The Lame Class

The Lame class defines a Lame equation problem:

$\displaystyle -\mu (u\hackscore{i,j}+u\hackscore{j,i})+\lambda u\hackscore{k,k})\hackscore{j} = F\hackscore{i}-\sigma\hackscore{ij,j}$ (87)

with natural boundary conditions:

$\displaystyle n\hackscore{j}(\mu \; (u\hackscore{i,j}+u\hackscore{j,i})+\lambda*u\hackscore{k,k}) = f\hackscore{i}+n\hackscore{j}\sigma\hackscore{ij}$ (88)

and constraint

$\displaystyle u\hackscore{i}=r\hackscore{i}$    where $\displaystyle q\hackscore{i}>0$ (89)

$ \mu$, $ \lambda$ have to be a scalar Data object in the general FunctionSpace, $ F$ has to be a vector Data object in the general FunctionSpace, $ \sigma$ has to be a tensor Data object in the general FunctionSpace, $ f$ must be a vector Data object in the boundary FunctionSpace, and $ q$ and $ r$ must be a vector Data object in the solution FunctionSpace or must be mapped or interpolated into the particular FunctionSpace.


\begin{classdesc}{Lame}{domain}
opens a Lame equation on the \class{Domain}\xspa...
.... \class{Lame}\xspace is derived from \class{LinearPDE}\xspace .
\end{classdesc}

\begin{methoddesc}[Lame]{setValue}{ \optional{lame_lambda} \optional{, lame_mu} ...
...,
\var{r} and
\var{q}
By default all values are set to be zero.
\end{methoddesc}

esys@esscc.uq.edu.au