
EuroOffice Extension Creator
Documentation

Release 0.3

MultiRacio Ltd.

May 08, 2009

CONTENTS

1 Downloading and installing 3

2 Using EuroOffice Extension Creator 5
2.1 Creating a new extension . 5
2.2 Packing a development version OXT . 5
2.3 Development . 6
2.4 Packing a release version OXT . 10
2.5 Updating an extension . 10

3 The Extension Core facilities 11
3.1 The ComponentBase class . 11
3.2 The debug framework . 14
3.3 Utilities . 15

4 The Utility Library 19
4.1 util.draw . 19
4.2 util.writer . 20
4.3 util.web . 21

5 The files in a new project 23

6 Example extensions 27
6.1 Star Maker . 27
6.2 Barcode . 27
6.3 Merriam-Webster Dictionary . 27
6.4 Lookup . 27
6.5 Shuffle . 27
6.6 Sharpen . 28

7 Indices and tables 29

Module Index 31

Index 33

i

ii

EuroOffice Extension Creator Documentation, Release 0.3

Contents:

CONTENTS 1

EuroOffice Extension Creator Documentation, Release 0.3

2 CONTENTS

CHAPTER

ONE

DOWNLOADING AND INSTALLING

EuroOffice Extension Creator development is managed through Launchpad at https://launchpad.net/eoec/. Stable re-
leases are available at https://launchpad.net/eoec/+download and the live source code can be checked out from the
Bazaar repository lp:eoec.

Using Bazaar is surprisingly simple. Installation instructions and downloads for every platform are at http://doc.bazaar-
vcs.org/latest/en/mini-tutorial/index.html#installation. Once it is installed, just execute

bzr branch lp:eoec

and the latest source code will be downloaded. Now you can edit this source code and make commits, but take
note that these commits are only made to your local repository. When you have created something magnifi-
cent, you can upload it to Launchpad, and the EuroOffice Extension Creator maintainers can then take a look
and accept the changes. This process is slightly more complicated than checking out, but it is well described at
https://help.launchpad.net/Code/UploadingABranch.

Now that the source code is on your computer you can start using EuroOffice Extension Creator, so on to the next
section!

3

https://launchpad.net/eoec/
https://launchpad.net/eoec/+download
http://bazaar-vcs.org/
http://doc.bazaar-vcs.org/latest/en/mini-tutorial/index.html#installation
http://doc.bazaar-vcs.org/latest/en/mini-tutorial/index.html#installation
https://help.launchpad.net/Code/UploadingABranch

EuroOffice Extension Creator Documentation, Release 0.3

4 Chapter 1. Downloading and installing

CHAPTER

TWO

USING EUROOFFICE EXTENSION
CREATOR

2.1 Creating a new extension

Use create.py to create your new OpenOffice.org extension. A command line such as the following can be used:

python create.py --vendor="My Name" "My Extension"

This will create a new directory named My Extension in the current directory, and fill it with the files necessary
for a basic extension. This directory is now your development tree.

Note: OpenOffice.org does not take well to special characters in file names. Since the vendor name and extension
name are both used as parts of directory names avoiding the use of special characters in either is recommended.

The created extension contains a number of default choices. For an explanation of the generated files see The files in
a new project. While the recommended and most comfortable way of development is by customizing the code while
OpenOffice.org is running, there are still a number of settings that can not be changed while the extension is loaded,
and some that can only be changed prior to installation.

create.py also has a --prefix= option that allows you to set a custom prefix for your internal names,
such as com.sun.star for Sun. It is recommended to set it to something like com.mycompany or
org.myorganization to avoid name clashes in some instances. It defaults to org.openoffice.

2.2 Packing a development version OXT

When you are happy with the basic set up of the extension, you can create a development version OXT. The command
line for this is:

python pack.py -D "My Extension"

(Execute this command in the parent directory of the extension, the same place where create.py was used.)

This will create a file named My_Extension_Debug.oxt. This is a valid OpenOffice.org extension now, and once
it is installed, the development process can begin.

Note that this extension is now specific to your computer in that it includes the path to your development tree and will
load its source code from there. This way you can perform all the development within this tree, and there is no need
to copy files from one place to another. However it can not be shared with other developers.

5

EuroOffice Extension Creator Documentation, Release 0.3

To install an extension in OpenOffice.org open the Extension Manager dialog (from the Tools menu), press the
Add button and pick the newly created OXT file. (To make installation simpler pack.py has a -d option using
which the location of the created OXT file can be set.) You will see that already a license was generated (GPL), and
description.xml is set up with a number of defaults (such as an icon).

Restart OpenOffice.org after installing the extension. (Make sure that you also close the quickstarter. You know you
have really restarted OpenOffice.org if the splash is displayed on startup.)

Note: The prebuilt OXT files included in the release archives are not development versions, so it is not possible to try
run-time development using them.

2.3 Development

There are now two ways to introduce new code during run time.

To run a few arbitrary lines of code open the EuroOffice Extension Creator dialog. It can be accessed by pressing
the Debug button on the About dialog of the extension, which in turn can be accessed from the Help menu. There is
an empty textbox in the EuroOffice Extension Creator dialog where you can enter Python code to quickly execute it.
It can be used for discovering the structure of OpenOffice.org objects, experimentation and for one-off code execution.
Note that the contents of the textbox are not saved. The code is executed in the local context of the extension object
and self is defined to be the object itself.

The other way is by editing the core source file of your extension, myextension.py. This file is monitored by
EuroOffice Extension Creator for changes, and reloaded as needed. When the file is reloaded, even existing instances
of the extension class are updated, so code changes will be instantly visible.

2.3.1 An example: Star Maker

In this example we want to create an extension that draws stars. The user can set the number of points the star has and
the ratio between its inner and outer points (how “fat” the star is) through a dialog box.

