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Chapter 1

Finite approximations to functions

1.1 Functions on the unit interval

Suppose that we wish to represent functions on the unit interval. On this interval, there are two local
coordinates ξ1 and ξ2 linked by the relation:

ξ1 + ξ2 = 1 (1.1)

Note that there are two local variables for a one dimensional element. For this reason, one of the local
coordinates may be regarded as an auxiliary variable expressed in terms of the other one.

In terms of ξ2, the specimen element is the interval [0, 1]. In ξ1 this becomes the reversed interval
[1, 0]. Linear functions on this element may be expressed in the form:

F (ξξξ) = f1φ1,1 + f2φ1,2 (1.2)

where the basis functions φ1,1, φ1,2 are given by:

φ1,1(ξξξ) = ξ1 (1.3)
φ1,2(ξξξ) = ξ2 (= 1− ξ1) (1.4)

Of course we need not only consider linear functions. For example, we can express any quadratic
function on the unit interval as the sum of three basis functions:

φ2,1(ξξξ) = ξ1(2ξ1 − 1) (1.5)
φ2,2(ξξξ) = 4ξ1ξ2 (1.6)
φ3,3(ξξξ) = ξ2(2ξ2 − 1) (1.7)

Figure 1.1 shows the basis functions for linear and quadratic functions on the unit interval.

More generally, these functions belong to the family of equispaced Lagrange elements known as Pn
where n is the degree of the polynomial basis function. The basis functions of these elements are
defined by their value at a set of n+ 1 equispaced nodes ni. The αth basis function for Pn is defined
to be the unique polynomial of degree n such that:

φn,k =

{
φn,α(nα) = 1

φn,α(nβ) = 0 β 6= α
(1.8)

1.2 One dimensional meshes

As well as representing functions on an interval by higher degree polynomials, we may also sub-
divide the interval into a number of subintervals and represent a function by a polynomial on each

11
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0

1

0
0 0.5 1

Figure 1.1: Basis functions for linear (left) and quadratic (right) functions on the interval ξ1 = [0, 1]

subdivision. To introduce terminology which will also be applicable in more dimensions, we refer to
the whole interval as the domain, which we denote Ω and we refer to each sub-interval as an element.
We will denote the current elementE, possibly adding subscripts where required to avoid ambiguity.

For simplicity, let us choose to approximate the function f(x) on the one dimensional domain (in-
terval) Ω using piecewise linear functions. At this stage we shall also require that our piecewise
linear function be continuous. We first partition Ω into NE elements by choosing a set of nodes
{xα|xα < xα+1, α = 1 . . . Ndof} such that Eα = [xα,xα+1]. On an (non-periodic) interval, with a
continuous piecewise linear representation of the function Ndof = NE + 1. On more complex do-
mains, the relationship between the number of elements and number of nodes is far more complex.
Figure 1.2 shows the piecewise linear approximation of a function over an interval subdivided into
elements.

x1 x2 x3 x4 x5 x6 xNdof−2 xNdof−1 xNdof

Figure 1.2: A piecewise linear approximation on a one-dimensional interval. The original function is
shown in red and its piecewise linear interpolant over the set of nodes xα is black.

Clearly the value of the piecewise linear approximation F (x) is uniquely determined by the values
of F at the nodes. From the previous section, it comes as no surprise that we may write our function:

F (x) =

NE+1∑
α=1

fαψα(x) (1.9)

where:

ψα(x) =


φ1,1(ξξξ), ξ2(x) = x−xα

xα+1−xα
, ξ1 = 1− ξ2 : x ∈ Eα

φ1,2(ξξξ), ξ2(x) = x−xα−1

xα−xα−1
, ξ1 = 1− ξ2 : x ∈ Eα−1

0 : otherwise

(1.10)

There are a number of features of this form of basis function which make it attractive. First, we write
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xα xα+1 xα+2 xα+3xα−1

Figure 1.3: Basis function for a one-dimensional continuous piecewise linear function.

the global basis function ψ as a function of the local basis functions on one element, φ. This has the
advantage that we can record shape function information for only the specimen interval ξ2 = [0, 1]
and we can write all of the basis functions for the whole domain by simply refering to a specimen
basis function and providing a change of coordinates function from x to ξξξ.

