
 1

Credit Analytics User/Developer Guide

Lakshmi Krishnamurthy

v1.4, 1 May 2012

 2

Introduction

Overview

CreditAnalytics is a full-featured financial fixed income credit analytics, trading, and risk

library, developed with a special focus towards the needs of the credit products

community.

In particular, CreditAnalytics provides analytics to value liquid products (CDS, CDX,

CDO, and bonds of all types and variants), liquid and standardized index products, and

custom products (single credit forwards and options, and portfolio credit forwards,

options, tranches, and other structures).

CreditAnalytics Features

CreditAnalytics captures the valuation, the analytics, and the risk measures calculation

for the full set of liquid and semi-liquid credit products. The following is a

comprehensive suite of credit products that it handles:

• Single name credit default swaps (with amortizing coupon and notional schedules,

and custom recovery schedules)

• Portfolio credit default basket swaps (in particular, it covers the full range of liquid,

legacy, and custom CDX/iTRAXX across sectors, LCDX/SovX/Trac-

X/LevX/TRACERS, etc), again with variable coupon, notional, and custom recovery

schedules – please check the CDX Coverage for the comprehensive list

• Liquid structured credit products – standard CDX NA/EU/Asia/EM

IG/HY/XO/HVOL, and sector and ratings based indexes and tranches of all

attachments/detachments

 3

• Bespoke structured credit products such as nth-to-default basket and its full set of

variants, tranches on the standard indices as well as bespoke baskets, squared/cubed

structured variants, in both funded and un-funded forms, as well as deterministic

amortizing coupon and principal pay down structures.

• Merton type single name CDS “fundamental” value determination from related equity

parameters.

• Comprehensive coverage of all bond types – fixed/floating rate bonds, support for

different rate indices and fixings, amortizing/capitalizing bonds, perpetual bonds,

European/Bermudan/American embedded option schedules and their variants, fix-to-

float on exercise, custom bonds with principal, coupon, and recovery schedules.

Optionally, CreditAnalytics also installs an initial set of bond reference data, bond marks,

and IR, treasury, and credit curve closes. Once installed, it can also connect to this

database to run analytics and valuation on CDS and bond positions.

CreditAnalytics also contains the following set of curve calibration functionality from

market quotes:

• Although not its primary function, CreditAnalytics can bootstrap discount curve from

a variety of IR instruments and their quotes – cash/money market instruments, futures

(e.g., EDSF), swaps, and treasury quotes.

• Comprehensive calibration routines for single name credit curves such from CDS,

bonds, or a mixture of quotes. Inputs can be in one of CDS quoted measures (fixed

coupon flat spreads, upfront points, or fair premium/par spreads), one of bond quotes

(e.g., yield/Z Spread, asset swap spread, spread to treasury, I Spread, G Spread, Bond

Basis, Discount Margin, Option Adjusted Spread, Credit Basis, and other measures to

an effective exercise date, or to a specific work-out, or to maturity), or a mixture of

any instrument and their corresponding measure.

• For basket products, CreditAnalytics provides a comprehensive set of basket basis

calibration routines for the credit indices, correlation calibration routines for

standard/bespoke tranches, as well as a suite of advanced correlation calibration

functionality (such as multi-factor and random-factor correlation calibration, base

 4

correlation surface set up, and calibration to the Merton model), and

conditional/unconditional portfolio loss, pay down, and default distributions over

time.

Finally, CreditAnalytics also calculates an elaborate sequence of measures relevant to

each product. It is built with an enhanced sequence of standard scenario curves that can

be used to generate very customized scenario measures.

Documentation

Apart from the information provided in this user guide, additional documentation of

CreditAnalytics functionality and release notes may be found in the CreditAnalytics

website. Consult the javadoc for elaborate API usage information.

Installation and Dependencies

The core modules of CreditAnalytics are just two jars:

• Drip.jar: This contains the complete suite of the entire CreditAnalytics analytics.

Download and install this in your class-path.

• Ojdbc14.jar: This contains the Oracle JDBC drivers needed for access to the

reference data (optional). Download and install this in your class-path.

Configuration

All the configuration entries are maintained in the provided Config.xml file.

Configuration includes information on the location to the day count files, data tables for

the bond static reference data, bond closing marks data, and IR/CDS/treasury closing

 5

quotes. Each of this information is optional, and the consequence of not providing a

configuration file is that the defaults will be used. The following are defaults:

• Day count entries absent – CreditAnalytics uses a comprehensive set of built in day

count conventions and holiday calendars across the overwhelming majority of

locations, so day count entries are mostly not needed (unless specifically to overwrite

the CreditAnalytics ‘s day count/holiday calendar).

• Bond reference data tables absent – Will not be able to access a bond by its

ISIN/CUSIP or any of the identifiers. You will still be able to create user-defined

bonds, ranging from simple fixed coupon bonds to complex ones such as

amortization/capitalization, floaters, and bonds with embedded options (see next

section).

• Closing curve mark tables absent: Will not be able to retrieve closing

IR/credit/treasury/FX curve marks and create those curves. Will still be able to

calibrate user-defined curves from custom quotes (see next section).

Getting Started

Once you have downloaded and installed CreditAnalytics, the first step is to set up the

configuration by altering the entries provided in the Config.xml file (you can rename it,

as long you identify the full path in the initializer – see below). Of course, you don’t even

need a configuration file – in which case the settings default to the values provided in the

previous section.

Any of the samples in the examples folder would be the place to start. They contain a

comprehensive set of illustrated usage of all the CreditAnalytics API calls.

 String strConfig;

 boolean bFIInit = FI.Init (strConfig);

 6

The call FI.Init initializes the CreditAnalytics library - it takes the optional configuration

file as an input. If the initialization is not successful, certain CreditAnalytics functionality

will not be available, as the sample demonstrates.

 7

DRIP Class Layout and Package Hierarchy

The full set of CreditAnalytics functionality is implemented in a set of 27 packages. The

subsequent sections describe each of the package in detail. The layout and the hierarchy

of the packages is shown below.

Functional

Group

Functional Sub-group

/ Package / Module
Class

org.drip.analytics core • Serializer

org.drip.analytics curve

• CreditCurve

• DiscountCurve

• FXBasis

• FXCurve

• ZeroCurve

org.drip.analytics daycount

• ActActDCParams

• DateAdjustParams

• DayCount

• FixedHoliday

• FloatingHoliday

• Holiday

• LocHolidays

• StaticHoliday

• WeekendHoliday

org.drip.analytics holset • LocHolidays

org.drip.analytics period

• CouponPeriod

• Period

• ProductCouponPeriodCurveMeasures

 8

• ProductLossPeriodCurveMeasures

org.drip.calc output

• BasketOutput

• BondCouponMeasures

• BondOutput

• BondRVMeasures

• BondWorkoutMeasures

• ComponentOutput

org.drip.chart surface

• BuildSurface

• Contour3D

• ContourPlots

• GeneratedDelaunaySurface

• Histogram

• MultiColorScatter

• Scatter4D

org.drip.curve calibration

• Bootstrapable

• ComponentCalibrator

• ComponentCalibratorBracketing

• ComponentCalibratorNR

• CreditCurveScenarioGenerator

• IRCurveScenarioGenerator

org.drip.feed historical • LoadCreditFeeds

org.drip.feed reference • LoadBondFeed

org.drip.param config • XMLConfigReader

org.drip.param market

• BasketMarketParamRef

• BasketMarketParams

• ComponentMarketParamRef

• ComponentMarketParams

• CreditCurveScenarioContainer

• IRCurveScenarioContainer

 9

• MarketParamsContainer

• NodeTweakParams

org.drip.param pricer
• CalibrationParams

• PricerParams

org.drip.param product

• BondCFTerminationEvent

• BondCouponParams

• BondCurrencyParams

• BondFixedPeriodGenerationParams

• BondFloaterParams

• BondIdentifierParams

• BondIRValuationParams

• BondNotionalParams

• BondPeriodGenerationParams

• BondTSYParams

• CDXIdentifier

• CompCRValParams

• CurrencyPair

• EmbeddedOptionSchedule

• FactorSchedule

• TsyBmkSet

org.drip.param valuation

• CashSettleParams

• NextExerciseInfo

• QuotingParams

• ValuationParams

• WorkoutInfo

org.drip.product common
• Component

• CalibratableComponent

org.drip.product creator
• BondBuilder

• BondProductBuilder

 10

• BondRefDataBuilder

• CDXRefDataBuilder

org.drip.product credit

• BasketBond

• BasketDefaultSwap

• BasketProduct

• Bond

• CreditComponent

• CreditDefaultSwap

• StandardCDXManager

• StandardCDXParams

org.drip.product fx
• FXForward

• FXSpot

org.drip.product quote

• ComponentQuote

• LiveCurve

• Quote

org.drip.product rates

• Cash

• EDFuture

• InterestRateSwap

org.drip.service api • FI

org.drip.service env

• BondManager

• CDSManager

• EnvManager

• EODCurves

• RatesManager

• StaticBACurves

org.drip.service external
• AnalyticsClient

• AnalyticsServer

org.drip.service sample
• BondAnalyticsAPISample

• BondBasketAPISample

 11

• BondLiveAndEODAPISample

• BondStaticAPISample

• CDSAnalyticsAPISample

• CDSBasketAPISample

• CDSLiveAndEODAPISample

• DayCountAndCalendarAPISample

• FXAPISample

• RatesAnalyticsAPISample

• RatesLiveAndEODAPISample

org.drip.tester product

• BondTestSuite

• FIFull

• FuncTestSuite

• SerializerTestSuite

org.drip.util common
• FIGen

• Validatable

org.drip.util date
• DateTime

• JulianDate

org.drip.util internal
• FIUtil

• Logger

 12

Package org.drip.analytics.core

This package implements the core interfaces/abstract classes that provide functionality

common across much of DRIP. Currently, this has only one abstract class – Serializer.