6 Chapter 2. Using EuroOffice Extension Creator

EuroOffice Extension Creator Documentation, Release 0.3

We can start by designing the dialog box above.

For building dialogs we use the dialog designer in OpenOffice.org. Start it from the Tools → Macros → Organize
Dialogs menu item. In the OpenOffice.org Basic Macro Organizer select MyNameStarMakerDialogs and
click the New button. Give the name of the dialog – we will go with NewStar in the example. Then press Edit and
the dialog editor will open with a very blank dialog.

The usage of the dialog editor is pretty self explanatory and not the topic of this tutorial, but a few things are useful to
note:

• Make sure you give good internal names to the objects that you want to access programmatically. And since
often it is not known in advance which objects are those it is best to give sensible names to everything.

• The tab order is important for a good user experience, so pay attention to it once the dialog looks good.

• You can select the window itself by clicking on its border (which is 1 pixel wide).

• Double click something to open the properties box.

• You can design dialogs made up of more than one page (for wizard style paged dialogs). For this select the
window and set the page property to 1. Create page one. Set the page property of the window to 2. Everything
on page one disappears and you can create page two. Note that every object has a page attribute, and they will
only appear on that page. If the page attribute of an object is 0, it will appear on all pages.

Make sure you set the page of the window to 1 once you are done.

• If you create OK, Cancel and Help buttons make sure you set their button type property accordingly. If you
create a Help button, make sure you set the help URL property of the dialog window.

Click save once you are done in the dialog editor.

The EOEC dialog has a button labeled Copy dialogs from the installed extension to your development branch. It
is a good idea to make a habit of pressing this button once the dialog is finished, because right now the design for the
dialog only exists in OpenOffice.org and not in your development tree. Pressing this button copies the dialogs to the
development tree.

Now we want a menu item in OpenOffice.org Draw that opens this dialog box. We want this menu item to be created
when the user installs our extension, and we also want it to be created right now, so we do not have to reinstall our
extension.

Open the starmaker.py file in your code editor. Take a look at the firstrun method. This method is executed
on the first startup after you extension was installed. Currently it installs the About Star Maker menu item in the help
menu.

The addMenuItem() method has four parameters:

1. The document type for which we want to install the menu item. For Draw it is
’com.sun.star.drawing.DrawingDocument’.

2. The menu item after which we want to install our menu item, or if we want it to be the first in a menu, then the
parent menu item. Menu items are referenced by their internal OpenOffice.org service names. You can find out
the service name of every menu item by executing

self.dumpMenus(’com.sun.star.drawing.DrawingDocument’)

in the EOEC dialog. We want to insert the new menu item at the top of the insert menu, so the service name is
’.uno:InsertMenu’.

3. The name of the new menu item as it should appear. We can simply give a string here, or we could use
self.localize() to get a localized label.

2.3. Development 7

EuroOffice Extension Creator Documentation, Release 0.3

4. The internal name of the menu item, which is also the name of the method in the extension class that needs to
be invoked when the menu item is clicked.

In the end the line to insert our new menu item is:

self.addMenuItem(
’com.sun.star.drawing.DrawingDocument’,
’.uno:InsertMenu’,
’Star Maker’,
’starmaker’)

Try it in the EOEC dialog. If everything worked a new menu item should have appeared in the Insert menu (only in
Draw). If it worked correctly, add this line to the firstrun method too, and to make sure we behave politely, add

self.removeMenuItem(
’com.sun.star.drawing.DrawingDocument’,
’starmaker’)

in the uninstall method so that the menu item is removed when the extension is.

If you click the menu item now, nothing happens yet. We need to write the corresponding method, which is
starmaker. Create a new method in the class named starmaker like this:

def starmaker(self):
self.box(’Hello’)

Save starmaker.py and click the menu item again. The code will be reloaded and a message box displayed. We
can now delete the placeholder self.box() call and start writing our code in earnest.

The first thing we want to do is display the dialog box that we meticulously designed:

dlg = self.createdialog(’NewStar’)
ok = dlg.execute()

The execute method displays the dialog box and waits until it is closed. The dialog is closed when either the OK or
the Cancel button is pressed or by some other means (using Esc or Alt-F4 on Windows for example). The return value
of execute can be used to tell how the dialog was closed, and it is True when it was closed via the OK button.

If you save the source code and try the menu item now, you will see that the dialog you have designed pops up.

So we do not want to do anything if OK was not pressed:

if not ok:
return

Otherwise we want to get the values entered into the two numeric fields (which we have named PointsField and
RatioField):

points = int(dlg.getControl(’PointsField’).Value)
ratio = float(dlg.getControl(’RatioField’).Value)

You could now display these values in a message box to check if everything is working.

Now let us create an array of two-dimensional coordinates that make up our star:

8 Chapter 2. Using EuroOffice Extension Creator

EuroOffice Extension Creator Documentation, Release 0.3

poly = []
size = 1000
import math
for i in range(points):

add an external point
x = size * math.sin(i * math.pi * 2 / points)
y = size * math.cos(i * math.pi * 2 / points)
poly.append((x, y))
add an internal point
x = ratio * size * math.sin((i + 0.5) * math.pi * 2 / points)
y = ratio * size * math.cos((i + 0.5) * math.pi * 2 / points)
poly.append((x, y))

Now we want to create a polygon object in Draw with these coordinates.

First we get a reference to the current document:

doc = self.getcomponent()

Then, since documents can be made up of multiple pages, we have to get the current page. Since this is not Impress,
there is only one page, so it is page index 0:

page = doc.getDrawPages().getByIndex(0)

Now we create the polygon on this page using utility library:

import util.draw
shape = util.draw.createPolygon(doc, page, [poly])

A polygon in Draw can be made up of multiple outlines (this way they can have holes for example), so
createPolygon expects a list of lists of coordinate pairs – this is why poly is put in a list here.

