
esys.downunder: Inversion with
escript

Release - 3.4
(r4488)

Cihan Altinay, Vince Boros, Lutz Gross, Azadeh Salehi

June 28, 2013

The University of Queensland
School of Earth Sciences

St. Lucia, QLD 4072, Australia.

Copyright (c) 2012–2013 by University of Queensland
http://www.uq.edu.au

Primary Business: Queensland, Australia
Licensed under the Open Software License version 3.0

http://www.opensource.org/licenses/osl-3.0.php
This work is supported by the AuScope National Collaborative Research Infrastructure Strategy, the Queensland

State Government and The University of Queensland.

http://www.uq.edu.au
http://www.opensource.org/licenses/osl-3.0.php

Contents

Overview 5

I Inversion Cookbook 7

1 Gravity Inversion 9
1.1 Introduction . 9
1.2 How does it work? . 9
1.3 Creating the Inversion Domain . 12
1.4 Loading Gravitational Data . 14
1.5 Setting up the Inversion and Running it . 16
1.6 Taking a Look . 17
1.7 Remarks . 17

1.7.1 ER Mapper Raster Files . 17
1.7.2 Data With Holes . 20
1.7.3 Multiple Data Sets . 21
1.7.4 Regularization Term . 21

2 Magnetic Inversion 23

II Reference Guide 29

3 Inversion Drivers 31
3.1 Class Dependencies . 32
3.2 Domains . 32

3.2.1 Cartesian Domain . 32
3.3 Driver Classes . 33

3.3.1 Template . 33
3.3.2 Gravity Inversion Driver . 34
3.3.3 Magnetic Inversion Driver . 35
3.3.4 Gravity and Magnetic Joint Inversion Driver . 35

4 Minimization Algorithms 37
4.1 Solver Classes . 38
4.2 CostFunction Class Template . 38
4.3 The L-BFGS Algorithm . 39

4.3.1 Line Search . 40

5 Cost Function 41
5.1 InversionCostFunction API . 42
5.2 Gradient calculation . 44

3

6 Data Sources 47
6.1 Overview . 47
6.2 Domain Builder . 48
6.3 DataSource Class . 49

6.3.1 ER Mapper Raster Data . 50
6.3.2 NetCDF Data . 51
6.3.3 Synthetic Data . 51

7 Regularization 53
7.1 Usage . 54
7.2 Gradient Calculation . 54

8 Mapping 57
8.1 Density Map . 57
8.2 Susceptibility Map . 57
8.3 General Mapping Class . 58

9 Forward Models 59
9.1 Gravity Inversion . 59

9.1.1 Usage . 60
9.1.2 Gradient Calculation . 60

9.2 Linear Magnetic Inversion . 61
9.2.1 Usage . 62
9.2.2 Gradient Calculation . 62

Index 63

Bibliography 65

Overview

The esys.downunder module for python is designed to perform the inversion of geophysical data such as
gravity and magnetic anomalies using a parallel supercomputer. The solution approach bases entirely on the finite
element method and is therefore different from the usual approach based on Green’s functions and linear algebra
techniques. The module is implemented on top of the escript solver environment for python and is distributed as
part of the escript package through https://launchpad.net/escript-finley. We refer to the escript
documentation [6] for installation instructions and to [7] for a basic introduction to escript.

This document is split into two parts: Part I provides a tutorial-style introduction to running inversions with the
esys.downunder module. Users with minimal or no programming skills should be able to follow the tutorial
which demonstrates how to run inversions of gravity anomaly data, magnetic anomaly data and the combination
of both. The scripts and data files used in the examples are provided with the escript distribution.

Part II gives more details on the mathematical methods used and the module infrastructure. It is the intention
of this part to give users a deeper understanding of how esys.downunder is implemented and also to open
the door for experienced python programmers to build their own inversion programs using esys.downunder
components and the escript infrastructure.

The development project of esys.downunder is part of the AuScope Inversion Lab. The work is funded un-
der Australian Geophysical Observing System, see http://auscope.org.au/site/agos.php, through
the Education Investment Fund of the Australian Commonwealth (2011-2014) and under the AuScope Sustain-
ability Funding (2011-12) with the support of the School of Earth Sciences at the University of Queensland,
see http://www.earth.uq.edu.au/.

5

https://launchpad.net/escript-finley
http://auscope.org.au/site/agos.php
http://www.earth.uq.edu.au/

6

Part I

Inversion Cookbook

7

CHAPTER

ONE

Gravity Inversion

1.1 Introduction

In this part of the documentation we give an introduction on how to use the esys.downunder module and the
inversion driver functions to perform the inversion of gravity and magnetic data. The driver functions enable ge-
ologists and geophysicists to apply the esys.downunder module quickly and in an easy way without requiring
detailed knowledge of the theory behind inversion or programming skills. However, users who are interested in
specializing or extending the inversion capacity are referred to Part II of this manual. It is beyond the intention of
this manual to give a detailed introduction to geophysical inversion, in particular to the appropriate preprocessing
of data sets.

The esys.downunder module described here is designed to calculate estimations for the 3-D distribution
of density and/or susceptibility from 2-D gravity and magnetic data measured in ground or airborne surveys.
This process is generally called inversion of geophysical data. Following the standard assumption it is assumed
that the data are measured as perturbation of an expected gravity and/or magnetic field of the Earth. In this
context measured gravity and magnetic data are in fact describing anomalies in the gravity and magnetic field.
As a consequence the inversion process provides corrections to an average density (typically 2670kg/m3) and
susceptibility (typically 0). So in the following we will always assume that given data are anomalies and therefore
not in all cases explicitly use the terms gravity anomalies or density corrections but just use the terms gravity and
density.

In this chapter we will give a detailed introduction into usage of the driver functions for inversion of gravity
data. In Chapter 2 we will discuss the inversion of magnetic data using esys.downunder.

To run the examples discussed you need to have escript (version 3.3.1 or newer) installed on your computer.
Moreover, if you want to visualize the results you need to have access to a data plotting software which is able to
process VTK input files, e.g. mayavi or VisIt. As mayavi can be easily obtained and installed for most platforms
the tutorial includes commands to visualize output files using mayavi. However, it is pointed out that VisIt is the
preferred visualization tool for escript as it can deal with very large data sets more efficiently.

1.2 How does it work?

The execution of the inversion is controlled by a script which, in essence, is a text file and can be edited using any
text editor. The script contains a series of statements which are executed by an interpreter which is an executable
program reading the text file and executing the statements line-by-line. In the case of esys.downunder the
interpreter is python. In order to be able to process the statements in each line of the script certain rules (called
syntax) need to be obeyed. There is a large number of online tutorials for python available1. We also refer to
the escript cook book [7] and user’s guide [6] which is in particular useful for users who like to dive deeper into
esys.downunder. For this part of the manual no python knowledge is required but it is recommended that users
acquire some basic knowledge on python as they progress in their work with esys.downunder.

1e.g. http://www.tutorialspoint.com/python and http://doc.pyschools.com

Chapter 1. Gravity Inversion 9

http://www.tutorialspoint.com/python
http://doc.pyschools.com

Figure 1.1: Gravity Anomaly Data in mgal from Western Queensland, Australia (file
data/QLDWestGravity.nc). Data obtained from Geoscience Australia.

The following script 1.12 is a simple example to run an inversion for gravity data:

Python Program 1.1

Header:
from esys.downunder import *
from esys.weipa import *
from esys.escript import unitsSI as U

Step 1: set up domain
dom=DomainBuilder()
dom.setVerticalExtents(depth=40.*U.km, air_layer=6.*U.km, num_cells=25)
dom.setFractionalPadding(pad_x=0.2, pad_y=0.2)
dom.fixDensityBelow(depth=40.*U.km)

Step 2: read gravity data
source0=NetCdfData(NetCdfData.GRAVITY, ’GravitySmall.nc’)
dom.addSource(source0)

Step 3: set up inversion
inv=GravityInversion()
inv.setSolverTolerance(1e-4)
inv.setSolverMaxIterations(50)
inv.setup(dom)

Step 4: run inversion
inv.getCostFunction().setTradeOffFactorsModels(10.)
rho = inv.run()

Step 5: write reconstructed density to file
saveVTK("result.vtu", density=rho)

2The script is similar to grav_netcdf.py within the escript example file directory.

10 1.2. How does it work?

Figure 1.2: 3-D contour plot of the density distribution obtained by inversion of file
data/QLDWestGravity.nc (with µ = 10). Colours represent values of density where high values are
represented by blue and low values are represented by red.

Chapter 1. Gravity Inversion 11

The result, in this case the density distribution, is written to an external file for further processing. You can copy
and paste the text of the script into a file of any name, let’s say for further reference we use the file name grav.py.
It is recommended to use the extension .py to identify the file as a python script. We will discuss the statements
of the script later in this chapter.

Obviously the inversion needs to be fed with some gravity data. You can find example data from western
Queensland, Australia in two resolutions in the escript example directory. In this case the data are loaded from
the file GravitySmall.nc which is given in the netCDF file format. After you have copied this file into the
directory in which you have saved the script grav.py you can run the program using the command line

run-escript grav.py

We are running grav.py through the escript start-up command since escript is used as a back end for the inversion
algorithm3. Obviously it is assumed that you have an installation of escript available on your computer, see
https://launchpad.net/escript-finley.

After the execution has successfully completed you will find the result file result.vtu in the directory from
where you have started the execution of the script. The file has the VTK format and can be imported easily into
many visualization tools. One option is the mayavi package which is available on most platforms. You can invoke
the visualization using the commands

mayavi2 -d result.vtu -m SurfaceMap

from the command line. Figure 1.2 shows the result of this inversion as a contour plot4, while the gravity anomaly
data is shown in Figure 1.1. We will discuss data later in Section 1.4.

Let us take a closer look at the script5. Besides the header section one can separate the script into five steps:

1. set up domain on which the inversion problem is solved

2. load the data

3. set-up the inversion problem

4. run the inversion

5. further processing of the result. Here we write the reconstructed density distribution to a file.

In the following we will discuss the steps of the scripts in more detail. Before we do this it is pointed out that the
header section, following python conventions, makes all required packages available to access within the script.
At this point we will not discuss this in more details but emphasize that the header section is a vital part of the
script. It is is required in each esys.downunder inversion script and should not be altered except if additional
modules are needed.

1.3 Creating the Inversion Domain
First step in Script 1.1 is the definition of the domain over which the inversion is performed. We think of the
domain as a block with orthogonal, plain faces. Figure 1.3 shows the set-up for a two-dimensional domain (see
also Figure 6.1 for 3-D). The lateral coordinates along the surface of the Earth are denoted by x and y (only x-
direction is used in 2-D). The z direction defines the vertical direction where the part above the surface has positive
coordinates and the subsurface negative coordinates. The height of the section above the surface, which is assumed
to be filled with air, needs to be set by the user. The inversion assumes that the density in the section is known
to be zero6. The density below the surface is unknown and is calculated through the inversion. The user needs to
specify the depth below the surface in which the density is to be calculated. The lateral extension of the domain is
defined by the data sets fed into the inversion. It is chosen large enough to cover all data sets (in case more than
one is used). In order to reduce the impact of the boundary a padding zone around the data sets can be introduced.

The reconstruction of the gravity field from an estimated density distribution is the key component of the
inversion process. To do this esys.downunder uses the finite element method (FEM). We need to introduce a

3Please see the escript user’s guide [6] on how to run your script in parallel using threading and/or MPI.
4These plots were generated by VisIt using the higher resolution data.
5In python lines starting with ‘#‘ are comments and are not processed further.
6Always keeping in mind that these are not absolute values but anomalies.

12 1.3. Creating the Inversion Domain

https://launchpad.net/escript-finley

air

subsurface
x

z

density = ?

density = 0

gravity datapadding

depth

air_layer
altitude

pad_x

padding
pad_x

Figure 1.3: 2-D domain set-up for gravity inversion

data for vertical gravity

num_cells

zero lateral gravity

zero lateral gravity

zero lateral gravity

ze
ro

 la
te

ra
l g

ra
vi

ty

Figure 1.4: Cell distribution and boundary conditions for a 2-D domain

Chapter 1. Gravity Inversion 13

grid over the domain, see Figure 1.4. The number of vertical cells is set by the user while the number of horizontal
cells is derived from the grid spacing of the gravity data set(s). It is assumed that gravity field data given are
constant across a cell. To be able to reconstruct the gravity field some assumptions on the values of the gravity
field on the domain boundary have to be made. esys.downunder assumes that on all faces the lateral gravity
field component equals zero. No assumptions on the horizontal components are made78.

In script 1.1 the statement

dom=DomainBuilder()

creates something like a factory to build a domain. We then define the features of the domain we would like to
create:

dom.setVerticalExtents(depth=40.*U.km, air_layer=6.*U.km, num_cells=25)
dom.setFractionalPadding(pad_x=0.2, pad_y=0.2)

Here we specify the depth of the domain to 40km, the thickness of the air layer above the surface to 6km and the
number of vertical cells to 25. We also introduce a lateral padding of 20% of the expansion of the gravity data on
each side of the data and in both lateral directions.

In some cases it can be appropriate to assume that the density below a certain depth is zero9. The statement

dom.fixDensityBelow(depth=40.*U.km)

introduces this constraint. As in the case discussed here if the depth for zero density is not less than the depth of
the domain no constraint at depth is applied to the density.

esys.downunder uses the metre-kilogram-second based International System of Units (SI)10. So all values
must be converted to appropriate units. This does not apply to geographic coordinates which in esys.downunder
are given in fractional degrees (as a floating point number) to represent longitude and latitude. In the script we
have used the expression

depth=40.*U.km

to define the depth of the domain to 40km. The expression U.km denotes the unit km (kilometer) and ensures
appropriate conversion of the value 40 into the base unitm (meter). It is recommended to add units to values (where
present) in order to make sure that the final values handed into esys.downunder is given with the appropriate
units. The physical units module of escript, which we have imported here under the name U in the script header,
defines a large number of physical units and constants, please see [6] and [1].