A second feature of this form of basis is that it has local support. By this we mean that φα is only
non-zero on the elements containing xα. This means that if we are only interested in the value of
the function at one point or on one element, we only need to take into account the basis functions
belonging to that element. This allows us to write the function F as follows:

F (x) = fα(x)φ1,1(ξξξ) + fα(x)+1φ1,2(ξξξ) (1.11)

where α(x) is the number of an element containing x and once again:

ξ2(x) =
x− xα(x)

xα(x)+1 − xα(x)
, ξ1(x) = 1− ξ2(x) (1.12)

Note that if x coincides with a (non-boundary) node then it will lie in two elements and α(x) becomes
multiply defined. However, since the bases are all continuous, we may simply choose any of the
elements containing x and we will achieve the same answer. This means that we now have a general
algorithm for evaluating F (x):

1. Find an element containing x.

2. Change coordinates. That is, calculate the local coordinates ξξξ corresponding to x

3. Calculate F (x) as a local sum of the values at the nodes of this element weighted by the value
of the corresponding shape functions at ξξξ.

Another important feature of this form of basis is that it is easy to generalise to different sorts of ele-
ments. For instance, suppose that instead of representing our function as a piecewise linear function,
we choose to represent it with piecewise quadratic elements. We now need an additional node in the
centre of each element, an additional NE in all, so that in this case Ndof = 2NE + 1. We might choose
to keep the existing nodes numbered as they are and number the additional node in the centre of each
element in element order starting from NE + 2. We then reach the following expression for F (x):

F (x) = fα(x)φ2,1(ξξξ) + fα(x)+NE+1φ2,2(ξξξ) + fα(x)+1φ2,3(ξξξ) (1.13)

In fact, we can write this expression in a more general form still. We define Nloc to be the number of
local basis functions on a single element. For Pn elements in one dimension, Nloc = n + 1. We also
define a function γ(α, β) such that γ is the node number of the coefficient corresponding to the βth
basis function. For example, in the case of the numbering of our piecewise quadratic basis above:

γ(α(x), β) =


α(x) : β = 1

α(x) +NE + 1 : β = 2

α(x) + 1 : β = 3

(1.14)
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xα−1 xα xα+1 xα+2 xα+3
xα+NE xα+NE+1

xα−1 xα xα+1 xα+2
xα+NE xα+NE+1

Figure 1.4: Basis functions for a one-dimensional continuous piecewise quadratic function. On the
left, the basis function corresponding to a node on an element boundary. On the right, that corre-
sponding to a node in the centre of an element.

In other words, the function γ maps from the local node numbering on each element to the global
node numbering.

We shall also abbrevate the notation somewhat so that φβ refers to the βth local basis function of the
basis we are currently considering. We shall write Φ for the basis as a whole so that Φ = {φβ|β =
1 . . . Nloc}. These definitions now allow us to write a function F over a domain Ω = {Eα|α =
1 . . . Ndof} defined with respect to some basis Φ as:

F (x) =

Nloc∑
β=1

fγ(α(x),β)φβ(ξξξ) (1.15)

The pair [Ω,Φ] defines a discrete function space containing all such functions F . It is important to
remember that (1.15) is completely equivalent to (1.9) on the assumption (which is true for all com-
monly employed finite elements) that the basis functions have local support. From a computational
perspective, the significant advantage of (1.15) is that it involves only a sum over the local nodes of
element α(x), the element containing the point at which the function is to be evaluated, rather than
a sum over all of the basis functions in the mesh, most of which will be zero in element α(x).

1.3 Function arithmetic

If we have two functions F,G ∈ [Ω,Φ] then we can write their sum:

F (x) +G(x) =

Nloc∑
β=1

fγ(α(x),β)φβ(ξξξ) +

Nloc∑
β′=1

gγ(α(x),β′)φβ′(ξξξ) (1.16)

By simply gathering like terms, we can rewrite this as:

F (x) +G(x) =

Nloc∑
β=1

(
fγ(α(x),β) + gγ(α(x),β)

)
φβ(ξξξ) (1.17)

In other words, we can add functions in the same function space simply by adding their correspond-
ing basis function coefficients. Similarly, we can multiply functions by any constant scalar k:

kF (x) =

Nloc∑
β=1

kfγ(α(x),β)φβ(ξξξ) (1.18)
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In the case of the product of two F and G, the situation is somewhat more complicated:

F (x)G(x) =

Nloc∑
β=1

fγ(α(x),β)φβ(ξξξ)

Nloc∑
β′=1

gγ(α(x),β′)φβ′(ξξξ)