And because it is currently off the page, we move it to a sensible position:

setpos(shape, 10000, 10000)

And we are done! Save the source code again and test!

2.3.2 About the About dialog

The source code of the About dialog is included in every newly created extension. This way you can customize it or
remove it entirely, but it is also a useful example from which you can always copy parts into your own dialogs. A
valuable example is how the Debug button works. The addActionListener method of the button is used to set
up the listener:

dlg.DebugButton.addActionListener(self)

And then we create the method that will be called:

2.3. Development 9

EuroOffice Extension Creator Documentation, Release 0.3

def on_action_DebugButton(self):

Use this pattern to easily create button handlers. Such convenient name-based mechanisms are not available for every
kind of event handler.

2.4 Packing a release version OXT

Before starting to pack a release version make sure that the dialogs that you have created or modified in the develop-
ment version have been copied back to the development tree. The button labeled Copy dialogs from the installed
extension to your development branch in the EOEC dialog can be used to perform this operation.

Once the development tree correctly represents the extension a release version can be packed by executing:

python pack.py "My Extension"

The created My_Extension.oxt file will be a release build ready for distribution.

2.5 Updating an extension

EuroOffice Extension Creator development is an ongoing process, and if you want to use features from a newer version
you might want to be able to update your extension tree. This is possible with the update.py script.

To update simply execute:

python update.py "My Extension"

It works by comparing file modification dates, and if the template file is newer than the file in your development tree
the file will be overwritten.

Warning: This command can destroy your work!
To make this less likely it first performs a dry-run and then asks for permission to really update the files. This
cautiousness can be disabled with the --quiet option.

If a file is updated in both the EOEC templates and in your development tree, you may want to merge the changes. To
do this rename the file in your tree (to filename.mine for example) and run update.py. A new file based on
the template will be created and you can manually perform the merging.

To prevent a file from ever getting up list it in the dontupdate variable in the eoec.config file (see The files in
a new project).

10 Chapter 2. Using EuroOffice Extension Creator

CHAPTER

THREE

THE EXTENSION CORE FACILITIES

The Extension Core is a set of functions that every EOEC extension depends on. It provides the backbone of creating
and registering an extension, the run-time development mechanism, debugging and a number of essential utilities.

A large part of the functionality is present in the ComponentBase class, and some parts that are not tied to an
extension object are implemented as functions.

3.1 The ComponentBase class

class ComponentBase()
This is the base class from which extension classes are derived. ComponentBase itself is in turn derived from
unohelper.Base, the base class provided by PyUNO.

The following interfaces are implemented:

•XComponent

•XInitialization

•XJob

•XJobExecutor

•XServiceDisplayName

•XServiceInfo

•XServiceName

The following methods can be overridden by subclasses to customize their behavior:

startup()
Runs at every time OpenOffice.org starts up. Subclasses may override it to do some kind of initialization
here – the default implementation does not do anything.
Try to write your extension so that most of the heavy initialization only happens when it is needed. This
way slowing down startup unnecessarily can be avoided.

firstrun()
Runs the first time OpenOffice.org starts up after the extension was installed. Subclasses may override it
to do some kind of initialization here – the default implementation does not do anything.
This is the recommended place to create new menu items.

uninstall()
Runs when the user presses the Disable or Remove buttons on the extension in the Extension Manager
dialog. Subclasses may override it to do some kind of clean up here – the default implementation does not
do anything.
This is the recommended place to remove anything that was created in firstrun().

11

EuroOffice Extension Creator Documentation, Release 0.3

The following utility methods are provided:

getcontroller()
Returns the controller associated with the current document. For example if the current doc-
ument is a com.sun.star.TextDocument getcontroller() will return the associated
com.sun.star.TextDocumentView.

addMenuItem(documenttype, menu, title, command, submenu=False, inside=True)
Adds a new menu item to the OpenOffice.org menu system. This addition is permanent. The menu
item can only be removed using removeMenuItem(). It is recommended to add menu items in the
firstrun() method and remove all of them in the uninstall() method.
An example creating a new submenu with two menu items in the Insert menu:

self.addMenuItem(’com.sun.star.text.TextDocument’,
’.uno:InsertMenu’, self.localize(’submenu’), ’mysubmenu’, submenu=True)

self.addMenuItem(’com.sun.star.text.TextDocument’,
’mysubmenu’, self.localize(’item-2’), ’method2’)

self.addMenuItem(’com.sun.star.text.TextDocument’,
’mysubmenu’, self.localize(’item-1’), ’method1’)

The menu items are added in reverse order, so item-1 will be the top item and item-2 the bottom.
Icons can be assigned to menu items through the xml configuration file Addons.xcu.

Parameters • documenttype (string) – a document type, such as
’com.sun.star.text.TextDocument’ (see documenttypes)

• menu (string) – the command URL of the menu item under which (or into which) the new
menu item is to be placed

• title (string) – The label to appear to the user. It is recommended to use localize() to
get a localized menu item.

• command (string) – The internal name of the menu item. For normal menu items this is
also the name of the method to be called when the menu item is clicked. For submenus this
is the command URL that can be used as the menu parameter when adding menu items
into it. If command contains a colon (:) it is treated as a command URL.

• submenu (boolean) – If true a new submenu, that can contain menu items, is created.
• inside (boolean) – If true and menu refers to a submenu, the new item is created inside

this submenu. Otherwise the new item is created after the item referred to by menu even
if it is a submenu.

removeMenuItem(documenttype, command, submenu=False)
Removes the menu item or submenu from the menu tree of the given document type.