1.4 Loading Gravitational Data
In practice gravity acceleration is measured in various ways, for instance by airborne surveys [16]. esys.downunder
assumes that all data supplied as input are already appropriately pre-processed. In particular, corrections for

• free-air, to remove effects from altitude above ground;

• latitude, to remove effects from ellipsoidicity of the Earth;

• terrain, to remove effects from topography

must have been applied to the data. In general, data prepared in such a form are called Bouguer anomalies [16].
To load gravity data into esys.downunder the data are given on a plane parallel to the surface of the Earth

at a constant altitude, see diagram 1.3. The data need to be defined over a rectangular grid covering a subregion
of the Earth surface. The grid uses a geographic coordinate system with latitudes and longitudes assumed to be
given in the Clarke 1866 geodetic system. Figure 1.1 shows an example of such a data set from the western parts
of Queensland, Australia. The data set covers a rectangular region between 140o and 141o east and between 20o

7It is assumed that the gravity potential equals zero on the top and bottom surface, see Section 9.1 for details
8Most inversion codes use Green’s functions over an unbounded domain to reconstruct the gravity field. This approach makes the assumption

that the gravity field (or potential) is converging to zero when moving away from the region of interest. The boundary conditions used here are
stronger in the sense that the lateral gravity component is enforced to be zero in a defined distance of the region of interest but weaker in the
sense that no constraint on the horizontal component is applied.

9As we are in fact calculating density corrections this means that the density is assumed to be the average density.
10see http://en.wikipedia.org/wiki/International_System_of_Units

14 1.4. Loading Gravitational Data

http://en.wikipedia.org/wiki/International_System_of_Units

and 21o south. Notice that latitude varies between−90o to 90o where negative signs refer to places in the southern
hemisphere and longitude varies between −180o to 180o where negative signs refer to places west of Greenwich.
The colour at a location represents the value of the vertical Bouguer gravity anomaly at this point at the surface of
the Earth. Values in this data set range from −160 mgal to about 500 mgal11 over a 121× 121 grid.

In general, a patch of gravity data needs to be defined over a plane NX × NY where NX and NY define the
number of grid lines in the longitude (X) and the latitude (Y) direction, respectively. The grid is spanned from an
origin with spacing DELTA_X and DELTA_Y in the longitude and the latitude direction, respectively. The gravity
data for all grid points need to be given as an NX × NY array. If available, measurement errors can be associated
with the gravity data. The values are given as an NX × NY array matching the shape of the gravity array. Note that
data need not be available on every single point of the grid, see Section 1.7.2 for more information on this.

Currently, two data file formats are supported, namely ER Mapper Raster [2] files and netCDF [12] files. In
the examples of this chapter we use netCDF files and refer to Section 1.7.1 and Section 6.3.1 for more information
on using ER Mapper Raster files. If you have data in any other format you have the option of writing a suitable
reader (for advanced users, see Chapter 6) or, assuming you are able to read the data in python, refer to the example
script create_netcdf.py which shows how to create a file in the netCDF file format [12] compatible with
esys.downunder from a data array.

In script 1.1 we use the statement

source0=NetCdfData(NetCdfData.GRAVITY, ’GravitySmall.nc’)

to load the gravity data stored in GravitySmall.nc in the netCDF format. Within the script the data set is now
available under the name source0. We need to link the data set to the DomainBuilder using

dom.addSource(source0)

At the time the domain for the inversion is built the DomainBuilderwill use the information about origin, extent
and spacing along with the other options provided to build an appropriate domain. As at this point a flat Earth is
assumed geographic coordinates used to represent data in the input file are mapped to a (local) Cartesian coordinate
system. This is achieved by projecting the geographic coordinates into the Universal Transverse Mercator (UTM)
coordinate system12.

There are a few optional arguments you can add when constructing a data source. While Section 6.3 has a
detailed description of all arguments it is worth noting a few. Firstly, it is important to know that data slices are
assumed to be at altitude 0 by default. This can be easily changed though:

source0=NetCdfData(NetCdfData.GRAVITY, ’GravitySmall.nc’, altitude=2.5*U.km)

Another important setting is the scale or unit of the measurements. The default is dependent on the data type and
for gravity anomalies a scale of µm

sec2 (or 0.1 mgal) is assumed. For instance to change the default scale to mgal
(which is 10−5 m

sec2), you could use:

source0=NetCdfData(NetCdfData.GRAVITY, ’GravitySmall.nc’, scale_factor=U.mgal)

Finally, it is possible to specify measurement errors (i.e. uncertainties) alongside the data. Since these can never
be zero, a value of 2 units is used if nothing else has been specified. The error value is assumed to be given in the
same units as the data so the default value translates to an error of 0.2 mgal. There are two possibilities to specify
the error, namely by providing a constant value which is applied to all data points:

source0=NetCdfData(NetCdfData.GRAVITY, ’GravitySmall.nc’, error=1.7)

or, if the information is available in the same netCDF file under the name errors, provide esys.downunder
with the appropriate variable name:

source0=NetCdfData(NetCdfData.GRAVITY, ’GravitySmall.nc’, error="errors")

It is important to keep an eye on the complexity of the inversion. A good measure is the total number of cells
being used. Assume we have given a data set on a 20 × 20 grid and we add lateral padding of, say, 20% to each
side of the data, the lateral number of cells becomes (20 · 1.4) × (20 · 1.4) = 1.42 · 202 ≈ 2 · 102 = 800. If we
use 20 cells in the vertical direction we end up with a total number of 800 × 20 = 16, 000 cells. This size can be

11The unit mgal means milli gal (galileo) with 1 gal = 0.01 m
sec2

.
12See e.g. http://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system

Chapter 1. Gravity Inversion 15

http://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system

easily handled by a modern desktop PC. If we increase the grid size of the data to 40× 40 points and use 40 cells
in the vertical extent we get a total of (2 · 402) · 40 = 128, 000 cells, a problem size which is considerably larger
but can still be handled by a desktop computer. Taking this one step further, if the amount of data is increased
to 200 × 200 points and we use 200 cells in the vertical extent the domain will contain 16, 000, 000 (16 million)
cells. This scenario requires a computer with enough memory and (a) fast processor(s) to run the inversion. This
estimate of complexity growth applies to the case where the increase of data grid size is driven by an increase of
resolution where it is recommended to increase the vertical resolution in synch with the lateral resolution. Note
that if more than one data set is used the target resolution will be the resolution of the finest data set (see also
Section 1.7.3). In other cases the expansion of the region of interest drives an increase of data grid size and the
increase of total number of cells is less dramatic as the vertical number of cells can remain constant while keeping
a balanced resolution in vertical and lateral direction.

1.5 Setting up the Inversion and Running it
We are now at step three of script 1.1 in which the actual inversion is set up. First we create an empty inversion
under the name inv:

inv=GravityInversion()

As indicated by the name we can use inv to perform an inversion of gravity data13. The inversion is an iterative
process which sequentially calculates updates to the density distribution in an attempt to improve the match of the
gravity field produced by the density distribution with the data. Termination of the iteration is controlled by the
tolerance which is set by the user:

inv.setSolverTolerance(1e-4)

Here we set the tolerance to 10−4, i.e. the iteration is terminated if the maximum density correction is less than or
equal to 10−4 relative to the maximum value of estimated density anomaly. In case the iteration does not converge
a maximum number of iteration steps is set:

inv.setSolverMaxIterations(50)

If the maximum number of iteration steps (here 50) is reached the iteration process is aborted and an error message
is printed. In this case you can try to rerun the inversion with a larger value for the maximum number of iteration
steps. If even for a very large number of iteration steps no convergence is achieved, it is very likely that the
inversion has not been set up properly.

The statement

inv.setup(dom)

links the inversion with the domain and the data. At this step – as we are solving a gravity inversion problem –
only gravitational data attached to the domain builder dom are considered. Internally a cost function J is created
which is minimized during the inversion iteration. It is a combination of a measure of the data misfit of the gravity
field from the given density distribution and a measure of the smoothness of the density distribution. The latter
is often called the regularization term. By default the gradient of density is used as the regularization term, see
also Section 1.7.4. Obviously, the result of the inversion is sensitive to the weighting between the misfit and the
regularization. This trade-off factor µ for the misfit function is set by the following statement:

inv.getCostFunction().setTradeOffFactorsModels(0.1)

Here we set µ = 0.1. The statement inv.setup must appear in the script before setting the trade-off factor. A
small value for the trade-off factor µwill give more emphasis to the regularization component and create a smoother
density distribution. A large value of the trade-off factor µ will emphasize the misfit more and typically creates
a better fit to the data and a rougher density distribution. It is important to keep in mind that the regularization
reduces noise in the date and in fact gives the problem a unique solution. Consequently, the trade-off factor µ may
not be chosen too large in order control the noise on the solution and ensure convergence in the iteration process.

We can now actually run the inversion:

13GravityInversion is a driver with a simplified interface which is provided for convenience. See Part II for more details on how to
write inversion scripts with more general functionality, e.g. constraints.

16 1.5. Setting up the Inversion and Running it

rho = inv.run()

The answer as calculated during the inversion is returned and can be accessed under the name rho. As pointed
out earlier the iteration process may fail in which case the execution of the script is aborted with an error message.

1.6 Taking a Look
In the final step of script 1.1 the calculated density distribution is written to an external file. A popular file format
used by several visualization packages such as VisIt [17] and mayavi [10] is the VTK file format. The result of the
inversion which has been named rho can be written to the file result.vtu by adding the statement

saveVTK("result.vtu", density=rho)

at the end of script. The inversion solution is tagged with the name density in the result file, however any other
name for the tag could be used. As the format is text-based (as opposed to binary) VTK files tend to be very large
and take compute time to create, in particular when it comes to large numbers of cells (> 106). For large problems
it is more efficient to use the SILO file format [15]. SILO files tend to be smaller and are faster generated and read.
It is the preferred format to import results into the visualization program VisIt [17] which is particularly suited for
the visualization of large data sets. Inversion results can directly exported into SILO files using the statement

saveSilo("result.silo", density=rho)

replacing the saveVTK(...) statement. Similar to VTK files the result rho is tagged with the name density
so it can be identified in the visualization program.

Another useful output option is the Voxet format which is understood by the GOCAD [5] geologic modelling
software. In order to write inversion results to Voxet files use the statement

saveVoxet("result.vo", density=rho)

Unlike the other output formats Voxet data consists of a header file with the file extension .vo and separate
property files without file extension. The call to saveVoxet(...) above would produce the files result.vo
and result_density.

Figures 1.5 and 1.6 show two different styles of visualization generated in VisIt using the result of the inversion
of the gravity anomalies shown in Figure 1.1. The inversions have been performed with different values for the
model trade-off factor µ. The visualization shows clearly the smoothing effect of lower values for the trade-off
factors. For larger values of the trade-off factor the density distribution becomes rougher showing larger details.
Computational costs are significantly higher for larger trade-off factors. Moreover, noise in the data has a higher
impact on the result. Typically several runs are required to adjust the value for the trade-off factor to the datasets
used.

For some analysis tools it is useful to process the results in form of Comma-separated Values (CSV)14. Such a
file can be created using the statement

saveDataCSV("result.csv", x=rho.getFunctionSpace().getX(), density=rho)

in the script. This will create a result.csv with columns separated by a comma. Each row contains the value
of the density distribution and the three coordinates of the corresponding location in the domain. There is a header
specifying the meaning of the corresponding column. Notice that rows are not written in a particular order and
therefore, if necessary, the user has to apply appropriate sorting of the rows. Columns are written in alphabetic
order of their corresponding tag names. For the interested reader: the statement rho.getFunctionSpace()
returns the type used to store the density data rho. The getX() method returns the coordinates of the sampling
points used for the particular type of representation, see [6] for details.

1.7 Remarks

1.7.1 ER Mapper Raster Files
The esys.downunder module can read data stored in ER Mapper Raster files. A data set in this format consists
of two files, a header file whose name usually ends in .ers and the actual data file which has the same filename

14see http://en.wikipedia.org/wiki/Comma-separated_values

Chapter 1. Gravity Inversion 17

http://en.wikipedia.org/wiki/Comma-separated_values

(a) µ = 0.1 (b) µ = 1.

(c) µ = 10. (d) µ = 100.

(e) µ = 1000.

Figure 1.5: 3-D contour plots of gravity inversion results with data from Figure 1.1 for various values of the model
trade-off factor µ. Visualization has been performed in VisIt.

18 1.7. Remarks

(a) µ = 0.1 (b) µ = 1.

(c) µ = 10. (d) µ = 100.

(e) µ = 1000.

Figure 1.6: 3-D slice plots of gravity inversion results with data from Figure 1.1 for various values of the model
trade-off factor µ. Visualization has been performed VisIt.

Chapter 1. Gravity Inversion 19

as the header file but without any file extension. These files are usually produced by a commercial software
package and the contents can be quite diverse. Therefore, it is not guaranteed that every data set is supported by
esys.downunder but the most common types of raster data should work15.

The interface for loading ER Mapper files is very similar to the netCDF interface described in Section 1.4.
To load gravity data stored in the file pair16 GravitySmall.ers (the header) and GravitySmall (the data)
without changing any of the defaults use:

source0=ErMapperData(ErMapperData.GRAVITY, ’GravitySmall.ers’)

If your data set does not follow the default naming convention you can specify the name of the data file explicitly:

source0=ErMapperData(ErMapperData.GRAVITY, ’GravitySmall.ers’,
datafile=’GravityData’)

Please note that there is no way for the reader to determine if the two files really form a pair so make sure to pass
the correct filenames when constructing the reader object. The same optional arguments explained in sections 1.4
and 1.7.2 are available for ER Mapper data sets. However, due to the limitation of the file format only a constant
error value is supported.

