This class provides a framework for solving linear homogeneous saddle
point problems of the form:
equal to the type of p
|
Bv(self,
v)
Returns Bv (overwrite). |
|
|
|
|
|
|
|
|
|
__init__(self,
adaptSubTolerance=True,
**kwargs)
initializes the saddle point problem |
|
|
|
__inner_GMRES(self,
p0,
p1) |
|
|
|
|
|
adaptSubTolerance(self)
Returns True if tolerance adaption for subproblem is choosen. |
|
|
float
|
|
|
|
float
|
|
|
getV(self,
p,
v0)
return the value for v for a given p (overwrite) |
|
|
|
initialize(self)
Initializes the problem (overwrite). |
|
|
float
|
inner_p(self,
p0,
p1)
Returns inner product of p0 and p1 (overwrite). |
|
|
float
|
inner_pBv(self,
p,
Bv)
Returns inner product of element p and Bv (overwrite). |
|
|
equal to the type of p
|
norm_Bv(self,
Bv)
Returns the norm of Bv (overwrite). |
|
|
float
|
norm_p(self,
p)
calculates the norm of p |
|
|
non-negative float
|
norm_v(self,
v)
Returns the norm of v (overwrite). |
|
|
|
|
|
|
|
setTolerance(self,
tolerance=0.0001)
Sets the relative tolerance for (v,p). |
|
|
tuple of Data
objects
|
solve(self,
v,
p,
max_iter=20,
verbose=False,
usePCG=True,
iter_restart=20,
max_correction_steps=10)
Solves the saddle point problem using initial guesses v and p. |
|
|
|
|
equal to the type of p
|
|
Inherited from object :
__delattr__ ,
__getattribute__ ,
__hash__ ,
__new__ ,
__reduce__ ,
__reduce_ex__ ,
__repr__ ,
__setattr__ ,
__str__
|