Serializer

The Serializer abstract class defines the core object serializer methods – serialization of

the object state onto a byte-array, and object construction through de-serialization out of

byte arrays.

Methods that the serializer implements provide the current serializer version, as well as

object trailers, and delimiters for fields, collection records, collection key values, and

multi-level key-value collections. Derived implementations over-ride these fields as

appropriate.

 13

Package org.drip.analytics.curve

This package contains the “curve” functionality for the different kinds of curves – credit

curve, discount curve, and FX forward curve. As defined here, curve simply holds the

term structure of a calibrated or a cooked market parameter. Period measures available

for different times are available directly as member of the corresponding curve API.

Calibration of the curve is covered in another package – however, the curve may

(optionally) return the instruments, the quotes, and their corresponding measures from the

curve object.

CreditCurve

The CreditCurve class serves as the baseline hazard curve holder object, and provides the

time-dependent survival probabilities and recovery rates. It contains term structure for

recovery, the calibration instruments, calibration measures, calibration quotes, and

parameters.

CreditCurve maybe created in several ways:

• Survival/recovery curve from start date, a solitary hazard rate and a solitary recovery.

• Survival/recovery curve from start date, survival nodes, and a solitary recovery.

• From start date, single hazard node and solitary recovery.

• From start date, hazard node array, and solitary recovery.

• From start date, hazard node array and recovery node array. Node point sets need not

match for hazards and recoveries.

The curve calibration process may set the calibration instruments, calibration valuation

parameters, calibration pricing parameters, calibration market parameters (discount

curves/fixings), calibration measure, and calibration type. The CreditCurve

 14

implementation then retrieves the entire set of calibration input instruments, or the quote

for a given input calibration instrument. Further, if the CreditCurve implements the

LiveCurve interface, it may also be able to retrieve the tick value for the given

instrument.

Using the set of calibration instruments retained, the CreditCurve provides scenario

curves based off of one of the following shifts:

• Calibrate and create a new parallel hazard-shifted curve.

• Calibrate and create a new parallel quote-shifted curve.

• Calibrate and create a new parallel SNAC quote shifted curve.

Since the CreditCurve is bootstrapable, it provides functionality to get the master credit

curve name, set calibration node quote value, bump the calibration node quote, or assign

a flat hazard node value across all tenors.

Credit curve also provides the following core credit functionality:

• Calculate survival from the start date to the given date/tenor

• Calculate time weighted survival from the start date to dates within a pair of start and

end dates/tenors

• Calculate the hazard rate between two dates/tenors

• Calculate hazard rate to the specified date.

• Calculate recovery rate at the specified date/tenor.

• Calculate time weighted recovery rate from the start date to dates within a pair of start

and end dates/tenors

Finally, credit curve implements the serialization interface to serialize the credit curve

instance into byte arrays, as well as de-serialize and populate a credit curve instance from

an input byte array.

 15

DiscountCurve

The DiscountCurve class holds the bootstrapped term structure of the forward rates and

their corresponding maturity nodes. It provides all the regular discount curve

functionality – e.g., the implied rate between two dates, and the discount factor between a

pair of dates. It may also optionally contain the calibration instruments, the calibration

measures, the calibration quotes, and other relevant calibration parameters.

The DiscountCurve maybe built in one of the following ways:

• From the start date, the currency, and the array of date nodes and discount factors.

• From the start date, the currency, and a discount rate.

During the calibration process, the calibrator may set the discount curve’s calibration

instruments, calibration valuation parameters, calibration pricing parameters, calibration

market parameters (fixings), calibration measure, and calibration type. In this case, the

DiscountCurve may be able to retrieve the full set of calibration instruments, or the quote

for a given input calibration instrument. Further, if the DiscountCurve implements the

LiveCurve interface, it may also be able to retrieve the tick value for the given

instrument.

Using the set of calibration instruments retained, the CreditCurve provides scenario

curves based off of one of the following shifts:

• Calibrate and create a new parallel quote-shifted curve.

• Calibrate and create a new parallel rate-shifted curve.

• Calibrate a shifted curve using a maturity-mismatched basis.

Since the DiscountCurve is bootstrapable, it provides functionality to get the master

discount curve name, get the discount curve currency, set calibration node quote value,

bump the calibration node quote, and assign a flat hazard node value across all tenors.

Discount curve also provides the following core discounting/PV’ing functionality:

 16

• Get the discount factor to a given date/tenor.

• Calculate time weighted discount factor from the start date to dates within a pair of

start and end dates/tenors.

• Imply a rate between two dates/tenors.

Finally, discount curve implements the serialization interface to serialize the discount

curve instance into byte arrays, as well as de-serialize and populate a discount curve

instance from an input byte array.

FXBasis

The FXBasis curve contains the term structure of FX basis. Basis can be full or

bootstrapped. It is constructed from the currency pair, the spot date, the spot FX, the

tenor dates/tenor basis array, and a flag indicating whether the basis has been

bootstrapped.

As part of its core functionality, the FXBasis object calculates the term structure of the

FX forward (as either outright or as PIP) from a pair of domestic/foreign discount curves,

from either domestic or foreign basis. It also retrieves the currency pair, the spot date, the

spot FX, and the flag that indicates whether the FX basis is bootstrapped

Finally, FXBasis implements the serialization interface to serialize the FXBasis instance

into byte arrays, as well as de-serialize and populate a FXBasis instance from an input

byte array.

FXCurve

The FXCurve object contains the term structure of dates/times, the corresponding FX

forwards (PIP/outright), and the spot FX info for the given currency pair. It is constructed

 17

from the array of dates, array of tenors, array of FX forwards, the PIP flag indicator array,

the currency pair, and the spot FX info.

The FXCurve provides the following functionality:

1. Calculate the full basis across the entire term of the forward curve give the domestic

and foreign rates curves, for the input valuation parameters.

2. Boot-strap the constant forward basis across the entire term of the forward curve

given the domestic and foreign rates curves, for the input valuation parameters.

3. Boot-strap a new domestic or foreign discount curve using the entire term of the

forward curve given the domestic and foreign rates curves, for the input valuation

parameters.

The FXCurve object provides functionality for retrieving the currency pair, the spot date,

and the Spot FX.

Finally, FXCurve implements the serialization interface to serialize the FXCurve instance

into byte arrays, as well as de-serialize and populate a FXCurve instance from an input

byte array.

ZeroCurve

The ZeroCurve contains the baseline zero discount curve holder object. It is primarily

used for calibrating the Z Spread of a bond. It maintains term structure for the spot zero

rates, the current discount factors, the accrual fractions, and the corresponding dates. It is

constructed from the bond’s cash flow list, the exercise parameters, the reference

discount curve, the yield quoting convention, and the optional flat bump to the discount

rate.

ZeroCurve overrides the getDF function of the DiscountCurve, and provides the ability to

get the zero rate at one of the given pre-set nodes.

 18

Package org.drip.analytics.daycount

This package implements the day count, the date adjustment/roll, location specific

holiday calendars, and different kinds of holidays. It also contains explicit set of non-

weekend holidays implemented for most locations – these can be over-written using

externally specified days.

ActActDCParams

This class contains the date parameters corresponding to the actual/actual reference

period. ActActDCParams implements the serialization interface to serialize the instance

into byte arrays, as well as de-serialize and populate an ActActDCParams instance from

an input byte array.

DateAdjustParams

This class contains the parameters needed for adjusting dates – holiday calendar and

adjustment type. DateAdjustParama implements the serialization interface to serialize the

instance into byte arrays, as well as de-serialize and populate a DateAdjustParams

instance from an input byte array.

DayCountBasis

The DayCountBasis provides the core set of static day-count, holiday, and date

roll/adjustment functionality. The class contains flags that indicate where the holidays are

loaded from, as well as the holiday types and load rules.

 19

DayCountBasis loads the holiday calendar from the specified location, or from the

specified location holiday file set in the configuration file. It gets the available holiday

locations. It gets the weekend and week-days corresponding to a calendar set.

DayCountBasis implements the following core day count functionality:

• It also gets the available day count conventions.

• Calculate the year fraction between 2 days for the given day count.

• Roll the given date according to the date roll convention and the holiday calendar set.

• Check if the given date is a holiday according to the holiday calendar set.

• Calculate the number of business days between two days according to the holiday

calendar set.

• Calculate the number of holidays between two days according to the holiday calendar

set.

• Adjust the given date forward in accordance with the given holiday calendar set.