=

Nloc∑
β=1

Nloc∑
β′=1

fγ(α(x),β)gγ(α(x),β′)φβ(ξξξ)φβ′(ξξξ)

(1.19)

Note that, unlike the cases of addition and multiplication by a scalar, multiplication of two functions
is not accomplished merely by acting on the coefficients fγ and gγ . A consequence of this is that the
product of two functions in [Ω,Φ] does not generally lie in the space [Ω,Φ] itself. In contrast, [Ω,Φ] is
closed under addition and multiplication by a scalar. That is to say:

F,G ∈ [Ω,Φ]⇒ F +G ∈ [Ω,Φ] (1.20)
F ∈ [Ω,Φ], k ∈ R⇒ kF ∈ [Ω,Φ] (1.21)

Equation (1.19) further reinforces the importance of the basis functions having local support: if the
basis functions of [Ω,Φ] were nonzero over the whole domain then evaluating F (x)G(x) at a single
point x would require the evaluation of N2

E terms rather than the N2
loc terms of (1.19).

1.4 Numerical integration

1.4.1 Integration over a single element

Consider once again the unit interval [0, 1] expressed in local coordinates ξξξ. Given a function F (ξξξ) ap-
proximated with respect to some basis Φ, we may ask the question, what is the integral of f over the
unit interval? One answer is that we might write out the analytic expression for the basis functions
and integrate it over the element. In general this is a complex and computationally expensive pro-
cess, especially if, as is common in the finite element method, we need to integrate not a single known
function but the product of a number of functions. Instead, it is common practice to approximate the
integral using some form of quadrature formula.

Some basic numerical quadrature techniques will be familiar from elementary calculus. In the sim-
plest example, the midpoint rule, the integral is simply approximated by the value of the function at
the centre of the element: ∫ 1

0
F (ξξξ)dξ1 ≈ F ([0.5, 0.5])

=

Nloc∑
β=1

fβφβ([0.5, 0.5])

(1.22)

Note that once again we must choose one of local coordinates as the independent parameter for the
integration.

For a more accurate representation, we might employ the trapezoidal rule and approximate the inte-
gral by that of a linear function on the integral:∫ 1

0
F (ξξξ)dξ1 ≈

1

2
(F ([1, 0]) + F ([0, 1]))

=

Nloc∑
β=1

fβ
1

2
(φβ([1, 0]) + φβ([0, 1]))

(1.23)

The price of the increased accuracy is that it is now necessary to evaluate each basis function at
two different locations. Continuing this pattern, Simpson’s rule uses three evaluations of each basis
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10 1010

Figure 1.5: Numerical integration of a function on the interval [0, 1]. From left to right, the midpoint
rule, the trapezoidal rule and Simpson’s rule. The points at which the function is evaluated are
marked by black disks.

function but approximates the integrand by a quadratic function:∫ 1

0
F (ξξξ)dξ1 ≈

1

6
F ([1, 0]) +

2

3
F ([0.5, 0.5]) +

1

6
F ([0, 1])

=

Nloc∑
β=1

fβ

(
1

6
φβ([1, 0]) +

2

3
φβ([0.5, 0.5]) +

1

6
φβ([0, 1])

) (1.24)

These three methods are particular examples of the general form of numerical integration, otherwise
known as quadrature. In general, a quadrature rule consists of a set of points {ξξξδ|δ = 1 . . . Nquad} and
a corresponding set of weights {wδ|δ = 1 . . . Nquad}. The integral is approximated by:∫ 1

0
F (ξξξ)dξ1 ≈

Nloc∑
β=1

Nquad∑
δ=1

fβwδφβ (ξξξδ) (1.25)

Many such rules exist and, as with the simple schemes above, it is generally the case that schemes
which deliver lower error have larger sets of quadrature points and therefore require more shape
function evaluations. If the basis functions Φ are piecewise polynomial then for sufficiently accurate
quadrature (and accordingly sufficiently many quadrature points), the integral is exactly evaluated
without error. This circumstance is referred to as complete quadrature. In the following sections we
shall assume that the quadrature is complete so that the approximate equality (≈) in (1.25) is exact
(=).