Parameters • documenttype (string) – a document type, such as
’com.sun.star.text.TextDocument’ (see documenttypes)

• command (string) – the internal name of the menu item
• submenu (boolean) – set to true when removing submenus

box(message, kind = ’infobox’, buttons = ’OK’, title = None)
Display a message box. Uses com.sun.star.awt.Toolkit.createMessageBox(), but saves
a lot of the verbosity of the UNO API. The constants used come from the UNO API and are not validated
by this method.
The infobox can only display an OK button, so if buttons is not ’OK’, kind defaults to
’querybox’ instead.

Parameters • message (string) – the text to display
• kind – one of ’infobox’, ’warningbox’, ’errorbox’, ’querybox’ and
’messbox’

• buttons – one of ’OK’, ’OK_CANCEL’, ’YES_NO’, ’YES_NO_CANCEL’,
’RETRY_CANCEL’ and ’ABORT_IGNORE_RETRY’

12 Chapter 3. The Extension Core facilities

EuroOffice Extension Creator Documentation, Release 0.3

• title – The title of the message box. Defaults to the localized extension name if None.
Return type integer
Returns The result of the execute() call on the message box. Different values are re-

turned depending on which button was pressed. The BOXCANCEL, BOXOK, BOXYES,
BOXNO, BOXRETRY attributes can be used to distinguish. BOXCANCEL has a False truth
value, so simple OK_CANCEL boxes can be evaluated without the use of these constants.

debugexception_and_box(format = None)
This method can be used in place of debugexception() where even in release mode the user should
be alerted of the problem.
format can be used to customize the error message. By default it is

’An unexpected error (%(kind)s) occured at line %(linenumber)s of %(filename)s.’

The format string can contain insertion points for kind (the exception type), filename, linenumber,
functionname and text (the message of the exception).
This method also calls debugexception() so in debug mode the entire stack trace is recorded.
It is recommended to add instructions for the user in the format string (such as “Please let us know about
this problem at support@example.com.”).

dumpMenus(documenttype)
This method outputs a representation of the complete menu system of the given document type to the
debug output. It is useful for finding the right command URL when placing your menu items.

getconfig(nodepath, update=False)
Returns the com.sun.star.configuration.ConfigurationAccess object associated with
the given node path.
See the config attribute.

Parameter update – If True, a ConfigurationUpdateAccess object is instead returned,
that can be used to change configuration settings.

localize(string, language=None)
Returns the localized string associated with the internal string string.
If language is None, the language is automatically chosen based on the
SUPPORTED_LANGUAGES attribute. If the current user interface language (as given by
org.openoffice.Setup.L10N.ooLocale) is in the list of supported languages, it is used,
otherwise the first element of the list (the fallback language) is used in its place.
If language is not None, it should be the two-letter code of a language to be used instead of the default.
The localizations are loaded from MyNameMyExtensionDialogs/DialogStrings_language.properties
(with the two-letter code for the language). See the description of this file .

Returns Normally the localized string is returned. However if there is no localization for the
given string in any language, the string ’unlocalized: ’+string’ is returned and
if there are localizations just not in the chosen language, the string ’unlocalized for
%s: %s’%(language, string) is returned instead. These can be used to quickly
spot missing translations on the user interface.

createdialog(dialogname)
Creates an instance of the given dialog using com.sun.star.awt.DialogProvider.createDialog().
For increased convenience, the dialog controls are accessible as attributes of the returned object. For
example if the dialog Dialog1 has a button named Button1 adding an ActionListener can be done like
this:

dlg = self.createdialog(’Dialog1’)
dlg.Button1.addActionListener(self)

This is mostly equivalent to dlg.getControl(’Button1’).addActionListener(self
), but is more efficient when the control is accessed multiple times, because each time an UNO call is
saved.

3.1. The ComponentBase class 13

mailto:support@example.com

EuroOffice Extension Creator Documentation, Release 0.3

For technical reasons a wrapper object is created around the com.sun.star.awt.XDialog object to
enable this convenient access. The original XDialog object can be accessed as the xdialog attribute
of the wrapper. The wrapper forwards every attribute access to the XDialog object, so accessing the
original object is practically never necessary.
To display a dialog, call its execute() method.

Parameter dialogname – the name of the dialog that you have used in the OpenOffice.org dialog
designer

Returns an instance of the given dialog
getdesktop()

Returns the com.sun.star.frame.Desktop object.
getcomponent()

Returns the currently active document object as returned by com.sun.star.frame.Desktop.getCurrentComponent().
When there is no current component for some reason, an arbitrary open document is returned. If there are
no open documents, None is returned.

getcontroller()
Returns the view associated with the currently active document object as returned by
com.sun.star.frame.Desktop.getCurrentComponent().getCurrentController().

The ComponentBase class also sets up a few attributes that can be useful:
ctx

The com.sun.star.uno.XComponentContext object that was given to the constructor. It can be
used to get the “Service Manager” object which can instantiate a number of object types.

path
Contains the root path of the installed extension. It is a normal path, not a file URL.

uilanguage
The two-letter code of the UI language of OpenOffice.org. If the actual UI language is not in the
SUPPORTED_LANGUAGES list, then uilanguage is instead set to the fallback language (the first lan-
guage in the list).

SUPPORTED_LANGUAGES
This attribute is set by subclasses to a list of the two-letter language codes of supported languages. For
languages not in this list, the fallback language (the first language in the list) is used.

config
Provides access to the persistent configuration of the extension. It is a
com.sun.star.configuration.ConfigurationUpdateAccess object associated with
the node my.prefix.MyExtensionSettings/ConfigNode.
Keep in mind that for the change to the configuration to be persistent, the commitChanges() method
has to be called.
For example on the first start up (after firstrun() was called) the FirstRun configuration setting is
updated like this:

self.config.FirstRun = False
self.config.commitChanges()

BOXCANCEL, BOXOK, BOXYES, BOXNO, BOXRETRY
These are the possible return values from the box() method. BOXCANCEL is the only one of these with
a False truth value.

