Credit Analytics User/Developer Guide

L akshmi Krishnamurthy
v1l.4,1 May 2012



I ntroduction

Overview

CreditAnalytics is a full-featured financial fixeémcome credit analytics, trading, and risk
library, developed with a special focus towardsrteeds of the credit products

community.

In particular, CreditAnalytics provides analytiocsvalue liquid products (CDS, CDX,
CDO, and bonds of all types and variants), liquid atandardized index products, and
custom products (single credit forwards and optiansl portfolio credit forwards,

options, tranches, and other structures).

CreditAnalytics Features

CreditAnalytics captures the valuation, the anesytand the risk measures calculation
for the full set of liquid and semi-liquid creditqaucts. The following is a
comprehensive suite of credit products that it tesid

* Single name credit default swaps (with amortizingmon and notional schedules,
and custom recovery schedules)

» Portfolio credit default basket swaps (in particuiacovers the full range of liquid,
legacy, and custom CDX/ITRAXX across sectors, LCBX/X/Trac-
X/LevX/TRACERS, etc), again with variable coupontional, and custom recovery
schedules — please check the CDX Coverage foratmpiehensive list

» Liquid structured credit products — standard CDX/EB/Asia/EM
IG/HY/XO/HVOL, and sector and ratings based indexed tranches of all

attachments/detachments



* Bespoke structured credit products such as nttetautt basket and its full set of
variants, tranches on the standard indices asasdiespoke baskets, squared/cubed
structured variants, in both funded and un-funde$, as well as deterministic
amortizing coupon and principal pay down structures

* Merton type single name CDS “fundamental” valueed®ination from related equity
parameters.

» Comprehensive coverage of all bond types — fixedltfhg rate bonds, support for
different rate indices and fixings, amortizing/dapzing bonds, perpetual bonds,
European/Bermudan/American embedded option schedule their variants, fix-to-

float on exercise, custom bonds with principal,may and recovery schedules.

Optionally, CreditAnalytics also installs an inltset of bond reference data, bond marks,
and IR, treasury, and credit curve closes. Ondalled, it can also connect to this

database to run analytics and valuation on CDSoand positions.

CreditAnalytics also contains the following setcafve calibration functionality from

market quotes:

» Although not its primary function, CreditAnalytican bootstrap discount curve from
a variety of IR instruments and their quotes — fashey market instruments, futures
(e.g., EDSF), swaps, and treasury quotes.

» Comprehensive calibration routines for single naneelit curves such from CDS,
bonds, or a mixture of quotes. Inputs can be inar@DS quoted measures (fixed
coupon flat spreads, upfront points, or fair premipar spreads), one of bond quotes
(e.g., yield/Z Spread, asset swap spread, spreagasury, | Spread, G Spread, Bond
Basis, Discount Margin, Option Adjusted SpreaddirBasis, and other measures to
an effective exercise date, or to a specific wark-or to maturity), or a mixture of
any instrument and their corresponding measure.

* For basket products, CreditAnalytics provides apahensive set of basket basis
calibration routines for the credit indices, coat&in calibration routines for
standard/bespoke tranches, as well as a suitevahadd correlation calibration

functionality (such as multi-factor and random-taatorrelation calibration, base



correlation surface set up, and calibration toMleeton model), and
conditional/unconditional portfolio loss, pay dovamd default distributions over

time.

Finally, CreditAnalytics also calculates an elab®@sequence of measures relevant to
each product. It is built with an enhanced sequehstandard scenario curves that can

be used to generate very customized scenario nesasur

Documentation

Apart from the information provided in this useidg) additional documentation of
CreditAnalytics functionality and release notes rnayfound in the CreditAnalytics

website. Consult the javadoc for elaborate API asafprmation.

Installation and Dependencies

The core modules of CreditAnalytics are just twisja

» Drip.jar: This contains the complete suite of the entired@Analytics analytics.
Download and install this in your class-path.

* Ojdbcl4.jar: This contains the Oracle JDBC drivers neede@dgess to the

reference data (optional). Download and insta#i thiyour class-path.

Configuration

All the configuration entries are maintained in grevided Config.xml file.
Configuration includes information on the locattorthe day count files, data tables for

the bond static reference data, bond closing naate, and IR/CDS/treasury closing



guotes. Each of this information is optional, aimel tonsequence of not providing a

configuration file is that the defaults will be ds& he following are defaults:

» Day count entries absent — CreditAnalytics usesmapcehensive set of built in day
count conventions and holiday calendars acrossuwarvhelming majority of
locations, so day count entries are mostly not e@édnless specifically to overwrite
the CreditAnalytics ‘s day count/holiday calendar).

* Bond reference data tables absent — Will not be @mbaccess a bond by its
ISIN/CUSIP or any of the identifiers. You will dtbe able to create user-defined
bonds, ranging from simple fixed coupon bonds tmglex ones such as
amortization/capitalization, floaters, and bonddhwvembedded options (see next
section).

» Closing curve mark tables absent: Will not be ableetrieve closing
IR/credit/treasury/FX curve marks and create tlaosees. Will still be able to

calibrate user-defined curves from custom quotes f&xt section).

Getting Started

Once you have downloaded and installed CreditArmalythe first step is to set up the
configuration by altering the entries providedhe Config.xml file (you can rename it,
as long you identify the full path in the initisdiz— see below). Of course, you don’t even
need a configuration file — in which case the sg#idefault to the values provided in the

previous section.

Any of the samples in the examples folder wouldHgeplace to start. They contain a

comprehensive set of illustrated usage of all thred{Analytics API calls.

String strConfig;

boolean bFIInit = FI.Init (strConfig);



The call FlInit initializes the CreditAnalyticdliary - it takes the optional configuration
file as an input. If the initialization is not sassful, certain CreditAnalytics functionality

will not be available, as the sample demonstrates.



DRIP Class Layout and Package Hierarchy

The full set of CreditAnalytics functionality is ptemented in a set of 27 packages. The
subsequent sections describe each of the packalggaih The layout and the hierarchy

of the packages is shown below.

Functional | Functional Sub-group
Class
Group / Package/ Module

org.drip.analytics core e Serializer

* CreditCurve

» DiscountCurve
org.drip.analytics curve * FXBasis

* FXCurve

» ZeroCurve

* ActActDCParams

* DateAdjustParams

* DayCount

* FixedHoliday
org.drip.analytics daycount * FloatingHoliday

* Holiday

* LocHolidays

» StaticHoliday

*  WeekendHoliday
org.drip.analytics holset * LocHolidays

e CouponPeriod
org.drip.analytics period * Period

* ProductCouponPeriodCurveMeasures




ProductLossPeriodCurveMeasures

org.drip.calc

output

BasketOutput
BondCouponMeasures
BondOutput
BondRVMeasures
BondWorkoutMeasures

ComponentOutput

org.drip.chart

surface

BuildSurface

Contour3D

ContourPlots
GeneratedDelaunaySurface
Histogram
MultiColorScatter

Scatter4D

org.drip.curve

calibration

Bootstrapable
ComponentCalibrator
ComponentCalibratorBracketing
ComponentCalibratorNR
CreditCurveScenarioGenerator

IRCurveScenarioGenerator

org.drip.feed

historical

LoadCreditFeeds

org.drip.feed

reference

LoadBondFeed

org.drip.param

config

XMLConfigReader

org.drip.param

market

BasketMarketParamRef
BasketMarketParams
ComponentMarketParamRef
ComponentMarketParams
CreditCurveScenarioContainer

IRCurveScenarioContainer




MarketParamsContainer

NodeTweakParams

org.drip.param

pricer

CalibrationParams

PricerParams

org.drip.param

product

BondCFTerminationEvent
BondCouponParams
BondCurrencyParams
BondFixedPeriodGenerationParams
BondFloaterParams
BondldentifierParams
BondIRValuationParams
BondNotionalParams
BondPeriodGenerationParams
BondTSYParams
CDXldentifier
CompCRValParams
CurrencyPair
EmbeddedOptionSchedule
FactorSchedule

TsyBmkSet

org.drip.param

valuation

CashSettleParams
NextExerciselnfo
QuotingParams
ValuationParams

Workoutlnfo

org.drip.product

common

Component

CalibratableComponent

org.drip.product

creator

BondBuilder
BondProductBuilder




BondRefDataBuilder
CDXRefDataBuilder

org.drip.product

credit

BasketBond
BasketDefaultSwap
BasketProduct

Bond
CreditComponent
CreditDefaultSwap
StandardCDXManager
StandardCDXParams

org.drip.product

fx

FXForward
FXSpot

org.drip.product

quote

ComponentQuote
LiveCurve

Quote

org.drip.product

rates

Cash
EDFuture

InterestRateSwap

org.drip.service

api

FI

org.drip.service

env

BondManager
CDSManager
EnvManager
EODCurves
RatesManager
StaticBACurves

org.drip.service

external

AnalyticsClient

AnalyticsServer

org.drip.service

sample

BondAnalyticsAPISample
BondBasketAPISample

10




BondLiveAndEODAPISample
BondStaticAPISample
CDSAnalyticsAPISample
CDSBasketAPISample
CDSLiveAndEODAPISample
DayCountAndCalendarAPISample
FXAPISample
RatesAnalyticsAPI1Sample
RatesLiveAndEODAPISample

org.drip.tester

product

BondTestSuite
FIFull
FuncTestSuite

SerializerTestSuite

org.drip.util

common

FIGen
Validatable

org.drip.util

date

DateTime

JulianDate

org.drip.util

internal

FlUtil
Logger

11




Package org.drip.analytics.core

This package implements the core interfaces/alistiagses that provide functionality

common across much of DRIP. Currently, this hag onk abstract class — Serializer.