1.4.2 Integration over a one dimensional domain

Having established a numerical integration algorithm in a single element, we will move to integra-
tion over a whole one-dimensional mesh. The full integral is simply the sum of the integrals on each
element. The integral of a function F ∈ [Ω,Φ] over the domain Ω is therefore:∫

Ω
F (x)dx =

NE∑
α=1

∫
Eα

F (x)dx (1.26)

In the previous section, we described integration over the specimen interval with respect to the local
variable ξ1. To evaluate (1.26) we therefore need to change coordinates on each element to the local
variables: ∫

Eα

F (x)dx =

∫ 1

0
F (x)

dx

dξ2
dξ2 (1.27)

where (1.12) is used to evaluate F (x) in terms of ξξξ. Using the definition of γ from page 13 we have:

dξ2

dx
=

1

xγ(α+1,2) − xγ(α,1)

=
1

∆xα

(1.28)
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where ∆xα is the width of element α. So:

dx

dξ2
= ∆xα (1.29)

The choice to express the integral with respect to the second local coordinate is arbitrary. We could
just as well use ξ1 however in this case it would be necessary to take into account the fact that ξ1

increases as x decreases so we would have:∫
Eα

F (x)dx =

∫ 0

1
F (x)

dx

dξ1
dξ1

= −
∫ 1

0
F (x)

dx

dξ1
dξ1

(1.30)

Since ξ1 = 1− ξ2,
dx

dξ1
= −∆xα (1.31)

and so equation (1.30) reduces to equation (1.26).

If F lies in the span of some basis φ then we can apply a suitable complete quadrature as given in
(1.25) to write: ∫

Ω
F (x)dx =

NE∑
α=1

Nloc∑
β=1

Nquad∑
δ=1

fβφβ (ξξξδ) ∆xαwδ (1.32)

1.5 Numerical differentiation

Since we were able to integrate a discretised function by integrating its basis functions, we might try
the corresponding approach to differentiate a function:

dF (x)

dx
=

d

dx

Nloc∑
β=1

fγ(α(x),β)φβ(ξξξ)

=

Nloc∑
β=1

fγ(α(x),β)
dφβ(ξξξ)

dx

(1.33)

Once again we can employ the definition of ξξξ in terms of x in (1.12) to change variables via the chain
rule:

dF (x)

dx
=

Nloc∑
β=1

fγ(α(x),β)
dφβ(ξξξ)

dx

=

Nloc∑
β=1

fγ(α(x),β)
dφβ(ξξξ)

dξ2

dξ2

dx

=

Nloc∑
β=1

fγ(α(x),β)
1

∆xα(x)

dφβ(ξξξ)

dξ2

(1.34)

This does indeed yield the exact derivative of F at every point in the domain. However, if F ∈
[Ω,Φ] it will not generally be the case that the derivative of F , when calculated according to (1.34),
will itself lie in [Ω,Φ]. As an example, suppose Ω is the interval [0, 1] partitioned into the elements
[0, 1/3],[1/3, 2/3],[2/3, 1]. If Φ is a basis for the space of continuous piecewise linear functions then the
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Figure 1.6: A continuous piecewise linear function and its derivative. The derivative is piecewise
constant and discontinuous at element boundaries.

four nodes of the function space [Ω,Φ] lie at 0, 1/3, 2/3 and 1. Let F be the function in [Ω,Φ] given by
the coefficient vector [0, 1, 1, 0]. Then the gradient of F is given by:

dF (x)

dx
=


3 x ∈ [0, 1/3]

0 x ∈ [1/3, 2/3]

−3 x ∈ [2/3, 1]

(1.35)

Figure 1.6 illustrates this function and its derivative. It is immediately apparent that the derivative
is constant on each element and discontinuous at the boundaries between elements. On the element
boundary itself, the derivative does not have a uniquely defined value. The derivative is therefore
not a member of the space of piecewise linear continuous functions on Ω.

This result is general to a much wider class of function spaces. In particular, Pn, the space of contin-
uous piecewise polynomial functions of degree n is not smooth at element boundaries and therefore
has discontinuous derivatives.

However, for many purposes, such as the evaluation of expressions involving the derivative of a
function, we will want to work in the same function space [Ω,Φ] as the original function F . In other
words, we will wish to solve the problem: for a given F ∈ [Ω,Φ] find D ∈ [Ω,Φ] such that

D(x) =
dF (x)

dx
(1.36)



Chapter 2

Weak forms and the Galerkin projection

2.1 Equality in the weak sense

We have seen above that if [Ω,Φ] is not differentiable at a set of isolated points (the element bound-
aries) then (1.36) has no solutions. This suggests that we might look for solutions by weakening our
test for equality so that the value at a set of isolated points can be neglected. To generalise the prob-
lem somewhat, suppose that f is a function defined over the domain Ω and we wish to find g in [Ω,Φ]
such that g = f .