3.2 The debug framework

The Extension Core provides a basic debugging framework. Since debugging is most important when things go wrong,
and when things go wrong there is not much that can be relied on, debug messages are output to either stderr (on
Linux) or to a debug file (c:\debug.txt on Windows and /tmp/debug.txt on Mac).

14 Chapter 3. The Extension Core facilities

EuroOffice Extension Creator Documentation, Release 0.3

To provide some degree of convenience, the EOEC dialog displays the contents of the debug file (if there is one).

On platforms with debug files the debug file is truncated on startup and then on calls to the debug() function it is
opened, appended and closed.

Note that all debug output is silently omitted if the extension is not in development mode.

The relevant functions are:

debug(*msgs)
The list of objects in msg is written to the debug output on separate lines. The objects are first converted to
unicode strings and then encoded in UTF-8.

dd(*args)
For each of the objects in args writes to the debug output the result of dir(obj). It is a shorthand for
discovering what methods and attributes a UNO object has.

debugexception()
Writes the last exception (with stack trace) to the debug output.

You can notice in the source code of the Extension Core and the blank extension created by create.py that
calls from the “outside” are wrapped in try-except-debugexception blocks. This is very useful for debugging,
because otherwise the exception is propagated to OpenOffice.org and will most likely result in a crash that gives
little information. It is recommended that in new methods that implement UNO interfaces extension developers
follow the same convention even when the method does not appear to do anything “dangerous”.

An example of this important principle:

XActionListener
def actionPerformed(self, event):

try:

pass # suppose we do something...

except:
debugexception()

debugstack()
Writes the current stack trace to the debug output.

3.3 Utilities

The Extension Core also includes a number of useful functions and constants that are used by ComponentBase and
can also be useful to developers of extensions.

Normally extensions import * from extensioncore, so these utilities are conveniently available.

DEBUG
This boolean tells if we are in development mode.

class SelfUpdating()
This base-class provides a modified __getattribute__ implementation that (when in development mode)
checks if a newer version of the source file is available (based on file modification dates) and reloads it if
necessary, modifying this instance and future instances of the class.

ComponentBase is derived from this class, but if other classes need this functionality they can derive from
SelfUpdating too.

props(*args, **kwargs)
The UNO API often expects parameters to be com.sun.star.beans.PropertyValue arrays. This
function makes it easy to create such arrays.

3.3. Utilities 15

EuroOffice Extension Creator Documentation, Release 0.3

props can be called with either a single dictionary object as the parameter, or with keyword arguments. It will
then turn the given dictionary or the keyword arguments into a com.sun.star.beans.PropertyValue
array and return this array.

anyprops(*args, **kwargs)
The same as props() except the resulting array is wrapped into an Any object, which is needed in some UNO
calls.

namedvalues(*args, **kwargs)
Same as props() except with NamedValue arrays instead of PropertyValue arrays.

anynamedvalues(*args, **kwargs)
Same as anyprops() except with NamedValue arrays instead of PropertyValue arrays.

unprops(props)
The UNO API often returns values as com.sun.star.beans.PropertyValue arrays. unprops un-
packs these arrays into a more convenient format.

The class of the returned object is derived from dict, so the results are accessible as in a normal dictionary
object. However for added convenience it is also possible to access the values as attributes of the returned object.

For example to access the command URL of the first menu item in some menu system:

settings = xUIMgr.getSettings(’private:resource/menubar/menubar’, True)
menu = unprops(settings.getByIndex(0))
debug(menu.CommandURL)

This function also works with NamedValue arrays.

enumerate(obj)
UNO Sequence objects are converted to tuples when they come to the Python side and are easy to work with.
However the OpenOffice.org API has a number of different container types that are not automatically converted
and can be less convenient to work with.

enumerate is a generator function for these container types. An example usage for relabeling footnotes:

for footnote in enumerate(self.getcomponent().Footnotes):
footnote.Label = ’Footnote ’ + footnote.Label

The following kinds of objects are supported:

•com.sun.star.container.XEnumerationAccess

•com.sun.star.container.XEnumeration

•com.sun.star.container.XIndexAccess

•com.sun.star.container.XNameAccess (while this is a dictionary-like container only the val-
ues are yielded not the keys)

safeeval(code)
Evaluates a Python expression making sure it is safe.

The expression can contain only a very limited set of language elements, that are only sufficient for describing
objects made up of basic Python types. This way a dictionary mapping strings to lists of integers for example
can be simply stored by calling repr() on it, and can be loaded using this function.

documenttypes
This variable lists the possible document types (such as ’com.sun.star.text.TextDocument’) in
OpenOffice.org.

Note that not every build of OpenOffice.org has all of these document types!

16 Chapter 3. The Extension Core facilities

EuroOffice Extension Creator Documentation, Release 0.3

class propset()
This class is a lightweight implementation of com.sun.star.beans.XPropertySet and
com.sun.star.lang.XServiceInfo. None of the methods in the XPropertySet interface are actu-
ally implemented except for getPropertyValue() and setPropertyValue(). This is appropriate for
most purposes, such as for inserting a new item into a com.sun.star.ui.ActionTriggerContainer.
Error handling is also not implemented.

__init__(*args, **kwargs)
The constructor can be called with either a single dictionary object as the parameter, or with keyword
arguments. It will then use the given dictionary or the keyword arguments as the initial property set.

init(cls, *services)
Registers the given class in the OpenOffice.org type database for the given services. This function should
not be called arbitrarily – it is a part of the extension initialization process. It is called in the last line of
extensionname.py. Extensions automatically support the com.sun.star.task.Job service but if
further services are needed to be registered for they can be added to this function call.

Of course the required interfaces should be implemented when registering for a service.

