- Count of new Mailbox messages (mailboxcount)

144

Newname:

ObjectName: -- Name of object in list

OldName: -- Something in Rename (channel.c)

OldMessages: <count> -- Count of old mailbox messages (mailboxcount)

Outgoinglimit: -- SIP Peer outgoing limit

Paused: <num> -- Queue member paused status

Peer: <tech/name> -- "channel" specifier :-)

PeerStatus: <tech/name> -- Peer status code

"Unregistered", "Registered", "Lagged", "Reachable"

Penalty: <num> -- Queue penalty

Priority: -- Extension priority

Privilege: <privilege> -- AMI authorization class (system, call, log, verbose, command, agent, user)

Pickupgroup: -- Pickup group for peer

Position: <num> -- Position in Queue

Queue: -- Queue name

Reason: -- "Autologoff"

Reason: -- "Chanunavail"

Response: <response> -- response code, like "200 OK"

"Success", "Error", "Follows"

Restart: -- "True", "False"

RegExpire: -- SIP registry expire

RegExpiry: -- SIP registry expiry

Reason: -- Originate reason code

Seconds: -- Seconds (Status)

Secret: <password> -- Authentication secret (for login)

SecretExist: <Y | N> -- Whether secret exists

Shutdown: -- "Uncleanly", "Cleanly"

SIP-AuthInsecure:

SIP-FromDomain: -- Peer FromDomain

SIP-FromUser: -- Peer FromUser

SIP-NatSupport:

SIPLastMsg:

Source: -- Source of call (dial event, cdr_manager)

SrcUniqueID: -- UniqueID of source (dial event)

StartTime: -- Start time of call (cdr_manager)

State: -- Channel state

Status: -- Registration status (Registry events SIP)

Status: -- Extension status (Extensionstate)

145

Status: -- Peer status (if monitored) ** Will change name **

"unknown", "lagged", "ok"

Status: <num> -- Queue Status

Status: -- DND status (DNDState)

Time: <sec> -- Roundtrip time (latency)

Timeout: -- Parking timeout time

Timeout: -- Timeout for call setup (Originate)

Timeout: <seconds> -- Timeout for call

Uniqueid: -- Channel Unique ID

Uniqueid1: -- Channel 1 Unique ID (Link event)

Uniqueid2: -- Channel 2 Unique ID (Link event)

User: -- Username (SIP registry)

UserField: -- CDR userfield (cdr_manager)

Val: -- Value to set/read in ASTdb

Variable: -- Variable AND value to set (multiple separated with | in Originate)

Variable: <name> -- For channel variables

Value: <value> -- Value to set

VoiceMailbox: -- VM Mailbox in SIPpeers

Waiting: -- Count of mailbox messages (mailboxstatus)

** Please try to re-use existing headers to simplify manager message
parsing in clients.

Read the CODING-GUIDELINES if you develop new manager commands
or events.

9.7 Asynchronous Javascript Asterisk Manger (AJAM)
AJAM is a new technology which allows web browsers or other HTTP enabled
applications and web pages to directly access the Asterisk Manger Interface
(AMI) via HTTP. Setting up your server to process AJAM involves a few
steps:

9.7.1 Setup the Asterisk HTTP server
1. Uncomment the line ”enabled=yes” in /etc/asterisk/http.conf to

enable Asterisk’s builtin micro HTTP server.

146

2. If you want Asterisk to actually deliver simple HTML pages, CSS,
javascript, etc. you should uncomment ”enablestatic=yes”

3. Adjust your ”bindaddr” and ”bindport” settings as appropriate for
your desired accessibility

4. Adjust your ”prefix” if appropriate, which must be the beginning of
any URI on the server to match. The default is ”asterisk” and the rest
of these instructions assume that value.

9.7.2 Allow Manager Access via HTTP
1. Make sure you have both ”enabled = yes” and ”webenabled = yes”

setup in /etc/asterisk/manager.conf

2. You may also use ”httptimeout” to set a default timeout for HTTP
connections.

3. Make sure you have a manager username/secret

Once those configurations are complete you can reload or restart Asterisk
and you should be able to point your web browser to specific URI’s which
will allow you to access various web functions. A complete list can be found
by typing ”http show status” at the Asterisk CLI.

examples:

http://localhost:8088/asterisk/manager?action=login&username=foo&secret=bar

This logs you into the manager interface’s ”HTML” view. Once you’re logged
in, Asterisk stores a cookie on your browser (valid for the length of httpti-
meout) which is used to connect to the same session.

http://localhost:8088/asterisk/rawman?action=status

Assuming you’ve already logged into manager, this URI will give you a ”raw”
manager output for the ”status” command.

http://localhost:8088/asterisk/mxml?action=status

This will give you the same status view but represented as AJAX data,
theoretically compatible with RICO (http://www.openrico.org).

http://localhost:8088/asterisk/static/ajamdemo.html

147

http://www.openrico.org

If you have enabled static content support and have done a make install, As-
terisk will serve up a demo page which presents a live, but very basic, ”ast-
man” like interface. You can login with your username/secret for manager
and have a basic view of channels as well as transfer and hangup calls. It’s
only tested in Firefox, but could probably be made to run in other browsers
as well.

A sample library (astman.js) is included to help ease the creation of man-
ager HTML interfaces.

Note that for the demo, there is no need for *any* external web server.

9.7.3 Integration with other web servers
Asterisk’s micro HTTP server is *not* designed to replace a general purpose
web server and it is intentionally created to provide only the minimal inter-
faces required. Even without the addition of an external web server, one can
use Asterisk’s interfaces to implement screen pops and similar tools pulling
data from other web servers using iframes, div’s etc. If you want to integrate
CGI’s, databases, PHP, etc. you will likely need to use a more traditional
web server like Apache and link in your Asterisk micro HTTP server with
something like this:

ProxyPass /asterisk http://localhost:8088/asterisk

148

Chapter 10
CDR: Call Detail Records

10.1 Applications
• SetAccount - Set account code for billing

• SetAMAFlags - Sets AMA flags

• NoCDR - Make sure no CDR is saved for a specific call

• ResetCDR - Reset CDR

• ForkCDR - Save current CDR and start a new CDR for this call

• Authenticate - Authenticates and sets the account code

• SetCDRUserField - Set CDR user field

• AppendCDRUserField - Append data to CDR User field

For more information, use the ”core show application <application>”
command. You can set default account codes and AMA flags for devices in
channel configuration files, like sip.conf, iax.conf etc.

10.2 Fields of the CDR in Asterisk
• accountcode: What account number to use, (string, 20 characters)

149

• src: Caller*ID number (string, 80 characters)

• dst: Destination extension (string, 80 characters)

• dcontext: Destination context (string, 80 characters)

• clid: Caller*ID with text (80 characters)

• channel: Channel used (80 characters)

• dstchannel: Destination channel if appropriate (80 characters)

• lastapp: Last application if appropriate (80 characters)

• lastdata: Last application data (arguments) (80 characters)

• start: Start of call (date/time)

• answer: Answer of call (date/time)

• end: End of call (date/time)

• duration: Total time in system, in seconds (integer), from dial to
hangup

• billsec: Total time call is up, in seconds (integer), from answer to
hangup

• disposition: What happened to the call: ANSWERED, NO ANSWER,
BUSY

• amaflags: What flags to use: DOCUMENTATION, BILL, IGNORE
etc, specified on a per channel basis like accountcode.

• user field: A user-defined field, maximum 255 characters

In some cases, uniqueid is appended:

• uniqueid: Unique Channel Identifier (32 characters) This needs to be
enabled in the source code at compile time

150

NOTE: If you use IAX2 channels for your calls, and allow ’full’ transfers
(not media-only transfers), then when the calls is transferred the server in
the middle will no longer be involved in the signaling path, and thus will not
generate accurate CDRs for that call. If you can, use media-only transfers
with IAX2 to avoid this problem, or turn off transfers completely (although
this can result in a media latency increase since the media packets have to
traverse the middle server(s) in the call).

10.3 CDR Variables
If the channel has a cdr, that cdr record has its own set of variables which
can be accessed just like channel variables. The following builtin variables
are available.

${CDR(clid)} Caller ID

${CDR(src)} Source

${CDR(dst)} Destination

${CDR(dcontext)} Destination context

${CDR(channel)} Channel name

${CDR(dstchannel)} Destination channel

${CDR(lastapp)} Last app executed

${CDR(lastdata)} Last app’s arguments

${CDR(start)} Time the call started.

${CDR(answer)} Time the call was answered.

${CDR(end)} Time the call ended.

${CDR(duration)} Duration of the call.

${CDR(billsec)} Duration of the call once it was answered.

${CDR(disposition)} ANSWERED, NO ANSWER, BUSY

${CDR(amaflags)} DOCUMENTATION, BILL, IGNORE etc

${CDR(accountcode)} The channel’s account code.

${CDR(uniqueid)} The channel’s unique id.

${CDR(userfield)} The channels uses specified field.

In addition, you can set your own extra variables by using Set(CDR(name)=value).
These variables can be output into a text-format CDR by using the cdr custom
CDR driver; see the cdr custom.conf.sample file in the configs directory for
an example of how to do this. Call data records can be stored in many
different databases or even CSV text.

151

10.4 MSSQL
Asterisk can currently store CDRs into an MSSQL database in two different
ways: cdr odbc or cdr tds

Call Data Records can be stored using unixODBC (which requires the
FreeTDS package) [cdr odbc] or directly by using just the FreeTDS package
[cdr tds] The following provide some examples known to get asterisk working
with mssql.

NOTE: Only choose one db connector.

10.4.1 ODBC using cdr odbc
Compile, configure, and install the latest unixODBC package:

tar -zxvf unixODBC-2.2.9.tar.gz &&

cd unixODBC-2.2.9 &&

./configure --sysconfdir=/etc --prefix=/usr --disable-gui &&

make &&

make install

Compile, configure, and install the latest FreeTDS package:

tar -zxvf freetds-0.62.4.tar.gz &&

cd freetds-0.62.4 &&

./configure --prefix=/usr --with-tdsver=7.0 \

--with-unixodbc=/usr/lib &&

make && make install

Compile, or recompile, asterisk so that it will now add support for cdr odbc.

make clean && ./configure --with-odbc &&

make update &&

make &&

make install

Setup odbc configuration files. These are working examples from my
system. You will need to modify for your setup. You are not required to
store usernames or passwords here.

/etc/odbcinst.ini

[FreeTDS]

Description = FreeTDS ODBC driver for MSSQL

Driver = /usr/lib/libtdsodbc.so

Setup = /usr/lib/libtdsS.so

FileUsage = 1

/etc/odbc.ini

[MSSQL-asterisk]

description = Asterisk ODBC for MSSQL

152

driver = FreeTDS

server = 192.168.1.25

port = 1433

database = voipdb

tds_version = 7.0

language = us_english

Only install one database connector. Do not confuse asterisk by using
both ODBC (cdr odbc) and FreeTDS (cdr tds). This command will erase
the contents of cdr tds.conf

[-f /etc/asterisk/cdr_tds.conf] > /etc/asterisk/cdr_tds.conf

NOTE: unixODBC requires the freeTDS package, but asterisk does not call
freeTDS directly.

Now set up cdr odbc configuration files. These are working samples from
my system. You will need to modify for your setup. Define your usernames
and passwords here, secure file as well.