FixedHoliday

This class contains the fixed holiday’s date and month. Will be generated with an

optional adjustment for weekends in a given year.

FixedHoliday implements the serialization interface to serialize the instance into byte

arrays, as well as de-serialize and populate a FixedHoliday instance from an input byte

array.

FloatingHoliday

This class contains the floating holiday’s month, day in week, and week in month. Will

be generated with an optional adjustment for weekends in a given year.

 20

FloatingHoliday implements the serialization interface to serialize the instance into byte

arrays, as well as de-serialize and populate a FloatingHoliday instance from an input byte

array.

Holiday

The Holiday class provides abstraction around a holiday and its description. It contains an

abstract function that generates an optional adjustment for weekends in a given year. Its

concrete function rolls the given holiday around a weekend – rolling to a preceding or

succeeding day depending upon whether it is a first or second weekend day. It also

returns the holiday description.

Holiday implements the serialization interface to serialize the instance into byte arrays, as

well as de-serialize and populate a Holiday instance from an input byte array.

LocHolidays

This class contains the set of regular holidays and the weekend holidays for a location.

Weekends are separately for the week days – weekends are set either an array of days, or

as the standard weekend (Saturday and Sunday), and the week days as static, fixed, or

floating holidays. LocHolidays are used to retrieves the weekend and the regular holiday

set for the given location.

StaticHoliday

This class contains a full date as a fixed holiday. Can be constructed from a stringified

date or a Julian date.

 21

StaticHoliday implements the serialization interface to serialize the instance into byte

arrays, as well as de-serialize and populate a StaticHoliday instance from an input byte

array.

WeekendHoliday

WeekendHoliday class contains the dates corresponding to the weekend. Weekends can

be set from a date array, or as standard (Saturday and Sunday). WeekendHolidays are

used to retrieve the weekend days, and it identifies if the given date is a weekend, and if it

is, is it a left or a right weekend.

WeekendHoliday implements the serialization interface to serialize the instance into byte

arrays, as well as de-serialize and populate a WeekendHoliday instance from an input

byte array.

 22

Package org.drip.analytics.period

This package implements different types of periods used, their generation, and the

corresponding curve measures used in CreditAnalytics.

CouponPeriod

The CouponPeriod encapsulates the period details related to the coupon period. It extends

the period class with day-count specific parameters: frequency, reset date, and accrual

day-count convention.

Construction of CouponPeriod happens in one of two ways. For the multi-period

CouponPeriod set, a helper function creates a set of coupon periods according generated

either backwards or forwards, according to period frequency, and optionally specific date

adjustment rules for every date set (start/end dates, accrual start/end dates, pay date, and

reset date) – this also allows for accrual DCF different from coupon DCF. For a single

period coupon set, another helper function is used to construct a single coupon period

from start and end dates (as in a zero coupon bond).

CouponPeriod also gets the accrual fraction to an arbitrary date within the period, as well

the period reset date.

CouponPeriod implements the serialization interface to serialize the instance into byte

arrays, as well as de-serialize and populate a CouponPeriod instance from an input byte

array.

 23

Period

Period class serves as the place-holder for the typical period dates and fractions: the

period start/end dates, the period accrual start/end dates, the period pay date, and the full

period day count fraction.

Period class is used to retrieve the period start/end dates, the period accrual start/end

dates, the period pay date, and the full period day count fraction. Period reset date

defaults to the period start date. It also gets the accrual fraction to an arbitrary date within

the period.

Period implements the serialization interface to serialize the instance into byte arrays, as

well as de-serialize and populate a Period instance from an input byte array.

ProductCouponPeriodCurveMeasures

The ProductCouponPeriodCurveMeasures class implements the discount curve and the

credit curve based coupon period valuation metrics for the given period. It enhances the

Period class with the following period measures: the period start/end survival

probabilities, the period start/end notionals, and the period end discount factor.

ProductCouponPeriodCurveMeasures retrieves period’s start/end survival probabilities,

start/end notionals, and period end discount factor.

ProductCouponPeriodCurveMeasures implements the serialization interface to serialize

the instance into byte arrays, as well as de-serialize and populate a

ProductCouponPeriodCurveMeasures instance from an input byte array.

ProductLossPeriodCurveMeasures

 24

The ProductLossPeriodCurveMeasures class implements the discount curve and the

credit curve based loss period valuation metrics for the given period. The class enhances

the period class by the following period measures: the period’s start/end survival

probabilities, and the period’s effective notional/recovery/discount factor.

ProductLossPeriodCurveMeasures retrieves the period’s start/end survival probabilities,

and the period effective notional/recovery/discount factor.

ProductLossPeriodCurveMeasures implements the serialization interface to serialize the

instance into byte arrays, as well as de-serialize and populate a

ProductLossPeriodCurveMeasures instance from an input byte array.

 25

Package org.drip.calc.output

This package implements the analytics scenario measure map for basket and component

valuation runs.

BasketOutput

The BasketOutput serves as the main place holder for analytical basket measures,

optionally across scenarios. It contains measure maps for unadjusted base IR/credit curve

runs, flat delta/gamma bump measure maps for IR/credit/recovery bump curve runs,

component/tenor bump double maps for IR/credit curves, and flat/component recovery

bumped measure maps for recovery bumped credit curves.

BasketOutput implements the serialization interface to serialize the instance into byte

arrays, as well as de-serialize and populate a BasketOutput instance from an input byte

array.

BondCouponMeasures

BondCouponMeasures encapsulates the parsimonious, but complete set of the cash-flow

oriented coupon measures generated out of a full run to a set of given work-out

parameters. Specifically, it is a placeholder for the “dirty” measures – dirty DV01, dirty

coupon PV, and full dirty PV.

BondCouponMeasures provides methods to adjust for settlement, and for clean/dirty

accrual. It also uploads the state in the fields onto a named measure map.

 26

BondCouponMeasures implements the serialization interface to serialize its instance into

byte arrays, as well as de-serialize and populate a BondCouponMeasures instance from

an input byte array.

BondOutput

The BondOutput serves as the place holder for a comprehensive suite of analytical bond

measures. It contains the bid/ask sides for price, yield, G spread, Z spread, I spread,

spread to treasury benchmark, par asset swap spread, workout dates, workout factors, and

credit basis. BondOutput instance can be re-constructed from a string representation, as

well as stringify it.

BondOutput implements the serialization interface to serialize the instance into byte

arrays, as well as de-serialize and populate a BondOutput instance from an input byte

array.

BondRVMeasures

BondRVMeasures encapsulates the comprehensive set of RV measures generated out of a

full run to a set of given work-out parameters. It holds the price, the Z Spread, the I

Spread, the G Spread, the Spread to treasury benchmark, the bond basis, the par asset

swap spread, the credit basis, the duration, the convexity, and the work-out information -

its constructor automatically sets the full state.

It also uploads the state in the fields onto a named measure map.

BondRVMeasures implements the serialization interface to serialize its instance into byte

arrays, as well as de-serialize and populate a BondRVMeasures instance from an input

byte array.

 27

BondWorkoutMeasures

BondWorkoutMeasures encapsulates the comprehensive set of scenario measures

generated out of a full run to a set of given work-out parameters. It holds the clean/dirty

credit risky and risk-less bond coupon measures, risky and risk-less par and principal PV,

recovery PV, expected recovery, default exposure with and without recovery, loss on

instantaneous default, dirty accrued 01, first coupon rate, and first index rate - the

constructor automatically sets the full state.

It also uploads the state in the fields onto a named measure map.

BondWorkoutMeasures implements the serialization interface to serialize its instance into

byte arrays, as well as de-serialize and populate a BondWorkoutMeasures instance from

an input byte array.

ComponentOutput

The ComponentOutput serves as the place holder for analytical single component output

measures, optionally across scenarios. It contains measure maps for unadjusted base

IR/credit curves, flat delta/gamma bump measure maps for IR/credit bump curves, tenor

bump double maps for IR/credit curves, and flat/recovery bumped measure maps for

recovery bumped credit curves.

ComponentOutput implements the serialization interface to serialize the instance into

byte arrays, as well as de-serialize and populate a ComponentOutput instance from an

input byte array.

 28

Package org.drip.chart.surface

This package implements different kinds of 3D charting surfaces from z’s corresponding

to a set of (x, y) inputs.

BuildSurface

BuildSurface class constructs an OpenGL 3D surface chart for the z’s corresponding to a

set of (x, y).

Contour3D

Contour3D class constructs an OpenGL 3D mapped contour surface chart for the z’s

corresponding to a set of (x, y).

ContourPlots

ContourPlots constructs an ortho-normalized OpenGL 3D color mapped contour surface

chart for the z’s corresponding to a set of (x, y).

GeneratedDelaunaySurface

GeneratedDelaunaySurface constructs an OpenGL 3D Delaunay surface chart for the z’s

corresponding to a set of (x, y).

 29

Histogram

Histogram constructs an OpenGL 3D histogram for the z’s corresponding to a set of (x,

y).

MultiColorScatter

MultiColorScatter constructs a 3D depth color-mapped multi-color scatter surface chart

for the z’s corresponding to a set of (x, y).