1.7.2 Data With Holes
As described previously in this chapter input data is always given in the form of a rectangular grid with constant
cell size in each dimension. However, there are cases when this is not necessarily the case. Consider an onshore
data set which includes parts of the offshore region as in Figure 1.7. The valid data in this example has a value
range of about −600 to 600 and the inversion is to be run based on these values only, disregarding the offshore
region. In order to achieve that, the offshore region is masked by using a constant value which is not found within
the onshore area. Figure 1.7 clearly shows this masked area in dark blue since a mask value of −1000 was used.

Figure 1.7: Plot of a rectangular gridded onshore data set that includes offshore regions which have a value (here
−1000) not found within the real data (Bouguer anomalies in Tasmania, courtesy Geoscience Australia)

The netCDF conventions supported in esys.downunder include a standard way of specifying such a mask
value. The example script create_netcdf.py demonstrates how this is accomplished in an easy way with
any data. If, for any reason, the mask value in the input file is invalid it can be overridden via the null_value
argument when constructing the NetCdfData object:

source0=NetCdfData(NetCdfData.GRAVITY, ’data0.nc’, null_value=-1000)

In this example, all data points that have a value of −1000 are ignored and not used in the inversion. Please note
that the special value NaN (not-a-number) is sometimes used for the purposes of masking in data sets. Areas
marked with this value are always disregarded in esys.downunder.

15If your data does not load please contact us through https://launchpad.net/escript-finley.
16These files are available in the example directory.

20 1.7. Remarks

https://launchpad.net/escript-finley

1.7.3 Multiple Data Sets
It is possible to run a single inversion using more than one input data set, possibly in different file formats. To do
so, simply create the data sources and add them to the domain builder:

source0=NetCdfData(NetCdfData.GRAVITY, ’data0.nc’)
source1=ErMapperData(ErMapperData.GRAVITY, ’data1.ers’)
dom.addSource(source0)
dom.addSource(source1)

However, there are some restrictions when combining data sets:

• Due to the coordinate transformation all data sets must be located in the same UTM zone. If a single dataset
crosses UTM zones only the zone of the central longitude is used when projecting. For example, if one data
set lies mostly in zone 51 but contains areas of zone 52, it is transformed using zone 51. In this case more
data from zone 51 can be added, but not from any other zone.

• All data sets should have the same spatial resolution but this is not enforced. Combining data with different
resolution is currently considered experimental but works best when the resolutions are multiples of each
other. For example if the first data set has a resolution (or cell size) of 100 metres and the second has a cell
size of 50 metres then the target domain will have a cell size of 50 metres (the finer resolution) and each
point of the coarse data will occupy two cells (in the respective dimension).

1.7.4 Regularization Term
The GravityInversion class supports the following form for the regularization:∫

w(0) · ρ2 + w
(1)
0 ρ2

,0 + w
(1)
1 ρ2

,1 + w
(1)
2 ρ2

,2 dx (1.1)

where the integral is calculated across the entire domain. ρ represents the density distribution where ρ,0 ρ,1 and
ρ,2 are the spatial derivatives of ρ with respect to the two lateral and the vertical direction, respectively. w(0), w(1)

0 ,
w

(1)
1 and w(1)

2 are weighting factors17. By default these are w(0) = 0, w(1)
0 = w

(1)
1 = w

(1)
2 = 1. Other weighting

factors can be set in the inversion set-up. For instance to set w(0) = 10, w(1)
0 = w

(1)
1 = 0 and w(1)

2 = 100 use the
statement:

inv.setup(dom, w0=10, w1=[0,0,100])

It is pointed out that the weighting factors are rescaled in order to improve numerical stability. Therefore the
relative size of the weighting factors is relevant and using

inv.setup(dom, w0=0.1, w1=[0,0,1])

would lead to the same regularization as the statement above.

17A more general form, e.g. spatially variable values for the weighting factors, is supported, see Part II

Chapter 1. Gravity Inversion 21

22 1.7. Remarks

CHAPTER
TWO

Magnetic Inversion

Magnetic data report the observed magnetic flux density over a region above the surface of the Earth. Similar to the
gravity case the data are given as deviation from an expected background magnetic flux density Bb of the Earth.
Example data in units of nT (nano Tesla) are shown in Figure 2.1. It is the task of the inversion to recover the
susceptibility distribution k from the magnetic data collected. The approach for inverting magnetic data is almost
identical to the one used for gravity data. In fact the esys.downunder script 2.1 used for the magnetic inversion
is very similar to the script 1.1 for gravity inversion.

Python Program 2.1
Header:
from esys.downunder import *
from esys.weipa import *
from esys.escript import unitsSI as U

Step 1: set up domain
dom=DomainBuilder()
dom.setVerticalExtents(depth=40.*U.km, air_layer=6.*U.km, num_cells=25)
dom.setFractionalPadding(pad_x=0.2, pad_y=0.2)
B_b = [2201.*U.Nano*U.Tesla, 31232.*U.Nano*U.Tesla, -41405.*U.Nano*U.Tesla]
dom.setBackgroundMagneticFluxDensity(B_b)
dom.fixSusceptibilityBelow(depth=40.*U.km)

Step 2: read magnetic data
source0=NetCdfData(NetCdfData.MAGNETIC, ’MagneticSmall.nc’, scale_factor=U.Nano * U.Tesla)
dom.addSource(source0)

Step 3: set up inversion
inv=MagneticInversion()
inv.setSolverTolerance(1e-4)
inv.setSolverMaxIterations(50)
inv.fixMagneticPotentialAtBottom(False)
inv.setup(dom)

Step 4: run inversion
inv.getCostFunction().setTradeOffFactorsModels(0.1)
k = inv.run()

Step 5: write reconstructed susceptibility to file
saveVTK("result.vtu", susceptibility=k)

The structure of the script is identical to the gravity case. Following the header section importing the necessary
modules the domain of the inversion is defined in step one. In step two the data are read and added to the domain

Chapter 2. Magnetic Inversion 23

Figure 2.1: Magnetic anomaly data in nT from Western Queensland, Australia (file
data/QLDWestMagnetic.nc). Data obtained from Geoscience Australia.

Figure 2.2: Contour plot of the susceptibility from a three-dimensional magnetic inversion (with µ = 0.1). Colours
represent values of susceptibility where high values are represented by blue and low values are represented by red.

24

builder. Step three sets up the inversion and step four runs it. Finally in step five the result is written to the result
file, here result.vtu in the VTK format. Results are shown in Figure 2.2.

Although scripts for magnetic and gravity inversion are largely identical there are a few small differences which
we are going to highlight now. The magnetic inversion requires data about the background magnetic flux density
over the region of interest which is added to the domain by the statements

B_b = [2201.*U.Nano*U.Tesla, 31232.*U.Nano*U.Tesla, -41405.*U.Nano*U.Tesla]
dom.setBackgroundMagneticFluxDensity(B_b)

Here it is assumed that the background magnetic flux density is constant across the domain and is given as the list

B_b= [B_E, B_N, B_V]

in units of Tesla (T) where B_N, B_E and B_V refer to the north, east and vertical component of the magnetic
flux density, respectively. Values for the magnetic flux density can be obtained by the International Geomagnetic
Reference Field (IGRF) [3] (or the Australian Geomagnetic Reference Field (AGRF) [9] via http://www.ga.
gov.au/oracle/geomag/agrfform.jsp). Similar to the gravity case susceptibility below a certain depth
can be set to zero via the statement

dom.fixSusceptibilityBelow(depth=40.*U.km)

where here the susceptibility below 40km is prescribed (this has no effect as the depth of the domain is 40km)1.
Magnetic data are read and added to the domain with the following statements:

source0=NetCdfData(NetCdfData.MAGNETIC, ’MagneticSmall.nc’, \
scale_factor=U.Nano * U.Tesla)

dom.addSource(source0)

The first argument NetCdfData.MAGNETIC identifies the data read from file MagneticSmall.nc (second
argument) as magnetic data.The argument scale_factor specifies the units (here nT) of the magnetic flux
density data in the file. If scalar data are given it is assumed that the magnetic flux density anomalies are measured
in direction of the background magnetic flux density2.

Finally the inversion is created and run:

inv=MagneticInversion()
inv.fixMagneticPotentialAtBottom(False)
k = inv.run()

The result for the susceptibility is named k. In this case the magnetic potential is not fixed at the bottom of the
domain. The magnetic potential is still set zero at the top of the domain.

We then write the result to a VTK file using

saveVTK("result.vtu", susceptibility=k)

where the result of the inversion is tagged with the name susceptibility as an identifier for the visualization
software.

Figures 2.3 and 2.4 show results from the inversion of the magnetic data shown in Figure 2.1. In Figure 2.3
surface contours are used to represent the susceptibility while Figure 2.4 uses contour lines on a lateral plane
intercept and two vertical plane intercepts. The images show the strong impact of the trade-off factor µ on the
result. Larger values give more emphasis to the misfit term in the cost function leading to rougher susceptibility
distributions. The result for µ = 0.1 seems to be the most realistic.

1Notice that the method called is different from the one in the case of gravity inversion.
2The default for scale_factor for magnetic data is nT .

Chapter 2. Magnetic Inversion 25

http://www.ga.gov.au/oracle/geomag/agrfform.jsp
http://www.ga.gov.au/oracle/geomag/agrfform.jsp

(a) µ = 0.001 (b) µ = 0.01

(c) µ = 0.1 (d) µ = 1.

(e) µ = 10.

Figure 2.3: 3-D contour plots of magnetic inversion results with data from Figure 2.1 for various values of the
model trade-off factor µ. Visualization has been performed in VisIt.

26

(a) µ = 0.001 (b) µ = 0.01

(c) µ = 0.1 (d) µ = 1.

(e) µ = 10.

Figure 2.4: 3-D slice plots of magnetic inversion results with data from Figure 2.1 for various values of the model
trade-off factor µ. Visualization has been performed VisIt.

Chapter 2. Magnetic Inversion 27

28

Part II

Reference Guide

29

CHAPTER
THREE

Inversion Drivers

Our task in the inversion is to find the geological structure within a given three-dimensional region Ω from given
geophysical observations. The structure is described by a level set function m. This function can be a scalar
function or may have several components, see Chapter 7 for more details. Its values are dimensionless and should
be between zero and one. However, the latter condition is not enforced. Through a mapping (see Chapter 8) the
values of the level set function are mapped onto physical parameter pf . The physical parameter feeds into one or
more forward models which return a prediction for the observations, see Chapter 9. An inversion may consider
several forward models at once which we call joint inversion.

The level set function describing the actual geological structure is given as the function which minimizes a
particular cost function J . This cost function is a composition of the difference of the predicted observations to the
actual observations for the relevant forward models, and the regularization term which controls the smoothness of
the level set function. In general the cost function J takes the form

J(m) = Jreg(m) +
∑
f

µdataf · Jf (pf) (3.1)

where Jf (p) is a measure of the defect of the observations predicted for the parameter pf against the observations
for forward model f , and Jreg(m) is the regularization term. The weighting factors µdataf are dimensionless, non-
negative trade-off factors. Potentially, values for the trade-off factors are altered during the inversion process in
order to improve the balance between the regularization term and the data defect terms1. The physical parameter
pf depends on the level set function m in a known form:

pf = Mf (m) (3.2)

where Mf is a given mapping. For the case of gravity inversion the Mf is a simple linear function mapping
the level set function m with dimensionless values to physical density anomaly values ρ. (see Chapter 8). In its
simplest from the mapping is given as ρ = ρ0 ·m where ρ0 is a reference density. It is pointed out that the inversion
techniques applied do not constrain limits to the values of the level set function although there is the notion that
its values are between zero and one. However, limits can be enforced to physical parameters using appropriate
mappings.

The level set function m and consequently the physical parameters pf are defined over a three dimensional
domain Ω which represented by an escript Domain object, see [6]. The domain builder methods provide functions
to build appropriate domains from field data sets, see Section 6.2. In general the domain is a rectangular three-
dimensional domain where the third dimension x2 = z represents depth. The z = 0 surface defines the surface
of the earth where z < 0 is defining the subsurface region and z > 0 is defining the region above the surface,
see Figure 3.2. In general physical parameters such as density and susceptibility anomaly are known above the
surface, typically assumed to be zero. For subregions where a physical parameter is known it is assumed that the
corresponding level set function as the value zero. If required, non-zero values for the physical parameters can be
set using appropriate mapping.

1The current version does not support an automated selection of trade-off factors

Chapter 3. Inversion Drivers 31

Inversion Driver

Data Sources

provides data

DomainBuilder

gravity, magnetic data files

reads

provides domain mesh

enquires

Minimizer CostFunction

Regularization Mapping ForwardModel

runs
creates

evaluates

combines

ReferenceSystem

Figure 3.1: Class dependencies

3.1 Class Dependencies
For simplification of usage esys.downunder provides predefined classes that drive inversion for particular
problems. The usage of this classes is being discussed in Part I. More details are shown in Section 3.3. It is the
role of the driver class to orchestration an inversion. New inversions can easily be implemented by modifying the
available drivers.

As illustrated in Figure 3.1 the driver class uses geophysical data as managed through the DataSource class
(see Chapter 6) and an escript domain to define an appropriate costs function to be minimized. The driver class
also run the minimization solver. The escript domain [6] is created using the DomainBuilder, see Chapter 6.2,
which builds an appropriate domain and mesh based on the geophysical data used in the inversion. Based on the
inversion to be performed (gravity, magnetic, joint) the driver class builds an appropriate cost function J including
the regularization term Jreg, see Regularization class in Chapter 7, the forward models, see Chapter 9 and
the required mappings, see Mapping class in Chapter 8, to connect the level set function with physical parameters.
Finally the driver class calls the solver to minimize the cost function, see Chapter 4.

The driver classes cover commonly used cases for the convenience of users. In fact, more general cases can
be implemented in an easy way. Script nodriver.py is an example on how to implement an inversion without
using one of the driver classes.