/etc/asterisk/cdr_odbc.conf

[global]

dsn=MSSQL-asterisk

username=voipdbuser

password=voipdbpass

loguniqueid=yes

And finally, create the ’cdr’ table in your mssql database.

CREATE TABLE cdr (

[calldate] [datetime] NOT NULL ,

[clid] [varchar] (80) NOT NULL ,

[src] [varchar] (80) NOT NULL ,

[dst] [varchar] (80) NOT NULL ,

[dcontext] [varchar] (80) NOT NULL ,

[channel] [varchar] (80) NOT NULL ,

[dstchannel] [varchar] (80) NOT NULL ,

[lastapp] [varchar] (80) NOT NULL ,

[lastdata] [varchar] (80) NOT NULL ,

[duration] [int] NOT NULL ,

[billsec] [int] NOT NULL ,

[disposition] [varchar] (45) NOT NULL ,

[amaflags] [int] NOT NULL ,

[accountcode] [varchar] (20) NOT NULL ,

[uniqueid] [varchar] (150) NOT NULL ,

[userfield] [varchar] (255) NOT NULL

)

Start asterisk in verbose mode, you should see that asterisk logs a connection
to the database and will now record every call to the database when it’s
complete.

153

10.4.2 TDS, using cdr tds
Compile, configure, and install the latest FreeTDS package:

tar -zxvf freetds-0.62.4.tar.gz &&

cd freetds-0.62.4 &&

./configure --prefix=/usr --with-tdsver=7.0

make &&

make install

Compile, or recompile, asterisk so that it will now add support for cdr tds.

make clean && ./configure --with-tds &&

make update &&

make &&

make install

Only install one database connector. Do not confuse asterisk by using both
ODBC (cdr odbc) and FreeTDS (cdr tds). This command will erase the
contents of cdr odbc.conf

[-f /etc/asterisk/cdr_odbc.conf] > /etc/asterisk/cdr_odbc.conf

Setup cdr tds configuration files. These are working samples from my system.
You will need to modify for your setup. Define your usernames and passwords
here, secure file as well.

/etc/asterisk/cdr_tds.conf

[global]

hostname=192.168.1.25

port=1433

dbname=voipdb

user=voipdbuser

password=voipdpass

charset=BIG5

And finally, create the ’cdr’ table in your mssql database.

CREATE TABLE cdr (

[accountcode] [varchar] (20) NULL ,

[src] [varchar] (80) NULL ,

[dst] [varchar] (80) NULL ,

[dcontext] [varchar] (80) NULL ,

[clid] [varchar] (80) NULL ,

[channel] [varchar] (80) NULL ,

[dstchannel] [varchar] (80) NULL ,

[lastapp] [varchar] (80) NULL ,

[lastdata] [varchar] (80) NULL ,

[start] [datetime] NULL ,

[answer] [datetime] NULL ,

[end] [datetime] NULL ,

[duration] [int] NULL ,

[billsec] [int] NULL ,

154

[disposition] [varchar] (20) NULL ,

[amaflags] [varchar] (16) NULL ,

[uniqueid] [varchar] (150) NULL ,

[userfield] [varchar] (256) NULL

)

Start asterisk in verbose mode, you should see that asterisk logs a connection
to the database and will now record every call to the database when it’s
complete.

10.5 MYSQL
Using MySQL for CDR records is supported by using ODBC and the cdr odbc
module.

10.6 PGSQL
If you want to go directly to postgresql database, and have the cdr pgsql.so
compiled you can use the following sample setup. On Debian, before compil-
ing asterisk, just install libpqxx-dev. Other distros will likely have a similiar
package.

Once you have the compile done, copy the sample cdr pgsql.conf file or
create your own.

Here is a sample:

/etc/asterisk/cdr_pgsql.conf

; Sample Asterisk config file for CDR logging to PostgresSQL

[global]

hostname=localhost

port=5432

dbname=asterisk

password=password

user=postgres

table=cdr

Now create a table in postgresql for your cdrs

CREATE TABLE cdr (

calldate time NOT NULL ,

clid varchar (80) NOT NULL ,

src varchar (80) NOT NULL ,

dst varchar (80) NOT NULL ,

dcontext varchar (80) NOT NULL ,

channel varchar (80) NOT NULL ,

dstchannel varchar (80) NOT NULL ,

155

lastapp varchar (80) NOT NULL ,

lastdata varchar (80) NOT NULL ,

duration int NOT NULL ,

billsec int NOT NULL ,

disposition varchar (45) NOT NULL ,

amaflags int NOT NULL ,

accountcode varchar (20) NOT NULL ,

uniqueid varchar (150) NOT NULL ,

userfield varchar (255) NOT NULL

);

10.7 SQLLITE
SQLite version 2 is supported in cdr sqlite.

10.8 RADIUS

10.8.1 What is needed
• FreeRADIUS server

• Radiusclient-ng library

• Asterisk PBX

+--------------------+

| Asterisk PBX |

| |

|********************|

| | +---------------+

| RADIUS client |------->| RADIUS server |

| |<-------| (FreeRADIUS) |

+--------------------+ +---------------+

10.8.2 Steps to follow in order to have RADIUS support
Installation of the Radiusclient library

Download the sources from http://developer.berlios.de/projects/radiusclient-ng/

Untar the source tarball:

root@localhost:/usr/local/src# tar xvfz radiusclient-ng-0.5.2.tar.gz

156

http://developer.berlios.de/projects/radiusclient-ng/

Compile and install the library:

root@localhost:/usr/local/src# cd radiusclient-ng-0.5.2

root@localhost:/usr/local/src/radiusclient-ng-0.5.2# ./configure

root@localhost:/usr/local/src/radiusclient-ng-0.5.2# make

root@localhost:/usr/local/src/radiusclient-ng-0.5.2# make install

Configuration of the Radiusclient library

By default all the configuration files of the radiusclient library will be in
/usr/local/etc/radiusclient-ng directory.

File ”radiusclient.conf” Open the file and find lines containing the follow-
ing:

authserver localhost
This is the hostname or IP address of the RADIUS server used for au-

thentication. You will have to change this unless the server is running on the
same host as your Asterisk PBX.

acctserver localhost
This is the hostname or IP address of the RADIUS server used for ac-

counting. You will have to change this unless the server is running on the
same host as your Asterisk PBX.

File ”servers”
RADIUS protocol uses simple access control mechanism based on shared

secrets that allows RADIUS servers to limit access from RADIUS clients.
A RADIUS server is configured with a secret string and only RADIUS

clients that have the same secret will be accepted.
You need to configure a shared secret for each server you have configured

in radiusclient.conf file in the previous step. The shared secrets are stored in
/usr/local/etc/radiusclient-ng/servers file.

Each line contains hostname of a RADIUS server and shared secret used
in communication with that server. The two values are separated by white
spaces. Configure shared secrets for every RADIUS server you are going to
use.

File ”dictionary”
Asterisk uses some attributes that are not included in the dictionary of

radiusclient library, therefore it is necessary to add them. A file called dic-
tionary.digium (kept in the contrib dir) was created to list all new attributes

157

used by Asterisk. Add to the end of the main dictionary file /usr/local/

etc/radiusclient-ng/dictionary the line:
$INCLUDE /path/to/dictionary.digium

Install FreeRADIUS Server (Version 1.1.1)

Download sources tarball from:
http://freeradius.org/

Untar, configure, build, and install the server:

root@localhost:/usr/local/src# tar xvfz freeradius-1.1.1.tar.gz

root@localhost:/usr/local/src# cd freeradius-1.1.1

root@localhost"/usr/local/src/freeradius-1.1.1# ./configure

root@localhost"/usr/local/src/freeradius-1.1.1# make

root@localhost"/usr/local/src/freeradius-1.1.1# make install

All the configuration files of FreeRADIUS server will be in /usr/local/etc/raddb
directory.

Configuration of the FreeRADIUS Server

There are several files that have to be modified to configure the RADIUS
server. These are presented next.

File ”clients.conf”
File /usr/local/etc/raddb/clients.conf contains description of RA-

DIUS clients that are allowed to use the server. For each of the clients you
need to specify its hostname or IP address and also a shared secret. The
shared secret must be the same string you configured in radiusclient library.

Example:

client myhost {

secret = mysecret

shortname = foo

}

This fragment allows access from RADIUS clients on ”myhost” if they
use ”mysecret” as the shared secret. The file already contains an entry for
localhost (127.0.0.1), so if you are running the RADIUS server on the same
host as your Asterisk server, then modify the existing entry instead, replacing
the default password.

158

http://freeradius.org/

File ”dictionary”
Note: as of version 1.1.2, the dictionary.digium file ships with FreeRA-

DIUS. The following procedure brings the dictionary.digium file to previous
versions of FreeRADIUS.

File /usr/local/etc/raddb/dictionary contains the dictionary of FreeRA-
DIUS server. You have to add the same dictionary file (dictionary.digium),
which you added to the dictionary of radiusclient-ng library. You can include
it into the main file, adding the following line at the end of file /usr/local/

etc/raddb/dictionary:
$INCLUDE /path/to/dictionary.digium
That will include the same new attribute definitions that are used in

radiusclient-ng library so the client and server will understand each other.

Asterisk Accounting Configuration

Compilation and installation:
The module will be compiled as long as the radiusclient-ng library has

been detected on your system.
By default FreeRADIUS server will log all accounting requests into /usr/

local/var/log/radius/radacct directory in form of plain text files. The
server will create one file for each hostname in the directory. The following
example shows how the log files look like.

Asterisk now generates Call Detail Records. See /include/asterisk/

cdr.h for all the fields which are recorded. By default, records in comma
separated values will be created in /var/log/asterisk/cdr-csv.

The configuration file for cdr radius.so module is /etc/asterisk/cdr.

conf

This is where you can set CDR related parameters as well as the path to
the radiusclient-ng library configuration file.

10.9 Logged Values
"Asterisk-Acc-Code", The account name of detail records

"Asterisk-Src",

"Asterisk-Dst",

"Asterisk-Dst-Ctx", The destination context

"Asterisk-Clid",

159

"Asterisk-Chan", The channel

"Asterisk-Dst-Chan", (if applicable)

"Asterisk-Last-App", Last application run on the channel

"Asterisk-Last-Data", Argument to the last channel

"Asterisk-Start-Time",

"Asterisk-Answer-Time",

"Asterisk-End-Time",

"Asterisk-Duration", Duration is the whole length that the entire

call lasted. ie. call rx’d to hangup

"end time" minus "start time"

"Asterisk-Bill-Sec", The duration that a call was up after other

end answered which will be <= to duration

"end time" minus "answer time"

"Asterisk-Disposition", ANSWERED, NO ANSWER, BUSY

"Asterisk-AMA-Flags", DOCUMENTATION, BILL, IGNORE etc, specified on

a per channel basis like accountcode.