Serializer

The Serializer abstract class defines the corecobgializer methods — serialization of
the object state onto a byte-array, and objecttoactson through de-serialization out of

byte arrays.

Methods that the serializer implements providedieent serializer version, as well as
object trailers, and delimiters for fields, coliect records, collection key values, and
multi-level key-value collections. Derived implentations over-ride these fields as

appropriate.

12



Package org.drip.analytics.curve

This package contains the “curve” functionality fioe different kinds of curves — credit
curve, discount curve, and FX forward curve. Adrdet here, curve simply holds the
term structure of a calibrated or a cooked markeameter. Period measures available
for different times are available directly as memtiiethe corresponding curve API.
Calibration of the curve is covered in another paek— however, the curve may
(optionally) return the instruments, the quotes] geir corresponding measures from the
curve object.

CreditCurve

The CreditCurve class serves as the baseline heaard holder object, and provides the
time-dependent survival probabilities and recovatgs. It contains term structure for
recovery, the calibration instruments, calibratieasures, calibration quotes, and
parameters.

CreditCurve maybe created in several ways:

» Survival/recovery curve from start date, a solitaayard rate and a solitary recovery.
» Survival/recovery curve from start date, survivatles, and a solitary recovery.

* From start date, single hazard node and solitagvery.

» From start date, hazard node array, and solitagvery.

» From start date, hazard node array and recovery agdy. Node point sets need not

match for hazards and recoveries.

The curve calibration process may set the caliamatistruments, calibration valuation
parameters, calibration pricing parameters, calimanarket parameters (discount

curves/fixings), calibration measure, and caliloratiype. The CreditCurve

13



implementation then retrieves the entire set abcation input instruments, or the quote
for a given input calibration instrument. Furthéthe CreditCurve implements the
LiveCurve interface, it may also be able to retidve tick value for the given

instrument.

Using the set of calibration instruments retairied,CreditCurve provides scenario
curves based off of one of the following shifts:

» Calibrate and create a new parallel hazard-shdtede.

» Calibrate and create a new parallel quote-shiftede:

» Calibrate and create a new parallel SNAC quotdeshifurve.

Since the CreditCurve is bootstrapable, it providestionality to get the master credit
curve name, set calibration node quote value, binmgalibration node quote, or assign

a flat hazard node value across all tenors.

Credit curve also provides the following core ctédnctionality:

» Calculate survival from the start date to the gidate/tenor

» Calculate time weighted survival from the staredat dates within a pair of start and
end dates/tenors

» Calculate the hazard rate between two dates/tenors

» Calculate hazard rate to the specified date.

» Calculate recovery rate at the specified date/tenor

» Calculate time weighted recovery rate from thetstate to dates within a pair of start

and end dates/tenors
Finally, credit curve implements the serializatioterface to serialize the credit curve

instance into byte arrays, as well as de-serialimepopulate a credit curve instance from

an input byte array.

14



DiscountCurve

The DiscountCurve class holds the bootstrapped sémsture of the forward rates and
their corresponding maturity nodes. It providegtadl regular discount curve
functionality — e.qg., the implied rate between whades, and the discount factor between a
pair of dates. It may also optionally contain thélration instruments, the calibration

measures, the calibration quotes, and other releadibration parameters.

The DiscountCurve maybe built in one of the follog/ways:
* From the start date, the currency, and the arraatd nodes and discount factors.

* From the start date, the currency, and a discaiet r

During the calibration process, the calibrator reatythe discount curve’s calibration
instruments, calibration valuation parametersjcation pricing parameters, calibration
market parameters (fixings), calibration measund, @libration type. In this case, the
DiscountCurve may be able to retrieve the fullcfetalibration instruments, or the quote
for a given input calibration instrument. Furthéthe DiscountCurve implements the
LiveCurve interface, it may also be able to retidve tick value for the given

instrument.

Using the set of calibration instruments retairibd,CreditCurve provides scenario
curves based off of one of the following shifts:

» Calibrate and create a new parallel quote-shiftede:

» Calibrate and create a new parallel rate-shiftedecu

» Calibrate a shifted curve using a maturity-mismetthasis.
Since the DiscountCurve is bootstrapable, it presiflinctionality to get the master
discount curve name, get the discount curve cuyresgt calibration node quote value,

bump the calibration node quote, and assign dé#aard node value across all tenors.

Discount curve also provides the following corecdismting/PV’ing functionality:

15



» Get the discount factor to a given date/tenor.
» Calculate time weighted discount factor from trertstlate to dates within a pair of
start and end dates/tenors.

* Imply a rate between two dates/tenors.

Finally, discount curve implements the serializatinterface to serialize the discount
curve instance into byte arrays, as well as dexdssgiand populate a discount curve

instance from an input byte array.

FXBasis

The FXBasis curve contains the term structure obBXis. Basis can be full or
bootstrapped. It is constructed from the curreraiy, phe spot date, the spot FX, the
tenor dates/tenor basis array, and a flag indigatinether the basis has been

bootstrapped.

As part of its core functionality, the FXBasis atijealculates the term structure of the
FX forward (as either outright or as PIP) from & p&domestic/foreign discount curves,
from either domestic or foreign basis. It alsoiestes the currency pair, the spot date, the
spot FX, and the flag that indicates whether thebBXis is bootstrapped

Finally, FXBasis implements the serialization ifdee to serialize the FXBasis instance

into byte arrays, as well as de-serialize and @ipw FXBasis instance from an input

byte array.

FXCurve

The FXCurve object contains the term structureadésitimes, the corresponding FX

forwards (PIP/outright), and the spot FX info foetgiven currency pair. It is constructed

16



from the array of dates, array of tenors, arrayXforwards, the PIP flag indicator array,

the currency pair, and the spot FX info.

The FXCurve provides the following functionality:

1. Calculate the full basis across the entire tefrithe forward curve give the domestic
and foreign rates curves, for the input valuatiaremeters.

2. Boot-strap the constant forward basis acrossithiee term of the forward curve
given the domestic and foreign rates curves, ferput valuation parameters.

3. Boot-strap a new domestic or foreign discoumtewsing the entire term of the
forward curve given the domestic and foreign rateses, for the input valuation

parameters.

The FXCurve object provides functionality for retring the currency pair, the spot date,
and the Spot FX.

Finally, FXCurve implements the serialization ifiéee to serialize the FXCurve instance
into byte arrays, as well as de-serialize and @ipwd FXCurve instance from an input

byte array.

ZeroCurve

The ZeroCurve contains the baseline zero discaunedolder object. It is primarily
used for calibrating the Z Spread of a bond. Itntaans term structure for the spot zero
rates, the current discount factors, the accraatifsns, and the corresponding dates. It is
constructed from the bond’s cash flow list, therelse parameters, the reference
discount curve, the yield quoting convention, amelaptional flat bump to the discount

rate.

ZeroCurve overrides the getDF function of the Dise€urve, and provides the ability to

get the zero rate at one of the given pre-set nodes

17



Package or g.drip.analytics.daycount

This package implements the day count, the datestadgnt/roll, location specific
holiday calendars, and different kinds of holiddyslso contains explicit set of non-
weekend holidays implemented for most locationisesé can be over-written using
externally specified days.

ActActDCParams

This class contains the date parameters corresppialthe actual/actual reference
period. ActActDCParams implements the serializaiiarface to serialize the instance
into byte arrays, as well as de-serialize and @ipwdn ActActDCParams instance from
an input byte array.

DateAdjustParams

This class contains the parameters needed fortadjudates — holiday calendar and
adjustment type. DateAdjustParama implements thalization interface to serialize the
instance into byte arrays, as well as de-serialimepopulate a DateAdjustParams
instance from an input byte array.

DayCountBasis

The DayCountBasis provides the core set of stayeabunt, holiday, and date

roll/adjustment functionality. The class contailzg$ that indicate where the holidays are
loaded from, as well as the holiday types and lodeks.

18



DayCountBasis loads the holiday calendar from gezidied location, or from the
specified location holiday file set in the configtion file. It gets the available holiday

locations. It gets the weekend and week-days quoreing to a calendar set.

DayCountBasis implements the following core dayrtdunctionality:
* It also gets the available day count conventions.

» Calculate the year fraction between 2 days fogthien day count.

* Roll the given date according to the date roll @ntion and the holiday calendar set.

» Check if the given date is a holiday accordingi® lioliday calendar set.

» Calculate the number of business days between &y® according to the holiday
calendar set.

» Calculate the number of holidays between two dagsraling to the holiday calendar
set.

* Adjust the given date forward in accordance wit given holiday calendar set.

FixedHoliday

This class contains the fixed holiday's date anatmowill be generated with an

optional adjustment for weekends in a given year.

FixedHoliday implements the serialization interfaoeserialize the instance into byte

arrays, as well as de-serialize and populate alFigkday instance from an input byte

array.