Parameters • cls (class) – the class to register
• services (strings) – the names of the services the class supports

3.3. Utilities 17

EuroOffice Extension Creator Documentation, Release 0.3

18 Chapter 3. The Extension Core facilities

CHAPTER

FOUR

THE UTILITY LIBRARY

EOEC speeds up development, but given how complicated the OpenOffice.org API is in some parts it is also very
important to facilitate code reuse, and this is why we have started to collect the most often used pieces of code in a
supplemental API package. This is the util module that you can access from your extensions.

4.1 util.draw

The functions in this module deal with UNO API related to Draw objects.

The unit of measurement used for coordinates in the UNO API is one thousandth of an inch. It is also used internally
in OpenOffice.org and only integer coordinates are allowed.

rgb(r, g, b)
Converts a color given in float representation to the format used in the UNO API. For example rgb(1.0,
0.0, 0.0) is red.

Parameters • r (float) – red component in range 0.0 - 1.0
• g (float) – green component in range 0.0 - 1.0
• b (float) – blue component in range 0.0 - 1.0

Return type int
Returns the integer representation of the color suitable for use with the UNO API

RGB(r, g, b)
Converts a color given in integer representation to the format used in the UNO API. For example rgb(255,
0, 0) is red.

Parameters • r (int) – red component in range 0 - 255
• g (int) – green component in range 0 - 255
• b (int) – blue component in range 0 - 255

Return type int
Returns the integer representation of the color suitable for use with the UNO API

setpos(shape, x, y, w=None, h=None)
Moves and optionally resizes a Draw object.

Parameters • shape – the shape to move
• x, y (int) – destination coordinates

createShape(model, page, shapetype, color=None)
Creates a new shape and adds it to the DrawPage.

The shape is created by:

19

EuroOffice Extension Creator Documentation, Release 0.3

model.createInstance(’com.sun.star.drawing.%sShape’%shapetype)

Parameters • model (com.sun.star.lang.XMultiServiceFactory) – The document
object that can be used to create an instance of the given shape type. Normally it is the
object you got the DrawPage from.

• page (com.sun.star.draw.DrawPage) – The page to insert the new shape into. Nor-
mally one of the DrawPages of model.

• shapetype (string) – the kind of shape to be created
• color (int or None) – the fill color or None for a transparent shape

createPolygon(model, page, coordss, color=None, type=’PolyPolygon’)
Uses createShape to create a com.sun.star.drawing.PolyPolygonShape or
com.sun.star.drawing.PolyLineShape. The “PolyPolygon” shape is made up of the combi-
nation of a number of polygons, each of which are a closed outline. (The polygons are implicitly closed, there
is no need to duplicate the first point.) The “PolyLine” shape is a collection of line sequences.

Parameters • model (com.sun.star.lang.XMultiServiceFactory) – The document
object that can be used to create an instance of the given shape type. Normally it is the
object you got the DrawPage from.

• page (com.sun.star.draw.DrawPage) – The page to insert the new shape into. Nor-
mally one of the DrawPages of model.

• coordss (list of lists of pairs of integers) – The list of polygons each described by a list of
their points which in turn are described by their integer coordinates. For example [[(0,
0), (1, 0), (1, 1), (0, 1)]] is a unit sized square.

• color (int or None) – the fill color or None for a transparent shape
• type (string) – ’PolyPolygon’ (the default, for drawing closed polygons) or
’PolyLine’ (for drawing open line segments).

embed(doc, imagefilename)
Inserts the image into the document as an embedded image. As opposed to a linked image it will be saved into
the document instead of becoming an external dependency.

Parameters • doc (com.sun.star.lang.XMultiServiceFactory) – The document
object to insert into, for example a com.sun.star.text.TextDocument.

• imagefilename (string) – The name of the image file in system-specific format (not as a
URL).

4.2 util.writer

The functions in this module deal with UNO API related to Writer documents.

getWord(view)
Gets the word under the text cursor. Returns a cursor object for the word which you can then use to access and
modify the word:

import util.writer
cursor = util.writer.getWord(self.getcontroller())
if cursor.String == ’something’:

replace something with something else
cursor.String = ’something else’

20 Chapter 4. The Utility Library

EuroOffice Extension Creator Documentation, Release 0.3

Parameter view (com.sun.star.text.XTextViewCursorSupplier)
– The current TextDocumentView typically as returned by
extensioncore.ComponentBase.getcontroller().

Return type com.sun.star.text.XTextViewCursor

Returns A cursor object for the word.

4.3 util.web

Since the web contains such a large number of useful sources of information and services, an extension might want to
make efficient use of it. The goal of this module is to help with this.

loadpage(url)
Retrieves the page with the given URL.

urllib2 is used and the User-agent HTTP header is set to:

Mozilla/5.0 (OpenOffice.org extension "My Extension" created with EuroOffice Extension Creator)

The extension name is injected by the create.py script. To use a different User-agent header,
util/web.py will have to be modified.

Parameter url (string) – URL of the page to retrieve
Return type string
Returns contents of the web page

getpage(url)
Retrieves the page with the given URL.

This function uses a global cache object. If the given URL has already been retrieved by getpage(), it will
be served from a persistent cache. If it has not yet been cached, it is retrieved with loadpage() and added to
the cache.

Parameter url (string) – URL of the page to retrieve
Return type string
Returns contents of the web page

flatten(x)
Flatten a Beautiful Soup object. Sometimes nothing but the bare text content is wanted from part of a web page,
and this function supplements the Beautiful Soup API to provide access to it.

Parameter x – the Beautiful Soup object
Return type string
Returns the flattened string

MAX_CACHE_SIZE
The maximal cache size. Once the cache reaches this size it is deleted and a new cache is started.

Defaults to 10MB.

setcachefile(filename)
The file name to use for the web cache. By default the file name ’./cache’ is used, but this can depend
highly on platform and OpenOffice.org build, so setting the cache file name is important.

If the file named does not exist a new file will be created. Take care, because if the file exists, but is not actually
a cache file it will be overwritten with a cache file.