3.2 Domains

3.2.1 Cartesian Domain
For the Cartesian domain Ω we assume a flat Earth in the form

Ω = [xmin0 , xmax0]× [xmin1 , xmax1]× [xmin2 , xmax2] (3.3)

and use the Universal Transverse Mercator (UTM) coordinate system2 where x0 represents the easting, x1 the
northing and x2 the altitude. In this way, all three coordinates can be given in meters with minimal distortion when
visualizing the domain. The origin in vertical direction (altitude 0) corresponds to sea level. A proper inversion set
up requires a buffer zone in all dimensions. Figure 3.2 depicts these as areas shaded in red (padding area) and blue

2See e.g. http://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system.

32 3.1. Class Dependencies

http://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system

Air

Padding
area

Data area

0

altitude

easting

northing

Figure 3.2: Illustration of domain extents, mapping and padding area

(air buffer). While the inversion results contain values for the entire domain the buffer zone should be disregarded
when performing any analysis. In other words, only the region labeled data area in Figure 3.2 contains useful
information. Both the thickness of the air layer and the amount of padding in the x0/x1 dimension is configurable
when setting up an inversion.

3.3 Driver Classes
The inversion minimizes an appropriate cost function J to find the physical parameter distribution (or more pre-
cisely the level set function) which gives the best fit to measured data. A particular inversion case (gravity, magnetic
or joint) is managed through an instance of a specialization of the InversionDriver class. The task of the
class instance is to set up the appropriate cost function, to manage solution parameters and to run the optimization
process.

3.3.1 Template

class InversionDriver
template for inversion drivers.

getCostFunction()
returns the cost function of the inversion. This will be an instance of the InversionCostFunction
class, see Section 5. Use this method to access or alter attributes or call methods of the underlying cost
function.

getSolver()
returns the instance of the solver class used to minimize the cost function, see Chapter 4. Use this method
to modify solver options.

Chapter 3. Inversion Drivers 33

getDomain()
returns the domain of the inversion as an escript Domain object.

setSolverMaxIterations([maxiter=None])
sets the maximum number of iteration steps for the solver used to minimize the cost function. The default
value is 200. If the maximum number is reached, the iteration will be terminated and
MinimizerMaxIterReached is thrown.

setSolverTolerance([m tol=None] [, J tol=None])
set the tolerance for the solver used to minimize the cost function. If m_tol is set the iteration is
terminated if the relative change of the level set function is less than or equal m_tol, see condition 4.3. If
J_tol is set the iteration is terminated if the change of the cost function relative to the initial value is less
than or equal J_tol, , see condition 4.4. If both tolerances are set both stopping criteria need to be met.
By default tol=1e-4 and J_tol=None .

getLevelSetFunction()
returns the level set function as solution of the optimization problem. This method can only be called if the
optimization process as been completed. If the iteration failed the last available approximation of the
solution is returned.

run()
this method runs the optimization solver and returns the physical parameter(s) from the output of the
inversion. Notice that the setup method must be called before the first call of run. The call can fail as
the maximum number of iterations is reached in which case a MinimizerMaxIterReached exception
is thrown or as there is an incurable break down in the iteration in which case a
MinimizerIterationIncurableBreakDown exception is thrown.

3.3.2 Gravity Inversion Driver

For examples of usage please see Chapter 1.

class GravityInversion([solverclass=None] [, fixGravityPotentialAtBottom=False])
Driver class to perform an inversion of Gravity (Bouguer) anomaly data. This class is a sub-class of
InversionDriver. The class uses the standard Regularization for a single level set function, see
Chapter 7, DensityMapping mapping, see Section 8.1, and the gravity forward model
GravityModel, see Section 9.1. solverclass set the solver class to be used for inversion, see
Chapter 4. By default the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [13] solver is
used. If fixGravityPotentialAtBottom is set [, fixGravityPotentialAtBottom=False]to True the
gravity potential at the bottom is set to zero.

fixGravityPotentialAtBottom([status=True])
If status is True the gravity potential at the bottom is set to zero. Otherwise the gravity potential at the
top is set to zero only.

setup(domainbuilder [, rho0=None] [, drho=None] [, z0=None] [, beta=None] [, w0=None] [,
w1=None] [, rho at depth=None])

sets up the inversion from an instance domainbuilder of a DomainBuilder, see Section 6.2. Only
gravitational data attached to the domainbuilder are considered in the inversion. rho0 defines a reference
density anomaly (default is 0), drho defines a density anomaly (default is 2750 kg

m3), z0 defines the depth
weighting reference depth (default is None), and beta defines the depth weighting exponent (default is None),
see DensityMapping in Section 8.1. w0 and w1 define the weighting factors ω(0) and ω(1), respectively (see
Equation 7.1). By default w0=None and w1=1 are used. rho_at_depth sets the value for density at depth.
This is only used if density is fixed below a certain depth, see Domain Builder in Section 6.2.

setInitialGuess([rho=None])
sets an initial guess for the density anomaly. By default zero is used.

34 3.3. Driver Classes

3.3.3 Magnetic Inversion Driver
For examples of usage please see Chapter 2.

class MagneticInversion([solverclass=None])
Driver class to perform an inversion of magnetic anomaly data. This class is a sub-class of
InversionDriver. The class uses the standard Regularization class for a single level set
function, see Chapter 7, SusceptibilityMapping mapping, see Section 8.2, and the linear magnetic
forward model MagneticModel, see Section 9.2. solverclass set the solver class to be used for
inversion, see Chapter 4. By default the limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) [13] solver is used.

fixMagneticPotentialAtBottom([status=True])
If status is True the magnetic potential at the bottom is set to zero. Otherwise the magnetic potential at
the top is set to zero only.

setup(domainbuilder [, k0=None] [, dk=None] [, z0=None] [, beta=None] [, w0=None] [, w1=None]
[, k at depth=None])

sets up the inversion from an instance domainbuilder of a DomainBuilder, see Section 6.2. Only
magnetic data attached to the domainbuilder are considered in the inversion. k0 defines a reference
susceptibility anomaly (default is 0), dk defines a susceptibility anomaly scale (default is 1), z0 defines the depth
weighting reference depth (default is None), and beta defines the depth weighting exponent (default is None),
see SusceptibilityMapping in Section 8.2. w0 and w1 define the weighting factors ω(0) and ω(1),
respectively (see equation 7.1). By default w0=None and w1=1 are used. k_at_depth sets the value for
susceptibility at depth. This is only used if susceptibility is fixed below a certain depth, see Domain Builder
in Section 6.2.

setInitialGuess([k=None])
sets an initial guess for the susceptibility anomaly. By default zero is used.

3.3.4 Gravity and Magnetic Joint Inversion Driver
For examples of usage please see Chapter ??.

class JointGravityMagneticInversion([solverclass=None])
Driver class to perform a joint inversion of Gravity (Bouguer) and magnetic anomaly data. This class is a
sub-class of InversionDriver. The class uses the standard Regularization for two level set
functions with cross-gradient correlation, see Chapter 7, DensityMapping and
SusceptibilityMapping mappings, see Section 8, the gravity forward model GravityModel, see
Section 9.1 and the linear magnetic forward model MagneticModel, see Section 9.2. solverclass
set the solver class to be used for inversion, see Chapter 4. By default the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [13] solver is used.

fixGravityPotentialAtBottom([status=True])
If status is True the gravity potential at the bottom is set to zero. Otherwise the gravity potential at the
top is set to zero only.

fixMagneticPotentialAtBottom([status=True])
If status is True the magnetic potential at the bottom is set to zero. Otherwise the magnetic potential at
the top is set to zero only.

setup(domainbuilder [, rho0=None] [, drho=None] [, rho z0=None] [, rho beta=None] [, k0=None] [
, dk=None] [, k z0=None] [, k beta=None] [, w0=None] [, w1=None] [, w gc=None] [,
rho at depth=None] [, k at depth=None])

sets up the inversion from an instance domainbuilder of a DomainBuilder, see Section 6.2. Gravity and
magnetic data attached to the domainbuilder are considered in the inversion. rho0 defines a reference
density anomaly (default is 0), drho defines a density anomaly (default is 2750 kg

m3), rho_z0 defines the depth
weighting reference depth for density (default is None), and rho_beta defines the depth weighting exponent for

Chapter 3. Inversion Drivers 35

density (default is None), see DensityMapping in Section 8.1. k0 defines a reference susceptibility anomaly
(default is 0), dk defines a susceptibility anomaly scale (default is 1), k_z0 defines the depth weighting reference
depth for susceptibility (default is None), and k_beta defines the depth weighting exponent for susceptibility
(default is None), see SusceptibilityMapping in Section 8.2. w0 and w1 define the weighting factors ω(0)

and ω(1), respectively (see Equation 7.1). w_gc sets the weighting factor ω(c) for the cross gradient term. By
default w0=None , w1=1 and w_gc=1 are used. k_at_depth sets the value for susceptibility at depth. This is
only used if susceptibility is fixed below a certain depth, see Domain Builder in Section 6.2.
rho_at_depth sets the value for density at depth. This is only used if density is fixed below a certain depth,
see Domain Builder in Section 6.2.

setInitialGuess([rho=None ,] [k=None])
sets initial guesses for density and susceptibility anomaly. By default zero is used for both.

36 3.3. Driver Classes

CHAPTER
FOUR

Minimization Algorithms

We need to find the level set function m minimizing the cost function J as defined in Equation 3.1. The physical
parameters pf and the data defects are linked through state variables uf which is given as a solution of a partial
differential equation (PDE) with coefficients depending on pf . This PDE (or – in case of several forward models
– this set of PDEs) defines a constraint in the minimization problem. In the context of our applications it can be
assumed that the PDE is of ’maximum rank’, i.e. for a given value of the level set function m there is a unique
value for the state variables uf as the solution of the forward model. So from a mathematical point of view the
state variable uf can be eliminated from the problem and the minimization problem becomes in fact a minimization
problem for the level set functionm alone where the physical parameters which are of most interest in applications
can easily be derived from the solution. However one needs to keep in mind that each evaluation of the cost
function requires the solution of a PDE (an additional PDE solution is required for the gradient).

In some application cases the optimization problem to be solved defines a quadratic programming problem
which would allow to use a special case of solvers. However, for the general scenarios we are interested in here
we cannot assume this simplification and need to be able to solve for a general cost function. The method used
here is the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method, see [13]. This method is a
quasi-Newton method. To implement the method one needs to provide the evaluation of the cost function J and its
gradient ∇J and dual product < ·, · >1 such that for α→ 0

J(m+ αp) = J(m) + α· < p,∇J(m) > +o(α) (4.1)

where p is an increment to the level set function2. Notice that if m is the unknown solution one has ∇J(m) = 0.
Moreover, an approximation of the inverse of the Hessian operator ∇∇J(m) needs to be provided for a given
value of m. In the implementation we don’t need to provide the entire operator but for a given gradient difference
g an approximation h = Hg of ∇∇J(m))−1g needs to be calculated. This is an approximative solution of the
equation ∇∇J(m))h = g which in variational form is given as

< p,∇∇J(m) h >=< p, g > (4.2)

for all level set increments p. In the cases relevant here, it is a possible approach to make the approximation
∇∇J(m) ≈ ∇∇Jreg(m) which can easily be constructed and the resulting variational Equation 4.2 can easily be
solved, see Chapter 7.

L-BFGS is an iterative method which calculates a sequence of level set approximations mk which converges
towards the unknown level set function minimizing the cost function. This iterative process is terminated if certain
stopping criteria are fulfilled. A criterion commonly used is

‖mk −mk−1‖ ≤ ‖mk‖ ·m tol (4.3)

in order to terminate the iteration after mk has been calculated. In this condition ‖.‖ denotes a norm and m tol
defines a relative tolerance. A typical value for m tol is 10−4. Alternatively one can check for changes in the cost

1A dual product < ·, · > defines a function which assigns a pair (p, g) of a level set increment p and a gradient g a real number < p, g >.
It is linear in the first and linear in the second argument.

2o denotes the little o notation see http://en.wikipedia.org/wiki/Big_O_notation

Chapter 4. Minimization Algorithms 37

http://en.wikipedia.org/wiki/Big_O_notation

function:
| J(mk)− J(mk) |≤| J(mk)− J(m0) | ·J tol (4.4)

where J tol is a given tolerance and m0 is the initial guess of the solution. As this criterion depends on the initial
guess it is not recommended.

4.1 Solver Classes

class MinimizerLBFGS([J=None][, m tol=1e-4][, J tol=None][, imax=300])
constructs an instance of the limited-memory Broyden-Fletcher-Goldfarb-Shanno L-BFGS solver. J sets
the cost function to be minimized, see Section 4.2. If not present the cost function needs to be set using the
setCostFunction method. m_tol and J_tol specify the tolerances for the stopping criteria (see
description of setTolerance below). imax sets the maximum number of iteration steps (see
setMaxIterations below).

setTolerance([m tol=1e-4][, J tol=None])
sets the tolerances for the stopping criteria. m_tol sets the tolerance for the unknown level set
Function 4.3. If m_tol=None the tolerance on level set function is not checked. J_tol sets the tolerance
for the cost function, see Equation 4.4. If J_tol=None tolerance on the cost function is not checked
(recommended). If m_tol and J_tol are both set criterion 4.3 and criterion 4.4 are both applied to
terminate the iteration.

setMaxIterations(imax)
sets the maximum number of iterations before the minimizer terminates. If the maximum number of
iteration is reached a MinimizerMaxIterReached exception is thrown.

getResult()
returns the solution of the optimization problem. This method only returns something useful if the
optimization process has completed. If the iteration failed the last available approximation of the solution
is returned.

getOptions()
returns the solver options as a dictionary which contains all available option names and their current value.

setOptions([truncation=30][, restart=60][, initialHessian=1])
sets solver options. truncation defines number of gradients to keep in memory. restart defines the
number of iteration steps after which the iteration is restarted. initialHessian can be used to provide
an estimate for the scale of the inverse Hessian. If the cost function provides such an estimate this option is
ignored.

run(m0)
runs the solution algorithm and returns an approximation of the solution. m0 is the initial guess to use.
This method may throw an exception if the maximum number of iterations is reached or a solver
breakdown occurs.

logSummary()
writes some statistical information to the logger.