FloatingHoliday

This class contains the floating holiday’s montéy th week, and week in month. Will

be generated with an optional adjustment for weg&em a given year.

19



FloatingHoliday implements the serialization inged to serialize the instance into byte
arrays, as well as de-serialize and populate aiRtgioliday instance from an input byte

array.

Holiday

The Holiday class provides abstraction around alagland its description. It contains an
abstract function that generates an optional aaiest for weekends in a given year. Its
concrete function rolls the given holiday aroundeekend — rolling to a preceding or
succeeding day depending upon whether it is adirsecond weekend day. It also

returns the holiday description.

Holiday implements the serialization interface éoalize the instance into byte arrays, as
well as de-serialize and populate a Holiday ingdnom an input byte array.

L ocHolidays

This class contains the set of regular holidaysthadveekend holidays for a location.
Weekends are separately for the week days — weslkardset either an array of days, or
as the standard weekend (Saturday and Sundaydheaneeek days as static, fixed, or

floating holidays. LocHolidays are used to retretiee weekend and the regular holiday

set for the given location.

StaticHoliday

This class contains a full date as a fixed holid2gn be constructed from a stringified

date or a Julian date.

20



StaticHoliday implements the serialization integfdco serialize the instance into byte
arrays, as well as de-serialize and populate &Btatday instance from an input byte

array.

WeekendHoliday

WeekendHoliday class contains the dates correspgridithe weekend. Weekends can
be set from a date array, or as standard (Satamhpunday). WeekendHolidays are
used to retrieve the weekend days, and it ideastifithe given date is a weekend, and if it

is, is it a left or a right weekend.
WeekendHoliday implements the serialization integfto serialize the instance into byte

arrays, as well as de-serialize and populate a @/ei#oliday instance from an input

byte array.

21



Package org.drip.analytics.period

This package implements different types of periggisd, their generation, and the

corresponding curve measures used in CreditAnalytic

CouponPeriod

The CouponPeriod encapsulates the period det&aledeto the coupon period. It extends
the period class with day-count specific paramefegguency, reset date, and accrual
day-count convention.

Construction of CouponPeriod happens in one ofwags. For the multi-period
CouponPeriod set, a helper function creates af sstupon periods according generated
either backwards or forwards, according to perreddiency, and optionally specific date
adjustment rules for every date set (start/endsgatrual start/end dates, pay date, and
reset date) — this also allows for accrual DCFedéht from coupon DCF. For a single
period coupon set, another helper function is usexnstruct a single coupon period

from start and end dates (as in a zero coupon bond)

CouponPeriod also gets the accrual fraction torbitrary date within the period, as well

the period reset date.
CouponPeriod implements the serialization intertacgerialize the instance into byte

arrays, as well as de-serialize and populate a @degriod instance from an input byte

array.

22



Period

Period class serves as the place-holder for thealyperiod dates and fractions: the
period start/end dates, the period accrual starderes, the period pay date, and the full
period day count fraction.

Period class is used to retrieve the period stattfates, the period accrual start/end
dates, the period pay date, and the full periododayt fraction. Period reset date
defaults to the period start date. It also getsaattwgual fraction to an arbitrary date within

the period.

Period implements the serialization interface toasige the instance into byte arrays, as
well as de-serialize and populate a Period insténoce an input byte array.
ProductCouponPeriodCurveM easur es

The ProductCouponPeriodCurveMeasures class implsriendiscount curve and the
credit curve based coupon period valuation metacghe given period. It enhances the
Period class with the following period measures:ghriod start/end survival

probabilities, the period start/end notionals, Hreperiod end discount factor.

ProductCouponPeriodCurveMeasures retrieves pergtditend survival probabilities,

start/end notionals, and period end discount factor

ProductCouponPeriodCurveMeasures implements tledization interface to serialize
the instance into byte arrays, as well as de-s=giahd populate a

ProductCouponPeriodCurveMeasures instance fromgurt byte array.

ProductL ossPeriodCurveM easur es

23



The ProductLossPeriodCurveMeasures class implertfemttiscount curve and the
credit curve based loss period valuation metricste given period. The class enhances
the period class by the following period measutfes:period’s start/end survival
probabilities, and the period’s effective notionatbvery/discount factor.

ProductLossPeriodCurveMeasures retrieves the perstart/end survival probabilities,

and the period effective notional/recovery/discdawtor.
ProductLossPeriodCurveMeasures implements theigatian interface to serialize the

instance into byte arrays, as well as de-seriali@epopulate a

ProductLossPeriodCurveMeasures instance from art loyte array.

24



Package org.drip.calc.output

This package implements the analytics scenario uneasap for basket and component

valuation runs.

BasketOutput

The BasketOutput serves as the main place holdanfaytical basket measures,
optionally across scenarios. It contains measuesrfa unadjusted base IR/credit curve
runs, flat delta/gamma bump measure maps for IRitérecovery bump curve runs,
component/tenor bump double maps for IR/credit esirand flat/component recovery
bumped measure maps for recovery bumped crediesurv

BasketOutput implements the serialization interftacserialize the instance into byte
arrays, as well as de-serialize and populate adB@sitput instance from an input byte

array.

BondCouponM easures

BondCouponMeasures encapsulates the parsimoniouspimplete set of the cash-flow
oriented coupon measures generated out of a fullda set of given work-out
parameters. Specifically, it is a placeholder fa tdirty” measures — dirty DVO1, dirty
coupon PV, and full dirty PV.

BondCouponMeasures provides methods to adjusefdesent, and for clean/dirty

accrual. It also uploads the state in the field® @aanamed measure map.

25



BondCouponMeasures implements the serializatianfexte to serialize its instance into
byte arrays, as well as de-serialize and popul&eralCouponMeasures instance from

an input byte array.

BondOutput

The BondOutput serves as the place holder for posimensive suite of analytical bond
measures. It contains the bid/ask sides for pyied], G spread, Z spread, | spread,
spread to treasury benchmark, par asset swap spveddut dates, workout factors, and
credit basis. BondOutput instance can be re-coctsurom a string representation, as

well as stringify it.

BondOutput implements the serialization interfaxesdrialize the instance into byte
arrays, as well as de-serialize and populate a Gatpiit instance from an input byte

array.

BondRVM easures

BondRVMeasures encapsulates the comprehensivé R& measures generated out of a
full run to a set of given work-out parametersdtds the price, the Z Spread, the |
Spread, the G Spread, the Spread to treasury bankhtine bond basis, the par asset
swap spread, the credit basis, the duration, theecaty, and the work-out information -

its constructor automatically sets the full state.
It also uploads the state in the fields onto a mhmeasure map.
BondRVMeasures implements the serialization interf@ serialize its instance into byte

arrays, as well as de-serialize and populate a B¥MEasures instance from an input

byte array.

26



BondW or koutM easur es

BondWorkoutMeasures encapsulates the comprehesesive scenario measures
generated out of a full run to a set of given wout-parameters. It holds the clean/dirty
credit risky and risk-less bond coupon measursky iand risk-less par and principal PV,
recovery PV, expected recovery, default exposutie and without recovery, loss on
instantaneous default, dirty accrued 01, first couate, and first index rate - the

constructor automatically sets the full state.

It also uploads the state in the fields onto a mhmeasure map.

BondWorkoutMeasures implements the serializatioerface to serialize its instance into
byte arrays, as well as de-serialize and popul&era\WorkoutMeasures instance from

an input byte array.

ComponentOutput

The ComponentOutput serves as the place holdantytical single component output
measures, optionally across scenarios. It contagesure maps for unadjusted base
IR/credit curves, flat delta/gamma bump measuresni@aplR/credit bump curves, tenor
bump double maps for IR/credit curves, and flabuecy bumped measure maps for

recovery bumped credit curves.
ComponentOutput implements the serialization iaffto serialize the instance into

byte arrays, as well as de-serialize and popul&@emponentOutput instance from an

input byte array.

27



Package org.drip.chart.surface

This package implements different kinds of 3D dhgrsurfaces from z’s corresponding
to a set of (x, y) inputs.

BuildSurface

BuildSurface class constructs an OpenGL 3D surtaeet for the z's corresponding to a
set of (x, y).

Contour3D

Contour3D class constructs an OpenGL 3D mappeduosturface chart for the z's
corresponding to a set of (x, y).

ContourPlots

ContourPlots constructs an ortho-normalized OpeBBIicolor mapped contour surface
chart for the z’s corresponding to a set of (x, y).

GeneratedDelaunaySur face

GeneratedDelaunaySurface constructs an OpenGL 3&ubay surface chart for the z's

corresponding to a set of (X, y).

28



Histogram

Histogram constructs an OpenGL 3D histogram forzteeorresponding to a set of (X,

y).

MultiColor Scatter

MultiColorScatter constructs a 3D depth color-mapprilti-color scatter surface chart

for the z’s corresponding to a set of (X, y).

Scatter4D

Scatter4D constructs a 4D depth color-mapped maltf scatter surface chart for the

z’'s corresponding to a set of (X, y).

29



Package org.drip.curve.calibration

This package contains a set of calibrators thatlifferent calibration routines to

calibrate the corresponding rates from the compimerput measure and quote value.