"Asterisk-Unique-ID", Unique call identifier

"Asterisk-User-Field" User field set via SetCDRUserField

160

Chapter 11
Voicemail

11.1 ODBC Storage
ODBC Storage allows you to store voicemail messages within a database
instead of using a file. This is not a full realtime engine and only supports
ODBC. The table description for the ”voicemessages” table is as follows:

+----------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------------+-------------+------+-----+---------+-------+

| msgnum | int(11) | YES | | NULL | |

| dir | varchar(80) | YES | MUL | NULL | |

| context | varchar(80) | YES | | NULL | |

| macrocontext | varchar(80) | YES | | NULL | |

| callerid | varchar(40) | YES | | NULL | |

| origtime | varchar(40) | YES | | NULL | |

| duration | varchar(20) | YES | | NULL | |

| flag | varchar(8) | YES | | NULL | |

| mailboxuser | varchar(80) | YES | | NULL | |

| mailboxcontext | varchar(80) | YES | | NULL | |

| recording | longblob | YES | | NULL | |

+----------------+-------------+------+-----+---------+-------+

The database name (from /etc/asterisk/res_odbc.conf) is in the ”odbc-
storage” variable in the general section of voicemail.conf.

161

You may modify the voicemessages table name by using odbctable=???
in voicemail.conf.

11.2 IMAP Storage
By enabling IMAP Storage, Asterisk will use native IMAP as the storage
mechanism for voicemail messages instead of using the standard file structure.

Tighter integration of Asterisk voicemail and IMAP email services allows
additional voicemail functionality, including:

• Listening to a voicemail on the phone will set its state to ”read” in a
user’s mailbox automatically.

• Deleting a voicemail on the phone will delete it from the user’s mailbox
automatically.

• Accessing a voicemail recording email message will turn off the message
waiting indicator (MWI) on the user’s phone.

• Deleting a voicemail recording email will also turn off the message
waiting indicator, and delete the message from the voicemail system.

11.2.1 Installation Notes
University of Washington IMAP C-Client

If you do not have the University of Washington’s IMAP c-client installed
on your system, you will need to download the c-client source distribution
(http://www.washington.edu/imap/) and compile it. Asterisk supports the
2007 version of c-client as there appears to be issues with older versions
which cause Asterisk to crash in certain scenarios. It is highly recommended
that you utilize a current version of the c-client libraries. Additionally,
mail expunge full is enabled in the 2006 and later versions.

Note that Asterisk only uses the ’c-client’ portion of the UW IMAP
toolkit, but building it also builds an IMAP server and various other utilities.
Because of this, the build instructions for the IMAP toolkit are somewhat
complicated and can lead to confusion about what is needed.

If you are going to be connecting Asterisk to an existing IMAP server,
then you don’t need to care about the server or utilities in the IMAP toolkit

162

http://www.washington.edu/imap/

at all. If you want to also install the UW IMAPD server, that is outside the
scope of this document.

Building the c-client library is fairly straightforward; for example, on a
Debian system there are two possibilities:

1. If you will not be using SSL to connect to the IMAP server:

$ make slx SSLTYPE=none

2. If you will be using SSL to connect to the IMAP server:

$ make slx EXTRACFLAGS="-I/usr/include/openssl"

Additionally, you may wish to build on a 64-bit machine, in which case
you need to add -fPIC to EXTRACFLAGS. So, building on a 64-bit machine
with SSL support would look something like:

$ make slx EXTRACFLAGS="-fPIC -I/usr/include/openssl"

Or without SSL support:

$ make slx SSLTYPE=none EXTRACFLAGS=-fPIC

Once this completes you can proceed with the Asterisk build; there is no
need to run ’make install’.

Compiling Asterisk

Configure with ./configure –with-imap=/usr/src/imap or wherever you built
the UWashington IMAP Toolkit. This directory will be searched for a source
installation. If no source installation is found there, then a package installa-
tion of the IMAP c-client will be searched for in this directory. If one is not
found, then configure will fail.

A second configure option is to not specify a directory (i.e. ./configure
–with-imap). This will assume that you have the imap-2007e source installed
in the ../imap directory relative to the Asterisk source. If you do not have

163

this source, then configure will default to the ”system” option defined in the
next paragraph

A third option is ./configure –with-imap=system. This will assume that
you have installed a dynamically linked version of the c-client library (most
likely via a package provided by your distro). This will attempt to link agains
-lc-client and will search for c-client headers in your include path starting with
the imap directory, and upon failure, in the c-client directory.

When you run ’make menuselect’, choose ’Voicemail Build Options’ and
the IMAP STORAGE option should be available for selection.

After selecting the IMAP STORAGE option, use the ’x’ key to exit
menuselect and save your changes, and the build/install Asterisk normally.

11.2.2 Modify voicemail.conf
The following directives have been added to voicemail.conf:

imapserver=<name or IP address of IMAP mail server>

imapport=<IMAP port, defaults to 143>

imapflags=<IMAP flags, "novalidate-cert" for example>

imapfolder=<IMAP folder to store messages to>

imapgreetings=<yes or no>

greetingsfolder=<IMAP folder to store greetings in if imapgreetings is enabled>

expungeonhangup=<yes or no>

authuser=<username>

authpassword=<password>

opentimeout=<TCP open timeout in seconds>

closetimeout=<TCP close timeout in seconds>

readtimeout=<TCP read timeout in seconds>

writetimeout=<TCP write timeout in seconds>

The ”imapfolder” can be used to specify an alternative folder on your
IMAP server to store voicemails in. If not specified, the default folder ’IN-
BOX’ will be used.

The ”imapgreetings” parameter can be enabled in order to store voicemail
greetings on the IMAP server. If disabled, then they will be stored on the
local file system as normal.

The ”greetingsfolder” can be set to store greetings on the IMAP server
when ”imapgreetings” is enabled in an alternative folder than that set by
”imapfolder” or the default folder for voicemails.

The ”expungeonhangup” flag is used to determine if the voicemail system
should expunge all messages marked for deletion when the user hangs up the
phone.

Each mailbox definition should also have imapuser=<imap username>.
For example:

164

4123=>4123,James Rothenberger,jar@onebiztone.com,,attach=yes|imapuser=jar

The directives ”authuser” and ”authpassword” are not needed when using
Kerberos. They are defined to allow Asterisk to authenticate as a single user
that has access to all mailboxes as an alternative to Kerberos.

11.2.3 IMAP Folders
Besides INBOX, users should create ”Old”, ”Work”, ”Family” and ”Friends”
IMAP folders at the same level of hierarchy as the INBOX. These will be
used as alternate folders for storing voicemail messages to mimic the behavior
of the current (file-based) voicemail system.

Please note that it is not recommended to store your voicemails in the
top level folder where your users will keep their emails, especially if there
are a large number of emails. A large number of emails in the same folder(s)
that you’re storing your voicemails could cause a large delay as Asterisk must
parse through all the emails. For example a mailbox with 100 emails in it
could take up to 60 seconds to receive a response.

11.2.4 Separate vs. Shared Email Accounts
As administrator you will have to decide if you want to send the voicemail
messages to a separate IMAP account or use each user’s existing IMAP
mailbox for voicemail storage. The IMAP storage mechanism will work either
way.

By implementing a single IMAP mailbox, the user will see voicemail mes-
sages appear in the same INBOX as other messages. The disadvantage of
this method is that if the IMAP server does NOT support UIDPLUS, Aster-
isk voicemail will expunge ALL messages marked for deletion when the user
exits the voicemail system, not just the VOICEMAIL messages marked for
deletion.

By implementing separate IMAP mailboxes for voicemail and email, voice-
mail expunges will not remove regular email flagged for deletion.

11.2.5 IMAP Server Implementations
There are various IMAP server implementations, each supports a potentially
different set of features.

165

UW IMAP-2005 or earlier

UIDPLUS is currently NOT supported on these versions of UW-IMAP. Please
note that without UID EXPUNGE, Asterisk voicemail will expunge ALL
messages marked for deletion when a user exits the voicemail system (hangs
up the phone).

This version is *not* recommended for Asterisk.

UW IMAP-2006

This version supports UIDPLUS, which allows UID EXPUNGE capabilities.
This feature allow the system to expunge ONLY pertinent messages, in-
stead of the default behavior, which is to expunge ALL messages marked for
deletion when EXPUNGE is called. The IMAP storage mechanism is this
version of Asterisk will check if the UID EXPUNGE feature is supported by
the server, and use it if possible.

This version is *not* recommended for Asterisk.

UW IMAP-2007

This is the currently recommended version for use with Asterisk.

Cyrus IMAP

Cyrus IMAP server v2.3.3 has been tested using a hierarchy delimiter of ’/’.

11.2.6 Quota Support
If the IMAP server supports quotas, Asterisk will check the quota when
accessing voicemail. Currently only a warning is given to the user that their
quota is exceeded.

11.2.7 Application Notes
Since the primary storage mechanism is IMAP, all message information that
was previously stored in an associated text file, AND the recording itself, is
now stored in a single email message. This means that the .gsm recording
will ALWAYS be attached to the message (along with the user’s preference of

166

recording format if different - ie. .WAV). The voicemail message information
is stored in the email message headers. These headers include:

X-Asterisk-VM-Message-Num

X-Asterisk-VM-Server-Name

X-Asterisk-VM-Context

X-Asterisk-VM-Extension

X-Asterisk-VM-Priority

X-Asterisk-VM-Caller-channel

X-Asterisk-VM-Caller-ID-Num

X-Asterisk-VM-Caller-ID-Name

X-Asterisk-VM-Duration

X-Asterisk-VM-Category

X-Asterisk-VM-Orig-date

X-Asterisk-VM-Orig-time

167

Chapter 12
SMS

12.1 Introduction
The SMS module for Asterisk was developed by Adrian Kennard, and is
an implementation of the ETSI specification for landline SMS, ETSI ES
201 912, which is available from www.etsi.org. Landline SMS is starting
to be available in various parts of Europe, and is available from BT in the
UK. However, Asterisk would allow gateways to be created in other locations
such as the US, and use of SMS capable phones such as the Magic Messenger.
SMS works using analogue or ISDN lines.

12.2 Background
Short Message Service (SMS), or texting is very popular between mobile
phones. A message can be sent between two phones, and normally contains
160 characters. There are ways in which various types of data can be encoded
in a text message such as ring tones, and small graphic, etc. Text messaging
is being used for voting and competitions, and also SPAM...

Sending a message involves the mobile phone contacting a message centre
(SMSC) and passing the message to it. The message centre then contacts
the destination mobile to deliver the message. The SMSC is responsible
for storing the message and trying to send it until the destination mobile is
available, or a timeout.

Landline SMS works in basically the same way. You would normally have

168

www.etsi.org

a suitable text capable landline phone, or a separate texting box such as a
Magic Messenger on your phone line. This sends a message to a message
centre your telco provides by making a normal call and sending the data
using 1200 Baud FSK signaling according to the ETSI spec. To receive a
message the message centre calls the line with a specific calling number, and
the text capable phone answers the call and receives the data using 1200
Baud FSK signaling. This works particularly well in the UK as the calling
line identity is sent before the first ring, so no phones in the house would
ring when a message arrives.

12.3 Typical use with Asterisk
Sending messages from an Asterisk box can be used for a variety of reasons,
including notification from any monitoring systems, email subject lines, etc.

Receiving messages to an Asterisk box is typically used just to email the
messages to someone appropriate - we email and texts that are received to
our direct numbers to the appropriate person. Received messages could also
be used to control applications, manage competitions, votes, post items to
IRC, anything.

Using a terminal such as a magic messenger, an Asterisk box could ask
as a message centre sending messages to the terminal, which will beep and
pop up the message (and remember 100 or so messages in its memory).