4.3. util.web 21

http://www.crummy.com/software/BeautifulSoup/

EuroOffice Extension Creator Documentation, Release 0.3

22 Chapter 4. The Utility Library

CHAPTER

FIVE

THE FILES IN A NEW PROJECT

create.py creates a number of files for your project. This section describes them in detail.

Since some of the directory names depend on your vendor and extension names, we will assume that the vendor name
is My Name and the extension name is My Extension.

myextension
This is the most important directory for the development, because it contains the source code of the extension.
The files here are:

myextension.py
This is the most important file for the developer, because it contains the customized source code of the
extension. For simple extensions you will only have to edit this file. Also note that only this file is used for
run-time development, so while you can have external code in other .py files in this directory, they will
not be reloaded on changes.

extensioncore.py
This file includes all the core technology for your extension, most importantly its base class
ComponentBase, the init function that takes care of registering the derived class with OpenOffice.org
and the debugging framework.
See The Extension Core facilities.

__init__.py
This file is just here for technical reasons.

generatedsettings.py
This file is created by the pack.py script. It tells the extension whether it is in development or release
mode, and in development mode also contains the path to the development source tree.
It is recommended not to put this file under version control.

util
This directory includes an optional, but hopefully useful library of utility modules. See The Utility Library.
The Utility Library is quite small at the moment, but once it expands, you may wish to remove it or trim
it to only include the parts needed by your extension. This is possible, because the extensioncore
module does not depend on it.

binaries-darwin-python23, binaries-linux-python23, binaries-windows-python23
These directories are included in the module search path when the OpenOffice.org installation uses Python 2.3.
Python 2.3 does not include ctypes, so that is contained in this directory. You can also add here any other
binary modules that your extension needs.

Similar directories can also be created for Python 2.5. It makes sense when you want to include a module like
PIL with your extension or if you have created your own Python extension (though using ctypes is often a
simpler option).

modules-python23
This directory contains platform independent Python modules that depend on the version of Python. By default

23

EuroOffice Extension Creator Documentation, Release 0.3

the compiler and ctypes modules are placed here, because they are not included in the Python 2.3 in
OpenOffice.org.

If a similar directory is created for Python 2.5 it will be appropriately handled.

myextension-loader.py
This is the file that is actually registered with OpenOffice.org. The code inside is responsible for setting up the
appropriate module paths and setting up the connection between OpenOffice.org and the actual extension class
in myextension.py.

Normally extension developers do not need to deal with this file, but there may be some special cases. If
something goes wrong during the installation of the extension, the DEBUG option may be turned on in this file
to learn more about the error. If additional Python versions (besides 2.3 and 2.5) are to be supported, this file
also needs to be modified.

MyExtension.xcs
This file defines the configuration options used by the extension. It already contains two options, Origin
which is used to find out the path of the extension and FirstRun which is used to execute installation code
only once. More options can be easily added.

MyExtension.xcu
Similar to MyExtension.xcs this file contains the initial values for the configuration options. When adding
new options make sure it is added in both files.

Addons.xcu
This file contains the icon associations for the new menu items in a rather verbose XML format. An icon
(menuicon_small.png + menuicon_large.png) is associated with the About menu item and new
associations can be created based on it.

Jobs.xcu
This file is used to register the extension to run at startup. If there is no need for this, it may make sense to
skip it altogether, so that the extension does not impact the application start up speed. Removing the entry for
Jobs.xcu in the manifest.xml is the simplest way of doing that.

description.xml
Contains important information about the extension and is recommended to be customized. It is filled with
default values and placeholders, so customization is more or less straightforward, but a detailed documentation
of the elements used can be found in the OpenOffice.org wiki.

MyNameMyExtensionDialogs
This directory contains the dialog library of the extension.

About.xdl
The About dialog.

dialog.xlb
The XML file describing the dialog library.

DialogStrings_en_US.default
This file marks English as the default language of the dialog library.

DialogStrings_en_US.properties
The localization file for the English language. It is a Java property resource bundle file, so tools like The
Translate Toolkit can be used to handle it. (It can also be edited manually, but this is error prone.)
This file contains the whole of the localization for the extension – not just the part concerning the dialogs.
The localize() method also works with this file.

ExtensionCreator.xdl
The EuroOffice Extension Creator dialog.

META-INF

24 Chapter 5. The files in a new project

http://wiki.services.openoffice.org/wiki/Documentation/DevGuide/Extensions/Description_of_XML_Elements
http://translate.sourceforge.net/wiki/toolkit/index
http://translate.sourceforge.net/wiki/toolkit/index

EuroOffice Extension Creator Documentation, Release 0.3

manifest.xml
When an extension is installed, every file in the archive is copied to the extension directory. In addition
manifest.xml tells OpenOffice.org which of these files need special attention.
Unless new .xcu configuration files are used (such as when a new toolbar is defined) or new UNO types
are registered, this file probably does not need to be modified. New Python modules, images, dialogs, help
pages, etc. do not need to be added here.

help
This directory contains the help pages for the extension.

resources
The license files are placed here.

eoec.config
This Python source file is used as a configuration file that stores the information that was used to create the
extension with create.py (such as the URL of the extension website and the name of the extension vendor).
It is used by update.py.

To prevent a file from ever getting updated a dontupdate variable can be added to eoec.config. This
variable should be a list of file names to skip during an update. (File names without paths should be listed. The
Barcode example demonstrates this feature.)

A number of default image files are included. Replacing them is an easy way of customizing an extension.

extensionicon.png
The icon displayed in the Extension Manager dialog.

logo_en.gif
The image displayed in the About dialog for the English localization. Similar image files can be added for every
supported language.

menuicon_large.png, menuicon_small.png
A pair of menu icons registered in Addons.xcu for the About menu item.