Bootstrapper

Bootstrapper is the basic interface that definesctire bootstrapping methods —
setting/bumping specific nodes, setting flat valaeoss all nodes, and retrieving

specific/collective instrument/node quotes.

ComponentCalibrator

The ComponentCalibrator interface defines the coaldration methods from
component market values and measures — by boqistgifiat-strapping the discount
rate and the hazard rate from the individual corepbquotes. Calibration can be node-
by-node (true bootstrapping) or flat.

ComponentCalibrator Bracketing

ComponentCalibratorBracketing uses a bracketingnigee to find the discount

rate/hazard rate that corresponds to the speafie tenor. Calibration produces either

the implied piece-wise constant forward or the fitadt across all the nodes.

30



ComponentCalibratorNR

ComponentCaibratorNR uses the Newton-Raphson méthiad the discount
rate/hazard rate that corresponds to the speafie tenor. Calibration produces either

the implied piece-wise constant forward or the fitadt across all the nodes.

CreditCurveScenarioGener ator

CreditCurveScenarioContainer contains the credithredion instruments to be used with

the component calibrator to produce scenario credlites.

CreditCurveScenarioContainer performs two typesatibration: a) It calibrates and
creates a bootstrapped or flat credit curve frolnataon parameters, recovery rate,
discount curves, and fixings, or b) it calibratesaaray/tenor map of bootstrapped or flat
tenor bumped credit curves from valuation paramsetecovery rate, discount curves,

and fixings.

| RCurveScenarioGener ator

IRCurveScenarioContainer holds the IR calibratimstruments to be used with the

component calibrator to produce scenario discourtss.

IRCurveScenarioContainer performs two types ofalist curve calibration: a) It
calibrates and creates a bootstrapped or flat digaurve from valuation parameters,
treasury/EDF curves, and fixings, or b) it caliesaan array/tenor map of bootstrapped or
flat tenor bumped discount curves from valuatiorapeeters, treasury/EDF curves, and

fixings.

31



Package org.drip.param.config

This package contains implementations that pagset iconfigurations and configure the
CreditAnalytics system at start-up. Currently oML based configuration is

implemented.

XML ConfigReader

XMLConfigReader parses the XML configuration filedaextracts the information, tag
pairs — such as holiday sets for different locatjdagger location, analytics server

connection strings, database server connectiamgstrDepending upon the flag in the
configuration setting, holiday sets are loaded festher directly from the configuration

files, or from database setting.

32



Package org.drip.param.mar ket

This package contains the market parameters naomgdiger objects for various
purposes — discount curve/credit curve/fixings atietr market parameters needed to
price components and baskets. It also issuer/donzamed scenario curves, as well as

scenario discount curve and scenario credit cuowéadners.

BasketM ar ketPar amRef

BasketMarketParamRef implements the base markatrzainterface to provide stubs for
component IR and credit curves that constitutebtigket. All basket market parameter

classes implement this interface.

BasketM ar ketPar ams

BasketMarketParamRef contains the market parame¢exded to price the given basket.
It implements the BasketMarketParamsRef interfacafspecific scenario. It also
contains maps holding named discount curves, namaglit curves, named treasury

guote, named component quote, and fixings object.

Specifically, BasketMarketParams provides the gt add and retrieve a named
discount curve and a named credit curve. It camlalsld a ComponentMarketParams

object from a component given its ComponentMarketffaRef object.
BasketMarketParams implements the serializaticrfiste to serialize the instance into
byte arrays, as well as de-serialize and popul&as&etMarketParams instance from an

input byte array.

33



ComponentM ar ketParamRef

ComponentMarketParamsRef implements the base nmaakatns interface to provide
stubs for component name, IR curve, credit cur&¥ Turve, and EDSF curve needed to

value the component.

ComponentM ar ketParams

ComponentMarketParams provides the place holdeh&market parameters needed to
value the component object — discount curve, trgasurve, EDSF curve, credit curve,
component quote, treasury quote map, and fixings. mh@rovides implementation of the

ComponentMarketParamsRef interface.

ComponentMarketParams implements the serializati@nface to serialize the instance
into byte arrays, as well as de-serialize and @ipud ComponentMarketParams instance

from an input byte array.

CreditCurveScenarioContainer

CreditCurveScenarioContainer serves as the plddehfor the bump parameters and
the curves for the different credit curve scenariibsontains the spread and the recovery
bumps, and the credit curve scenario generatocotbjat wraps the calibration

instruments.

It holds the base credit curve, spread bumped wrdwedit curves, recovery bumped

up/down credit curves, and the tenor mapped up/dwedit curves. Depending upon the

34



scenario creation mode, CreditCurveScenarioContamaks the curves that correspond

to the scenarios above, and retrieves them.

| RCurveScenarioContainer

IRCurveScenarioContainer serves as the placehfuddéne different IR scenario curves.
It contains the IR curve scenario generator olifeattwraps the calibration instruments.
IRCurveScenarioContainer holds the base IR cupreasl bumped up/down IR curves,
and tenor mapped up/down credit curves. Depending the scenario creation mode,

cooks the curves that correspond to the scendrmgeaand retrieves them.

M ar ketPar amsContainer

MarketParamsContainer is the principal placehdidethe comprehensive suite of the
market set of curves for the given date. It corst@iaasury quote map, fixings map, IR

scenario curve map, credit curve scenario set arapcomponent quote map.

MarketParamsContainer provides an extensive denafionality for setting/getting

scenario curves and quotes. It also provides aaah of function to retrieve scenario

market parameters for the given component or baskeluct:

» Sets/gets scenario discount curve set and scesradd curve set for a given IR
currency/credit curve.

» Sets/gets quote for a given treasury benchmaréra full set of treasury
benchmarks.

* Get/set the fixings map.

» Sets/gets quote for a given component or for asttllof components.

» Get component market parameters for the given cosmgcand scenario.

» Get the map of tenor component market parametethdogiven component across

each of the IR tenors.

35



* Get the map of tenor component market parametethdogiven component across
each of the credit tenors.

» Get the basket market parameters for the givenebasid scenario.

* Get the map of flat IR bumped basket market pararadbr the given basket across
each of the IR curves.

* Get the map of flat credit bumped basket markedrpaters for the given basket
across each of the credit curves.

» Get the map of flat recovery bumped basket marketpeters for the given basket
across each of the credit curves.

» Get the double map of the tenor IR bumped basketehparameters for the given
basket across each of the IR curves and theirgenor

* Get the double map of the tenor credit bumped haskeket parameters for the
given basket across each of the credit curvestaidtenors.

* Get the double map of the tenor recovery bumpekidbasarket parameters for the
given basket across each of the credit curvestaidtenors.

NodeT weakParams

NodeTweakParams serves as the placeholder focémaso tweak mode, for either the
whole curve, or for segments of it. It contains tiveak type (parallel/proportional),
tweak node, or tweak amount.

NodeTweakParams implements the serialization iaterfo serialize its instance into

byte arrays, as well as de-serialize and popul&tedeTweakParams instance from an
input byte array.

36



Package org.drip.param.pricer

This package contains all the pricing parameteustedtly it only implements the non-

correlation pricing parameter.

Pricer Params

PricerParams is a place holder for the credit pgigiarameters across all credit product
classes and pricing methods. It contains the legsdiscretization scheme, time domain
unit size, whether survival is to be calculatethi® period accrual date or period pay

date, and whether current pricing is a calibratparation or not.

PricerParams implements the serialization intertacrialize the instance into byte
arrays, as well as de-serialize and populate @ &@ams instance from an input byte

array.
CalibrationParams

CalibrationParams serves as the placeholder foraligration parameters — the measure
to be calibrated, and the type and the natureeotd#iibration to be done, and the exercise
parameters to which the calibration is set.

CalibrationParams implements the serializationrfate to serialize its instance into byte

arrays, as well as de-serialize and populate d@albnParams instance from an input

byte array.

37



Package org.drip.param.product

This package implements an extensive set of cldeagégncapsulate groups of product
contract details for cash flow generation, and atiun.

BondCFT er minationPar ams

BondCFTerminationParams contains the terminatiaticéstatus parameters for the
bond. Specifically, indicates whether the bondagpptual, has been called, or has
defaulted.

BondCFTerminationParams implements the serialinatiterface to serialize the
instance into byte arrays, as well as de-serialimepopulate a
BondCFTerminationParams instance from an input asiay.

BondCouponParams

BondCouponParams contains the coupon parametettseftwond. Indicates what the

bond coupon/spread is, and contains the coupomsighand the coupon type.

BondCouponParams implements the serializationfatterto serialize the instance into
byte arrays, as well as de-serialize and popul&eralCouponParams instance from an
input byte array.

BondCurrencyParams

38



BondCurrencyParams contains the currency paranfetettse bond. It contains the

trade, the coupon, and the redemption currencies.

BondCurrencyParams implements the serializaticarfiate to serialize the instance into
byte arrays, as well as de-serialize and popul&eralCurrencyParams instance from an

input byte array.

BondFixedPeriodGener ationPar ama

BondFixedPeriodGenerationParams contains the pgdodration parameters for the
bond. It contains the frequency, accrual/couponataint conventions, effective,
maturity, and final maturity dates, and maturityey The coupon periods generated are

and kept in a list.