12.4 Terminology
• SMS - Short Message Service i.e. text messages

• SMSC - Short Message Service Centre The system responsible for stor-
ing and forwarding messages

• MO - Mobile Originated A message on its way from a mobile or landline
device to the SMSC

• MT - Mobile Terminated A message on its way from the SMSC to the
mobile or landline device

• RX - Receive A message coming in to the Asterisk box

• TX - Transmit A message going out of the Asterisk box

169

12.5 Sub address
When sending a message to a landline, you simply send to the landline num-
ber. In the UK, all of the mobile operators (bar one) understand sending
messages to landlines and pass the messages to the BTText system for de-
livery to the landline.

The specification for landline SMS allows for the possibility of more than
one device on a single landline. These can be configured with Sub addresses
which are a single digit. To send a message to a specific device the message
is sent to the landline number with an extra digit appended to the end. The
telco can define a default sub address (9 in the UK) which is used when the
extra digit is not appended to the end. When the call comes in, part of the
calling line ID is the sub address, so that only one device on the line answers
the call and receives the message.

Sub addresses also work for outgoing messages. Part of the number called
by the device to send a message is its sub address. Sending from the default
sub address (9 in the UK) means the message is delivered with the sender
being the normal landline number. Sending from any other sub address
makes the sender the landline number with an extra digit on the end.

Using Asterisk, you can make use of the sub addresses for sending and
receiving messages. Using DDI (DID, i.e. multiple numbers on the line on
ISDN) you can also make use of many different numbers for SMS.

12.6 extensions.conf
The following contexts are recommended.

; Mobile Terminated, RX. This is used when an incoming call from the SMS arrive

s, with the queue (called number and sub address) in ${EXTEN}

; Running an app after receipt of the text allows the app to find all messages

in the queue and handle them, e.g. email them.

; The app may be something like smsq --process=somecommand --queue=${EXTEN}

to run a command for each received message

; See below for usage

[smsmtrx]

exten = _X.,1, SMS(${EXTEN},a)

exten = _X.,2,System("someapptohandleincomingsms ${EXTEN}")

exten = _X.,3,Hangup

; Mobile originated, RX. This is receiving a message from a device, e.g.

; a Magic Messenger on a sip extension

; Running an app after receipt of the text allows the app to find all messages

; in the queue and handle then, e.g. sending them to the public SMSC

; The app may be something like smsq --process=somecommand --queue=${EXTEN}

170

; to run a command for each received message

; See below for example usage

[smsmorx]

exten = _X.,1, SMS(${EXTEN},sa)

exten = _X.,2,System("someapptohandlelocalsms ${EXTEN}")

exten = _X.,3,Hangup

smsmtrx is normally accessed by an incoming call from the SMSC. In
the UK this call is from a CLI of 080058752X0 where X is the sub address.
As such a typical usage in the extensions.conf at the point of handling an
incoming call is:

exten = _X./8005875290,1,Goto(smsmtrx,${EXTEN},1)

exten = _X./_80058752[0-8]0,1,Goto(smsmtrx,${EXTEN}-${CALLERID(num):8:1},1)

Alternatively, if you have the correct national prefix on incoming CLI,
e.g. using dahdi hfc, you might use:

exten = _X./08005875290,1,Goto(smsmtrx,${EXTEN},1)

exten = _X./_080058752[0-8]0,1,Goto(smsmtrx,${EXTEN}-${CALLERID(num):9:1},1)

smsmorx is normally accessed by a call from a local sip device connected
to a Magic Messenger. It could however by that you are operating Asterisk
as a message centre for calls from outside. Either way, you look at the called
number and goto smsmorx. In the UK, the SMSC number that would be
dialed is 1709400X where X is the caller sub address. As such typical usage
in extension.config at the point of handling a call from a sip phone is:

exten = 17094009,1,Goto(smsmorx,${CALLERID(num)},1)

exten = _1709400[0-8],1,Goto(smsmorx,${CALLERID(num)}-{EXTEN:7:1},1)

12.7 Using smsq
smsq is a simple helper application designed to make it easy to send messages
from a command line. it is intended to run on the Asterisk box and have
direct access to the queue directories for SMS and for Asterisk.

In its simplest form you can send an SMS by a command such as smsq
0123456789 This is a test to 0123456789 This would create a queue file
for a mobile originated TX message in queue 0 to send the text ”This is
a test to 0123456789” to 0123456789. It would then place a file in the
/var/spool/asterisk/outgoing directory to initiate a call to 17094009 (the
default message centre in smsq) attached to application SMS with argument
of the queue name (0).

171

Normally smsq will queue a message ready to send, and will then create
a file in the Asterisk outgoing directory causing Asterisk to actually connect
to the message centre or device and actually send the pending message(s).

Using --process, smsq can however be used on received queues to run
a command for each file (matching the queue if specified) with various envi-
ronment variables set based on the message (see below); smsq options:

--help

Show help text

--usage

Show usage

--queue

-q

Specify a specific queue

In no specified, messages are queued under queue "0"

--da

-d

Specify destination address

--oa

-o

Specify originating address

This also implies that we are generating a mobile terminated message

--ud

-m

Specify the actual message

--ud-file

-f

Specify a file to be read for the context of the message

A blank filename (e.g. --ud-file= on its own) means read stdin. Very

useful when using via ssh where command line parsing could mess up the

message.

--mt

-t

Mobile terminated message to be generated

--mo

Mobile originated message to be generated

Default

--tx

172

Transmit message

Default

--rx

-r

Generate a message in the receive queue

--UTF-8

Treat the file as UTF-8 encoded (default)

--UCS-1

Treat the file as raw 8 bit UCS-1 data, not UTF-8 encoded

--UCS-2

Treat the file as raw 16 bit bigendian USC-2 data

--process

Specific a command to process for each file in the queue

Implies --rx and --mt if not otherwise specified.

Sets environment variables for every possible variable, and also ud,

ud8 (USC-1 hex), and ud16 (USC-2 hex) for each call. Removes files.

--motx-channel

Specify the channel for motx calls

May contain X to use sub address based on queue name or may be full

number

Default is Local/1709400X

--motx-callerid

Specify the caller ID for motx calls

The default is the queue name without -X suffix

--motx-wait

Wait time for motx call

Default 10

--motx-delay

Retry time for motx call

Default 1

--motx-retries

Retries for motx call

Default 10

--mttx-channel

Specify the channel for mttx calls

Default is Local/ and the queue name without -X suffix

--mtttx-callerid

Specify the callerid for mttx calls

173

May include X to use sub address based on queue name or may be full

number

Default is 080058752X0

--mttx-wait

Wait time for mttx call

Default 10

--mttx-delay

Retry time for mttx call

Default 30

--mttx-retries

Retries for mttx call

Default 100

--default-sub-address

The default sub address assumed (e.g. for X in CLI and dialled numbers

as above) when none added (-X) to queue

Default 9

--no-dial

-x

Create queue, but do not dial to send message

--no-wait

Do not wait if a call appears to be in progress

This could have a small window where a message is queued but not

sent, so regular calls to smsq should be done to pick up any missed

messages

--concurrent

How many concurrent calls to allow (per queue), default 1

--mr

-n

Message reference

--pid

-p

Protocol ID

--dcs

Data coding scheme

--udh

Specific hex string of user data header specified (not including the

initial length byte)

May be a blank string to indicate header is included in the user data

174

already but user data header indication to be set.

--srr

Status report requested

--rp

Return path requested

--vp

Specify validity period (seconds)

--scts

Specify timestamp (YYYY-MM-DDTHH:MM:SS)

--spool-dir

Spool dir (in which sms and outgoing are found)

Default /var/spool/asterisk

Other arguments starting ’-’ or ’--’ are invalid and will cause an error.
Any trailing arguments are processed as follows:-

• If the message is mobile originating and no destination address has
been specified, then the first argument is assumed to be a destination
address

• If the message is mobile terminating and no destination address has
been specified, then the first argument is assumed to be the queue
name

• If there is no user data, or user data file specified, then any following
arguments are assumed to be the message, which are concatenated.

• If no user data is specified, then no message is sent. However, unless
--no-dial is specified, smsq checks for pending messages and generates
an outgoing anyway

Note that when smsq attempts to make a file in /var/spool/asterisk/

outgoing, it checks if there is already a call queued for that queue. It will
try several filenames, up to the --concurrent setting. If these files exist,
then this means Asterisk is already queued to send all messages for that
queue, and so Asterisk should pick up the message just queued. However,
this alone could create a race condition, so if the files exist then smsq will
wait up to 3 seconds to confirm it still exists or if the queued messages have
been sent already. The --no-wait turns off this behaviour. Basically, this

175

means that if you have a lot of messages to send all at once, Asterisk will not
make unlimited concurrent calls to the same message centre or device for the
same queue. This is because it is generally more efficient to make one call
and send all of the messages one after the other.

smsq can be used with no arguments, or with a queue name only, and it
will check for any pending messages and cause an outgoing if there are any.
It only sets up one outgoing call at a time based on the first queued message
it finds. A outgoing call will normally send all queued messages for that
queue. One way to use smsq would be to run with no queue name (so any
queue) every minute or every few seconds to send pending message. This is
not normally necessary unless --no-dial is selected. Note that smsq does
only check motx or mttx depending on the options selected, so it would need
to be called twice as a general check.

UTF-8 is used to parse command line arguments for user data, and is
the default when reading a file. If an invalid UTF-8 sequence is found, it
is treated as UCS-1 data (i.e, as is). The --process option causes smsq to
scan the specified queue (default is mtrx) for messages (matching the queue
specified, or any if queue not specified) and run a command and delete the
file. The command is run with a number of environment variables set as
follows. Note that these are unset if not needed and not just taken from the
calling environment. This allows simple processing of incoming messages

$queue

Set if a queue specified

$?srr

srr is set (to blank) if srr defined and has value 1.

$?rp

rp is set (to blank) if rp defined and has value 1.

$ud

User data, UTF-8 encoding, including any control characters, but with

nulls stripped out

Useful for the content of emails, for example, as it includes any

newlines, etc.

$ude

User data, escaped UTF-8, including all characters, but control

characters \n, \r, \t, \f, \xxx and \ is escaped as \\

Useful guaranteed one line printable text, so useful in Subject lines

of emails, etc

176

$ud8

Hex UCS-1 coding of user data (2 hex digits per character)

Present only if all user data is in range U+0000 to U+00FF

$ud16

Hex UCS-2 coding of user data (4 hex digits per character)

other

Other fields set using their field name, e.g. mr, pid, dcs, etc. udh

is a hex byte string

12.8 File formats
By default all queues are held in a director /var/spool/asterisk/sms.
Within this directory are sub directories mtrx, mttx, morx, motx which hold
the received messages and the messages ready to send. Also, /var/log/

asterisk/sms is a log file of all messages handled.
The file name in each queue directory starts with the queue parameter to

SMS which is normally the CLI used for an outgoing message or the called
number on an incoming message, and may have -X (X being sub address)
appended. If no queue ID is known, then 0 is used by smsq by default. After
this is a dot, and then any text. Files are scanned for matching queue ID and
a dot at the start. This means temporary files being created can be given a
different name not starting with a queue (we recommend a . on the start of
the file name for temp files). Files in these queues are in the form of a simple
text file where each line starts with a keyword and an = and then data. udh
and ud have options for hex encoding, see below.