4.2 CostFunction Class Template

class CostFunction()
template of cost function J

getDualProduct(m, g)
returns the dual product < m, g > of m and g.

38 4.1. Solver Classes

getValue(m, *args)
returns the value J(m) using pre-calculated values args for m.

getGradient(m, *args)
returns the gradient∇J of J at m using pre-calculated values args for m.

getArguments(m)
returns pre-calculated values that are shared in the calculation of J(m) and∇J(m).

getNorm(m)
returns the norm ‖m‖ of m.

updateHessian()
notifies the class that the Hessian operator needs to be updated in case the class provides an approximation
for the inverse of the Hessian.

getInverseHessianApproximation(m, g, *args)
returns an approximative evaluation p of the inverse of the Hessian operator of the cost function for a given
gradient g at location m.

4.3 The L-BFGS Algorithm
The L-BFGS algorithm looks as follows (see also [13]):

Algorithm 4.1 L-BFGS

begin
Input: initial guess x0 and integer m;
Allocate m vector pairs {si, gi};
k ← 0;
H0 ← I;
while ¬converged do

pk ← twoLoop({s, g});
αk ← lineSearch(mk, pk); See Section 4.3.1
mk+1 ← mk + αkpk;
if k > truncation

then
Discard the vector pair {sk−truncation, gk−truncation} from storage;

fi
sk ← mk+1 −mk;
gk ← ∇Jk+1 −∇Jk;
k ← k + 1;

od
where
funct twoLoop({s, g}) ≡

q ← ∇Jk;
for i = k − 1, k − 2, . . . , k − truncation do

ρi ← 1
<si,gi>

;

αi ← ρi < si, q >;
q ← q − αi · gi;

od
r ← Hq;
for i = k − truncation, k − truncation+ 1, . . . , k − 1 do

β ← ρi· < r, gi >;
r ← r + si · (αi − β)

od
r .

Chapter 4. Minimization Algorithms 39

end

4.3.1 Line Search
The line search procedure minimizes the function φ(α) for a given level set function m and search direction p, see
[14], [11] with

φ(α) = J(m+ α · p) (4.5)

Notice that
φ′(α) =< p,∇J(m+ α · p) > . (4.6)

Algorithm 4.2 Line Search that satisfies strong Wolfe conditions

begin
Input: αmax > 0, 0 < c1 < c2 < 1;
i← 1;
while 1 do

if φ(αi) > φ(0) + c1αiφ
′(0) ∨

(φ(αi) ≥ φ(αi−1) ∧ i > 1)
then

α∗ ← zoom(αi−1, αi);
break;

fi
if ‖φ′(αi)‖ ≤ −c2φ′(0)

then
α∗ ← αi;
break;

fi
if φ′(αi) ≥ 0

then
α∗ ← zoom(αi, αi−1);
break;

fi
αi+1 = 2αi;
i← i+ 1;

od
where
funct zoom(αlo, αhi) ≡

while 1 do
αj ← αlo + αhi−αlo

2 ;
if φ(αj) > φ(0) + c1αjφ

′(0) ∨ φ(αj) ≥ φ(αlo)
then

αhi ← αj ;
else

if ‖φ′(αj)‖ ≤ −c2φ′(0)
then

α∗ ← αj ;
break;

fi
if φ′(αj)(αhi − αlo) ≥ 0

then
αhi ← αlo;

fi
αlo = αj ;

fi
od

.
end

40 4.3. The L-BFGS Algorithm

CHAPTER
FIVE

Cost Function

The general form of the cost function minimized in the inversion is given in the form (see also Chapter 3)

J(m) = Jreg(m) +
∑
f

µdataf · Jf (pf) (5.1)

where m represents the level set function, Jreg is the regularization term, see Chapter 7, and Jf are a set of cost
functions for forward models, (see Chapter 9) depending on physical parameters pf . The physical parameters
pf are known functions of the level set function m which is the unknown to be calculated by the optimization
process. µdataf are trade-off factors. It is pointed out that the regularization term includes additional trade-off
factors The InversionCostFunction is class to define cost functions of an inversion. It is pointed out that
the InversionCostFunction class implements the CostFunction template class, see Chapter 4.

In the simplest case there is a single forward model using a single physical parameter which is derived form
single-values level set function. The following script snippet shows the creation of the InversionCostFunction
for the case of a gravity inversion:

p=DensityMapping(...)
f=GravityModel(...)
J=InversionCostFunction(Regularization(...), \

mappings=p, \
forward_models=f)

The argument ... refers to an appropriate argument list.
If two forward models are coming into play using two different physical parameters the mappings and

forward_models are defined as lists in the following form:

p_rho=DensityMapping(...)
p_k=SusceptibilityMapping(...)
f_mag=MagneticModel(...)
f_grav=GravityModel(...)

J=InversionCostFunction(Regularization(...), \
mappings=[p_rho, p_k], \
forward_models=[(f_mag, 1), (f_grav,0)])

Here we define a joint inversion of gravity and magnetic data. forward_models is given as a list of a tuple
of a forward model and an index which referring to parameter in the mappings list to be used as an input.
The magnetic forward model f_mag is using the second parameter (=p_k) in mappings list. In this case the
physical parameters are defined by a single-valued level set function. It is also possible to link physical parameters
to components of a level set function:

p_rho=DensityMapping(...)
p_k=SusceptibilityMapping(...)

Chapter 5. Cost Function 41

f_mag=MagneticModel(...)
f_grav=GravityModel(...)

J=InversionCostFunction(Regularization(numLevelSets=2,...), \
mappings=[(p_rho,0), (p_k,1)], \
forward_models=[[(f_mag, 1), (f_grav,0)])

The mappings argument is now a list of pairs where the first pair entry specifies the parameter mapping and the
second pair entry specifies the index of the component of the level set function to be used to evaluate the parameter.
In this case the level set function has two components, where the density mapping uses the first component of the
level set function while the susceptibility mapping uses the second component.

5.1 InversionCostFunction API
The InversionCostFunction implements a CostFunction class used to run optimization solvers, see
Section 4.2. Its API is defined as follows:

class InversionCostFunction(regularization, mappings, forward models)
Constructor for the inversion cost function. regularization sets the regularization to be used, see
Chapter 7. mappings is a list of pairs where each pair comprises of a physical parameter mapping (see
Chapter 8) and an index which refers to the component of level set function defined by the
regularization to be used to calculate the corresponding physical parameter. If the level set function
has a single component the index can be omitted. If in addition there is a single physical parameter the
mapping can be given instead of a list. forward_models is a list of pairs where the first pair
component is a forward model (see Chapter 9) and the second pair component refers to the physical
parameter in the mappings list providing the physical parameter for the model. If a single physical
parameter is present the index can be omitted. If in addition a single forward model is used this forward
model can be assigned to forward_models in replacement of a list.

getDomain()
returns the escript domain of the inversion, see [6].

getNumTradeOffFactors()
returns the total number of trade-off factors. The count includes the trade-off factors µdataf for the forward
models and (hidden) trade-off factors in the regularization term, see Definition 5.1.

getForwardModel([idx=None])
returns the forward model with index idx. If the cost function contains one model only argument idx can
be omitted.

getRegularization()
returns the regularization component of the cost function, see regularization in Chapter 7.

setTradeOffFactorsModels([mu=None])
sets the trade-off factors µdataf for the forward model components. If a single model is present mu must be
a floating point number. Otherwise mu must be a list of floating point numbers. It is assumed that all
numbers are positive. The default value for all trade-off factors is one.

getTradeOffFactorsModels()
returns the values of the trade-off factors µdataf for the forward model components.

setTradeOffFactorsRegularization([mu=None], [mu c=None])
sets the trade-off factors for the regularization component of the cost function. mu defines the trade-off
factors for the level-set variation part and mu_c sets the trade-off factors for the cross-gradient variation
part. This method is a shortcut for calling setTradeOffFactorsForVariation and
setTradeOffFactorsForCrossGradient for the underlying the regularization. Please see
Regularization in Chapter 7 for more details on the arguments mu and mu_c.

42 5.1. InversionCostFunction API

setTradeOffFactors([mu=None])
sets the trade-off factors for the forward model and regularization terms. mu is a list of positive floats. The
length of the list is the total number of trade-off factors given by the method
getNumTradeOffFactors. The first part of mu defines the trade-off factors µdataf for the forward
model components while the remaining entries define the trade-off factors for the regularization
components of the cost function. By default all values are set to one.

getProperties(m)
returns the physical properties from a given level set function m using the mappings of the cost function.
The physical properties are returned in the order in which they are given in the mappings argument in
the class constructor.

createLevelSetFunction(*props)
returns the level set function corresponding to set of given physical properties. This method is the inverse
of the getProperties method. The arguments props define a tuple of values for the physical
properties where the order needs to correspond to the order in which the physical property mappings are
given in the mappings argument in the class constructor. If a value for a physical property is given as
None the corresponding component of the returned level set function is set to zero. If no physical
properties are given all components of the level set function are set to zero.

getNorm(m)
returns the norm of a level set function m as a floating point number.

getArguments(m)
returns pre-computed values for the evaluation of the cost function and its gradient for a given value m of
the level set function. In essence the method collects pre-computed values for the underlying
regularization and forward models1.

getValue(m[, *args])
returns the value of the cost function for a given level set function m and corresponding pre-computed
values args. If the pre-computed values are not supplied getArguments is called.

getGradient(m[, *args])
returns the gradient of the cost function at level set function m using the corresponding pre-computed
values args. If the pre-computed values are not supplied getArguments is called. The gradient is
represented as a tuple (Y,X) where in essence Y represents the derivative of the cost function kernel with
respect to the level set function and X represents the derivative of the cost function kernel with respect to
the gradient of the level set function, see Section 5.2 for more details.

getDualProduct(m, g)
returns the dual product of a level set function m with a gradient g, see Section 5.2 for more details. This
method uses the dual product of the regularization.

getInverseHessianApproximation(m, g [, *args])
returns an approximative evaluation of the inverse of the Hessian operator of the cost function for a given
gradient g at a given level set function m using the corresponding pre-computed values args. If no
pre-computed values are present getArguments is called. In the current implementation contributions
to the Hessian operator from the forward models are ignored and only contributions from the
regularization and cross-gradient term are used.

1Using pre-computed values can significantly speed up the optimization process when the value of the cost function and its gradient are
needed for the same level set function.

Chapter 5. Cost Function 43

5.2 Gradient calculation
In this section we briefly discuss the calculation of the gradient and the Hessian operator. If∇ denotes the gradient
operator (with respect to the level set function m) the gradient of J is given as

∇J(m) = ∇Jreg(m) +
∑
f

µdataf · ∇Jf (pf) . (5.2)

We first focus on the calculation of ∇Jreg. In fact the regularization cost function Jreg is given through a cost
function kernel Kreg in the form

Jreg(m) =

∫
Ω

Kreg dx (5.3)

where Kreg is a given function of the level set function mk and its spatial derivative mk,i. If n is an increment to
the level set function then the directional derivative of Jref in the direction of n is given as

< n,∇Jreg(m) >=

∫
Ω

∂Kreg

∂mk
nk +

∂Kreg

∂mk,i
nk,i dx (5.4)

where < ., . > denotes the dual product, see Chapter 4. Consequently, the gradient∇Jreg can be represented by a
pair of values Y and X

Yk =
∂Kreg

∂mk

Xki =
∂Kreg

∂mk,i

(5.5)

while the dual product < ., . > of a level set increment n and a gradient increment g = (Y,X) is given as

< n, g >=

∫
Ω

Yknk +Xkink,i dx (5.6)

We also need to provide (an approximation of) the value p of the inverse of the Hessian operator∇∇J for a given
gradient increment g = (Y,X). This means we need to (approximatively) solve the variational problem

< n,∇∇Jp >=

∫
Ω

Yknk +Xkink,i dx (5.7)

for all increments n of the level set function. If we ignore contributions from the forward models the left hand side
takes the form

< n,∇∇Jregp >=

∫
Ω

∂Yk
∂ml

plnk +
∂Yk
∂ml,j

pl,jnk +
∂Xki

∂ml
plnk,i +

∂Xki

∂ml,j
pl,jnk,i dx (5.8)

We follow the concept as outlined in section 5.2. Notice that equation 5.7 defines a system of linear PDEs which
is solved using escript LinearPDE class. In the escript notation we need to provide

Akilj =
∂Xki

∂ml,j

Bkil =
∂Xki

∂ml

Cklj =
∂Yk
∂ml,j

Dkl =
∂Yk
∂ml

(5.9)

The calculation of the gradient of the forward model component is more complicated: the data defect Jf for
forward model f is expressed using a cost function kernel Kf

Jf (pf) =

∫
Ω

Kf dx (5.10)

In this case the cost function kernel Kf is a function of the physical parameter pf , which again is a function of the
level-set function, and the state variable ufk and its gradient ufk,i. For the sake of a simpler presentation the upper
index f is dropped.