BondFixedPeriodGenerationParams implements thaligation interface to serialize the
instance into byte arrays, as well as de-serialimepopulate a

BondFixedPeriodGenerationParams instance fromput ioyte array.

BondFloater Params

BondFloaterParams is the placeholder for the boihoBsing rate parameters. It contains
the floater flag, the rate index, the index sprélaater day count, and the current
coupon.

BondFloaterParams implements the serializationfate to serialize the instance into

byte arrays, as well as de-serialize and popul&eralFloaterParams instance from an

input byte array.

39



Bondl dentifer Par ams

BondldentifierParams is the placeholder for thedd®identifier parameters. It contains
the ISIN, CUSIP, bond ID, and the ticker.

BondldentifierParams implements the serializatidrriface to serialize the instance into
byte arrays, as well as de-serialize and popul&eralldentitiferParams instance from

an input byte array.

Bondl RValuationParams

BondIRValuationParams serves as the placeholdeh&lbond’s IR valuation

parameters. It contains the bond’s IR curve, th@igg convention, the calculation type,

the first settle date, and the redemption value.

BondIRValuationParams implements the serializaitib@rface to serialize the instance

into byte arrays, as well as de-serialize and @ipwd BondIRValuationParams instance

from an input byte array.

BondNotionalParams

BondNotionalParams serves as the placeholder édbdnd’s notional parameters. It

contains the bond’s current notional and the onthtey notional schedule.
BondNotionalParams implements the serializatioarfate to serialize the instance into

byte arrays, as well as de-serialize and popul&er@NotionalParams instance from an

input byte array.

40



BondPeriodGener ationPar ams

BondPeriodGenerationParams is the placeholdeh#&géneric bond’s period generation
parameters. It contains the bond’s date adjustpenatmeters for period start/end, period
accrual start/end, effective, maturity, pay anetefrst coupon date, and interest accrual
start date. Validation of the BondPeriodGeneratavaRs class results in the generation
of the list of periods according to the date getmenaules — invalid/inconsistent

parameters result in no such list being created.

BondPeriodGenerationParams implements the setializaterface to serialize the
instance into byte arrays, as well as de-serialimepopulate a
BondPeriodGenerationParams instance from an ingatdiray.

BondTSY Params

BondTSYParams is the placeholder for the bondasuiey related parameters. It contains

the bond’s treasury benchmark set, governmenturgdenchmark, and EDSF short-end

benchmark identifiers.

BondTSYParams implements the serialization intertacserialize the instance into byte

arrays, as well as de-serialize and populate a B8M&arams instance from an input

byte array.

CDXldentifier

CDXldentifier serves as the placeholder for thenideer parameters for a given standard

CDX contract. It contains the index, the tenor,sbdes, and the version for the given

contract.

41



CDXldentifier implements the serialization intex¢ato serialize the CDXIdentifier
object instance into byte arrays, as well as dedsar and populate a CDXldentifier

instance from an input byte array.

CompCRValParams

CompCRValParams is the placeholder for the cregitgonent’s credit valuation
parameters. It contains the credit curve, the corapts recovery, and whether that is
usable, the loss pay lag, and whether the acsualbe applied on default.
CompCRValParams implements the serialization iaterfto serialize the instance into
byte arrays, as well as de-serialize and popul&@erapCRValParams instance from an
input byte array.

CurrencyPair

CurrencyPair is the placeholder for the currendy @aject for a given FX contract. It
contains the numerator currency, the denominataoenay, and the quoting currencies,
and the PIP factor for the given contract.

CurrencyPair implements the serialization interfecserialize the instance into byte
arrays, as well as de-serialize and populate ae@ayPair instance from an input byte
array.

EmbeddedOptionSchedule

EmbeddedOptionSchedule is the placeholder forrii@eeded option schedule for the

bond. It contains the schedule of exercise datdgamtors, the exercise notice period,

42



and whether the option is to call or put. Furtlifethe option is of the type fix-to-float on

exercise, it contains the post-exercise floateexnahd floating spread.

If the exercise date is not discrete (Americanaptithe exercise dates/factors are

discretized according to a pre-specified discrébmegrid.

Several helper functions in EmbeddedOptionSchelkile create the schedule from

string date/factor arrays.

EmbeddedOptionSchedule provides functions to retrehether the option is for a put,

whether it is fix-to-float on exercise, and theeadf#ctor array.

EmbeddedOptionSchedule implements the serializatt@nface to serialize the instance
into byte arrays, as well as de-serialize and @ipwd EmbeddedOptionSchedule

instance from an input byte array.

Factor Schedule

FactorSchedule serves as the place holder forrfatex schedule of all types — in

particular coupon/principal factors. It containstohed date/factor arrays.

FactorSchedule provides static creator/factorytions that create a FactorSchedule
instance from the arrays of dates/factors, stringya of dates/factors, and even bullet
schedules.

FactorSchedule provides functionality to retrielve factor/factor index for a given date,

as well as the array of factors/dates. It alsornstthe effective time-weighted factor

between two arbitrary dates.

43



FactorSchedule implements the serialization interfa serialize the instance into byte
arrays, as well as de-serialize and populate aFaatedule instance from an input byte

array.

TsyBmkSet

TsyBmkSet contains the applicable treasury benckemam the given bond. It holds the

primary treasury benchmark, and none or many secgrickasury benchmarks.

44



TsyBmkSet implements the serialization interfacednalize the instance into byte
arrays, as well as de-serialize and populate a m&@t instance from an input byte

array.

45



Package org.drip.param.valuation

This package holds the valuation related clasgpgally based off of the given value
date.

CashSettleParams

CashSettleParams is the placeholder for the caddnsent parameters for a given
product or a settlement structure. It holds thdesdelay, settlement adjustment calendar,
and the cash settle adjustment modes.

CashSettleParams implements the serializationfaterto serialize the instance into byte
arrays, as well as de-serialize and populate aS&88Params instance from an input
byte array.

NextExer cisel nfo

NextExerciselnfo serves as the placeholder fonthe exercise information fields for a
given product, starting from the given valuatiomeddt contains the exercise type, the
exercise factor, and the exercise date.

NextExercise Info Implements the serialization iifgtee to serialize the

NextExerciselnfo object instance into byte arragswell as de-serialize and populate a

NextExerciselnfo instance from an input byte array.

46



QuotingParams

QuotingParams is the placeholder for the quotirgrpaters for a given product or a
settlement. Contains the quoting yield day countveation, quoting yield frequency,
whether EOM adjustment is to be applied or not athestment calendar, and whether

the product is spread quoted or price quoted.

QuotingParams implements the serialization intertacserialize the instance into byte

arrays, as well as de-serialize and populate ai@Rdarams instance from an input byte

array.

ValuationPar ams

ValuationParams is the placeholder for the valuapiarameters for a given product. It

contains the valuation and the cash pay/settlesdate

ValuationParams implements the serialization iatgfto serialize the instance into byte

arrays, as well as de-serialize and populate ad¥faloParams instance from an input

byte array.

Workoutlnfo

WorkoutInfo serves as the placeholder for the wotkgmarameters. It contains the date,

the factor, and the yield of the workout.
WorkoutInfo implements the serialization interfdoeserialize the instance into byte

arrays, as well as de-serialize and populate a Bdikfo instance from an input byte

array.

47



Package org.drip.product.common

This package contains the abstract classes frorwhvati components (calibratable or

not) are built.

CalibratableComponent

CalibratableComponent is an abstract class thaisegpfunctionality that makes the
component calibratable. It implements the Compoireatface, provides stub for getting

the component’s primary code, and optionally presidhultiple secondary codes.

CalibratableComponent also defines the calibMeasmethod — which calculates and

returns the requested measure for the given sepofs.

Component

Component is an abstract class that exposes fuatitypthat defines component
products of al types. It extends the ComponentMB&eamRef interface, and provides
methods for getting the component’s notional, coy@dfective date, maturity date,

coupon amount, and list of coupon periods.
Component also calculates the full set of componedsures across a set of specified

scenarios, and holds the results in ComponentOufpuictions are available to retrieve

the specified measure for the component.

48



Package org.drip.product.creator

This package provides the functionality needed¢ate the full-featured (primarily
credit) product, in particular bonds. It providesdtionality to load the definitions for the
valuation as well as informational reference datebbnds. It also provides functionality

to create custom bonds of all variants found indaad bonds.

BondBuilder

BondBuilder contains the suite of helper functiforscreating user defined bonds,
optionally with custom cash flows and embeddedarpsichedules (European or
American).

Specifically, BondBuilder creates full-featured dsrfrom custom cash flows
(coupon/principal flows or amortization/capitalimat schedules), simple fixed rate
bonds, simple floater bonds, and bonds from explispecified coupon flows and
principal flows (principal flows can be specifiesl @ther principal pay down/up or
outstanding notional).

BondProductBuilder

BondProductBuilder contains the comprehensive fsgtiatic parameters of the bond

product needed for the full bond valuation.
Specifically, the BondProductBuilder contains tload identifier parameters (ISIN,
CUSIP), the issuer level parameters (Ticker, SP@credit curve string), the coupon

parameters (coupon rate, coupon frequency, cowypean tday count), the maturity

49



parameters (maturity date, maturity type, finalumigg, redemption value), the date
parameters (announce, first settle, first coupaterest accrual start, and issue dates), the
embedded option parameters (callable, putablehéas exercised), the currency
parameters (trade, coupon, and redemption cur@ndie floater parameters (floater

flag, floating coupon convention, current coup@ierndex, spread), and the fags

indicating whether the bond is perpetual or haaulefd.