UTF-8. The user data (ud) field is treated as being UTF-8 encoded unless
the DCS is specified indicating 8 bit format. If 8 bit format is specified then
the user data is sent as is. The keywords are as follows:

oa Originating address

The phone number from which the message came

Present on mobile terminated messages and is the CLI for morx messages

da

Destination Address

The phone number to which the message is sent

Present on mobile originated messages

scts

The service centre time stamp

177

Format YYYY-MM-DDTHH:MM:SS

Present on mobile terminated messages

pid

One byte decimal protocol ID

See GSM specs for more details

Normally 0 or absent

dcs

One byte decimal data coding scheme

If omitted, a sensible default is used (see below)

See GSM specs for more details

mr

One byte decimal message reference

Present on mobile originated messages, added by default if absent

srr

0 or 1 for status report request

Does not work in UK yet, not implemented in app_sms yet

rp

0 or 1 return path

See GSM specs for details

vp

Validity period in seconds

Does not work in UK yet

udh

Hex string of user data header prepended to the SMS contents,

excluding initial length byte.

Consistent with ud, this is specified as udh# rather than udh=

If blank, this means that the udhi flag will be set but any user data

header must be in the ud field

ud

User data, may be text, or hex, see below

udh is specified as as udh# followed by hex (2 hex digits per byte). If
present, then the user data header indicator bit is set, and the length plus
the user data header is added to the start of the user data, with padding
if necessary (to septet boundary in 7 bit format). User data can hold an
USC character codes U+0000 to U+FFFF. Any other characters are coded
as U+FEFF

ud can be specified as ud= followed by UTF-8 encoded text if it contains

178

no control characters, i.e. only (U+0020 to U+FFFF). Any invalid UTF-8
sequences are treated as is (U+0080-U+00FF).

ud can also be specified as ud# followed by hex (2 hex digits per byte)
containing characters U+0000 to U+00FF only.

ud can also be specified as ud## followed by hex (4 hex digits per byte)
containing UCS-2 characters.

When written by app sms (e.g. incoming messages), the file is written
with ud= if it can be (no control characters). If it cannot, the a comment
line ;ud= is used to show the user data for human readability and ud# or
ud## is used.

12.9 Delivery reports
The SMS specification allows for delivery reports. These are requested using
the srr bit. However, as these do not work in the UK yet they are not fully
implemented in this application. If anyone has a telco that does implement
these, please let me know. BT in the UK have a non standard way to do this
by starting the message with *0#, and so this application may have a UK
specific bodge in the near future to handle these.

The main changes that are proposed for delivery report handling are :

• New queues for sent messages, one file for each destination address and
message reference.

• New field in message format, user reference, allowing applications to
tie up their original message with a report.

• Handling of the delivery confirmation/rejection and connecting to the
outgoing message - the received message file would then have fields for
the original outgoing message and user reference allowing applications
to handle confirmations better.

179

Chapter 13
Queues

13.1 Introduction
Pardon, but the dialplan in this tutorial will be expressed in AEL, the new
Asterisk Extension Language. If you are not used to its syntax, we hope you
will find it to some degree intuitive. If not, there are documents explaining
its syntax and constructs.

13.2 Configuring Call Queues

13.2.1 queues.conf
First of all, set up call queues in queue.conf

Here is an example:

=========== queues.conf ===========

| ; Cool Digium Queues |

| [general] |

| persistentmembers = yes |

| |

| ; General sales queue |

| [sales-general] |

| music=default |

| context=sales |

| strategy=ringall |

| joinempty=strict |

| leavewhenempty=strict |

| |

| ; Customer service queue |

| [customerservice] |

180

| music=default |

| context=customerservice |

| strategy=ringall |

| joinempty=strict |

| leavewhenempty=strict |

| |

| ; Support dispatch queue |

| [dispatch] |

| music=default |

| context=dispatch |

| strategy=ringall |

| joinempty=strict |

| leavewhenempty=strict |

===================================

In the above, we have defined 3 separate calling queues: sales-general,
customerservice, and dispatch.

Please note that the sales-general queue specifies a context of ”sales”,
and that customerservice specifies the context of ”customerservice”, and the
dispatch queue specifies the context ”dispatch”. These three contexts must
be defined somewhere in your dialplan. We will show them after the main
menu below.

In the [general] section, specifying the persistentmembers=yes, will cause
the agent lists to be stored in astdb, and recalled on startup.

The strategy=ringall will cause all agents to be dialed together, the first
to answer is then assigned the incoming call.

”joinempty” set to ”strict” will keep incoming callers from being placed
in queues where there are no agents to take calls. The Queue() application
will return, and the dial plan can determine what to do next.

If there are calls queued, and the last agent logs out, the remaining in-
coming callers will immediately be removed from the queue, and the Queue()
call will return, IF the ”leavewhenempty” is set to ”strict”.

13.2.2 Routing incoming Calls to Queues
Then in extensions.ael, you can do these things:

The Main Menu

At Digium, incoming callers are sent to the ”mainmenu” context, where they
are greeted, and directed to the numbers they choose...

context mainmenu {

181

includes {

digium;

queues-loginout;

}

0 => goto dispatch,s,1;

2 => goto sales,s,1;

3 => goto customerservice,s,1;

4 => goto dispatch,s,1;

s => {

Ringing();

Wait(1);

Set(attempts=0);

Answer();

Wait(1);

Background(digium/ThankYouForCallingDigium);

Background(digium/YourOpenSourceTelecommunicationsSupplier);

WaitExten(0.3);

repeat:

Set(attempts=$[${attempts} + 1]);

Background(digium/IfYouKnowYourPartysExtensionYouMayDialItAtAnyTime);

WaitExten(0.1);

Background(digium/Otherwise);

WaitExten(0.1);

Background(digium/ForSalesPleasePress2);

WaitExten(0.2);

Background(digium/ForCustomerServicePleasePress3);

WaitExten(0.2);

Background(digium/ForAllOtherDepartmentsPleasePress4);

WaitExten(0.2);

Background(digium/ToSpeakWithAnOperatorPleasePress0AtAnyTime);

if(${attempts} < 2) {

WaitExten(0.3);

Background(digium/ToHearTheseOptionsRepeatedPleaseHold);

}

WaitExten(5);

if(${attempts} < 2) goto repeat;

Background(digium/YouHaveMadeNoSelection);

Background(digium/ThisCallWillBeEnded);

Background(goodbye);

Hangup();

}

}

The Contexts referenced from the queues.conf file
context sales {

0 => goto dispatch,s,1;

8 => Voicemail(${SALESVM});

s => {

Ringing();

Wait(2);

182

Background(digium/ThankYouForContactingTheDigiumSalesDepartment);

WaitExten(0.3);

Background(digium/PleaseHoldAndYourCallWillBeAnsweredByOurNextAvailableSalesRepresentative);

WaitExten(0.3);

Background(digium/AtAnyTimeYouMayPress0ToSpeakWithAnOperatorOr8ToLeaveAMessage);

Set(CALLERID(name)=Sales);

Queue(sales-general,t);

Set(CALLERID(name)=EmptySalQ);

goto dispatch,s,1;

Playback(goodbye);

Hangup();

}

}

Please note that there is only one attempt to queue a call in the sales
queue. All sales agents that are logged in will be rung.

context customerservice {

0 => {

SetCIDName(CSVTrans);

goto dispatch|s|1;

}

8 => Voicemail(${CUSTSERVVM});

s => {

Ringing();

Wait(2);

Background(digium/ThankYouForCallingDigiumCustomerService);

WaitExten(0.3);

notracking:

Background(digium/PleaseWaitForTheNextAvailableCustomerServiceRepresentative);

WaitExten(0.3);

Background(digium/AtAnyTimeYouMayPress0ToSpeakWithAnOperatorOr8ToLeaveAMessage);

Set(CALLERID(name)=Cust Svc);

Set(QUEUE_MAX_PENALTY=10);

Queue(customerservice,t);

Set(QUEUE_MAX_PENALTY=0);

Queue(customerservice,t);

Set(CALLERID(name)=EmptyCSVQ);

goto dispatch,s,1;

Background(digium/NoCustomerServiceRepresentativesAreAvailableAtThisTime);

Background(digium/PleaseLeaveAMessageInTheCustomerServiceVoiceMailBox);

Voicemail(${CUSTSERVVM});

Playback(goodbye);

Hangup();

}

}

Note that calls coming into customerservice will first be try to queue
calls to those agents with a QUEUE MAX PENALTY of 10, and if none are
available, then all agents are rung.

183

context dispatch

{

s => {

Ringing();

Wait(2);

Background(digium/ThankYouForCallingDigium);

WaitExten(0.3);

Background(digium/YourCallWillBeAnsweredByOurNextAvailableOperator);

Background(digium/PleaseHold);

Set(QUEUE_MAX_PENALTY=10);

Queue(dispatch|t);

Set(QUEUE_MAX_PENALTY=20);

Queue(dispatch|t);

Set(QUEUE_MAX_PENALTY=0);

Queue(dispatch|t);

Background(digium/NoOneIsAvailableToTakeYourCall);

Background(digium/PleaseLeaveAMessageInOurGeneralVoiceMailBox);

Voicemail(${DISPATCHVM});

Playback(goodbye);

Hangup();

}

}

And in the dispatch context, first agents of priority 10 are tried, then 20,
and if none are available, all agents are tried.

Notice that a common pattern is followed in each of the three queue
contexts:

First, you set QUEUE MAX PENALTY to a value, then you call Queue(<queue-
name>,option,...) (see the Queue application documetation for details)

In the above, note that the ”t” option is specified, and this allows the
agent picking up the incoming call the luxury of transferring the call to other
parties.

The purpose of specifying the QUEUE MAX PENALTY is to develop
a set of priorities amongst agents. By the above usage, agents with lower
number priorities will be given the calls first, and then, if no-one picks up
the call, the QUEUE MAX PENALTY will be incremented, and the queue
tried again. Hopefully, along the line, someone will pick up the call, and the
Queue application will end with a hangup.

The final attempt to queue in most of our examples sets the QUEUE MAX PENALTY
to zero, which means to try all available agents.

13.2.3 Assigning agents to Queues
In this example dialplan, we want to be able to add and remove agents
to handle incoming calls, as they feel they are available. As they log in,

184

they are added to the queue’s agent list, and as they log out, they are re-
moved. If no agents are available, the queue command will terminate, and
it is the duty of the dialplan to do something appropriate, be it sending
the incoming caller to voicemail, or trying the queue again with a higher
QUEUE MAX PENALTY.

Because a single agent can make themselves available to more than one
queue, the process of joining multiple queues can be handled automatically
by the dialplan.