Scatter4D

Scatter4D constructs a 4D depth color-mapped multi-color scatter surface chart for the

z’s corresponding to a set of (x, y).

 30

Package org.drip.curve.calibration

This package contains a set of calibrators that use different calibration routines to

calibrate the corresponding rates from the component’s input measure and quote value.

Bootstrapper

Bootstrapper is the basic interface that defines the core bootstrapping methods –

setting/bumping specific nodes, setting flat values across all nodes, and retrieving

specific/collective instrument/node quotes.

ComponentCalibrator

The ComponentCalibrator interface defines the curve calibration methods from

component market values and measures – by bootstrapping/flat-strapping the discount

rate and the hazard rate from the individual component quotes. Calibration can be node-

by-node (true bootstrapping) or flat.

ComponentCalibratorBracketing

ComponentCalibratorBracketing uses a bracketing technique to find the discount

rate/hazard rate that corresponds to the specific node tenor. Calibration produces either

the implied piece-wise constant forward or the flat root across all the nodes.

 31

ComponentCalibratorNR

ComponentCaibratorNR uses the Newton-Raphson method to find the discount

rate/hazard rate that corresponds to the specific node tenor. Calibration produces either

the implied piece-wise constant forward or the flat root across all the nodes.

CreditCurveScenarioGenerator

CreditCurveScenarioContainer contains the credit calibration instruments to be used with

the component calibrator to produce scenario credit curves.

CreditCurveScenarioContainer performs two types of calibration: a) It calibrates and

creates a bootstrapped or flat credit curve from valuation parameters, recovery rate,

discount curves, and fixings, or b) it calibrates an array/tenor map of bootstrapped or flat

tenor bumped credit curves from valuation parameters, recovery rate, discount curves,

and fixings.

IRCurveScenarioGenerator

IRCurveScenarioContainer holds the IR calibration instruments to be used with the

component calibrator to produce scenario discount curves.

IRCurveScenarioContainer performs two types of discount curve calibration: a) It

calibrates and creates a bootstrapped or flat discount curve from valuation parameters,

treasury/EDF curves, and fixings, or b) it calibrates an array/tenor map of bootstrapped or

flat tenor bumped discount curves from valuation parameters, treasury/EDF curves, and

fixings.

 32

Package org.drip.param.config

This package contains implementations that parse input configurations and configure the

CreditAnalytics system at start-up. Currently only XML based configuration is

implemented.

XMLConfigReader

XMLConfigReader parses the XML configuration file and extracts the information, tag

pairs – such as holiday sets for different locations, logger location, analytics server

connection strings, database server connection strings. Depending upon the flag in the

configuration setting, holiday sets are loaded from either directly from the configuration

files, or from database setting.

 33

Package org.drip.param.market

This package contains the market parameters named container objects for various

purposes – discount curve/credit curve/fixings and other market parameters needed to

price components and baskets. It also issuer/domain named scenario curves, as well as

scenario discount curve and scenario credit curve containers.

BasketMarketParamRef

BasketMarketParamRef implements the base market params interface to provide stubs for

component IR and credit curves that constitute the basket. All basket market parameter

classes implement this interface.

BasketMarketParams

BasketMarketParamRef contains the market parameters needed to price the given basket.

It implements the BasketMarketParamsRef interface for a specific scenario. It also

contains maps holding named discount curves, named credit curves, named treasury

quote, named component quote, and fixings object.

Specifically, BasketMarketParams provides the ability to add and retrieve a named

discount curve and a named credit curve. It can also build a ComponentMarketParams

object from a component given its ComponentMarketParamsRef object.

BasketMarketParams implements the serialization interface to serialize the instance into

byte arrays, as well as de-serialize and populate a BasketMarketParams instance from an

input byte array.

 34

ComponentMarketParamRef

ComponentMarketParamsRef implements the base market params interface to provide

stubs for component name, IR curve, credit curve, TSY curve, and EDSF curve needed to

value the component.

ComponentMarketParams

ComponentMarketParams provides the place holder for the market parameters needed to

value the component object – discount curve, treasury curve, EDSF curve, credit curve,

component quote, treasury quote map, and fixings map. It provides implementation of the

ComponentMarketParamsRef interface.

ComponentMarketParams implements the serialization interface to serialize the instance

into byte arrays, as well as de-serialize and populate a ComponentMarketParams instance

from an input byte array.

CreditCurveScenarioContainer

CreditCurveScenarioContainer serves as the place holder for the bump parameters and

the curves for the different credit curve scenarios. It contains the spread and the recovery

bumps, and the credit curve scenario generator object that wraps the calibration

instruments.

It holds the base credit curve, spread bumped up/down credit curves, recovery bumped

up/down credit curves, and the tenor mapped up/down credit curves. Depending upon the

 35

scenario creation mode, CreditCurveScenarioContainer cooks the curves that correspond

to the scenarios above, and retrieves them.

IRCurveScenarioContainer

IRCurveScenarioContainer serves as the placeholder for the different IR scenario curves.

It contains the IR curve scenario generator object that wraps the calibration instruments.

IRCurveScenarioContainer holds the base IR curve, spread bumped up/down IR curves,

and tenor mapped up/down credit curves. Depending upon the scenario creation mode,

cooks the curves that correspond to the scenarios above, and retrieves them.

MarketParamsContainer

MarketParamsContainer is the principal placeholder for the comprehensive suite of the

market set of curves for the given date. It contains treasury quote map, fixings map, IR

scenario curve map, credit curve scenario set map, and component quote map.

MarketParamsContainer provides an extensive set of functionality for setting/getting

scenario curves and quotes. It also provides a collection of function to retrieve scenario

market parameters for the given component or basket product:

• Sets/gets scenario discount curve set and scenario credit curve set for a given IR

currency/credit curve.

• Sets/gets quote for a given treasury benchmark or for a full set of treasury

benchmarks.

• Get/set the fixings map.

• Sets/gets quote for a given component or for a full set of components.

• Get component market parameters for the given component and scenario.

• Get the map of tenor component market parameters for the given component across

each of the IR tenors.

 36

• Get the map of tenor component market parameters for the given component across

each of the credit tenors.

• Get the basket market parameters for the given basket and scenario.

• Get the map of flat IR bumped basket market parameters for the given basket across

each of the IR curves.

• Get the map of flat credit bumped basket market parameters for the given basket

across each of the credit curves.

• Get the map of flat recovery bumped basket market parameters for the given basket

across each of the credit curves.

• Get the double map of the tenor IR bumped basket market parameters for the given

basket across each of the IR curves and their tenors.

• Get the double map of the tenor credit bumped basket market parameters for the

given basket across each of the credit curves and their tenors.

• Get the double map of the tenor recovery bumped basket market parameters for the

given basket across each of the credit curves and their tenors.

NodeTweakParams

NodeTweakParams serves as the placeholder for the scenario tweak mode, for either the

whole curve, or for segments of it. It contains the tweak type (parallel/proportional),

tweak node, or tweak amount.

NodeTweakParams implements the serialization interface to serialize its instance into

byte arrays, as well as de-serialize and populate a NodeTweakParams instance from an

input byte array.

 37

Package org.drip.param.pricer

This package contains all the pricing parameters. Currently it only implements the non-

correlation pricing parameter.

PricerParams

PricerParams is a place holder for the credit pricing parameters across all credit product

classes and pricing methods. It contains the loss step discretization scheme, time domain

unit size, whether survival is to be calculated to the period accrual date or period pay

date, and whether current pricing is a calibration operation or not.

PricerParams implements the serialization interface to serialize the instance into byte

arrays, as well as de-serialize and populate a PricerParams instance from an input byte

array.

CalibrationParams

CalibrationParams serves as the placeholder for the calibration parameters – the measure

to be calibrated, and the type and the nature of the calibration to be done, and the exercise

parameters to which the calibration is set.

CalibrationParams implements the serialization interface to serialize its instance into byte

arrays, as well as de-serialize and populate a CalibrationParams instance from an input

byte array.

 38

Package org.drip.param.product

This package implements an extensive set of classes that encapsulate groups of product

contract details for cash flow generation, and valuation.

BondCFTerminationParams

BondCFTerminationParams contains the termination static/status parameters for the

bond. Specifically, indicates whether the bond is perpetual, has been called, or has

defaulted.

BondCFTerminationParams implements the serialization interface to serialize the

instance into byte arrays, as well as de-serialize and populate a

BondCFTerminationParams instance from an input byte array.

BondCouponParams

BondCouponParams contains the coupon parameters for the bond. Indicates what the

bond coupon/spread is, and contains the coupon schedule and the coupon type.

BondCouponParams implements the serialization interface to serialize the instance into

byte arrays, as well as de-serialize and populate a BondCouponParams instance from an

input byte array.

BondCurrencyParams

 39

BondCurrencyParams contains the currency parameters for the bond. It contains the

trade, the coupon, and the redemption currencies.

BondCurrencyParams implements the serialization interface to serialize the instance into

byte arrays, as well as de-serialize and populate a BondCurrencyParams instance from an

input byte array.

BondFixedPeriodGenerationParama

BondFixedPeriodGenerationParams contains the period generation parameters for the

bond. It contains the frequency, accrual/coupon day-count conventions, effective,

maturity, and final maturity dates, and maturity type. The coupon periods generated are

and kept in a list.