44 5.2. Gradient calculation

The gradient∇pJ of the J with respect to the physical property p is given as

< q,∇pJ(p) >=

∫
Ω

∂K

∂uk

∂uk
∂q

+
∂K

∂uk,i

(
∂uk
∂q

)
,i

+
∂K

∂p
q dx (5.11)

for any q as an increment to the physical parameter p. If the change of the state variable uf for physical parameter
p in the direction of q is denoted as

dk =
∂uk
∂q

(5.12)

equation 5.11 can be written as

< q,∇pJ(p) >=

∫
Ω

∂K

∂uk
dk +

∂K

∂uk,i
dk,i +

∂K

∂p
q dx (5.13)

The state variable are the solution of PDE which in variational from is given∫
Ω

Fk · rk +Gli · rk,i dx = 0 (5.14)

for all increments r to the stat u. The functions F andG are given and describe the physical model. They depend of
the state variable uk and its gradient uk,i and the physical parameter p. The change dk of the state uf for physical
parameter p in the direction of q is given from the equation∫

Ω

∂Fk
∂ul

dlrk +
∂Fk
∂ul,j

dl,jrk +
∂Fk
∂p

qrk +
∂Gki
∂ul

dlrk,i +
∂Gki
∂ul,j

dl,jrk,i +
∂Gki
∂p

qrk,i dx = 0 (5.15)

to be fulfilled for all functions r. Now let d∗k be the solution of the variational equation∫
Ω

∂Fk
∂ul

hld
∗
k +

∂Fk
∂ul,j

hl,jd
∗
k +

∂Gki
∂ul

hld
∗
k,i +

∂Gki
∂ul,j

hl,jd
∗
k,i dx =

∫
Ω

∂K

∂uk
hk +

∂K

∂uk,i
hk,i dx (5.16)

for all increments hk to the physical property p. This problem is solved using escript LinearPDE class. In the
escript notation we need to provide

Akilj =
∂Glj
∂uk,i

Bkil =
∂Fl
∂uk,i

Cklj =
∂Glj
∂uk

Dkl =
∂Fl
∂uk

Yk =
∂K

∂uk

Xki =
∂K

∂uk,i

(5.17)

Notice that these coefficient are transposed to the coefficients used to solve for the state variables in equation 5.14.
Setting hl = dl in equation 5.13 and rk = d∗k in equation 5.11 one gets∫

Ω

∂K

∂uk
dk +

∂K

∂uk,i
dk,i +

∂Fk
∂p

qd∗k +
∂Gki
∂p

qd∗k,i dx = 0 (5.18)

which is inserted into equation 5.13 to get

< q,∇pJ(p) >=

∫
Ω

(
∂K

∂p
− ∂Fk

∂p
d∗k −

∂Gki
∂p

d∗k,i

)
q dx (5.19)

We need in fact the gradient of Jf with respect to the level set function which is given as

< n,∇Jf >=

∫
Ω

(
∂Kf

∂pf
−
∂F fk
∂pf

df∗k −
∂Gfki
∂pf

df∗k,i

)
· ∂p

f

∂ml
nl dx (5.20)

Chapter 5. Cost Function 45

for any increment n to the level set function. So in summary we get

Yk =
∂Kreg

∂mk
+
∑
f

µdataf

(
∂Kf

∂pf
−
∂F fl
∂pf

df∗l −
∂Gfli
∂pf

df∗l,i

)
· ∂p

f

∂mk

Xki =
∂Kreg

∂mk,i

(5.21)

to represent∇J as the tuple (Y,X). Contributions of the forward model to the Hessian operator are ignored.

46 5.2. Gradient calculation

CHAPTER

SIX

Data Sources

At the source of every inversion is data in the form of gravity anomaly or magnetic flux density values for at least a
part of the region of interest. These usually come from surveys and are preprocessed to correct for various factors
and distortions. This chapter provides an overview of the classes related to data input for inversions.

6.1 Overview

The inversion module comes with a number of classes that can read gridded (raster) data on a 2-dimensional plane
from file or provide artificial values for testing purposes. These classes all derive from the abstract DataSource
class and override methods that return information about the data and the values themselves. The DomainBuilder
class is responsible for creating an escript domain with a suitable grid spacing and spatial extents that include all
data sources attached to it (see Figure 6.1). Notice that in the figure there are cells in the region of interest that

Padding

DomainBuilder

instance

DataSource

instance

DataSource

instance

DataSource

instance

Escript Domain
+

Data objects

Figure 6.1: DataSource instances are added to a DomainBuilder which creates a suitable domain and Data
objects for the inversion

Chapter 6. Data Sources 47

are not covered by any data source instance. Ideally, all data sources used for an inversion have the same spatial
resolution and are spatially adjacent so that all cells have a value but this is not a requirement.

6.2 Domain Builder
Every inversion requires one DomainBuilder instance which creates and holds a reference to the escript domain
as well as associated Data objects for the input data used for the inversion. The class has the following public
methods:

class DomainBuilder([dim=3])
Constructor for the domain builder. dim sets the dimensionality of the target domain and must be 2 or 3.
By default a 3-dimensional domain is created.

addSource(source)
adds survey data source (a DataSource object) to the domain builder. The dimensionality of the data
must be less than or equal to the domain dimensionality.

setVerticalExtents([depth=40000.][, air layer=10000.][, num cells=25])
sets the parameters for the vertical dimension of the domain. The parameter depth specifies the thickness
in meters of the subsurface layer (−xmin2 in Figure 3.2). The default value of 40 km is usually appropriate.
Similarly, the air_layer parameter defines the buffer zone thickness above the surface (xmax2 in
Figure 3.2) which should be a few kilometres to avoid artefacts in the inversion. The number of elements
(or cells) in the vertical dimension is set with the num_cells parameter. Consider the size and resolution
of your datasets, the total vertical length (=depth+air_layer) and available compute resources when
setting this value.

setFractionalPadding([pad x=None][, pad y=None])
sets the amount of padding around the dataset as a fraction of the dataset side lengths if the reference
coordinate system is Cartesian. For example, calling setFractionalPadding(0.2, 0.1) with a
data source of size 10000× 20000 meters will result in the padded data set size 14000× 24000 meters
(that is 10000× (1 + 2× 0.2) and 20000× (1 + 2× 0.1)). By default no padding is applied and pad_y is
ignored for 2-dimensional domains.

setFractionalPadding([pad lat=None][, pad lon=None])
sets the amount of padding around the dataset as a fraction of the dataset side lengths if the reference
coordinate system is not Cartesian. For example, calling setFractionalPadding(0.2, 0.1)
with a data source of size 10× 20 degree will result in the padded data set size 14× 24 degree (that is
10× (1 + 2× 0.2) and 20× (1 + 2× 0.1)). By default no padding is applied and pad_lon is ignored for
2-dimensional domains.

setPadding([pad x=None][, pad y=None])
sets the amount of padding around the dataset in absolute length units. The final domain size will be the
length in x (in y) of the dataset plus twice the value of pad_x (pad_y). The arguments must be
non-negative. By default no padding is applied and pad_y is ignored for 2-dimensional domains. This
function can be used for Cartesian reference coordinate system only.

setElementPadding([pad x=None][, pad y=None])
sets the amount of padding around the dataset in number of elements (cells), if the reference coordinate
system is Cartesian. When the domain is constructed pad_x (pad_y) elements are added on each side of
the x- (y-) dimension in case of a Cartesian reference system. The arguments must be non-negative
integers. By default no padding is applied and pad_y is ignored for 2-dimensional domains.

setElementPadding([pad lat=None][, pad lon=None])
sets the amount of padding around the dataset in number of elements (cells) if the the reference coordinate
system is not Cartesian. When the domain is constructed pad_lat (pad_lon) elements are added on
each side of the latitudinal (longitudinal) dimension. The arguments must be non-negative integers. By
default no padding is applied and pad_lon is ignored for 2-dimensional domains.

48 6.2. Domain Builder

fixDensityBelow([depth=None])
defines the depth below which the density anomaly is fixed to zero. This method is only useful for
inversions that involve gravity data.

fixSusceptibilityBelow([depth=None])
defines the depth below which the susceptibility anomaly is fixed to zero. This method is only useful for
inversions that involve magnetic data.

getGravitySurveys()
returns a list of all gravity surveys added to the domain builder. See getSurveys() for more details.

getMagneticSurveys()
returns a list of all magnetic surveys added to the domain builder. See getSurveys() for more details.

getSurveys(datatype)
returns a list of surveys of type datatype available to this domain builder. In the current implementation
each survey is a tuple of two Data objects, the first containing anomaly values and the second standard
error values for the survey.

getDomain()
returns an escript domain (see [6]) suitable for running inversions on the attached data sources. The first
time this method is called the target parameters (such as resolution, extents and number of elements) are
computed, and the domain is created. Subsequent calls return the same domain instance so calls to
setPadding(), addSource() and other methods that influence the domain will fail once
getDomain() is called the first time.

setBackgroundMagneticFluxDensity(B)
sets the background magnetic flux density B = (BNorth, BEast, BV ertical) which is required for
magnetic inversions. BEast is ignored for 2-dimensional magnetic inversions.

getBackgroundMagneticFluxDensity()
returns the background magnetic flux density B set via setBackgroundMagneticFluxDensity()
in a form suitable for the inversion. There should be no need to call this method directly.

getSetDensityMask()
returns the density mask Data object which is non-zero for cells that have a fixed density value, zero
otherwise. There should be no need to call this method directly.

getSetSusceptibilityMask()
returns the susceptibility mask Data object which is non-zero for cells that have a fixed susceptibility
value, zero otherwise. There should be no need to call this method directly.

6.3 DataSource Class
Data sources added to a DomainBuilder must provide an implementation for a few methods as described in the
class template DataSource from the esys.downunder.datasources module:

class DataSource()
Base constructor which initializes members and should therefore be invoked by subclasses. Subclasses
may then use the member logger to print any output.

getDataExtents()
This method should be implemented to return a tuple of tuples ((x0, y0), (nx, ny), (dx, dy)), where (x0,
y0) denote the UTM coordinates of the data origin, (nx, ny) the number of data points, and (dx, dy) the
spacing of data points in a Cartesian reference system.

getDataType()

Chapter 6. Data Sources 49

Subclasses must return DataSource.GRAVITY or DataSource.MAGNETIC depending on the type of
data they provide.

getSurveyData(domain, origin, NE, spacing)
This method is called by the DomainBuilder to retrieve the actual survey data in the form of Data
objects on the domain. Data sources are responsible to map or interpolate their data onto the domain
which has been constructed to fit the data. The domain origin, number of elements NE and element
spacing are provided as tuples or lists to aid with interpolation.

getUtmZone()
Must be implemented to return the UTM zone that corresponds to the location of this data set as returned
by getDataExtents.

setSubsamplingFactor(factor)
Notifies the data source that data should be subsampled by factor. This method does not need to be
overwritten. See getSubsamplingFactor() for an explanation.

getSubsamplingFactor()
Returns the subsampling factor which was set by setSubsamplingFactor() or 1 which indicates
that no subsampling is requested. Data sources that support subsampling (or interleaving) of their data
should use this method to query the subsampling factor before returning surveys via getSurveyData.
If supported, the factor should be applied in all dimensions. For example, a 2-dimensional dataset with 300
x 150 data points should be reduced to 150 x 75 data points when the subsampling factor equals 2.
Subsampling becomes important when the survey data resolution is too fine or when using data with
varying resolution in one inversion. Note that data sources may choose to ignore the subsampling factor if
they don’t support it.

The esys.downunder.datasources module contains the following helper functions:

LatLonToUTM(longitude, latitude[, wkt string=None])
converts one or more (longitude,latitude) pairs to the corresponding (x,y) coordinates in the Universal
Transverse Mercator (UTM) projection. This function requires the pyproj module for conversion and
the gdal module to parse the wkt_string parameter if supplied. The wkt_string parameter may
describe the coordinate system used for the input values as a Well-known Text (WKT) string.

6.3.1 ER Mapper Raster Data

ER Mapper files that contain 2-dimensional raster data may be used for inversions through the ErMapperData
class which is derived from DataSource. Date are given in latitudinal and longitudinal coordinates and if a
Cartesian reference coordinate system is used are mapped using the appropriate (UTM) projection. Generally,
these datasets contain two files [2], a header file and a data file. The former usually has the .ers file extension
and is a text file that describes the data format, size, coordinate system used etc. The data file usually has the same
file name but no extension. Note, that the current implementation may not work with all ER Mapper datasets.
For example, the only cell type understood is IEEE4ByteReal at the moment. To run inversions on a ER Mapper
dataset use the following constructor:

class ErMapperData(data type, headerfile[, datafile=None][, altitude=0.][, error=None][,
scale factor=None][, null value=None])

Creates a new data source from ER Mapper data. The parameter data_type must be one of
DataSource.GRAVITY or DataSource.MAGNETIC depending on the type of data, headerfile is
the name of the header file while datafile specifies the name of the data file. The parameter
datafile can be left blank if the name is identical to the header file except for the file extension. The
altitude parameter can be used to shift a 2-dimensional slice of data vertically within a 3-dimensional
domain. Use error to set the (constant) measurement error with the same units used by the
measurements. By default a value of 2 units is assumed which equals 0.2 mgal or 2 nT depending on the
data type. Since ER Mapper files do not store any information about data units or scale the
scale_factor may be used to provide this information. If not set, gravity data is assumed to be given

50 6.3. DataSource Class

in µm
sec2 while magnetic data is assumed to be given in nT . Finally, the null_value parameter can be

used to override the value for the areas to be ignored (see Section 1.7.2) which is usually provided in the
ER Mapper header file.

6.3.2 NetCDF Data
The NetCdfData class from the esys.downunder.datasources module provides the means to use data
from netCDF files [12] for inversion. Currently, files that follow the Climate and Forecast (CF)1 and/or the
Cooperative Ocean/Atmosphere Research Data Service (COARDS)2 metadata conventions are supported. The
example script create_netcdf.py demonstrates how a compatible file can be generated from within python
(provided the scipy module is available). To plot such an input file including coordinates and legend using
matplotlib [8] see the script show_netcdf.py. The interface to NetCdfData looks as follows:

class NetCdfData(datatype, filename[, altitude=0.][, data variable=None][, error=None][,
scale factor=None][, null value=None])

Creates a new data source from compatible netCDF data. The two required parameters are datatype,
which must be one of DataSource.GRAVITY or DataSource.MAGNETIC depending on the type of
data, and filename which is the name of the file containing the data. The altitude parameter can be
used to shift a 2-dimensional slice of data vertically within a 3-dimensional domain. Set the
data_variable parameter to the name of the netCDF variable that contains the measurements unless
there is only one data variable in the file in which case the parameter can be left empty. Use error to set
the (constant) measurement error with the same units used by the measurements or the name of the
netCDF variable that contains this information. By default a value of 2 units is assumed which equals
0.2 mgal or 2 nT depending on the data type. The current implementation does not use the units attribute
(if available) within the netCDF file. Use the scale_factor argument to provide this information
instead. If not set, gravity data is assumed to be given in µm

sec2 while magnetic data is assumed to be given
in nT . Finally, the null_value parameter can be used to override the value for the areas to be ignored
(see Section 1.7.2) which is usually provided in the netCDF file.