Agents Log In and Out
context queues-loginout

{

6092 => {

Answer();

Read(AGENT_NUMBER,agent-enternum);

VMAuthenticate(${AGENT_NUMBER}@default,s);

Set(queue-announce-success=1);

goto queues-manip,I${AGENT_NUMBER},1;

}

6093 => {

Answer();

Read(AGENT_NUMBER,agent-enternum);

Set(queue-announce-success=1);

goto queues-manip,O${AGENT_NUMBER},1;

}

}

In the above contexts, the agents dial 6092 to log into their queues, and
they dial 6093 to log out of their queues. The agent is prompted for their
agent number, and if they are logging in, their passcode, and then they
are transferred to the proper extension in the queues-manip context. The
queues-manip context does all the actual work:

context queues-manip {

// Raquel Squelch

_[IO]6121 => {

&queue-addremove(dispatch,10,${EXTEN});

&queue-success(${EXTEN});

}

// Brittanica Spears

_[IO]6165 => {

&queue-addremove(dispatch,20,${EXTEN});

&queue-success(${EXTEN});

}

185

// Rock Hudson

_[IO]6170 => {

&queue-addremove(sales-general,10,${EXTEN});

&queue-addremove(customerservice,20,${EXTEN});

&queue-addremove(dispatch,30,${EXTEN});

&queue-success(${EXTEN});

}

// Saline Dye-on

_[IO]6070 => {

&queue-addremove(sales-general,20,${EXTEN});

&queue-addremove(customerservice,30,${EXTEN});

&queue-addremove(dispatch,30,${EXTEN});

&queue-success(${EXTEN});

}

}

In the above extensions, note that the queue-addremove macro is used
to actually add or remove the agent from the applicable queue, with the
applicable priority level. Note that agents with a priority level of 10 will be
called before agents with levels of 20 or 30.

In the above example, Raquel will be dialed first in the dispatch queue, if
she has logged in. If she is not, then the second call of Queue() with priority
of 20 will dial Brittanica if she is present, otherwise the third call of Queue()
with MAX PENALTY of 0 will dial Rock and Saline simultaneously.

Also note that Rock will be among the first to be called in the sales-
general queue, and among the last in the dispatch queue. As you can see
in main menu, the callerID is set in the main menu so they can tell which
queue incoming calls are coming from.

The call to queue-success() gives some feedback to the agent as they log
in and out, that the process has completed.

macro queue-success(exten)

{

if(${queue-announce-success} > 0)

{

switch(${exten:0:1})

{

case I:

Playback(agent-loginok);

Hangup();

break;

case O:

Playback(agent-loggedoff);

Hangup();

break;

}

}

}

186

The queue-addremove macro is defined in this manner:

macro queue-addremove(queuename,penalty,exten)

{

switch(${exten:0:1})

{

case I: // Login

AddQueueMember(${queuename},Local/${exten:1}@agents,${penalty});

break;

case O: // Logout

RemoveQueueMember(${queuename},Local/${exten:1}@agents);

break;

case P: // Pause

PauseQueueMember(${queuename},Local/${exten:1}@agents);

break;

case U: // Unpause

UnpauseQueueMember(${queuename},Local/${exten:1}@agents);

break;

default: // Invalid

Playback(invalid);

break;

}

}

Basically, it uses the first character of the exten variable, to determine
the proper actions to take. In the above dial plan code, only the cases I or
O are used, which correspond to the Login and Logout actions.

13.2.4 Controlling The Way Queues Call the Agents
Notice in the above, that the commands to manipulate agents in queues have
”@agents” in their arguments. This is a reference to the agents context:

context agents

{

// General sales queue

8010 =>

{

Set(QUEUE_MAX_PENALTY=10);

Queue(sales-general,t);

Set(QUEUE_MAX_PENALTY=0);

Queue(sales-general,t);

Set(CALLERID(name)=EmptySalQ);

goto dispatch,s,1;

}

// Customer Service queue

8011 =>

{

Set(QUEUE_MAX_PENALTY=10);

Queue(customerservice,t);

Set(QUEUE_MAX_PENALTY=0);

Queue(customerservice,t);

187

Set(CALLERID(name)=EMptyCSVQ);

goto dispatch,s,1;

}

8013 =>

{

Dial(iax2/sweatshop/9456@from-ecstacy);

Set(CALLERID(name)=EmptySupQ);

Set(QUEUE_MAX_PENALTY=10);

Queue(support-dispatch,t);

Set(QUEUE_MAX_PENALTY=20);

Queue(support-dispatch,t);

Set(QUEUE_MAX_PENALTY=0); // means no max

Queue(support-dispatch,t);

goto dispatch,s,1;

}

6121 => &callagent(${RAQUEL},${EXTEN});

6165 => &callagent(${SPEARS},${EXTEN});

6170 => &callagent(${ROCK},${EXTEN});

6070 => &callagent(${SALINE},${EXTEN});

}

In the above, the variables ${RAQUEL}, etc stand for actual devices to
ring that person’s phone (like DAHDI/37).

The 8010, 8011, and 8013 extensions are purely for transferring incoming
callers to queues. For instance, a customer service agent might want to
transfer the caller to talk to sales. The agent only has to transfer to extension
8010, in this case.

Here is the callagent macro, note that if a person in the queue is called,
but does not answer, then they are automatically removed from the queue.

macro callagent(device,exten)

{

if(${GROUP_COUNT(${exten}@agents)}=0)

{

Set(OUTBOUND_GROUP=${exten}@agents);

Dial(${device},300,t);

switch(${DIALSTATUS})

{

case BUSY:

Busy();

break;

case NOANSWER:

Set(queue-announce-success=0);

goto queues-manip,O${exten},1;

default:

Hangup();

break;

}

}

else

{

Busy();

188

}

}

In the callagent macro above, the ${exten} will be 6121, or 6165, etc,
which is the extension of the agent.

The use of the GROUP COUNT, and OUTBOUND GROUP follow this
line of thinking. Incoming calls can be queued to ring all agents in the
current priority. If some of those agents are already talking, they would get
bothersome call-waiting tones. To avoid this inconvenience, when an agent
gets a call, the OUTBOUND GROUP assigns that conversation to the group
specified, for instance 6171@agents. The ${GROUP COUNT()} variable on
a subsequent call should return ”1” for that group. If GROUP COUNT
returns 1, then the busy() is returned without actually trying to dial the
agent.

13.2.5 Pre Acknowledgement Message
If you would like to have a pre acknowledge message with option to reject
the message you can use the following dialplan Macro as a base with the ’M’
dial argument.

[macro-screen]

exten=>s,1,Wait(.25)

exten=>s,2,Read(ACCEPT,screen-callee-options,1)

exten=>s,3,Gotoif($[${ACCEPT} = 1] ?50)

exten=>s,4,Gotoif($[${ACCEPT} = 2] ?30)

exten=>s,5,Gotoif($[${ACCEPT} = 3] ?40)

exten=>s,6,Gotoif($[${ACCEPT} = 4] ?30:30)

exten=>s,30,Set(MACRO_RESULT=CONTINUE)

exten=>s,40,Read(TEXTEN,custom/screen-exten,)

exten=>s,41,Gotoif($[${LEN(${TEXTEN})} = 3]?42:45)

exten=>s,42,Set(MACRO_RESULT=GOTO:from-internal^${TEXTEN}^1)

exten=>s,45,Gotoif($[${TEXTEN} = 0] ?46:4)

exten=>s,46,Set(MACRO_RESULT=CONTINUE)

exten=>s,50,Playback(after-the-tone)

exten=>s,51,Playback(connected)

exten=>s,52,Playback(beep)

13.2.6 Caveats
In the above examples, some of the possible error checking has been omitted,
to reduce clutter and make the examples clearer.

189

13.3 Queue Logs
In order to properly manage ACD queues, it is important to be able to keep
track of details of call setups and teardowns in much greater detail than
traditional call detail records provide. In order to support this, extensive
and detailed tracing of every queued call is stored in the queue log, located
(by default) in /var/log/asterisk/queue_log.

These are the events (and associated information) in the queue log:
ABANDON(position|origposition|waittime)
The caller abandoned their position in the queue. The position is the

caller’s position in the queue when they hungup, the origposition is the origi-
nal position the caller was when they first entered the queue, and the waittime
is how long the call had been waiting in the queue at the time of disconnect.

AGENTDUMP
The agent dumped the caller while listening to the queue announcement.
AGENTLOGIN(channel)
The agent logged in. The channel is recorded.
AGENTCALLBACKLOGIN(exten@context)
The callback agent logged in. The login extension and context is recorded.
AGENTLOGOFF(channel|logintime)
The agent logged off. The channel is recorded, along with the total time

the agent was logged in.
AGENTCALLBACKLOGOFF(exten@context|logintime|reason)
The callback agent logged off. The last login extension and context is

recorded, along with the total time the agent was logged in, and the reason
for the logoff if it was not a normal logoff (e.g., Autologoff, Chanunavail)

COMPLETEAGENT(holdtime|calltime|origposition)
The caller was connected to an agent, and the call was terminated nor-

mally by the *agent*. The caller’s hold time and the length of the call are
both recorded. The caller’s original position in the queue is recorded in
origposition.

COMPLETECALLER(holdtime|calltime|origposition)
The caller was connected to an agent, and the call was terminated nor-

mally by the *caller*. The caller’s hold time and the length of the call are
both recorded. The caller’s original position in the queue is recorded in
origposition.

CONFIGRELOAD
The configuration has been reloaded (e.g. with asterisk -rx reload)

190

CONNECT(holdtime|bridgedchanneluniqueid|ringtime)
The caller was connected to an agent. Hold time represents the amount

of time the caller was on hold. The bridged channel unique ID contains the
unique ID of the queue member channel that is taking the call. This is useful
when trying to link recording filenames to a particular call in the queue.
Ringtime represents the time the queue members phone was ringing prior to
being answered.

ENTERQUEUE(url|callerid)
A call has entered the queue. URL (if specified) and Caller*ID are placed

in the log.
EXITEMPTY(position|origposition|waittime)
The caller was exited from the queue forcefully because the queue had

no reachable members and it’s configured to do that to callers when there
are no reachable members. The position is the caller’s position in the queue
when they hungup, the origposition is the original position the caller was
when they first entered the queue, and the waittime is how long the call had
been waiting in the queue at the time of disconnect.

EXITWITHKEY(key|position|origposition|waittime)
The caller elected to use a menu key to exit the queue. The key and the

caller’s position in the queue are recorded. The caller’s entry position and
amoutn of time waited is also recorded.

EXITWITHTIMEOUT(position|origposition|waittime)
The caller was on hold too long and the timeout expired. The position

in the queue when the timeout occurred, the entry position, and the amount
of time waited are logged.

QUEUESTART
The queueing system has been started for the first time this session.
RINGNOANSWER(ringtime)
After trying for ringtime ms to connect to the available queue member,

the attempt ended without the member picking up the call. Bad queue
member!

SYSCOMPAT
A call was answered by an agent, but the call was dropped because the

channels were not compatible.
TRANSFER(extension|context|holdtime|calltime|origposition)
Caller was transferred to a different extension. Context and extension are

recorded. The caller’s hold time and the length of the call are both recorded,
as is the caller’s entry position at the time of the transfer. PLEASE remember

191

that transfers performed by SIP UA’s by way of a reinvite may not always
be caught by Asterisk and trigger off this event. The only way to be 100%
sure that you will get this event when a transfer is performed by a queue
member is to use the built-in transfer functionality of Asterisk.

192

Chapter 14
Phone Provisioning

14.1 Introduction
Asterisk includes basic phone provisioning support through the res phoneprov
module. The current implementation is based on a templating system using
Asterisk dialplan function and variable substitution and obtains information
to substitute into those templates from phoneprov.conf and users.conf.
A profile and set of templates is provided for provisioning Polycom phones.
Note that res phoneprov is currently limited to provisioning a single user per
device.