25

EuroOffice Extension Creator Documentation, Release 0.3

26 Chapter 5. The files in a new project

CHAPTER

SIX

EXAMPLE EXTENSIONS

6.1 Star Maker

Star Maker is a basic OpenOffice.org Draw extension that draws a star based on input from a dialog.

This is a good starter example and it is thoroughly documented in An example: Star Maker. There is also a screencast
that uses this example to demonstrate EOEC development.

6.2 Barcode

This example is basically the same as Star Maker, but instead of stars it draws barcodes. Since there is a much
larger demand for barcodes, this extension has become practically useful and with the help of many users it has been
translated to numerous languages and many barcode types have been added.

It is now a good example of a full-fledged extension created with EOEC.

6.3 Merriam-Webster Dictionary

Merriam-Webster is a trademark of Merriam-Webster Incorporated. This example is just for developers and should
not be released separately.

Merriam-Webster Dictionary is an OpenOffice.org Writer extension that integrates an online thesaurus. It is an ex-
ample of an interactive dialog where words are looked up based on selection from a listbox and online connectivity.
Python extensions in OpenOffice.org have the full power of Python available to them, so web pages can be fetched
and processed with ease. For processing web pages this example uses Beautiful Soup, a very convenient and reliable
pure-Python HTML parser.

6.4 Lookup

Lookup is a very simple extension that looks up the selected text (in OpenOffice.org Writer) on Google in the user’s
default browser. To make it a bit more interesting it illustrates how a keyboard shortcut can be assigned to a menu
item.

6.5 Shuffle

Shuffle is an OpenOffice.org Calc example and illustrates basic cell access. It shuffles the rows of the current selection.

27

http://www.multiracio.com/eurooffice/news/eurooffice-extension-creator-screencast
http://www.merriam-webster.com/
http://www.crummy.com/software/BeautifulSoup/

EuroOffice Extension Creator Documentation, Release 0.3

6.6 Sharpen

Sharpen is an OpenOffice.org Draw extension. It illustrates context-menu integration, the integration of a binary
module (PIL) in a multiplatform way and access to Draw objects. It uses util.draw.embed() to insert the
sharpened image back to OpenOffice.org.

28 Chapter 6. Example extensions

http://www.pythonware.com/products/pil/

CHAPTER

SEVEN

INDICES AND TABLES

• Index

• Module Index

• Search Page

29

EuroOffice Extension Creator Documentation, Release 0.3

30 Chapter 7. Indices and tables

MODULE INDEX

E
extensioncore, 11

U
util.draw, 19
util.web, 21
util.writer, 20

31

EuroOffice Extension Creator Documentation, Release 0.3

32 Module Index

INDEX

Symbols
__init__() (extensioncore.propset method), 17

A
addMenuItem() (extensioncore.ComponentBase method),

12
anynamedvalues() (in module extensioncore), 16
anyprops() (in module extensioncore), 16

B
box() (extensioncore.ComponentBase method), 12

C
ComponentBase (class in extensioncore), 11
config (extensioncore.ComponentBase attribute), 14
createdialog() (extensioncore.ComponentBase method),

13
createPolygon() (in module util.draw), 20
createShape() (in module util.draw), 19
ctx (extensioncore.ComponentBase attribute), 14

D
dd() (in module extensioncore), 15
DEBUG (in module extensioncore), 15
debug() (in module extensioncore), 15
debugexception() (in module extensioncore), 15
debugexception_and_box() (extension-

core.ComponentBase method), 13
debugstack() (in module extensioncore), 15
documenttypes (in module extensioncore), 16
dumpMenus() (extensioncore.ComponentBase method),

13

E
embed() (in module util.draw), 20
enumerate() (in module extensioncore), 16
extensioncore (module), 11

F
firstrun() (extensioncore.ComponentBase method), 11
flatten() (in module util.web), 21

G
getcomponent() (extensioncore.ComponentBase

method), 14
getconfig() (extensioncore.ComponentBase method), 13
getcontroller() (extensioncore.ComponentBase method),

12, 14
getdesktop() (extensioncore.ComponentBase method), 14
getpage() (in module util.web), 21
getWord() (in module util.writer), 20

I
init() (in module extensioncore), 17

L
loadpage() (in module util.web), 21
localize() (extensioncore.ComponentBase method), 13

M
MAX_CACHE_SIZE (in module util.web), 21

N
namedvalues() (in module extensioncore), 16

P
path (extensioncore.ComponentBase attribute), 14
props() (in module extensioncore), 15
propset (class in extensioncore), 16

R
removeMenuItem() (extensioncore.ComponentBase

method), 12
RGB() (in module util.draw), 19
rgb() (in module util.draw), 19

S
safeeval() (in module extensioncore), 16
SelfUpdating (class in extensioncore), 15
setcachefile() (in module util.web), 21
setpos() (in module util.draw), 19
startup() (extensioncore.ComponentBase method), 11

33

EuroOffice Extension Creator Documentation, Release 0.3

SUPPORTED_LANGUAGES (extension-
core.ComponentBase attribute), 14

U
uilanguage (extensioncore.ComponentBase attribute), 14
uninstall() (extensioncore.ComponentBase method), 11
unprops() (in module extensioncore), 16
util.draw (module), 19
util.web (module), 21
util.writer (module), 20

34 Index

	Downloading and installing
	Using EuroOffice Extension Creator
	Creating a new extension
	Packing a development version OXT
	Development
	Packing a release version OXT
	Updating an extension

	The Extension Core facilities
	The ComponentBase class
	The debug framework
	Utilities

	The Utility Library
	util.draw
	util.writer
	util.web

	The files in a new project
	Example extensions
	Star Maker
	Barcode
	Merriam-Webster Dictionary
	Lookup
	Shuffle
	Sharpen

	Indices and tables
	Module Index
	Index