BondFixedPeriodGenerationParams implements the serialization interface to serialize the

instance into byte arrays, as well as de-serialize and populate a

BondFixedPeriodGenerationParams instance from an input byte array.

BondFloaterParams

BondFloaterParams is the placeholder for the bond’s floating rate parameters. It contains

the floater flag, the rate index, the index spread, floater day count, and the current

coupon.

BondFloaterParams implements the serialization interface to serialize the instance into

byte arrays, as well as de-serialize and populate a BondFloaterParams instance from an

input byte array.

 40

BondIdentiferParams

BondIdentifierParams is the placeholder for the bond’s identifier parameters. It contains

the ISIN, CUSIP, bond ID, and the ticker.

BondIdentifierParams implements the serialization interface to serialize the instance into

byte arrays, as well as de-serialize and populate a BondIdentitiferParams instance from

an input byte array.

BondIRValuationParams

BondIRValuationParams serves as the placeholder for the bond’s IR valuation

parameters. It contains the bond’s IR curve, the quoting convention, the calculation type,

the first settle date, and the redemption value.

BondIRValuationParams implements the serialization interface to serialize the instance

into byte arrays, as well as de-serialize and populate a BondIRValuationParams instance

from an input byte array.

BondNotionalParams

BondNotionalParams serves as the placeholder for the bond’s notional parameters. It

contains the bond’s current notional and the outstanding notional schedule.

BondNotionalParams implements the serialization interface to serialize the instance into

byte arrays, as well as de-serialize and populate a BondNotionalParams instance from an

input byte array.

 41

BondPeriodGenerationParams

BondPeriodGenerationParams is the placeholder for the generic bond’s period generation

parameters. It contains the bond’s date adjustment parameters for period start/end, period

accrual start/end, effective, maturity, pay and reset, first coupon date, and interest accrual

start date. Validation of the BondPeriodGenerationParams class results in the generation

of the list of periods according to the date generation rules – invalid/inconsistent

parameters result in no such list being created.

BondPeriodGenerationParams implements the serialization interface to serialize the

instance into byte arrays, as well as de-serialize and populate a

BondPeriodGenerationParams instance from an input byte array.

BondTSYParams

BondTSYParams is the placeholder for the bond’s treasury related parameters. It contains

the bond’s treasury benchmark set, government treasury benchmark, and EDSF short-end

benchmark identifiers.

BondTSYParams implements the serialization interface to serialize the instance into byte

arrays, as well as de-serialize and populate a BondTSYParams instance from an input

byte array.

CDXIdentifier

CDXIdentifier serves as the placeholder for the identifier parameters for a given standard

CDX contract. It contains the index, the tenor, the series, and the version for the given

contract.

 42

CDXIdentifier implements the serialization interface to serialize the CDXIdentifier

object instance into byte arrays, as well as de-serialize and populate a CDXIdentifier

instance from an input byte array.

CompCRValParams

CompCRValParams is the placeholder for the credit component’s credit valuation

parameters. It contains the credit curve, the component’s recovery, and whether that is

usable, the loss pay lag, and whether the accrual is to be applied on default.

CompCRValParams implements the serialization interface to serialize the instance into

byte arrays, as well as de-serialize and populate a CompCRValParams instance from an

input byte array.

CurrencyPair

CurrencyPair is the placeholder for the currency pair object for a given FX contract. It

contains the numerator currency, the denominator currency, and the quoting currencies,

and the PIP factor for the given contract.

CurrencyPair implements the serialization interface to serialize the instance into byte

arrays, as well as de-serialize and populate a CurrencyPair instance from an input byte

array.

EmbeddedOptionSchedule

EmbeddedOptionSchedule is the placeholder for the embedded option schedule for the

bond. It contains the schedule of exercise dates and factors, the exercise notice period,

 43

and whether the option is to call or put. Further, if the option is of the type fix-to-float on

exercise, it contains the post-exercise floater index and floating spread.

If the exercise date is not discrete (American option), the exercise dates/factors are

discretized according to a pre-specified discretization grid.

Several helper functions in EmbeddedOptionSchedule help create the schedule from

string date/factor arrays.

EmbeddedOptionSchedule provides functions to retrieve whether the option is for a put,

whether it is fix-to-float on exercise, and the date/factor array.

EmbeddedOptionSchedule implements the serialization interface to serialize the instance

into byte arrays, as well as de-serialize and populate a EmbeddedOptionSchedule

instance from an input byte array.

FactorSchedule

FactorSchedule serves as the place holder for factor index schedule of all types – in

particular coupon/principal factors. It contains matched date/factor arrays.

FactorSchedule provides static creator/factory functions that create a FactorSchedule

instance from the arrays of dates/factors, string arrays of dates/factors, and even bullet

schedules.

FactorSchedule provides functionality to retrieve the factor/factor index for a given date,

as well as the array of factors/dates. It also returns the effective time-weighted factor

between two arbitrary dates.

 44

FactorSchedule implements the serialization interface to serialize the instance into byte

arrays, as well as de-serialize and populate a FactorSchedule instance from an input byte

array.

TsyBmkSet

TsyBmkSet contains the applicable treasury benchmarks on the given bond. It holds the

primary treasury benchmark, and none or many secondary treasury benchmarks.

 45

TsyBmkSet implements the serialization interface to serialize the instance into byte

arrays, as well as de-serialize and populate a TsyBmkSet instance from an input byte

array.

 46

Package org.drip.param.valuation

This package holds the valuation related classes, typically based off of the given value

date.

CashSettleParams

CashSettleParams is the placeholder for the cash settlement parameters for a given

product or a settlement structure. It holds the settle delay, settlement adjustment calendar,

and the cash settle adjustment modes.

CashSettleParams implements the serialization interface to serialize the instance into byte

arrays, as well as de-serialize and populate a CashSettleParams instance from an input

byte array.

NextExerciseInfo

NextExerciseInfo serves as the placeholder for the next exercise information fields for a

given product, starting from the given valuation date. It contains the exercise type, the

exercise factor, and the exercise date.

NextExercise Info Implements the serialization interface to serialize the

NextExerciseInfo object instance into byte arrays, as well as de-serialize and populate a

NextExerciseInfo instance from an input byte array.

 47

QuotingParams

QuotingParams is the placeholder for the quoting parameters for a given product or a

settlement. Contains the quoting yield day count convention, quoting yield frequency,

whether EOM adjustment is to be applied or not, the adjustment calendar, and whether

the product is spread quoted or price quoted.

QuotingParams implements the serialization interface to serialize the instance into byte

arrays, as well as de-serialize and populate a QuotingParams instance from an input byte

array.

ValuationParams

ValuationParams is the placeholder for the valuation parameters for a given product. It

contains the valuation and the cash pay/settle dates.

ValuationParams implements the serialization interface to serialize the instance into byte

arrays, as well as de-serialize and populate a ValuationParams instance from an input

byte array.

WorkoutInfo

WorkoutInfo serves as the placeholder for the workout parameters. It contains the date,

the factor, and the yield of the workout.

WorkoutInfo implements the serialization interface to serialize the instance into byte

arrays, as well as de-serialize and populate a WorkoutInfo instance from an input byte

array.

 48

Package org.drip.product.common

This package contains the abstract classes from which all components (calibratable or

not) are built.

CalibratableComponent

CalibratableComponent is an abstract class that exposes functionality that makes the

component calibratable. It implements the Component interface, provides stub for getting

the component’s primary code, and optionally provides multiple secondary codes.

CalibratableComponent also defines the calibMeasures method – which calculates and

returns the requested measure for the given set of inputs.

Component

Component is an abstract class that exposes functionality that defines component

products of al types. It extends the ComponentMarketParamRef interface, and provides

methods for getting the component’s notional, coupon, effective date, maturity date,

coupon amount, and list of coupon periods.

Component also calculates the full set of component measures across a set of specified

scenarios, and holds the results in ComponentOutput. Functions are available to retrieve

the specified measure for the component.

 49

Package org.drip.product.creator

This package provides the functionality needed to create the full-featured (primarily

credit) product, in particular bonds. It provides functionality to load the definitions for the

valuation as well as informational reference data for bonds. It also provides functionality

to create custom bonds of all variants found in standard bonds.

BondBuilder

BondBuilder contains the suite of helper functions for creating user defined bonds,

optionally with custom cash flows and embedded option schedules (European or

American).

Specifically, BondBuilder creates full-featured bonds from custom cash flows

(coupon/principal flows or amortization/capitalization schedules), simple fixed rate

bonds, simple floater bonds, and bonds from explicitly specified coupon flows and

principal flows (principal flows can be specified as either principal pay down/up or

outstanding notional).

BondProductBuilder

BondProductBuilder contains the comprehensive set of static parameters of the bond

product needed for the full bond valuation.