14.2 Configuration of phoneprov.conf
The configuration file, phoneprov.conf, is used to set up the built-in vari-
ables SEVER and SERVER PORT, to define a default phone profile to use,
and to define different phone profiles available for provisioning.

14.2.1 The [general] section
Below is a sample of the general section of phoneprov.conf:

[general]

;serveriface=eth0

;serveraddr=192.168.1.1

;serverport=5060

default_profile=polycom

193

By default, res phoneprov will set the SERVER variable to the IP address
on the server that the requesting phone uses to contact the asterisk HTTP
server. The SERVER PORT variable will default to the bindport setting
in sip.conf.

Should the defaults be insufficient, there are two choices for overriding
the default setting of the SERVER variable. If the IP address of the server is
known, or the hostname resolvable by the phones, the appropriate server-
addr value should be set. Alternatively, the network interface that the server
listens on can be set by specifying a serveriface and SERVER will be set to
the IP address of that interface. Only one of these options should be set.

The default SERVER PORT variable can be overridden by setting the
serverport. If bindport is not set in sip.conf and serverport is not spec-
ified, it is set to a default value of 5060.

Any user set for auto-provisioning in users.conf without a specified profile
will be assumed to belong to the profile set with default profile.

14.2.2 Creating phone profiles
A phone profile is basically a list of files that a particular group of phones
needs to function. For most phone types there are files that are identical
for all phones (firmware, for instance) as well as a configuration file that is
specific to individual phones. res phoneprov breaks these two groups of files
into static files and dynamic files, respectively. A sample profile:

[polycom]

staticdir => configs/

mime_type => text/xml

setvar => CUSTOM_CONFIG=/var/lib/asterisk/phoneprov/configs/custom.cfg

static_file => bootrom.ld,application/octet-stream

static_file => bootrom.ver,plain/text

static_file => sip.ld,application/octet-stream

static_file => sip.ver,plain/text

static_file => sip.cfg

static_file => custom.cfg

${TOLOWER(${MAC})}.cfg => 000000000000.cfg

${TOLOWER(${MAC})}-phone.cfg => 000000000000-phone.cfg

config/${TOLOWER(${MAC})} => polycom.xml

${TOLOWER(${MAC})}-directory.xml => 000000000000-directory.xml

A static file is set by specifying the file name, relative to AST_DATA\

_DIR/phoneprov. The mime-type of the file can optionally be specified after
a comma. If staticdir is set, all static files will be relative to the subdirectory
of AST DATA DIR/phoneprov specified.

194

Since phone-specific config files generally have file names based on phone-
specifc data, dynamic filenames in res phoneprov can be defined with As-
terisk dialplan function and variable substitution. In the above example,
${TOLOWER(${MAC})}.cfg ⇒ 000000000000.cfg would define a relative
URI to be served that matches the format of MACADDRESS.cfg, all lower
case. A request for that file would then point to the template found at
AST DATA DIR/phoneprov/000000000000.cfg. The template can be fol-
lowed by a comma and mime-type. Notice that the dynamic filename (URI)
can contain contain directories. Since these files are dynamically generated,
the config file itself does not reside on the filesystem–only the template. To
view the generated config file, open it in a web browser. If the config file
is XML, Firefox should display it. Some browsers will require viewing the
source of the page requested.

A default mime-type for the profile can be defined by setting mime-
type. If a custom variable is required for a template, it can be specified with
setvar. Variable substitution on this value is done while building the route
list, so ${USERNAME} would expand to the username of the users.conf user
that registers the dynamic filename.

NOTE: Any dialplan function that is used for generation of dynamic file
names MUST be loaded before res phoneprov. Add ”preload ⇒ module-
name.so” to modules.conf for required functions. In the example above,
”preload ⇒ func strings.so” would be required.

14.3 Configuration of users.conf
The asterisk-gui sets up extensions, SIP/IAX2 peers, and a host of other
settings. User-specific settings are stored in users.conf. If the asterisk-gui is
not being used, manual entries to users.conf can be made.

14.3.1 The [general] section
There are only two settings in the general section of users.conf that ap-
ply to phone provisioning: localextenlength which maps to template vari-
able EXTENSION LENGTH and vmexten which maps to the VOICE-
MAIL EXTEN variable.

195

14.3.2 Invdividual Users
To enable auto-provisioning of a phone, the user in users.conf needs to
have:

...

autoprov=yes

macaddress=deadbeef4dad

profile=polycom

The profile is optional if a default profile is set in phoneprov.conf. The
following is a sample users.conf entry, with the template variables commented
next to the settings:

[6001]

callwaiting = yes

context = numberplan-custom-1

hasagent = no

hasdirectory = yes

hasiax = no

hasmanager = no

hassip = yes

hasvoicemail = yes

host = dynamic

mailbox = 6001

threewaycalling = yes

deletevoicemail = no

autoprov = yes

profile = polycom

canreinvite = no

nat = no

fullname = User Two ; ${DISPLAY_NAME}

secret = test ; ${SECRET}

username = 6001 ; ${USERNAME}

macaddress = deadbeef4dad ; ${MAC}

label = 6001 ; ${LABEL}

cid_number = 6001 ; ${CALLERID}

The variables above, are the user-specfic variables that can be substituted
into dynamic filenames and config templates.

14.4 Templates
Configuration templates are a generic way to configure phones with text-
based configuration files. Templates can use any loaded dialplan function
and all of the variables created by phoneprov.conf and users.conf. A
short example is the included 000000000000.cfg Polycom template:

196

<?xml version="1.0" standalone="yes"?>

<APPLICATION

APP_FILE_PATH="sip.ld"

CONFIG_FILES="${IF($[${STAT(e|${CUSTOM_CONFIG})}] ? "custom.cfg,

")}config/${TOLOWER(${MAC})}, sip.cfg"

MISC_FILES="" LOG_FILE_DIRECTORY=""

/>

This template uses dialplan functions, expressions, and a couple of vari-
ables to generate a config file to instruct the Polycom where to pull other
needed config files. If a phone with MAC address 0xDEADBEEF4DAD
requests this config file, and the filename that is stored in variable CUS-
TOM CONFIG does not exist, then the generated output would be:

<?xml version="1.0" standalone="yes"?>

<APPLICATION

APP_FILE_PATH="sip.ld"

CONFIG_FILES="config/deadbeef4dad, sip.cfg"

MISC_FILES="" LOG_FILE_DIRECTORY=""

/>

The Polycom phone would then download both sip.cfg (which would
be registered in phoneprov.conf as a static file) and config/deadbeef4dad
(which would be registered as a dynamic file pointing to another template,
polycom.xml).

res phoneprov also registers its own dialplan function: PP EACH USER.
This function was designed to be able to print out a particular string for each
user that res phoneprov knows about. An example use of this function is the
template for a Polycom contact directory:

<?xml version="1.0" standalone="yes"?>

<directory>

<item_list>

${PP_EACH_USER(<item><fn>%{DISPLAY_NAME}</fn><ct>%{CALLERID}</ct><bw>1</bw></item>|${MAC})}

</item_list>

</directory>

PP EACH USER takes two arguments. The first is the string to be
printed for each user. Any variables that are to be substituted need to be
in the format %{VARNAME} so that Asterisk doesn’t try to substitute the
variable immediately before it is passed to PP EACH USER. The second,
optional, argument is a MAC address to exclude from the list iterated over
(so, in this case, a phone won’t be listed in its own contact directory).

197

14.5 Putting it all together
Make sure that manager.conf has:

[general]

enabled = yes

webenabled = yes

and that http.conf has:

[general]

enabled = yes

bindaddr = 192.168.1.1 ; Your IP here ;-)

bindport = 8088 ; Or port 80 if it is the only http server running on the machine

With phoneprov.conf and users.conf in place, start Astersik. From
the CLI, type ”http show status”. An example output:

HTTP Server Status:

Prefix: /asterisk

Server Enabled and Bound to 192.168.1.1:8088

Enabled URI’s:

/asterisk/httpstatus => Asterisk HTTP General Status

/asterisk/phoneprov/... => Asterisk HTTP Phone Provisioning Tool

/asterisk/manager => HTML Manager Event Interface

/asterisk/rawman => Raw HTTP Manager Event Interface

/asterisk/static/... => Asterisk HTTP Static Delivery

/asterisk/mxml => XML Manager Event Interface

Enabled Redirects:

None.

POST mappings:

None.

There should be a phoneprov URI listed. Next, from the CLI, type
”phoneprov show routes” and verify that the information there is correct.
An example output for Polycom phones woud look like:

Static routes

Relative URI Physical location

sip.ver configs/sip.ver

sip.ld configs/sip.ld

bootrom.ver configs/bootrom.ver

sip.cfg configs/sip.cfg

bootrom.ld configs/bootrom.ld

custom.cfg configs/custom.cfg

Dynamic routes

198

Relative URI Template

deadbeef4dad.cfg 000000000000.cfg

deadbeef4dad-directory.xml 000000000000-directory.xml

deadbeef4dad-phone.cfg 000000000000-phone.cfg

config/deadbeef4dad polycom.xml

With the above examples, the phones would be pointed to http://192.

168.1.1:8080/asterisk/phoneprov for pulling config files. Templates would
all be placed in AST DATA DIR/phoneprov and static files would be placed
in AST DATA DIR/phoneprov/configs. Examples of valid URIs would be:

• http://192.168.1.1:8080/asterisk/phoneprov/sip.cfg

• http://192.168.1.1:8080/asterisk/phoneprov/deadbeef4dad.cfg

• http://192.168.1.1:8080/asterisk/phoneprov/config/deadbeef4dad

199

http://192.168.1.1:8080/asterisk/phoneprov
http://192.168.1.1:8080/asterisk/phoneprov

Chapter 15
Development

15.1 Backtrace
This document is intended to provide information on how to obtain the
backtraces required on the asterisk bug tracker, available at http://bugs.

digium.com. The information is required by developers to help fix problem
with bugs of any kind. Backtraces provide information about what was
wrong when a program crashed; in our case, Asterisk. There are two kind of
backtraces (aka ’bt’) which are useful: bt and bt full.

First of all, when you start Asterisk, you MUST start it with option -g.
This tells Asterisk to produce a core file if it crashes.

If you start Asterisk with the safe asterisk script, it automatically starts
using the option -g.

If you’re not sure if Asterisk is running with the -g option, type the
following command in your shell:

debian:/tmp# ps aux | grep asterisk

root 17832 0.0 1.2 2348 788 pts/1 S Aug12 0:00 /bin/sh /usr/sbin/safe_asterisk

root 26686 0.0 2.8 15544 1744 pts/1 S Aug13 0:02 asterisk -vvvg -c

[...]

The interesting information is located in the last column.
Second, your copy of Asterisk must have been built without optimization

or the backtrace will be (nearly) unusable. This can be done by selecting
the ’DONT OPTIMIZE’ option in the Compiler Flags submenu in the ’make
menuselect’ tree before building Asterisk.

