Package esys :: Package escript :: Module pdetools :: Class NoPDE
[hide private]
[frames] | no frames]

Class NoPDE

Solves the following problem for u:

kronecker[i,j]*D[j]*u[j]=Y[i]

with constraint

u[j]=r[j] where q[j]>0

where D, Y, r and q are given functions of rank 1.

In the case of scalars this takes the form

D*u=Y

with constraint

u=r where q>0

where D, Y, r and q are given scalar functions.

The constraint overwrites any other condition.


Note: This class is similar to the linearPDEs.LinearPDE class with A=B=C=X=0 but has the intention that all input parameters are given in Solution or ReducedSolution.

Instance Methods [hide private]
 
__init__(self, domain, D=None, Y=None, q=None, r=None)
Initializes the problem.
Data object in the FunctionSpace Solution or ReducedSolution
getSolution(self)
Returns the solution.
 
setReducedOff(self)
Sets the FunctionSpace of the solution to Solution.
 
setReducedOn(self)
Sets the FunctionSpace of the solution to ReducedSolution.
 
setValue(self, D=None, Y=None, q=None, r=None)
Assigns values to the parameters.
Method Details [hide private]

__init__(self, domain, D=None, Y=None, q=None, r=None)
(Constructor)

 

Initializes the problem.

Parameters:
  • domain (Domain) - domain of the PDE
  • D (float, int, numpy.ndarray, Data) - coefficient of the solution
  • Y (float, int, numpy.ndarray, Data) - right hand side
  • q (float, int, numpy.ndarray, Data) - location of constraints
  • r (float, int, numpy.ndarray, Data) - value of solution at locations of constraints

getSolution(self)

 

Returns the solution.

Returns: Data object in the FunctionSpace Solution or ReducedSolution
the solution of the problem

setValue(self, D=None, Y=None, q=None, r=None)

 

Assigns values to the parameters.

Parameters:
  • D (float, int, numpy.ndarray, Data) - coefficient of the solution
  • Y (float, int, numpy.ndarray, Data) - right hand side
  • q (float, int, numpy.ndarray, Data) - location of constraints
  • r (float, int, numpy.ndarray, Data) - value of solution at locations of constraints