BondProductBuilder is created from resultset obadref data entry, from an SQL

guery. On construction, it is validated to ensuternal consistency.

BondProductBuilder provides functionality to gether the individual fields or the

corresponding bond parameter set.

BondProductBuilder implements the serializatiorifeéce to serialize the instance into
byte arrays, as well as de-serialize and popul&eraProductBuilder instance from an
input byte array.

BondRefDataBuilder

BondRefDataBuilder contains the entire set of sgaéirameters for the bond product.

Specifically, it holds the bond identifier paranmetdSIN, CUSIP, BBG ID, name short
name), the issuer level parameters (Ticker, cayegudustry, issue type, issuer country,
issuer country code, collateral type, descriptgaturity type, unique Bloomberg ID,

long company name, issuer name, SPN or the crediecstring), issue parameters (issue
amount, issue price, outstanding amount, minimugegiminimum increment, par
amount, lead manager, exchange code, country ofpncation, country of guarantor,
country of domicile, industry sector, industry gopindustry sub-group, senior/sub),
coupon parameters (coupon rate, coupon frequenapon type, day count), maturity

parameters (maturity date, maturity type, final umi&g, redemption value), date

50



parameters (announce, first settle, first coupaerest accrual start, next coupon,
previous coupon, penultimate coupon, and issuesjjambedded option parameters
(callable, putable, has been exercised), curreagmpeters (trade, coupon, and
redemption currencies), floater parameters (flothagy, floating coupon convention,
current coupon, rate index, spread), trade stedtiags (S & P, Moody, and Fitch), and
whether the bond is private placement, is regidtasea bearer bond, is reverse

convertible, is a structured note, can be unitddads perpetual or has defaulted.

BondRefDatatBuilder is typically created from th@LlSquery resultset of a bond ref data
entry. It provides functionality to get either tinelividual fields or the corresponding

bond parameter set.

BondRefDataBuilder implements the serializatiorif#ce to serialize the instance into
byte arrays, as well as de-serialize and popul&emalRefDataBuilder instance from an

input byte array.

CDXRefDataBuilder

CDXRefDataBuilder contains the entire set of statid valuation parameters for the
named Standard CDX Product.

Specifically, CDXRefDataBuilder holds the Index @aiiD, Index Curve SPN, Index
Label, Index Name, Index Issue Date, Index Matudigge, Index Coupon, Index
Currency, Index Full First Stub, Index Day Counin@ention, Index Recovery, Index
Coupon Frequency, Index Reference Entity ID, InGéass, Index Series, Index Group
Name, Index Short Group Name, Index Version, IndéxSpan, Index Curvy Curve ID,
Index Factor, Original Component Count, Defaulteanponent Count, Index Location,
whether the index pays accrued on default, whehieeindex knocks out on default,

whether the index is quoted as a CDS, Index Bloagbesker, and Index Short name.

51



Individual functions in CDXRefDataBuilder validadé@ach one of its above-mentioned
fields.

Finally, CDXRefDataBuilder also has functionalitydreate the actual index basket

product (along with the corresponding cash-flows).

52



Package org.drip.product.credit

This package implements all the liquid and the bksgomponents and basket credit

products — credit default swap, basket credit detavap, and bond.

BasketBond

BasketBond serves as the placeholder for the baskietybond ETF product contract
details. It contains the basket name, the baske&inad, the component bonds, and their

weights.

BasketBond contains methods to retrieve the notiaindifferent times, the coupon, the
effective/maturity dates, the flow periods, the poment IR and the component credit
curves. Its value method returns a full set maggeaf all the product measures for a
given set of scenario curves. Using this in conjiamcwith the calcMeasures of the

BondBasket produces a comprehensive set of athtiped scenario measures.

BasketBond implements the serialization interfacserialize the BondBasket object
instance into byte arrays, as well as de-serialimepopulate a BondBasket instance from

an input byte array.
BasketDefaultSwap
BasketDefaultSwap serves as the placeholder fdvdbket default swap product contract
details. It contains the effective date, the matudate, the coupon, the coupon day count,

the coupon frequency, the basket components, tieebaotional, the loss pay lag, and
optionally the outstanding notional schedule aradfidt basket recovery.

53



BasketDefaultSwap provides a number of helper fanstto create named CDX from an
effective date, maturity date, coupon, IR curvel arset of components — in a few

different forms.

BasketDefaultSwap also implements the followingedeaisket functionality:

* It retrieves the notional at different times, tloeigon, the effective/maturity dates, the
flow periods, the component IR and the componesditicurves.

* The value method returns a full set mapped sell tieproduct measures for a given
set of scenario curves. Using this in conjunctiatih\the calcMeasures of the

BasketProduct produces a comprehensive set dfeathapped scenario measures.

BasketDefaultSwap implements the serializationrfate to serialize the instance into
byte arrays, as well as de-serialize and popul&as&etDefaultSwap instance from an

input byte array.

BasketProduct

BasketProduct is the master base class for abbdkket credit products. It is an abstract
class that extends the BasketMarketParamRef icerfaprovides methods for getting
the basket’'s components, notional, coupon, effedate, maturity date, coupon amount,
and list of coupon periods.

BasketProduct calculates the full set of basketsones across a set of specified

scenarios, and holds the results in BasketOutprdtrieves the specified measure for the
basket.

Bond

54



Bond is the concrete base class that implement®timelation functionality behind all
kinds of bonds. Like other credit components, bexignds the CreditComponent

abstract class.

The static data behind the bond class is captaradset of 11 container classes —
BondTSYParams, BondCouponParams, BondNotionalPaBomslFloaterParams,
BondCurrencyParams, BondldentifierParams, BondIR&a&dnParams,
CompCRValParams, BondCFTerminationEvent, BondFireidBGenerationParams,
and one EmbeddedOptionSchedule object instancefeattte call and the put objects.

Each of these parameter sets can be set separately.

Bond class provides functionality to retrieve a ttaluation related bond contract details:

* It gets the bond’s different identifiers — ISIN, G, primary/secondary codes, and
bond’s canonical name.

* It gets the bond’s coupon at different times, dreIR/credit/tEDSF/TSY benchmark
names.

» It retrieves the notional at different times, effee/maturity dates, coupon/loss flow
periods, and component credit valuation parameters.

» It retrieves floater parameters (rate index, curcenipon, float spread, floating
coupon convention), embedded option schedule fpag whether the bond is
amortizing, defaulted, is perpetual, coupon/accdagtcount, coupon type, coupon

frequency, trade/redemption/coupon currency.

The bond class implements a comprehensive setabftans calculations given different
kinds of inputs. Calculations are done for: resgedor the period given by the valuation
date, accrual, theoretical price from a discouatitrcurve, pricelyield/Z spread/credit

basis/treasury spread/G Spread/l Spread/par agaptspread/duration/convexity from

pricelyield/Z spread/credit basis/treasury spregdip@@ad/l Spread/par asset swap spread

inputs. Calculations are done to either a specifietk-out date, or maturity/optimal

exercise date.

55



The bond’s value method returns a complete mapgieof 2l the bond product measures
for a given set of scenario curves. Using thisanjenction with the calcMeasures of the

Component produces a comprehensive set of all #pped scenario measures.

Bond also implements calibMeasures method, whitdulztes and returns the specific

measure requested.

Bond also implements a calibrator that calibratesyield, the credit basis, or the Z
spread for the bond given the price input. Calibrahappens via either Newton-

Raphson method, or via bracketing/root searching.

Bond implements the serialization interface toaee the instance into byte arrays, as

well as de-serialize and populate a Bond instarara &in input byte array.

CreditComponent

CreditComponent implements the base abstract classwhich all credit components

are implemented. It extends the CalibratableCompioalestract class.

CreditComponent contains methods to get the cvadliation parameters, the coupon
and the loss flows, and recovery at either a sidgte, or time weighted average between

two dates (component recovery, if available, preseatlirve recovery).

CreditDefaultSwap

CreditDefaultSwap is the place-holder for the drddfault swap product contract details.

It contains the effective date, the maturity déte,coupon, the coupon day count, the

coupon frequency, the contingent credit, the cuyethe basket notional, the credit

valuation parameters, and optionally the outstajdwotional schedule.

56



CreditDefaultSwap provides a number of helper fiomst to create named CDS from an
effective date, maturity date/tenor, coupon, IRveycredit valuation parameters, and

comprehensive coupon period generation parameieara few different forms.

The CreditDefaultSwap class retrieves the notiandifferent times, the coupon, the
effective/maturity dates, the flow periods, the poment IR/Credit curves, the
component credit valuation parameters, the CDSvergpand the CDS

primary/secondary codes.

The value method returns a fully mapped set ahallproduct measures for a given set of
scenario curves. Using this in conjunction with técMeasures of the Component

produces a comprehensive set of all the mappedsoaneasures.

CreditDefaultSwap also implements a flat spreatbitbr that calibrates a flat hazard

curve off of the current CDS contract from a givearket price.