Specifically, the BondProductBuilder contains the bond identifier parameters (ISIN,

CUSIP), the issuer level parameters (Ticker, SPN or the credit curve string), the coupon

parameters (coupon rate, coupon frequency, coupon type, day count), the maturity

 50

parameters (maturity date, maturity type, final maturity, redemption value), the date

parameters (announce, first settle, first coupon, interest accrual start, and issue dates), the

embedded option parameters (callable, putable, has been exercised), the currency

parameters (trade, coupon, and redemption currencies), the floater parameters (floater

flag, floating coupon convention, current coupon, rate index, spread), and the fags

indicating whether the bond is perpetual or has defaulted.

BondProductBuilder is created from resultset of a bond ref data entry, from an SQL

query. On construction, it is validated to ensure internal consistency.

BondProductBuilder provides functionality to get either the individual fields or the

corresponding bond parameter set.

BondProductBuilder implements the serialization interface to serialize the instance into

byte arrays, as well as de-serialize and populate a BondProductBuilder instance from an

input byte array.

BondRefDataBuilder

BondRefDataBuilder contains the entire set of static parameters for the bond product.

Specifically, it holds the bond identifier parameters (ISIN, CUSIP, BBG ID, name short

name), the issuer level parameters (Ticker, category, industry, issue type, issuer country,

issuer country code, collateral type, description, security type, unique Bloomberg ID,

long company name, issuer name, SPN or the credit curve string), issue parameters (issue

amount, issue price, outstanding amount, minimum piece, minimum increment, par

amount, lead manager, exchange code, country of incorporation, country of guarantor,

country of domicile, industry sector, industry group, industry sub-group, senior/sub),

coupon parameters (coupon rate, coupon frequency, coupon type, day count), maturity

parameters (maturity date, maturity type, final maturity, redemption value), date

 51

parameters (announce, first settle, first coupon, interest accrual start, next coupon,

previous coupon, penultimate coupon, and issue dates), embedded option parameters

(callable, putable, has been exercised), currency parameters (trade, coupon, and

redemption currencies), floater parameters (floater flag, floating coupon convention,

current coupon, rate index, spread), trade status, ratings (S & P, Moody, and Fitch), and

whether the bond is private placement, is registered, is a bearer bond, is reverse

convertible, is a structured note, can be unit traded, is perpetual or has defaulted.

BondRefDatatBuilder is typically created from the SQL query resultset of a bond ref data

entry. It provides functionality to get either the individual fields or the corresponding

bond parameter set.

BondRefDataBuilder implements the serialization interface to serialize the instance into

byte arrays, as well as de-serialize and populate a BondRefDataBuilder instance from an

input byte array.

CDXRefDataBuilder

CDXRefDataBuilder contains the entire set of static and valuation parameters for the

named Standard CDX Product.

Specifically, CDXRefDataBuilder holds the Index Curve ID, Index Curve SPN, Index

Label, Index Name, Index Issue Date, Index Maturity Date, Index Coupon, Index

Currency, Index Full First Stub, Index Day Count Convention, Index Recovery, Index

Coupon Frequency, Index Reference Entity ID, Index Class, Index Series, Index Group

Name, Index Short Group Name, Index Version, Index Life Span, Index Curvy Curve ID,

Index Factor, Original Component Count, Defaulted Component Count, Index Location,

whether the index pays accrued on default, whether the index knocks out on default,

whether the index is quoted as a CDS, Index Bloomberg Ticker, and Index Short name.

 52

Individual functions in CDXRefDataBuilder validate each one of its above-mentioned

fields.

Finally, CDXRefDataBuilder also has functionality to create the actual index basket

product (along with the corresponding cash-flows).

 53

Package org.drip.product.credit

This package implements all the liquid and the bespoke components and basket credit

products – credit default swap, basket credit default swap, and bond.

BasketBond

BasketBond serves as the placeholder for the bond basket/bond ETF product contract

details. It contains the basket name, the basket notional, the component bonds, and their

weights.

BasketBond contains methods to retrieve the notional at different times, the coupon, the

effective/maturity dates, the flow periods, the component IR and the component credit

curves. Its value method returns a full set mapped set of all the product measures for a

given set of scenario curves. Using this in conjunction with the calcMeasures of the

BondBasket produces a comprehensive set of all the mapped scenario measures.

BasketBond implements the serialization interface to serialize the BondBasket object

instance into byte arrays, as well as de-serialize and populate a BondBasket instance from

an input byte array.

BasketDefaultSwap

BasketDefaultSwap serves as the placeholder for the basket default swap product contract

details. It contains the effective date, the maturity date, the coupon, the coupon day count,

the coupon frequency, the basket components, the basket notional, the loss pay lag, and

optionally the outstanding notional schedule and the flat basket recovery.

 54

BasketDefaultSwap provides a number of helper functions to create named CDX from an

effective date, maturity date, coupon, IR curve, and a set of components – in a few

different forms.

BasketDefaultSwap also implements the following core basket functionality:

• It retrieves the notional at different times, the coupon, the effective/maturity dates, the

flow periods, the component IR and the component credit curves.

• The value method returns a full set mapped set of all the product measures for a given

set of scenario curves. Using this in conjunction with the calcMeasures of the

BasketProduct produces a comprehensive set of all the mapped scenario measures.

BasketDefaultSwap implements the serialization interface to serialize the instance into

byte arrays, as well as de-serialize and populate a BasketDefaultSwap instance from an

input byte array.

BasketProduct

BasketProduct is the master base class for all the basket credit products. It is an abstract

class that extends the BasketMarketParamRef interface. It provides methods for getting

the basket’s components, notional, coupon, effective date, maturity date, coupon amount,

and list of coupon periods.

BasketProduct calculates the full set of basket measures across a set of specified

scenarios, and holds the results in BasketOutput. It retrieves the specified measure for the

basket.

Bond

 55

Bond is the concrete base class that implements the foundation functionality behind all

kinds of bonds. Like other credit components, bond extends the CreditComponent

abstract class.

The static data behind the bond class is captured in a set of 11 container classes –

BondTSYParams, BondCouponParams, BondNotionalParams, BondFloaterParams,

BondCurrencyParams, BondIdentifierParams, BondIRValuationParams,

CompCRValParams, BondCFTerminationEvent, BondFixedPeriodGenerationParams,

and one EmbeddedOptionSchedule object instance each for the call and the put objects.

Each of these parameter sets can be set separately.

Bond class provides functionality to retrieve al the valuation related bond contract details:

• It gets the bond’s different identifiers – ISIN, CUSIP, primary/secondary codes, and

bond’s canonical name.

• It gets the bond’s coupon at different times, and the IR/credit/EDSF/TSY benchmark

names.

• It retrieves the notional at different times, effective/maturity dates, coupon/loss flow

periods, and component credit valuation parameters.

• It retrieves floater parameters (rate index, current coupon, float spread, floating

coupon convention), embedded option schedule for call/put, whether the bond is

amortizing, defaulted, is perpetual, coupon/accrual day-count, coupon type, coupon

frequency, trade/redemption/coupon currency.

The bond class implements a comprehensive set of analytics calculations given different

kinds of inputs. Calculations are done for: reset date for the period given by the valuation

date, accrual, theoretical price from a discount/credit curve, price/yield/Z spread/credit

basis/treasury spread/G Spread/I Spread/par asset swap spread/duration/convexity from

price/yield/Z spread/credit basis/treasury spread/G Spread/I Spread/par asset swap spread

inputs. Calculations are done to either a specified work-out date, or maturity/optimal

exercise date.

 56

The bond’s value method returns a complete mapped set of all the bond product measures

for a given set of scenario curves. Using this in conjunction with the calcMeasures of the

Component produces a comprehensive set of all the mapped scenario measures.

Bond also implements calibMeasures method, which calculates and returns the specific

measure requested.

Bond also implements a calibrator that calibrates the yield, the credit basis, or the Z

spread for the bond given the price input. Calibration happens via either Newton-

Raphson method, or via bracketing/root searching.

Bond implements the serialization interface to serialize the instance into byte arrays, as

well as de-serialize and populate a Bond instance from an input byte array.

CreditComponent

CreditComponent implements the base abstract class over which all credit components

are implemented. It extends the CalibratableComponent abstract class.

CreditComponent contains methods to get the credit valuation parameters, the coupon

and the loss flows, and recovery at either a single date, or time weighted average between

two dates (component recovery, if available, precedes curve recovery).

CreditDefaultSwap

CreditDefaultSwap is the place-holder for the credit default swap product contract details.

It contains the effective date, the maturity date, the coupon, the coupon day count, the

coupon frequency, the contingent credit, the currency, the basket notional, the credit

valuation parameters, and optionally the outstanding notional schedule.

 57

CreditDefaultSwap provides a number of helper functions to create named CDS from an

effective date, maturity date/tenor, coupon, IR curve, credit valuation parameters, and

comprehensive coupon period generation parameters – in a few different forms.

The CreditDefaultSwap class retrieves the notional at different times, the coupon, the

effective/maturity dates, the flow periods, the component IR/Credit curves, the

component credit valuation parameters, the CDS recovery, and the CDS

primary/secondary codes.

The value method returns a fully mapped set of all the product measures for a given set of

scenario curves. Using this in conjunction with the calcMeasures of the Component

produces a comprehensive set of all the mapped scenario measures.

CreditDefaultSwap also implements a flat spread calibrator that calibrates a flat hazard

curve off of the current CDS contract from a given market price.