6.3.3 Synthetic Data
As a special case the esys.downunder.datasources module contains classes to generate input data for
inversions by solving a forward model with user-defined reference data. The main purpose of using synthetic data
is to test the capabilities of the inversion module or for tracking down problems.

The base class for synthetic data which is derived from DataSource has the following interface:

class SyntheticDataBase(datatype[, DIM=2] [, number of elements=10] [, length=1*U.km] [, B b=None
] [, data offset=0] [, full knowledge=False])

Base class to define reference data based on a given property distribution (density or susceptibility). Data
are collected from a square region of vertical extent length on a grid with number_of_elements
cells in each direction. The synthetic data are constructed by solving the appropriate forward problem.
Data can be sampled with an offset from the surface at z = 0 or using the entire subsurface region.

The only additional method which needs to be implemented in subclasses is

getReferenceProperty([domain=None])
Returns the reference Data object that was used to generate the gravity or susceptibility anomaly data.
The domain argument must be present when this method is called for the first time but not necessarily in
subsequent calls.

Two synthetic data providers are currently available. The class SyntheticData defines synthetic gravity or
magnetic anomaly data based on a harmonic

k = A · sin
(
π
nD
D

(z + ∆z)
)
· sin

(
π
nL
L

(x− x0)
)

(6.1)

1http://cf-pcmdi.llnl.gov/documents/cf-conventions/latest-cf-conventions-document-1
2http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html

Chapter 6. Data Sources 51

http://cf-pcmdi.llnl.gov/documents/cf-conventions/latest-cf-conventions-document-1
http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html

where A is the amplitude, nD, nL denote the number of oscillations in the vertical and lateral direction, respec-
tively, while D and L is the depth and side length for the data, respectively. The second data provider class is
SyntheticFeatureData which takes a list of SourceFeature objects that define the anomaly and is thus
more generic. The constructors are defined as follows:

class SyntheticData(datatype[, n length=1] [, n depth=1] [, depth offset=0.] [, depth=None] [,
amplitude=None] [, DIM=2] [, number of elements=10] [, length=1*U.km] [, B b=None]
[, data offset=0] [, full knowledge=False] [, spherical=False])

The arguments n_length, n_depth, depth_offset, depth, and amplitude correspond to the
respective symbols in Equation 6.1. The remaining arguments are passed to the parent class
(SyntheticDataBase) and described there. If depth is not set the depth of the domain is used. The
argument amplitude may be left unset as well in which case a default value is used (200 kg

m3 for gravity
and 0.1 for magnetic data).

class SyntheticFeatureData(datatype, features[, DIM=2] [, number of elements=10] [, length=1*U.km] [
, B b=None] [, data offset=0] [, full knowledge=False] [, spherical=False])

The only new argument is features which is a list of SourceFeature objects to be included in the
data preparation. All other arguments are passed on to the parent class (see there).

class SourceFeature()
A feature adds a density/susceptibility distribution to (parts of) a domain of a synthetic data source, for
example a layer of a specific rock type or a simulated ore body. This base class is empty and only provides
the skeleton for subclasses which need to implement the following two methods:

getValue()
Returns the value for the area covered by mask. It can be constant or a Data object with spatial
dependency.

getMask(x)
Returns the mask of the region of interest for this feature. That is, mask is non-zero where the value
returned by getValue() should be applied, zero elsewhere.

52 6.3. DataSource Class

CHAPTER
SEVEN

Regularization

The general cost function J total to be minimized has some of the cost function Jf measuring the defect of the
result from the forward model with the data, and the cost function Jreg introducing the regularization into the
problem and makes sure that a unique answer exists. The regularization term is a function of, possibly vector-
valued, level set function m which represents the physical properties to be represented and is, from a mathematical
point of view, the unknown of the inversion problem. It is the intention that the values of m are between zero and
one and that actual physical values are created from a mapping before being fed into a forward model. In general
the cost function Jreg is defined as

Jreg(m) =
1

2

∫
Ω

(∑
k

µk · (ω(0)
k ·m

2
k + ω

(1)
ki m

2
k,i) +

∑
l<k

µ
(c)
lk · ω

(c)
lk · χ(ml,mk)

)
dx (7.1)

where summation over i is performed. The additional trade–off factors µk and µ(c)
lk (l < k) are between zero and

one and constant across the domain. They are potentially modified during the inversion in order to improve the
balance between the different terms in the cost function.

χ is a given symmetric, non-negative cross-gradient function. We use

χ(a, b) = (a,ia,i) · (b,jb,j)− (a,ib,i)
2 (7.2)

where summations over i and j are performed, see [4]. Notice that cross-gradient function is measuring the angle
between the surface normals of contours of level set functions. So minimizing the cost function will align the
surface normals of the contours.

The coefficients ω(0)
k , ω(1)

ki and ω(c)
lk define weighting factors which may depend on their location within the

domain. We assume that for given level set function k the weighting factors ω(0)
k , ω(1)

ki are scaled such that∫
Ω

(ω
(0)
k +

ω
(1)
ki

L2
i

) dx = αk (7.3)

where αk defines the scale which is typically set to one. Li is the width of the domain in xi direction. Similarly
we set for l < k we set ∫

Ω

ω
(c)
lk

L4
dx = α

(c)
lk (7.4)

where α(c)
lk defines the scale which is typically set to one and

1

L2
=
∑
i

1

L2
i

. (7.5)

In some cases values for the level set functions are known to be zero at certain regions in the domain. Typically
this is the region above the surface of the Earths. This expressed using a a characteristic function q which varies
with its location within the domain. The function q is set to zero except for those locations x within the domain

Chapter 7. Regularization 53

where the values of the level set functions is known to be zero. For these locations x q takes a positive value. for a
single level set function one has

q(x) =

{
1 if m is set to zero at location x
0 otherwise (7.6)

For multi-valued level set function the characteristic function is set componentwise:

qk(x) =

{
1 if component mk is set to zero at location x
0 otherwise (7.7)

7.1 Usage

class Regularization(domain [, w0=None] [, w1=None] [, wc=None] [, location of set m=Data()] [,
numLevelSets=1] [, useDiagonalHessianApproximation=False] [, tol=1e-8] [, scale=None]
[, scale c=None])

initializes a regularization component of the cost function for inversion. domain defines the domain of the
inversion. numLevelSets sets the number of level set functions to be found during the inversion. w0, w1 and
wc define the weighting factors ω(0), ω(1) and ω(c), respectively. A value for w0 or w1 or both must be given. If
more than one level set function is involved wc must be given. location_of_set_m sets the characteristic
function q to define locations where the level set function is set to zero, see equation (7.6). scale and scale_c
set the scales αk in equation (7.3) and α(c)

lk in equation (7.4), respectively. By default, their values are set to one.
Notice that weighting factors are rescaled to meet the scaling conditions. tol sets the tolerance for the
calculation of the Hessian approximation. useDiagonalHessianApproximation indicates to ignore
coupling in the Hessian approximation produced by the cross-gradient term. This can speed-up an individual
iteration step in the inversion but typically leads to more inversion steps.

7.2 Gradient Calculation
The cost function kernel is given as

Kreg(m) =
1

2

∑
k

µk · (ω(0)
k ·m

2
k + ω

(1)
ki m

2
k,i) +

∑
l<k

µ
(c)
lk · ω

(c)
lk · χ(ml,mk) (7.8)

We need to provide the gradient of the cost function Jreg with respect to the level set functions m. The gradient
is represented by two functions Y and X which define the derivative of the cost function kernel with respect to m
and to the gradient m,i, respectively:

Yk =
∂Kreg

∂mk

Xki =
∂Kreg

∂mk,i

(7.9)

For the case of a single valued level set function m we get

Y = µ · ω(0) ·m (7.10)

and
Xi = µ · ω(1)

i ·m,i (7.11)

For a two-valued level set function (m0,m1) we have

Yk = µk · ω(0)
k ·mk for k = 0, 1 (7.12)

and for X

X0i = µ0 · ω(1)
0i ·m0,i + µ

(c)
01 · ω

(c)
01 · ((m1,jm1,j) ·m0,i − (m1,jm0,j) ·m1,i)

X1i = µ1 · ω(1)
1i ·m1,i + µ

(c)
01 · ω

(c)
01 · ((m0,jm0,j) ·m1,i − (m1,jm0,j) ·m0,i)

(7.13)

54 7.1. Usage

We also need to provide an approximation of the inverse of the Hessian operator as discussed in section 5.2. For
the case of a single valued level set function m we get

Aij = µ · ω(1)
i · δij

D = µ · ω(0)
(7.14)

For a two-valued level set function (m0,m1) we have

Dkl = µk · ω(0)
k · δkl (7.15)

and
A0i0j = µ0 · ω(1)

0i · δij + µ
(c)
01 · ω

(c)
01 · ((m1,j′m1,j′) · δij −m1,i ·m1,j)

A0i1j = µ
(c)
01 · ω

(c)
01 · (2 ·m0,i ·m1,j −m1,i ·m0,j − (m1,j′m0,j′) · δij)

A1i0j = µ
(c)
01 · ω

(c)
01 · (2 ·m1,i ·m0,j −m0,i ·m1,j − (m1,j′m0,j′) · δij)

A1i1j = µ1 · ω(1)
1i · δij + µ

(c)
01 · ω

(c)
01 · ((m0,j′m0,j′) · δij −m0,i ·m0,j))

(7.16)

Chapter 7. Regularization 55

56 7.2. Gradient Calculation

CHAPTER
EIGHT

Mapping

Mapping classes map a level set function m as described in Chapter 7 onto a physical parameter such as density
and susceptibility.

8.1 Density Map
For density we use the form

ρ = ρ0 + ∆ρ ·
(
z0 − x2

lz

) β
2

·m (8.1)

where ρ0 is the reference density, ∆ρ is the density scaling, z0 an offset, lz vertical expansion of the domain and β
is a suitable exponent.

class DensityMapping(domain [, z0=None] [, rho0=0] [, drho=2750 · kg ·m−3] [, beta=2.])
a linear density mapping including depth weighting. domain is the domain of the inversion, z0 reference
depth in the depth weighting factor, drho is the density scaling factor (by default the density of granite is
used) and beta is the exponent in the depth weighting factor. If no reference depth z0 is given no depth
weighting is applied. rho0 is the reference density which may be a function of its location in the domain.

getValue(m)
returns the density for level set function m

getDerivative(m)
return the derivative of density with respect to the level set function.

getInverse(p)
returns the value level set function m for given density value p.

8.2 Susceptibility Map
For the magnetic susceptibility k the following mapping is used:

k = k0 + ∆k ·
(
z0 − x2

lz

) β
2

·m (8.2)

where k0 is the reference density and ∆k is the density scaling.

class SusceptibilityMapping(domain [, z0=None] [, k0=0] [, dk=1] [, beta=2.])
a linear susceptibility mapping including depth weighting. domain is the domain of the inversion, z0
reference depth in the depth weighting factor, dk is the susceptibility scaling factor (by default one is

Chapter 8. Mapping 57

used) and beta is the exponent in the depth weighting factor. If no reference depth z0 is given no depth
weighting is applied. k0 is the reference susceptibility which may be a function of its location in the
domain.

getValue(m)
returns the susceptibility for level set function m

getDerivative(m)
return the derivative of susceptibility with respect to the level set function.

getInverse(p)
returns the value level set function m for given susceptibility value p.

8.3 General Mapping Class
Users can define their own mapping p = Ψ(m). The following interface needs to be served

class Mapping()
mapping of a level set function onto a physical parameter to be used by a forward model.

getValue(m)
returns the result Ψ(m) of the mapping for level set function m

getDerivative(m)
return the derivative ∂Ψ

∂m of the mapping with respect to the level set function for the level set function m.

getInverse(p)
returns the value level set function m for given value p of the physical parameter, ie p = Ψ(m).

58 8.3. General Mapping Class

CHAPTER

NINE

Forward Models

9.1 Gravity Inversion

For the gravity inversion we use the anomaly of the gravity acceleration of the Earth. The controlling material
parameter is the density ρ of the rock. If the density field ρ is known the gravitational potential ψ is given as the
solution of the PDE

− ψ,ii = −4πG · ρ (9.1)

where G = 6.6730 · 10−11 m3

kg·s2 is the gravitational constant. The gravitational potential is set to zero at the top of
the domain Γ0. On all other faces the normal component of the gravity acceleration anomaly gi is set to zero, i.e.
niψ,i = 0 with outer normal field ni. The gravity force gi is given as the negative of the gradient of the gravity
potential ψ:

gi = −ψ,i (9.2)

From the gravitational potential we can calculate the gravity acceleration anomaly via Equation (9.2) to obtain the
defect to the given data. If g(s)

i is a measurement of the gravity acceleration anomaly for survey s and ω(s)
i is a

weighting factor the data defect Jgrav(k) in the notation of Chapter 5 is given as

Jgrav(k) =
1

2

∑
s

∫
Ω

(ω
(s)
i · (gi − g

(s)
i))2dx (9.3)

Summation over i is performed. The cost function kernel is given as

Kgrav(ψ,i, k) =
1

2

∑
s

(ω
(s)
i · (ψ,i + g

(s)
i))2 (9.4)

In practice the gravity acceleration g(s) is measured in vertical direction z with a standard error deviation σ(s) at
certain locations in the domain. In this case one sets the weighting factors ω(s) as

ω
(s)
i =

 f · δiz
σ(s) data are available

where
0 otherwise

(9.5)

With the objective to control the gradient of the cost function the scaling factor f is chosen in the way that∑
s

∫
Ω

(ω
(s)
i g

(s)
i) · (ω(s)

j

1

Lj
) · 4πGL2 · ρ′ dx = α (9.6)

where α defines a scaling factor which is typically set to one and L is defined by equation (7.5). ρ′ is considering
the derivative of the density with respect to the level set function.