CreditDefaultSwap implements the serializationriiatee to serialize the instance into
byte arrays, as well as de-serialize and popul&@eeditDefaultSwap instance from an
input byte array.

Standar dCDXM anager

StandardCDXManager serves as the placeholderlftreastandard CDX/ITRAXX

named product details. It contains the named CCORXAXX series identifier (series,

version, and index), and maps that retrieve tls¢ doupon date or the series from the

other, given an index.

57



StandardCDXManager provides the functionality toiege the CDX/ITRAXX index
given the index, the series, and the tenor, asagalétrieve the on-the-run index
corresponding to the given date and tenor.

Finally, StandardCDXManager also provides functiiyéo retrieve the pre-set and pre-
loaded CDX names, their first coupon dates, andrge®ns.

StandardCDXParams

StandardCDXParams serves as the placeholder fgivbe standard CDX/ITRAXX
index. It contains the components, the currencyg,tha coupon for the given index.

58



Package org.drip.product.fx

This package implements the core vanilla FX prasludhe FX spot and FX forward.
Both these products may be quoted in different soramd the conversions may be

applied using the functionality available in that&sses.

FXForward

The FXForward class serves as the place-holdeh&FX forward product contract
details. It contains the effective date, the matudate, the currency pair and the product

code.

FXForward class provides static helper functiora timeate named FXForward object
from an effective date, maturity date/tenor, andency pair. Its instance member
functions retrieve the product currency pair, tfieative/maturity dates, and the

primary/secondary codes.

FXForward implements a number of the core FX fodManctionality:

* Implies the FX forward as either an outright orlB fPom the input valuation
parameters, FX spot, numerator/denominator discoumves based on either the
numerator discount curve or the denominator.

» Calibrates the discount curve basis from the inpluation parameters, FX
spot/forward, numerator/denominator discount cubaesed on either the numerator
discount curve or the denominator.

* Implements a flat spread calibrator that calibratéiat curve off of the current CDS

contract from a given market price.

59



The value method returns a full set mapped selt tieproduct measures for a given set

of scenario curves.

FXForward implements the serialization interfacséadalize the instance into byte
arrays, as well as de-serialize and populate a R¥d&d instance from an input byte
array.

Finally FXForward also implements a FX basis calibr that calibrates a basis to either
the numerator or the denominator curve off of tineent FX forward through the
Newton Raphson method.

FX Spot

The FXSpot class serves as the place-holder fdFxXhgpot contract details — the spot
date and the currency pair.

FXSpot implements the serialization interface tgasize the instance into byte arrays, as

well as de-serialize and populate a FXSpot instérore an input byte array.

60



Package org.drip.product.quote

This package contains classes the provide the megleation behind different kinds of
guotes — sided quotes, component quotes, anddkiad quotes.

ComponentQuote

The ComponentQuote serves as the placeholderdatitterent types of quotes for a
given component. It contains a single market fogldte pair, but multiple alternate
named quotes (to accommodate quotes on differeasumes for the component).
ComponentQuote implements the serialization interta serialize the instance into byte
arrays, as well as de-serialize and populate a ©@oemgQuote instance from an input
byte array.

LiveQuote

LiveQuote is the interface exposing the “refresigtinod to be implemented by any
derived product quote.

Quote

The Quote class contains the details corresporidiagoroduct quote. It contains the

guote value, quote instant for the different queties (bid/ask/mid).

61



Quote implements the serialization interface toaefiee the instance into byte arrays, as

well as de-serialize and populate a Quote instémoe an input byte array.

62



Package org.drip.product.rates

This class provides the implementation behind titerest rate products of all kinds —

cash/money market products, euro-dollar futured,the interest rate swap.

Cash

The Cash class serves as the placeholder for #iiepcaduct contract details. It contains
the effective date, the maturity date, the couplo®.coupon day count, the coupon
frequency, the currency, the basket notional, atoboally the outstanding notional

schedule.

Cash class provides a number of static, helpeofiaftinctions that create Cash instance
from the effective date, the maturity date/tenad the IR curve. Its instance members
retrieve the notional at different times, the coupbe effective/maturity dates, the flow

periods, the IR curves, and the product primargisdary codes.

The value method returns a full set mapped seft tieproduct measures for a given set
of scenario curves. Using this in conjunction vitie calcMeasures of the Component
produces a comprehensive set of all the mappedsoaneasures.

Cash implements the serialization interface tcafied the instance into byte arrays, as

well as de-serialize and populate a Cash instaoe &n input byte array.

EDFuture

63



The EDFuture class serves as the placeholderéagulo-dollar product contract detalils.
It holds the effective date, the maturity date,¢bapon, the coupon day count, the
coupon frequency, the currency, the basket noti@mal optionally the outstanding
notional schedule.

Static helper functions of EDFuture create EDFanse from effective date, maturity
date/tenor, EDF code, and IR curve, as well craaero-dollar pack from a given date.
Instance member functions retrieve the notiondiféerent times, the coupon, the
effective/maturity dates, the flow periods, thecitves, and the product

primary/secondary codes.

The value method returns a full set mapped selt tieproduct measures for a given set
of scenario curves. Using this in conjunction witb calcMeasures of the Component
produces a comprehensive set of all the mappe@dsoaneasures.

EDFuture implements the serialization interfacedpnalize the instance into byte arrays,

as well as de-serialize and populate a EDFututaniee from an input byte array.

I nter estRateSwap

InterestRateSwap is the placeholder for the intesgs-swap product contract details. It
contains the effective date, the maturity date ctihgon, the coupon/accrual day count,
the coupon frequency, the currency, the baskebnatj the floating rate index, and,

optionally, the outstanding notional schedule.

Static helper functions create IRS instance froreféective date, maturity date/tenor,
IRS code, and IR curve. Instance members retrimy@otional at different times, the
coupon, the effective/maturity dates, the flow pési, the IR curves, and the product

primary/secondary codes.

64



The value method returns a full set mapped selt tieproduct measures for a given set
of scenario curves. Using this in conjunction witb calcMeasures of the Component

produces a comprehensive set of all the mappedsoaneasures.
InterestRateSwap implements the serializationfiaaterto serialize the instance into byte

arrays, as well as de-serialize and populate adstieRateSwap instance from an input
byte array.

65



Package org.drip.service.api

This package implements the static client level sadtice level API through which the
stateless (or limited stateful) interactions whke CreditAnalytics functionality is to be

made.

Fl

The FI class exposes all the CreditAnalytics ARtltents — this class serves as the main
functional interface. On initialization, it retaias instance of the current date/time, the
bond valuation data, and the bond ref data caameisthe SQL connections to all the
databases.

The following are the extensive and comprehensige-level description of the

functionality provided by FI (please refer to Rigaoc and the source for more details):

» Initializes the holiday calendars, the data-basmeotions, and the current
date/times.

* Gets all the holiday locations, available day ceunteek day/weekend/combined
holidays for the location set and year, the weeldays, and whether the given day is
a holiday or not.

» Calculates the year fraction contained in the /giadt dates, day count convention,
and holiday calendar set; also adjusts/rolls thergdate to the next business day in
accordance with the holiday calendar set and adprst convention.

* Gets the set of on-the-run treasury ISINs and thelds.

» Creates a component from the code, and makes aoc@mpset.

* Retrieves the available IR/TSY curve names, lohddive/EOD IR/TSY curve for a
given EOD or a set of EODs.

* Loads the live/EOD Cash/EDF/IRS curve(s) for a gi#OD or a set of EODs.

66



Retrieves the available CDS curve names, loadsvid&OD CDS/bond/combined
credit curve for an issuer for a given EOD or acéfODs.

Add/remove/retrieve bond/bond ref data from bdddISIN/CUSIP etc)

Get the bond’s call/put schedules (optionally, giaedate)

Create a fixing for the given bond at the givengigrget all available tickers, and get
all the ISINs for the given ticker, and their oatsting notional.

Get outstanding issuer notional aggregated by peeised maturity buckets.
Calculate the bond’s pricelyield, theoretical ctgudlice, spread to treasury
benchmark, Z Spread, | Spread, par asset swapdsmee credit basis given the
bond’s yield, bond’s price, or spread to a giverasury benchmark.

Get the bond’s named boolean, string, integer, o date field.

Create a CDX product given the effective and theunts dates.

67



Package org.drip.service.env

This package provides the functionality that impdens the container for EOD set of

credit curves, IR curves, bond product objects, ol marks holder.

BondM anager

BondManager serves as the container that holdE@i& and bond static information for
the given issuer. It holds bond EOD bid/ask matikker-wise maturity sorted set of
bonds, map containing bond instance to ID (ISIN/@R)Sflags for different formats of

runs and corresponding displays/calculations.

BondManager provides the following functionalitygase see javadoc and the source for

the precise usage):

* Loads the option schedule for all bonds.

» Calculates the bond measures and generates thatfedmuns for a pair of bid/ask
price for the given bond.

* Generates formatted runs of measures for all thedr a given EOD.

* Retrieves and/or loads the bid/ask/mid levels fsingle bond or for all the bonds on
a given EOD.

* Builds and retrieves the bond object associateld svResultSet and a
MarketParamsContainer object.

* Loads the bond from the given bond ID, MarketPa@omgainer, the SQL statement,
and an optional date to determine when the digert@®in of an American option
should start.