CreditDefaultSwap implements the serialization interface to serialize the instance into

byte arrays, as well as de-serialize and populate a CreditDefaultSwap instance from an

input byte array.

StandardCDXManager

StandardCDXManager serves as the placeholder for all the standard CDX/iTRAXX

named product details. It contains the named CDX/iTRAXX series identifier (series,

version, and index), and maps that retrieve the first coupon date or the series from the

other, given an index.

 58

StandardCDXManager provides the functionality to retrieve the CDX/iTRAXX index

given the index, the series, and the tenor, as well as retrieve the on-the-run index

corresponding to the given date and tenor.

Finally, StandardCDXManager also provides functionality to retrieve the pre-set and pre-

loaded CDX names, their first coupon dates, and descriptions.

StandardCDXParams

StandardCDXParams serves as the placeholder for the given standard CDX/iTRAXX

index. It contains the components, the currency, and the coupon for the given index.

 59

Package org.drip.product.fx

This package implements the core vanilla FX products – the FX spot and FX forward.

Both these products may be quoted in different forms, and the conversions may be

applied using the functionality available in those classes.

FXForward

The FXForward class serves as the place-holder for the FX forward product contract

details. It contains the effective date, the maturity date, the currency pair and the product

code.

FXForward class provides static helper functions that create named FXForward object

from an effective date, maturity date/tenor, and currency pair. Its instance member

functions retrieve the product currency pair, the effective/maturity dates, and the

primary/secondary codes.

FXForward implements a number of the core FX forward functionality:

• Implies the FX forward as either an outright or a PIP from the input valuation

parameters, FX spot, numerator/denominator discount curves based on either the

numerator discount curve or the denominator.

• Calibrates the discount curve basis from the input valuation parameters, FX

spot/forward, numerator/denominator discount curves based on either the numerator

discount curve or the denominator.

• Implements a flat spread calibrator that calibrates a flat curve off of the current CDS

contract from a given market price.

 60

The value method returns a full set mapped set of all the product measures for a given set

of scenario curves.

FXForward implements the serialization interface to serialize the instance into byte

arrays, as well as de-serialize and populate a FXForward instance from an input byte

array.

Finally FXForward also implements a FX basis calibrator that calibrates a basis to either

the numerator or the denominator curve off of the current FX forward through the

Newton Raphson method.

FXSpot

The FXSpot class serves as the place-holder for the FX spot contract details – the spot

date and the currency pair.

FXSpot implements the serialization interface to serialize the instance into byte arrays, as

well as de-serialize and populate a FXSpot instance from an input byte array.

 61

Package org.drip.product.quote

This package contains classes the provide the implementation behind different kinds of

quotes – sided quotes, component quotes, and live ticking quotes.

ComponentQuote

The ComponentQuote serves as the placeholder for the different types of quotes for a

given component. It contains a single market field/quote pair, but multiple alternate

named quotes (to accommodate quotes on different measures for the component).

ComponentQuote implements the serialization interface to serialize the instance into byte

arrays, as well as de-serialize and populate a ComponentQuote instance from an input

byte array.

LiveQuote

LiveQuote is the interface exposing the “refresh” method to be implemented by any

derived product quote.

Quote

The Quote class contains the details corresponding to a product quote. It contains the

quote value, quote instant for the different quote sides (bid/ask/mid).

 62

Quote implements the serialization interface to serialize the instance into byte arrays, as

well as de-serialize and populate a Quote instance from an input byte array.

 63

Package org.drip.product.rates

This class provides the implementation behind the interest rate products of all kinds –

cash/money market products, euro-dollar futures, and the interest rate swap.

Cash

The Cash class serves as the placeholder for the cash product contract details. It contains

the effective date, the maturity date, the coupon, the coupon day count, the coupon

frequency, the currency, the basket notional, and optionally the outstanding notional

schedule.

Cash class provides a number of static, helper factory functions that create Cash instance

from the effective date, the maturity date/tenor, and the IR curve. Its instance members

retrieve the notional at different times, the coupon, the effective/maturity dates, the flow

periods, the IR curves, and the product primary/secondary codes.

The value method returns a full set mapped set of all the product measures for a given set

of scenario curves. Using this in conjunction with the calcMeasures of the Component

produces a comprehensive set of all the mapped scenario measures.

Cash implements the serialization interface to serialize the instance into byte arrays, as

well as de-serialize and populate a Cash instance from an input byte array.

EDFuture

 64

The EDFuture class serves as the placeholder for the euro-dollar product contract details.

It holds the effective date, the maturity date, the coupon, the coupon day count, the

coupon frequency, the currency, the basket notional, and optionally the outstanding

notional schedule.

Static helper functions of EDFuture create EDF instance from effective date, maturity

date/tenor, EDF code, and IR curve, as well create a euro-dollar pack from a given date.

Instance member functions retrieve the notional at different times, the coupon, the

effective/maturity dates, the flow periods, the IR curves, and the product

primary/secondary codes.

The value method returns a full set mapped set of all the product measures for a given set

of scenario curves. Using this in conjunction with the calcMeasures of the Component

produces a comprehensive set of all the mapped scenario measures.

EDFuture implements the serialization interface to serialize the instance into byte arrays,

as well as de-serialize and populate a EDFuture instance from an input byte array.

InterestRateSwap

InterestRateSwap is the placeholder for the interest-rate-swap product contract details. It

contains the effective date, the maturity date, the coupon, the coupon/accrual day count,

the coupon frequency, the currency, the basket notional, the floating rate index, and,

optionally, the outstanding notional schedule.

Static helper functions create IRS instance from an effective date, maturity date/tenor,

IRS code, and IR curve. Instance members retrieve the notional at different times, the

coupon, the effective/maturity dates, the flow periods, the IR curves, and the product

primary/secondary codes.

 65

The value method returns a full set mapped set of all the product measures for a given set

of scenario curves. Using this in conjunction with the calcMeasures of the Component

produces a comprehensive set of all the mapped scenario measures.

InterestRateSwap implements the serialization interface to serialize the instance into byte

arrays, as well as de-serialize and populate a InterestRateSwap instance from an input

byte array.

 66

Package org.drip.service.api

This package implements the static client level and service level API through which the

stateless (or limited stateful) interactions with the CreditAnalytics functionality is to be

made.

FI

The FI class exposes all the CreditAnalytics API to clients – this class serves as the main

functional interface. On initialization, it retains an instance of the current date/time, the

bond valuation data, and the bond ref data caches, and the SQL connections to all the

databases.

The following are the extensive and comprehensive high-level description of the

functionality provided by FI (please refer to FI javadoc and the source for more details):

• Initializes the holiday calendars, the data-base connections, and the current

date/times.

• Gets all the holiday locations, available day counts, week day/weekend/combined

holidays for the location set and year, the weekend days, and whether the given day is

a holiday or not.

• Calculates the year fraction contained in the start/end dates, day count convention,

and holiday calendar set; also adjusts/rolls the given date to the next business day in

accordance with the holiday calendar set and adjustment convention.

• Gets the set of on-the-run treasury ISINs and their yields.

• Creates a component from the code, and makes a component set.

• Retrieves the available IR/TSY curve names, loads the live/EOD IR/TSY curve for a

given EOD or a set of EODs.

• Loads the live/EOD Cash/EDF/IRS curve(s) for a given EOD or a set of EODs.

 67

• Retrieves the available CDS curve names, loads the live/EOD CDS/bond/combined

credit curve for an issuer for a given EOD or a set of EODs.

• Add/remove/retrieve bond/bond ref data from bond ID (ISIN/CUSIP etc)

• Get the bond’s call/put schedules (optionally, given a date)

• Create a fixing for the given bond at the given period, get all available tickers, and get

all the ISINs for the given ticker, and their outstanding notional.

• Get outstanding issuer notional aggregated by pre-specified maturity buckets.

• Calculate the bond’s price/yield, theoretical credit price, spread to treasury

benchmark, Z Spread, I Spread, par asset swap spread, and credit basis given the

bond’s yield, bond’s price, or spread to a given treasury benchmark.

• Get the bond’s named boolean, string, integer, double, or date field.

• Create a CDX product given the effective and the maturity dates.

 68

Package org.drip.service.env

This package provides the functionality that implements the container for EOD set of

credit curves, IR curves, bond product objects, and bond marks holder.

BondManager

BondManager serves as the container that holds the EOD and bond static information for

the given issuer. It holds bond EOD bid/ask marks, ticker-wise maturity sorted set of

bonds, map containing bond instance to ID (ISIN/CUSIP), flags for different formats of

runs and corresponding displays/calculations.

BondManager provides the following functionality (please see javadoc and the source for

the precise usage):

• Loads the option schedule for all bonds.

• Calculates the bond measures and generates the formatted runs for a pair of bid/ask

price for the given bond.

• Generates formatted runs of measures for all the bonds for a given EOD.

• Retrieves and/or loads the bid/ask/mid levels for a single bond or for all the bonds on

a given EOD.

• Builds and retrieves the bond object associated with a ResultSet and a

MarketParamsContainer object.

• Loads the bond from the given bond ID, MarketParamsContainer, the SQL statement,

and an optional date to determine when the discretization of an American option

should start.

