
The dylan.NET Manual v.11.2.2

by Dylan Borg

January 2, 2011

To those who taught me,to my mum, sister and father.

Contents

1 The Compiler 7

1.1 Introduction . 7
1.2 The dylan.NET API . 7

1.2.1 AST . 8
1.2.2 Lexer . 8
1.2.3 Parser . 8
1.2.4 CodeGen . 9

2 Other Libraries 11

2.1 Introduction . 11
2.2 dnu - dylan.NET Utility . 11
2.3 sld - SQLite Data . 11
2.4 Others... 11

3 The Language 13

3.1 Introduction . 13

5

1 The Compiler

1.1 Introduction

This chapter of the manual will speak about the inner workings of the new dylan.NET
compiler. For the language syntax look further down this manual. The need for a chapter
like this has risen becuase of the new API nature of dylan.NET i.e. now dylan.NET is
split in class libraries each doing a step that transforms a basic form of representation
into a more complex form. The compiler's work is just that, converting source code
written with a basic text editor into an AST, then into MSIL/CIL that is compatible
with .NET 3.5 SP1 or higher and Novell Mono 2.6.7 or higher.

Since Mono is the least common denominator between the two frameworks, its libraries
shall be used in building the compiler. Mono is also cross-paltform (i.e. works on Win-
dows, Linux and Macintosh OS/X), hence the need to be compatible with it. Go to the
Mono website 1 for more info.

1.2 The dylan.NET API

The API is split into 4 libraries. These are (a * means that the library is incomplete or
not available yet):

tokenizer.AST.dll Contains all the AST components such as Tokens, Expression, State-
ments etc. de�ned in the dylan.NET language. The other libraries make heavy use
of this library.

tokenizer.Lexer.dll Contains the Lexer components that can turn a dylan.NET �le into
statements and tokens.

tokenizer.Parser.dll Contains the Parser components responsible for the optimization of
statements. It can recognize the type of statements and tokens.

tokenizer.CodeGen.dll* Contains the components that turn the AST into MSIL/CIL
code. (Still to be written.)

The version number for all assemblies should match for a given dylan.NET distro. The
program dnc.exe wraps the 4 libraries and is the main compiler executable. It also is

1http://www.mono-project.com contains info about Mono as well as downloads for Windows, Mac and
Linux.

7

1 The Compiler

an example for the use of the libraries. The libraries and their sources are available from
Gitorious. 2

1.2.1 AST

The AST or as I call it, the festival of inheritance contains all dylan.NET language
components. The root namespace is dylan.NET.Tokenizer.AST. All classes derive from
one of the following classes:

Token A standard dylan.NET token comprising an identi�er, literal, operator etc. All
tokens inherit from this class.

Expr A standard dylan.NET expression from which all expressions are derived.

Stmt A standard statement from which all other statements are derived. These can be
collected in an StmtSet.

1.2.2 Lexer

The Lexer is what takes all text source �les, splits them into lines drom which it makes
statements and then splits each line into tokens which it puts inside the corresponding
statement. It then store the set of statements into a statement set for handing over to the
Parser. The dylan.NET lexer is generally string and character aware i.e. it will not split
the token stream when inside a character (e.g. 'c') or when inside a string (e.g. �This
is a string�). The spaces in the string used before will not be used to split the string
into tokens as the lexer knows that it is a string literal. The lexer also has an ingenious
system for recognizing operators that are multi-character such as ++,>=,!=,�, etc. The
root namespace is dylan.NET.Tokenizer.Lexer.

1.2.3 Parser

The Parser is what takes the StmtSet made by the Lexer and transforms it into the
speci�c statements containing speci�c tokens. etc. The decision is done based on the
textual value of the tokens inside the statements. For example a token whose Value
�eld says �object� gets converted into an ObjectTok which inherits the class Type-
Tok which in turn inherits Token. The casting from one type to another is done in
a speci�c fashion and not using the default .NET casting system which is not able to
do all the casts needed. During these casts the new operator is used a extensively to
instantiate the new optimized token, statements etc. and then assignments are used to
transfer the information inside the old class into the new class. The root namespace is
dylan.NET.Tokenizer.Parser.

2http://gitorious.org/dylandotnet/dylandotnet has the latest sources inside the git repo.

8

1.2 The dylan.NET API

1.2.4 CodeGen

More on this after the library is actually written. The root namespace shall be dy-
lan.NET.Tokenizer.CodeGen.

9

2 Other Libraries

2.1 Introduction

Like other programming languages dylan.NET de�nes its own speci�c libraries. The
main utility library is dnu.dll which contains certain functions helping the dylan.NET
programmer. Since the new compiler is written in dylan.NET itself i.e. it is self-hosting
it makes use of dnu.dll. This means it has to be built before the compiler if rebuilding the
toolset from source. All these libraries below are written in dylan.NET demonstrating
that dylan.NET can make great libraries like C# can!

2.2 dnu - dylan.NET Utility

This library provides certain constants such as pi,crlf,cr,lf,e etc. One may say, �But
.NET already has all that stu��. Yes it is true. But for now dylan.NET cannot create
nor access literal �elds which means the .NET ones are useless. That is why dnu de�nes
readonly �eld versions of these constants. In the future this class may get deprecated
when compile time constants may be created and used from dylan.NET. It is also useful
to know that certain functions in dnu might be original ones and can be needed from
C# or VB.NET. The root namespace is dylan.NET.Utils.

2.3 sld - SQLite Data

This library provides an easy way to use SQLite database connections. New datatypes
storable in SQL databases can be de�ned and used as �le-formats. The main external
data formats for dylan.NET are the SQLite database and the XML �le. For XML .NET
gives us the required abstractions but for SQLite it does not so we need wrapper libraries
such as Mono.Data.Sqlite.dll and a library to abstract the wrapper such as sld.dll.

2.4 Others...

Other libraries written in dylan.NET speci�cally for dylan.NET may rise in the future
giving a helping hand to those who wish to invest in dylan.NET. Note that dylan.NET
made libraries are generally cross-platform through Novell Mono. If a native library is
required, the dylan.NET library is only portable to the OSes for which a nativee library
exists. For example, sld is only portable to Windows and Linux that is why XML will
be used inside the CodeGen module.

11

3 The Language

3.1 Introduction

Finally here it is, the dylan.NET language manual pages.

13

	1 The Compiler
	1.1 Introduction
	1.2 The dylan.NET API
	1.2.1 AST
	1.2.2 Lexer
	1.2.3 Parser
	1.2.4 CodeGen

	2 Other Libraries
	2.1 Introduction
	2.2 dnu - dylan.NET Utility
	2.3 sld - SQLite Data
	2.4 Others...

	3 The Language
	3.1 Introduction