200

http://bugs.digium.com
http://bugs.digium.com

After Asterisk crashes, a core file will be ”dumped” in your /tmp/ direc-
tory. To make sure it’s really there, you can just type the following command
in your shell:

debian:/tmp# ls -l /tmp/core.*

-rw------- 1 root root 10592256 Aug 12 19:40 /tmp/core.26252

-rw------- 1 root root 9924608 Aug 12 20:12 /tmp/core.26340

-rw------- 1 root root 10862592 Aug 12 20:14 /tmp/core.26374

-rw------- 1 root root 9105408 Aug 12 20:19 /tmp/core.26426

-rw------- 1 root root 9441280 Aug 12 20:20 /tmp/core.26462

-rw------- 1 root root 8331264 Aug 13 00:32 /tmp/core.26647

debian:/tmp#

In the event that there are multiple core files present (as in the above
example), it is important to look at the file timestamps in order to determine
which one you really intend to look at.

Now that we’ve verified the core file has been written to disk, the final
part is to extract ’bt’ from the core file. Core files are pretty big, don’t be
scared, it’s normal.

NOTE: Don’t attach core files on the bug tracker, we only need
the bt and bt full.

For extraction, we use a really nice tool, called gdb. To verify that you
have gdb installed on your system:

debian:/tmp# gdb -v

GNU gdb 6.3-debian

Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "i386-linux".

debian:/tmp#

Which is great, we can continue. If you don’t have gdb installed, go install
gdb.

Now load the core file in gdb, as follows:

debian:/tmp# gdb asterisk /tmp/core.26252

[...]

(You would see a lot of output here.)

[...]

Reading symbols from /usr/lib/asterisk/modules/app_externalivr.so...done.

Loaded symbols for /usr/lib/asterisk/modules/app_externalivr.so

#0 0x29b45d7e in ?? ()

(gdb)

Now at the gdb prompt, type: bt You would see output similar to:

201

(gdb) bt

#0 0x29b45d7e in ?? ()

#1 0x08180bf8 in ?? ()

#2 0xbcdffa58 in ?? ()

#3 0x08180bf8 in ?? ()

#4 0xbcdffa60 in ?? ()

#5 0x08180bf8 in ?? ()

#6 0x180bf894 in ?? ()

#7 0x0bf80008 in ?? ()

#8 0x180b0818 in ?? ()

#9 0x08068008 in ast_stopstream (tmp=0x40758d38) at file.c:180

#10 0x000000a0 in ?? ()

#11 0x000000a0 in ?? ()

#12 0x00000000 in ?? ()

#13 0x407513c3 in confcall_careful_stream (conf=0x8180bf8, filename=0x8181de8 "DAHDI/pseudo-1324221520") at app_meetme.c:262

#14 0x40751332 in streamconfthread (args=0x8180bf8) at app_meetme.c:1965

#15 0xbcdffbe0 in ?? ()

#16 0x40028e51 in pthread_start_thread () from /lib/libpthread.so.0

#17 0x401ec92a in clone () from /lib/libc.so.6

(gdb)

The bt’s output is the information that we need on the bug tracker.

Now do a bt full as follows:

(gdb) bt full

#0 0x29b45d7e in ?? ()

No symbol table info available.

#1 0x08180bf8 in ?? ()

No symbol table info available.

#2 0xbcdffa58 in ?? ()

No symbol table info available.

#3 0x08180bf8 in ?? ()

No symbol table info available.

#4 0xbcdffa60 in ?? ()

No symbol table info available.

#5 0x08180bf8 in ?? ()

No symbol table info available.

#6 0x180bf894 in ?? ()

No symbol table info available.

#7 0x0bf80008 in ?? ()

No symbol table info available.

#8 0x180b0818 in ?? ()

No symbol table info available.

#9 0x08068008 in ast_stopstream (tmp=0x40758d38) at file.c:180

No locals.

#10 0x000000a0 in ?? ()

No symbol table info available.

#11 0x000000a0 in ?? ()

No symbol table info available.

#12 0x00000000 in ?? ()

No symbol table info available.

#13 0x407513c3 in confcall_careful_stream (conf=0x8180bf8, filename=0x8181de8 "DAHDI/pseudo-1324221520") at app_meetme.c:262

f = (struct ast_frame *) 0x8180bf8

trans = (struct ast_trans_pvt *) 0x0

#14 0x40751332 in streamconfthread (args=0x8180bf8) at app_meetme.c:1965

No locals.

202

#15 0xbcdffbe0 in ?? ()

No symbol table info available.

#16 0x40028e51 in pthread_start_thread () from /lib/libpthread.so.0

No symbol table info available.

#17 0x401ec92a in clone () from /lib/libc.so.6

No symbol table info available.

(gdb)

We also need gdb’s output. That output gives more details compared to
the simple ”bt”. So we recommend that you use bt full instead of bt. But,
if you could include both, we appreciate that.

The final ”extraction” would be to know all traces by all threads. Even
if asterisk runs on the same thread for each call, it could have created some
new threads.

To make sure we have the correct information, just do: (gdb) thread
apply all bt

Thread 1 (process 26252):

#0 0x29b45d7e in ?? ()

#1 0x08180bf8 in ?? ()

#2 0xbcdffa58 in ?? ()

#3 0x08180bf8 in ?? ()

#4 0xbcdffa60 in ?? ()

#5 0x08180bf8 in ?? ()

#6 0x180bf894 in ?? ()

#7 0x0bf80008 in ?? ()

#8 0x180b0818 in ?? ()

#9 0x08068008 in ast_stopstream (tmp=0x40758d38) at file.c:180

#10 0x000000a0 in ?? ()

#11 0x000000a0 in ?? ()

#12 0x00000000 in ?? ()

#13 0x407513c3 in confcall_careful_stream (conf=0x8180bf8, filename=0x8181de8 "DAHDI/pseudo-1324221520") at app_meetme.c:262

#14 0x40751332 in streamconfthread (args=0x8180bf8) at app_meetme.c:1965

#15 0xbcdffbe0 in ?? ()

#16 0x40028e51 in pthread_start_thread () from /lib/libpthread.so.0

#17 0x401ec92a in clone () from /lib/libc.so.6

(gdb)

That output tells us crucial information about each thread.
Now, just create an output.txt file and dump your ”bt full” (and/or ”bt”)

ALONG WITH ”thread apply all bt” into it.
Note: Please ATTACH your output, DO NOT paste it as a note.
And you’re ready for upload on the bug tracker.
If you have questions or comments regarding this documentation, feel free

to pass by the #asterisk-bugs channel on irc.freenode.net.

203

	Introduction
	License Information
	Hold Music

	Security
	Introduction
	Network Security
	Dialplan Security
	Log Security

	Hardware
	Introduction
	DAHDI compatible hardware
	Non-DAHDI compatible hardware
	mISDN compatible hardware
	Miscellaneous other interfaces

	Configuration
	General Configuration Information
	Configuration Parser
	Asterisk.conf
	CLI Prompt
	Extensions
	IP Quality of Service
	MP3 Support
	ICES

	Database Support
	Realtime Database Configuration
	FreeTDS

	Privacy
	First of all
	Next, Fight against autodialers!!
	Next, Fight against the empty CALLERID!
	Next, use a WELCOME MENU !
	Next: Torture Them!
	Using Call Screening
	The 'N' and 'n' options
	Recorded Introductions

	Channel Variables
	Introduction
	Parameter Quoting
	Variables
	Variable Inheritance
	Example

	Selecting Characters from Variables
	Expressions
	Spaces Inside Variables Values
	Operators
	Floating Point Numbers
	Functions
	Examples
	Numbers Vs. Strings
	Conditionals
	Parse Errors
	NULL Strings
	Warning
	Incompatabilities
	Debugging Hints

	Asterisk standard channel variables
	Application return values
	Various application variables
	The MeetMe Conference Bridge
	The VoiceMail() application
	The VMAuthenticate() application
	DUNDiLookup()
	chan_dahdi
	chan_sip
	chan_agent
	The Dial() application
	The chanisavail() application
	Dialplan Macros
	The ChanSpy() application
	OSP

	AEL: Asterisk Extension Language
	Introduction
	Asterisk in a Nutshell
	Contexts
	Extensions and priorities
	Macros
	Applications

	Getting Started
	Debugging
	About "aelparse"
	General Notes about Syntax
	Keywords
	Procedural Interface and Internals
	AEL version 2 BNF

	AEL Example USAGE
	Comments
	Context
	Extensions
	Includes
	#include
	Dialplan Switches
	Ignorepat
	Variables
	Local Variables
	Loops
	Conditionals
	Break, Continue, and Return
	goto, jump, and labels
	Macros

	Examples
	Semantic Checks
	Differences with the original version of AEL
	Hints and Bugs
	The Full Power of AEL

	SLA: Shared Line Appearances
	Introduction
	Configuration
	Summary
	Dialplan
	Trunks
	Stations

	Configuration Examples
	Basic SLA
	SLA and Voicemail

	Call Handling
	Summary
	Station goes off hook (not ringing)
	Station goes off hook (ringing)
	Line button on a station is pressed

	Channel Drivers
	IAX2
	Introduction
	Why IAX2?
	Configuration
	IAX2 Jitterbuffer

	mISDN
	Introduction
	Features
	Fast Installation Guide
	Pre-Requisites
	Configuration
	mISDN CLI commands
	mISDN Variables
	Debugging and sending bug reports
	Examples
	Known Problems

	Local
	Introduction
	Examples
	Trivial Local channel example
	Delay dialing devices
	Dialing destinations with different information
	Using callfiles and Local channels
	Understanding When To Use /n
	Local channel modifiers

	Distributed Universal Number Discovery (DUNDi)
	Introduction
	DUNDIQUERY and DUNDIRESULT
	Peering Agreement

	ENUM
	The ENUMLOOKUP dialplan function
	Arguments
	Examples
	Usage notes and subtle features
	Some more Examples

	AMI: Asterisk Manager Interface
	The Asterisk Manager TCP/IP API
	Device status reports
	Command Syntax
	Manager commands
	Examples
	Some standard AMI headers
	Asynchronous Javascript Asterisk Manger (AJAM)
	Setup the Asterisk HTTP server
	Allow Manager Access via HTTP
	Integration with other web servers

	CDR: Call Detail Records
	Applications
	Fields of the CDR in Asterisk
	CDR Variables
	MSSQL
	ODBC using cdr_odbc
	TDS, using cdr_tds

	MYSQL
	PGSQL
	SQLLITE
	RADIUS
	What is needed
	Steps to follow in order to have RADIUS support

	Logged Values

	Voicemail
	ODBC Storage
	IMAP Storage
	Installation Notes
	Modify voicemail.conf
	IMAP Folders
	Separate vs. Shared Email Accounts
	IMAP Server Implementations
	Quota Support
	Application Notes

	SMS
	Introduction
	Background
	Typical use with Asterisk
	Terminology
	Sub address
	extensions.conf
	Using smsq
	File formats
	Delivery reports

	Queues
	Introduction
	Configuring Call Queues
	queues.conf
	Routing incoming Calls to Queues
	Assigning agents to Queues
	Controlling The Way Queues Call the Agents
	Pre Acknowledgement Message
	Caveats

	Queue Logs

	Phone Provisioning
	Introduction
	Configuration of phoneprov.conf
	The [general] section
	Creating phone profiles

	Configuration of users.conf
	The [general] section
	Invdividual Users

	Templates
	Putting it all together

	Development
	Backtrace