» Loads the entire ref data for a bond given thenD #he SQL statement.

e Gets all the available issuer tickers in the dagaba

68



* Retrieves all the available ISINs for the giverugssticker.

* Loads the full set of bonds and commits them to orgm

» Calculates the measures for all the bonds assdatk a ticker maturity after the
valuation parameters, given the bid/ask pricesthadanarket parameters.

» Calculates the measures for all the bonds assdaiatk a ticker maturity after the
valuation parameters, given the closing bid/as&gsraind the closing market
parameters.

» Calculates and saves/loads all the bond measuradi fbe bonds corresponding to

the given closing date.

CDSM anager

CDSManager is the container that creates, maintaimssaves the EOD and CDS/credit

curve information on a per-issuer basis.

CDSManager retrieves all the credit curves avalétit the given EOD from the
database. It also saves the EOD credit measuresatraspond to the credit curve
represented by the SPN ID from the input markeampeters and the EOD tenor quotes
from the database — it also saves all the EOD tcnegiasures all the curves in the given

MPC.

Finally, it loads all the credit curves correspamgio a given EOD from the database.

EnvM anager

The EnvManager class sets the environment/conmepttameters, and populates the

market parameters for the given EOD.

69



EODCurves

The EODCurves container exposes the functionaity¢ate the set of closing IR and

credit curves for a given EOD.

EODCurves builds the named EOD credit curve forgilken SPN ID/discount curve
combination by retrieving the EOD quotes from th¢athase, and using the specified

discount curve.

EODCurves also builds the named EOD IR curve gfezific type (cash/EDF/IRS) for
the given discount curve name and currency byengtrg the EOD quotes from the
database. It also builds the named full EOD IR euwrsing instruments of all types
(cash/EDF/IRS) for the given instrument set typeafss/treasuries), discount curve
name, and currency by retrieving the corresponBi@® quotes from the database.
Finally, it loads the requested type of discounteycash/EDF/IRS/full/TSY) for the

given currency and the EOD, and optionally adds the market params container.

RatesM anager

The RatesManager constructs, and gets the discane names of the requested type

(or the full discount curve) for the given EODalso loads the full closing discount

curve for the given EOD.

StaticBACurves

StaticBACurves class creates a set of discounitaradses from customuser-defined

marks for a given EOD. It creates a set of USDsuieabonds/ED futures/IR swaps and

their quotes, builds a discount curve from thend, laads it to the market parameters

70



container. It creates a set of credit default sveaquktheir quotes, builds a credit curve

from them, and loads it to the market parametensanoer.

71



Package org.drip.service.external

This package implements the server level analftigstionality provided using
CreditAnalytics. It also implements an analytiaet that dies a protocol based
interaction with the analytics server.

AnalyticsClient

The AnalyticsClient class captures the requestdi®iFl server from the GUI client,

formats them, and sends them to the AnalyticsServer

AnalyticsServer

The AnayticsServer class receives the requeststiieranalytics client, and invokes the

FI functionality, and sends the client the results.

72



Package org.drip.service.sample

This package contains classes the illustrate thesage of the functionality provided by
FI — the inputs, the calculation results, the pobdueation and the product state
management details, extraction of the differentipod measures, curve construction
from user-supplied/live/EOD measures/quotes foraligt curves, credit curves,

FXl/treasury curves, as well as calculation of #neesal RV/valuation measures.
BondAnalyticsAPI Sample

This class contains a demo of the bond analytidssarple. It has functions illustrating
the creation and the usage of the principal angp@oeschedules, custom fixed, floaters,
and custom bonds from arbitrary cash flows, bortt wption schedules, run through of
the full set of bond relative value analytics, aadibration of credit curves from
CDS/bond prices and their corresponding measures.

BondBasketAPlI Sample

This class contains a demo of the bond basket afpke. It has functions illustrating the
creation and the usage of the bond basket froooitgoonents, and a run through of the
full set of bond basket value.

BondLiveAndEODAPI Sample

This class contains a demo of the live and EOD @sfls for bonds. It displays the full
set of RV, interest rate, and credit measures tpven bond identifier (ISIN/CUSIP)

73



given closing pricelyield/spread to treasury, sdgt of RV measures for all the bonds in a

given ticker, their individual and bucketed outslisug notional, full set of valuation and

relative value measures, coupon flows, and losgsflior a given identifier.

BondStaticAPI Sample

This class contains a demo of the API calls fordbstatic fields. It displays the full set of

static fields for a given bond identifier (ISIN/CUS.

CDSAnalyticsAPI Sample

This class contains a demo of the CDS analyticssaRiple. It has functions illustrating

the creation and the usage of CDS, display of tmipon and loss flows, and calibration

of credit curves from CDS prices of all types, éimeir corresponding measures, as well

as from the survival probabilities and hazard rates

CDSBasketAPl Sample

This class contains a demo of the CDS basket ARpEa It has functions illustrating the

creation and the usage of pre-set and pre-loadesi lizBket, the full set of named CDX

indices and their descriptions, and a run throdghefull set of bond basket value.

CDSLiveANndEODAPI Sample

This class contains a demo of the live and EOD &tk for CDS. It displays the full set

of RV, interest rate, and credit measures for amgi@DS given several forms of CDS

74



guotes, and the creation of the calibrated creditefor the given CDS curve name and
EOD.

DayCountAndCalendar APl Sample

This class contains a demo of the day count andalendar analytics APl sample. It has
functions display of the built-in holiday locatigrvgeek days, weekends, and holiday sets
between a start date and an end date for a selida calendars, available day count

calendars, and samples to adjust/roll accordirigptialay sets.

FXAPISample

This class contains a demo of the FX analytics gephple. It has functions to create and
use FX spot, FX forward curves (as either outragtais PIP), create basis curves both as
spot-starting basis as well as forward basis taltimeestic/foreign rates curves, and
recovers the forward curve (in differing formatg)rh the corresponding basis.
RatesAnalyticsAPI Sample

This class contains a demo of the rates analytiRissample. It has functions illustrating
the creation and the usage of different ratesunsnts (cash/futures/swaps), display of

their coupon flows, and calibration of rates curfresn discount factors and forward

rates, and their corresponding measures.

RatesL iveAndEODAPI Sample

75



This class contains a demo of the live and EOD &k for rates instruments. It
displays the full set cash/EDF/swaps/treasury/caig@dypes of rates curves available

on a EOD, their calibration, creation and usage.

76



Package org.drip.util.external

This package provides the set of interfaces antt $tenctionality exposable to the

external CreditAnalytics API users.

FIGen

FIGen provides a collection of the static genetilityifunctions used by the internal and

external DRIP modules.

The following lists the set of functionality thall@en provides (consult the javadoc and

the source for more details on the correspondinig)AP

Initializes DRIP<->Bloomberg holiday code map, aatés curve switcher map.
Utility functions to parse Bloomberg holiday codasd the get tenor/month code
from frequency.

Construct the default rate index string from ther@oucy and the coupon frequency.
Create a DRIP Julian Date from java date.

Convert string to Boolean.

Make Oracle date from YYYYMMDD string/ Bloombergtéastring.

Make double array from string tokenizer.

Format input number into different requested fosr(atith optional padding).
Create a fixings object for the bond, value date, the fix coupon.

Generate a GUID string.

Generate the credit products loss period in acomelavith the parameters specified

in the pricer.

77



Validatable

Validatable is the interface that exposes the taB” method. This method is needed to

validate the state of the implementing object.

78



Package org.drip.util.date

This package implements the Julian date and timetifonality used internally by
CreditAnalytics.

DateTime

DateTime class provides complete representatidhedinstantiation-time date and time
objects. It retrieves the date and time at theais# of creation (or an arbitrarily set

values).

DateTime implements the serialization interfacednalize the instance into byte arrays,

as well as de-serialize and populate a DateTintaree from an input byte array.

JulianDate

JulianDate class privides a comprehensive reprasentof the Julian Date and the date

manipulation functionality. Julian date is canoliceepresented as a double.

As a generic implementation of the date classadblate provides the following

functionality:

» Converts year, month, and day to Julian double.

» Converts the Julian double to Y/M/D string.

» Extracts the year, month, or day from the inputautiouble.

* Computes days elapsed in the year, days remainitigeiyear, or is the current day a
leap year.

» Finds out how many “leap days” are between tworgidates — right/left inclusive.

79



Characters corresponding to the month/day in aféemats (regular/Oracle), and
vice versa.

Number of days in the given month, whether the midelian double corresponds to
the end-of-month.

Different ways of constructing the Julian date obje Today, from YMD, from
DDMMMYYYY, or from simply a Julian double.

Gets the object’s Julian double.

Add/subtract days/business days/months/years/tenor.

Gets the first EDF start date (based on the EDFnohths).

Difference to/equal to/compare with another date,

Get Oracle string representation, and the hash. code

80



Package org.drip.util.internal

This package implements the internal utilities uggather CreditAnalytics modules.

FlUtil

FIUtil provides a set of utility functions meanirparily for other internal
CreditAnalytics modules. Its functions calculate ffield DF given the yield and time
fraction, and the treasury benchmark identifienfrihe valuation date and the maturity
date.

L ogger

The logger implements level-set logging, backeeibyer the screen or a file. Logging

always includes time-stamps, and happens accotditige level requested.

81