• Loads the entire ref data for a bond given the ID and the SQL statement.

• Gets all the available issuer tickers in the database.

 69

• Retrieves all the available ISINs for the given issuer ticker.

• Loads the full set of bonds and commits them to memory.

• Calculates the measures for all the bonds associated with a ticker maturity after the

valuation parameters, given the bid/ask prices and the market parameters.

• Calculates the measures for all the bonds associated with a ticker maturity after the

valuation parameters, given the closing bid/ask prices and the closing market

parameters.

• Calculates and saves/loads all the bond measures for all the bonds corresponding to

the given closing date.

CDSManager

CDSManager is the container that creates, maintains, and saves the EOD and CDS/credit

curve information on a per-issuer basis.

CDSManager retrieves all the credit curves available for the given EOD from the

database. It also saves the EOD credit measures that correspond to the credit curve

represented by the SPN ID from the input market parameters and the EOD tenor quotes

from the database – it also saves all the EOD credit measures all the curves in the given

MPC.

Finally, it loads all the credit curves corresponding to a given EOD from the database.

EnvManager

The EnvManager class sets the environment/connection parameters, and populates the

market parameters for the given EOD.

 70

EODCurves

The EODCurves container exposes the functionality to create the set of closing IR and

credit curves for a given EOD.

EODCurves builds the named EOD credit curve for the given SPN ID/discount curve

combination by retrieving the EOD quotes from the database, and using the specified

discount curve.

EODCurves also builds the named EOD IR curve of a specific type (cash/EDF/IRS) for

the given discount curve name and currency by retrieving the EOD quotes from the

database. It also builds the named full EOD IR curve using instruments of all types

(cash/EDF/IRS) for the given instrument set type (swaps/treasuries), discount curve

name, and currency by retrieving the corresponding EOD quotes from the database.

Finally, it loads the requested type of discount curve (cash/EDF/IRS/full/TSY) for the

given currency and the EOD, and optionally adds it to the market params container.

RatesManager

The RatesManager constructs, and gets the discount curve names of the requested type

(or the full discount curve) for the given EOD. It also loads the full closing discount

curve for the given EOD.

StaticBACurves

StaticBACurves class creates a set of discount/credit curves from customuser-defined

marks for a given EOD. It creates a set of USD treasury bonds/ED futures/IR swaps and

their quotes, builds a discount curve from them, and loads it to the market parameters

 71

container. It creates a set of credit default swaps and their quotes, builds a credit curve

from them, and loads it to the market parameters container.

 72

Package org.drip.service.external

This package implements the server level analytics functionality provided using

CreditAnalytics. It also implements an analytics client that dies a protocol based

interaction with the analytics server.

AnalyticsClient

The AnalyticsClient class captures the requests for the FI server from the GUI client,

formats them, and sends them to the AnalyticsServer.

AnalyticsServer

The AnayticsServer class receives the requests from the analytics client, and invokes the

FI functionality, and sends the client the results.

 73

Package org.drip.service.sample

This package contains classes the illustrate the full usage of the functionality provided by

FI – the inputs, the calculation results, the product creation and the product state

management details, extraction of the different product measures, curve construction

from user-supplied/live/EOD measures/quotes for discount curves, credit curves,

FX/treasury curves, as well as calculation of the several RV/valuation measures.

BondAnalyticsAPISample

This class contains a demo of the bond analytics API sample. It has functions illustrating

the creation and the usage of the principal and coupon schedules, custom fixed, floaters,

and custom bonds from arbitrary cash flows, bond with option schedules, run through of

the full set of bond relative value analytics, and calibration of credit curves from

CDS/bond prices and their corresponding measures.

BondBasketAPISample

This class contains a demo of the bond basket API sample. It has functions illustrating the

creation and the usage of the bond basket from its components, and a run through of the

full set of bond basket value.

BondLiveAndEODAPISample

This class contains a demo of the live and EOD API calls for bonds. It displays the full

set of RV, interest rate, and credit measures for a given bond identifier (ISIN/CUSIP)

 74

given closing price/yield/spread to treasury, full set of RV measures for all the bonds in a

given ticker, their individual and bucketed outstanding notional, full set of valuation and

relative value measures, coupon flows, and loss flows for a given identifier.

BondStaticAPISample

This class contains a demo of the API calls for bond static fields. It displays the full set of

static fields for a given bond identifier (ISIN/CUSIP).

CDSAnalyticsAPISample

This class contains a demo of the CDS analytics API sample. It has functions illustrating

the creation and the usage of CDS, display of their coupon and loss flows, and calibration

of credit curves from CDS prices of all types, and their corresponding measures, as well

as from the survival probabilities and hazard rates.

CDSBasketAPISample

This class contains a demo of the CDS basket API sample. It has functions illustrating the

creation and the usage of pre-set and pre-loaded CDS basket, the full set of named CDX

indices and their descriptions, and a run through of the full set of bond basket value.

CDSLiveAndEODAPISample

This class contains a demo of the live and EOD API calls for CDS. It displays the full set

of RV, interest rate, and credit measures for a given CDS given several forms of CDS

 75

quotes, and the creation of the calibrated credit curve for the given CDS curve name and

EOD.

DayCountAndCalendarAPISample

This class contains a demo of the day count and the calendar analytics API sample. It has

functions display of the built-in holiday locations, week days, weekends, and holiday sets

between a start date and an end date for a set of holiday calendars, available day count

calendars, and samples to adjust/roll according to holiday sets.

FXAPISample

This class contains a demo of the FX analytics API sample. It has functions to create and

use FX spot, FX forward curves (as either outright or as PIP), create basis curves both as

spot-starting basis as well as forward basis to the domestic/foreign rates curves, and

recovers the forward curve (in differing formats) from the corresponding basis.

RatesAnalyticsAPISample

This class contains a demo of the rates analytics API sample. It has functions illustrating

the creation and the usage of different rates instruments (cash/futures/swaps), display of

their coupon flows, and calibration of rates curves from discount factors and forward

rates, and their corresponding measures.

RatesLiveAndEODAPISample

 76

This class contains a demo of the live and EOD API calls for rates instruments. It

displays the full set cash/EDF/swaps/treasury/composite types of rates curves available

on a EOD, their calibration, creation and usage.

 77

Package org.drip.util.external

This package provides the set of interfaces and static functionality exposable to the

external CreditAnalytics API users.

FIGen

FIGen provides a collection of the static generic utility functions used by the internal and

external DRIP modules.

The following lists the set of functionality that FIGen provides (consult the javadoc and

the source for more details on the corresponding APIs):

• Initializes DRIP<->Bloomberg holiday code map, and rates curve switcher map.

• Utility functions to parse Bloomberg holiday codes, and the get tenor/month code

from frequency.

• Construct the default rate index string from the currency and the coupon frequency.

• Create a DRIP Julian Date from java date.

• Convert string to Boolean.

• Make Oracle date from YYYYMMDD string/ Bloomberg date string.

• Make double array from string tokenizer.

• Format input number into different requested formats (with optional padding).

• Create a fixings object for the bond, value date, and the fix coupon.

• Generate a GUID string.

• Generate the credit products loss period in accordance with the parameters specified

in the pricer.

 78

Validatable

Validatable is the interface that exposes the “validate” method. This method is needed to

validate the state of the implementing object.

 79

Package org.drip.util.date

This package implements the Julian date and time functionality used internally by

CreditAnalytics.

DateTime

DateTime class provides complete representation of the instantiation-time date and time

objects. It retrieves the date and time at the instance of creation (or an arbitrarily set

values).

DateTime implements the serialization interface to serialize the instance into byte arrays,

as well as de-serialize and populate a DateTime instance from an input byte array.

JulianDate

JulianDate class privides a comprehensive representation of the Julian Date and the date

manipulation functionality. Julian date is canonically represented as a double.

As a generic implementation of the date class, JulianDate provides the following

functionality:

• Converts year, month, and day to Julian double.

• Converts the Julian double to Y/M/D string.

• Extracts the year, month, or day from the input Julian double.

• Computes days elapsed in the year, days remaining in the year, or is the current day a

leap year.

• Finds out how many “leap days” are between two given dates – right/left inclusive.

 80

• Characters corresponding to the month/day in a few formats (regular/Oracle), and

vice versa.

• Number of days in the given month, whether the given Julian double corresponds to

the end-of-month.

• Different ways of constructing the Julian date object – Today, from YMD, from

DDMMMYYYY, or from simply a Julian double.

• Gets the object’s Julian double.

• Add/subtract days/business days/months/years/tenor.

• Gets the first EDF start date (based on the EDF roll months).

• Difference to/equal to/compare with another date,

• Get Oracle string representation, and the hash code.

 81

Package org.drip.util.internal

This package implements the internal utilities used by other CreditAnalytics modules.

FIUtil

FIUtil provides a set of utility functions meant primarily for other internal

CreditAnalytics modules. Its functions calculate the yield DF given the yield and time

fraction, and the treasury benchmark identifier from the valuation date and the maturity

date.

Logger

The logger implements level-set logging, backed by either the screen or a file. Logging

always includes time-stamps, and happens according to the level requested.