Chapter 9. Forward Models 59

9.1.1 Usage

class GravityModel(domain, w, g, [, fixPotentialAtBottom=False], [, tol=1e-8])
opens a gravity forward model over the Domain domain with weighting factors w (= ω(s)) and
measured gravity acceleration anomalies g (= g(s)). The weighting factors and the measured gravity
acceleration anomalies must be vectors where components refer to the components (x0, x1, x2) for the
Cartesian coordinate system. tol set the tolerance for the solution of the PDE (9.1). If
fixPotentialAtBottom is set to True , the gravitational potential at the bottom is set to zero in
addition to the potential on the top.

rescaleWeights([scale=1.] [rho scale=1.])
rescale the weighting factors such condition (9.6) holds where scale sets the scale α and rho_scale
sets ρ′. This method should be called before any inversion is started in order to make sure that all
components of the cost function are appropriately scaled.

9.1.2 Gradient Calculation
This section briefly explains how the gradient ∂J

grav

∂ρ of the cost function Jgrav with respect to the density ρ is
calculated. We follow the concept as outlined in section 5.2. The gravity potential ψ from PDE (9.1) is solved in
weak form: ∫

Ω

q,iψ,i dx = −
∫

Ω

4πG · qρ dx (9.7)

for all q with q = 0 on Γ0. In the following we set Ψ[·] = ψ for a given density · as solution of the variational
problem (9.7). If Γρ denotes the region of the domain where the density is known and for a given direction p with
p = 0 on Γρ one has ∫

Ω

∂Jgrav

∂ρ
· p dx =

∫
Ω

∑
s

(ω
(s)
j · (g

(s)
j − gj)) · (ω

(s)
i Ψ[p],i) dx (9.8)

with
Yi[ψ] =

∑
s

(ω
(s)
j · (g

(s)
j − gj)) · ω

(s)
i (9.9)

This is written as ∫
Ω

∂Jgrav

∂ρ
· p dx =

∫
Ω

Yi[ψ]Ψ[p],i dx (9.10)

We then set Y ∗[ψ] as the solution of the equation∫
Ω

r,iY
∗[ψ],i dx =

∫
Ω

r,i, Yi[ψ] dx for all p with r = 0 on Γtop (9.11)

with Y ∗[ψ] = 0 on Γ0. With r = Ψ[p] we get∫
Ω

Ψ[p],iY
∗[ψ],i dx =

∫
Ω

Ψ[p],i, Yi[ψ] dx (9.12)

and from Equation (9.7) with q = Y ∗[ψ] we get∫
Ω

Y ∗[ψ],iΨ[p],i dx = −
∫

Ω

4πG · Y ∗[ψ] · p dx (9.13)

which leads to ∫
Ω

Ψ[p],i, Yi[ψ] dx = −
∫

Ω

4πG · Y ∗[ψ] · p dx (9.14)

and finally ∫
Ω

∂Jgrav

∂ρ
· p dx = −

∫
Ω

4πG · Y ∗[ψ] · p dx (9.15)

or
∂Jgrav

∂ρ
= −4πG · Y ∗[ψ] (9.16)

60 9.1. Gravity Inversion

9.2 Linear Magnetic Inversion
For the magnetic inversion we use the anomaly of the magnetic flux density of the Earth. The controlling material
parameter is the susceptibility k of the rock. With magnetization M and inducing magnetic field anomaly Hs, the
magnetic flux density anomaly Bs is given as

Bi = µ0 · (Hs
i +Mi) (9.17)

where µ0 = 4π · 10−7 V s
Am . In this forward model we make the simplifying assumption that the magnetization is

proportional to the known geomagnetic flux density Bb:

µ0 ·Mi = k ·Bbi . (9.18)

Values for the magnetic flux density can be obtained by the International Geomagnetic Reference Field (IGRF) [3]
(or the Australian Geomagnetic Reference Field (AGRF) [9]). In most cases it is reasonable to assume that that
the background field is constant across the domain.

The magnetic field anomaly Hs can be represented by the gradient of a magnetic scalar potential ψ. We use
the form

µ0 ·Hs
i = −ψ,i (9.19)

With this notation one gets from Equations (9.17) and (9.18):

Bi = −ψ,i + k ·Bbi (9.20)

As the Bs magnetic flux density anomaly we obtain the PDE

− ψ,ii = −(kBri),i (9.21)

with Bri = Bbi which needs to be solved for a given susceptibility k. The magnetic scalar potential is set to zero at
the top of the domain Γ0. On all other faces the normal component of the magnetic flux density anomaly Bi is set
to zero, i.e. niψ,i = k · niBbi with outer normal field ni.

From the magnetic scalar potential we can calculate the magnetic flux density anomaly via Equation (9.21) to
calculate the defect to the given data. If B(s)

i is a measurement of the magnetic flux density anomaly for survey s
and ω(s)

i is a weighting factor the data defect Jmag(k) in the notation of Chapter 5 is given as

Jmag(k) =
1

2

∑
s

∫
Ω

(ω
(s)
i · (Bi −B

(s)
i))2dx (9.22)

Summation over i is performed. The cost function kernel is given as

Kmag(ψ,i, k) =
1

2

∑
s

(ω
(s)
i · (k ·B

b
i − ψ,i −B

(s)
i))2 (9.23)

Notice that if magnetic flux density is measured in air one can ignore the k ·Bbi as the susceptibility is zero.
In practice the magnetic flux density b(s) is measured along a certain direction d

(s)
i with a standard error

deviation σ(s) at certain locations in the domain. In this case one sets B(s)
i = b(s) · d(s)

i and the weighting factors
ω(s) as

ω
(s)
i =

f · d

(s)
i

σ(s) data are available
where

0 otherwise
(9.24)

where it is assumed that d(s)
i · d

(s)
i = 1. With the objective to control the gradient of the cost function the scaling

factor f is chosen in the way that∑
s

∫
Ω

(ω
(s)
i B

(s)
i) · (ω(s)

j

1

Lj
) · L2 · (Bbn

1

Ln
) · k′ dx = α (9.25)

where α defines a scaling factor which is typically set to one and L is defined by equation (7.5). k′ is considering
the derivative of the density with respect to the level set function.

Chapter 9. Forward Models 61

9.2.1 Usage

class MagneticModel(domain, w, B, background field, [, fixPotentialAtBottom=False], [, tol=1e-8],)
opens a magnetic forward model over the Domain domain with weighting factors w (= ω(s)) and
measured magnetic flux density anomalies B (= B(s)). The weighting factors and the measured magnetic
flux density anomalies must be vectors. background_field defines the background magnetic flux
density Bb as a vector with north, east and vertical components. tol sets the tolerance for the solution of
the PDE (9.21). If fixPotentialAtBottom is set to True , the gravitational potential at the bottom is
set to zero in addition to the potential on the top.

rescaleWeights([scale=1.] [k scale=1.])
rescale the weighting factors such condition (9.25) holds where scale sets the scale α and k_scale
sets k′. This method should be called before any inversion is started in order to make sure that all
components of the cost function are appropriately scaled.

9.2.2 Gradient Calculation
This section briefly explains how the gradient ∂J

mag

∂k of the cost function Jmag with respect to the susceptibility k
is calculated. We follow the concept as outlined in section 5.2.

The magnetic potential ψ from PDE (9.21) is solved in weak form:∫
Ω

q,iψ,i dx =

∫
Ω

k · q,iBri dx (9.26)

for all q with q = 0 on Γ0. In the following we set Ψ[k] = ψ for a given susceptibility k as solution of the
variational problem (9.26). If Γk denotes the region of the domain where the susceptibility is known and for a
given direction p with p = 0 on Γk one has∫

Ω

∂Jmag

∂k
· p dx =

∫
Ω

∑
s

(ω
(s)
j (B

(s)
j −Bj)) · (ω

(s)
i (Ψ[p],i − p ·Bbi)) dx (9.27)

with
Yi[ψ] =

∑
s

(ω
(s)
j (B

(s)
j −Bj)) · ω

(s)
i (9.28)

This is written as ∫
Ω

∂Jmag

∂k
· p dx =

∫
Ω

Yi[ψ]Ψ[p],i − p · Yi[ψ]Bbi dx (9.29)

We then set adjoint function Y ∗[ψ] as the solution of the equation∫
Ω

r,iY
∗[ψ],i dx =

∫
Ω

r,i, Yi[ψ] dx for all p with r = 0 on Γ0 (9.30)

with Y ∗[ψ] = 0 on Γ0. With r = Ψ[p] we get∫
Ω

Ψ[p],iY
∗[ψ],i dx =

∫
Ω

Ψ[p],iYi[ψ] dx (9.31)

and from Equation (9.26) with q = Y ∗[ψ] we get∫
Ω

Y ∗[ψ],iΨ[p],i dx =

∫
Ω

p · Y ∗[ψ],iB
r
i dx (9.32)

which leads to ∫
Ω

Ψ[p],i, Yi[ψ] dx =

∫
Ω

p · Y ∗[ψ],iB
r
i dx (9.33)

and finally ∫
Ω

∂Jmag

∂k
· p dx =

∫
Ω

p · (Y ∗[ψ],iB
r
i − Yi[ψ]Bbi) dx (9.34)

or
∂Jmag

∂k
= Y ∗[ψ],iB

r
i − Yi[ψ]Bbi (9.35)

62 9.2. Linear Magnetic Inversion

Index

Cartesian Domain, 32
cost function, 31

kernel, 44, 54, 59, 61
cross-gradient , 53
CSV, 17

density, 59

forward model, 31

GOCAD, 17
gravity acceleration, 59

inversion, 31

joint inversion, 31

L-BFGS, 34, 35, 39
level set function, 31

magnetic flux density, 61
mapping, 31
mayavi, 9, 12, 17

observation, 31

physical parameter, 31

regularization, 31

scalar potential
magnetic, 61

SI, 14
SILO, 17
susceptibility, 61

trade-off factor, 31

VisIt, 9, 12, 17–19, 26, 27
visualization

mayavi, 9, 12, 17
SILO, 17
VisIt, 9, 12, 17–19, 26, 27
VTK, 9, 12, 17, 25

Voxet, 17
VTK, 9, 12, 17, 25

Index 63

64 Index

Bibliography

[1] L. Gross (eds.). Documentation for esys.escript. The Univeristy of Queensland, Australia, 2013.

[2] erdas. ERMapper Customization Guide. ERDAS, Inc., 5051 Peachtree Corners Circle, Suite 100, Norcross,
GA 30092-2500 USA, 2008.

[3] C. C. Finlay, S. Maus, C. D. Beggan, T. N. Bondar, A. Chambodut, T. A. Chernova, A. Chulliat, V. P.
Golovkov, B. Hamilton, M. Hamoudi, R. Holme, G. Hulot, W. Kuang, B. Langlais, V. Lesur, F. J. Lowes,
H. Lhr, S. Macmillan, M. Mandea, S. McLean, C. Manoj, M. Menvielle, I. Michaelis, N. Olsen, J. Rauberg,
M. Rother, T. J. Sabaka, A. Tangborn, L. Tffner-Clausen, E. Thbault, A. W. P. Thomson, I. Wardinski, Z. Wei,
and T. I. Zvereva. International geomagnetic reference field: the eleventh generation. Geophysical Journal
International, 183(3):1216–1230, 2010.

[4] Luis A Gallardo, Max A Meju, and Marco A Prez-Flores. A quadratic programming approach for joint image
reconstruction: mathematical and geophysical examples. Inverse Problems, 21(2):435, 2005.

[5] Paradigm GOCAD homepage. http://www.pdgm.com/Products/GOCAD.

[6] Lutz Gross, Cihan Altinay, Artak Amirbekyan, Joel Fenwick, Louise M. Olsen-Kettle, Ken Steube, Leon
Graham, and Hans B Muhlhaus. esys-Escript Users Guide: Solving Partial Differential Equations with
Escript and Finley. Release - 3.2. The University of Queensland, Australia, 2010.

[7] Antony Hallam, Lutz Gross, Cihan Altinay, Artak Amirbekyan, Artak, Joel Fenwick, and Lin Gao. The
escript cookbook: Release - 3.2 (r3422). The Univeristy of Queensland, Australia, 2010.

[8] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engineering, 9(3):90–95,
2007.

[9] W. Jones, P. Crosthwaite, A. Hitchman, A. Lewis, and L. Wang. Geoscience australia’s geomagnetism pro-
gram – assisting geophysical exploration. ASEG Extended Abstracts, 2012(1):1–3, 2012.

[10] Mayavi2: The next generation scientific data visualization, 2009.

[11] Jorge J. More and David J. Thuente. Line search algorithms with guaranteed sufficient decrease. ACM Trans.
Math. Software, 20:286–307, 1992.

[12] netCDF homepage. http://www.unidata.ucar.edu/software/netcdf.

[13] Jorge Nocedal. Updating quasi-Newton matrices with limited storage. Math. Comp., 35(151):773–782, 1980.

[14] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2nd edition, 2006.

[15] Silo homepage. https://wci.llnl.gov/codes/silo.

[16] W.M. Telford, L.P. Geldart, R.E. Sheriff, and D.A Keys. Applied Geophysics. Cambridge University Press,
2nd edition, 1990.

[17] VisIt homepage. https://wci.llnl.gov/codes/visit/home.html.

Bibliography 65

http://www.pdgm.com/Products/GOCAD
http://www.unidata.ucar.edu/software/netcdf
https://wci.llnl.gov/codes/silo
https://wci.llnl.gov/codes/visit/home.html