Since the value of a function at an isolated set of points does not change its integral, we might ask if
f and g are equal in the L1 norm: ∫

Ω
|g − f |dx = 0 (2.1)

An alternative is to ask the same question with respect to the L2 norm:∫
Ω

(g − f)2dx = 0 (2.2)

An important generalisation is to say that f and g are equal if their integral when multiplied by any
square-integrable function w is zero:∫

Ω
w(g − f)dx = 0 ∀w ∈ L2 (2.3)

The function w in this expression is termed a test function. In particular, if we choose the constant
test function w = 1 then we recover (2.1) while if f and g also lie in L2 (the space of functions with
finite L2 norm) then we can choose w = g − f and (2.2) is recovered. It is therefore apparent that
(2.3) is a stronger test for equality than either (2.1) or (2.2). It is also a definition which lends itself to
discretisation. Suppose that we restrict w to lie in the discretised function space [Ω,Φ], then we can
rewrite (2.3) in terms of the global basis functions ψ as:

Ndof∑
γ=1

∫
Ω
ψγ(g − f)dx = 0 ∀w ∈ L2 (2.4)

Since the global basis functions span [Ω,Φ], it is sufficient to demonstrate this equality for each of the
global basis functions: ∫

Ω
ψγ(g − f)dx = 0 ∀γ = 1 . . . Ndof (2.5)

The next step is to rearrange the equation to place unknown terms on the left and known ones on the
right. Since g also lies in [Ω,Φ] then we can write the following system of equations:

Ndof∑
γ̂=1

∫
Ω
ψγfγ̂ψγ̂dx =

∫
Ω
ψγgdx ∀γ = 1 . . . Ndof (2.6)

19
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Equivalently, this can be written as a matrix equation:

Mg = r (2.7)

where:

M(i, j) =

∫
Ω
ψiψjdx (2.8)

g(j) = gj (2.9)

r(i) =

∫
Ω
ψifdx (2.10)

with i, j = 1 . . . Ndof . The matrix M is known in the finite element method as the mass matrix. It has
the function of mapping between the test space and the space in which g is defined, which is termed
the trial space.

2.1.1 Matrix assembly

The mass matrix in equation (2.8) is defined in terms of the global basis functions ψ. However,
as previously discussed, to efficiently evaluate the basis functions, we need to restate the problem
in terms of the local basis functions φ on each element. Since each entry in M is an integral over
the domain, M can also be expressed as a sum of integrals over each element. Remember that the
basis functions have local support so the contribution from each element can be computed using
only the local basis functions on each element. For each element α we therefore have the following
contribution to M:

Mα(iloc, jloc) =

∫
Eα

φilocφjlocdx, iloc, jloc = 1 . . . Nloc (2.11)

To actually assemble M requires the use of the function γ, the map from local to global node numbers
which we introduced on page 13. This produces the following algorithm:

do α=1,NE

do iloc=1,Nloc

do iloc=1,Nloc

M(γ(α, iloc), γ(α, jloc)) +=

∫
Eα

φilocφjlocdx

end
end

end

The integral on the right-hand side is evaluated using numerical quadrature as shown in equation
(1.25) although this time there are two shape functions:∫

Eα

φilocφjlocdx =

Nquad∑
δ=1

φiloc (ξξξδ)φjloc (ξξξδ) ∆xαwδ (2.12)

2.1.2 Right hand side assembly

Right hand side assembly is in most respects identical to the matrix assembly subject to the single
difference that there is no trial function so the whole process is one-dimensional instead of two. For
each element α we can write:

rα =

∫
Eα

φilocfdx, iloc = 1 . . . Nloc (2.13)

The assembly of the full right hand side vector is then accomplished by the following algorithm:
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do α=1,NE

do iloc=1,Nloc

r(γ(α, iloc))+=

∫
Eα

φilocgdx

end
end

In this case the relevant quadrature rule is:

∫
Eα

φilocgdx =

Nquad∑
δ=1

φiloc (ξξξδ) f (ξξξδ) ∆xαwδ, iloc = 1 . . . Nloc (2.14)

2.2 The weak form of numerical differentiation

Let us return to the original differentiation problem we set out to solve: given F ∈ [Ω,Φ] find D ∈
[Ω,Φ] such that

D(x) =
dF (x)

dx
(2.15)

Using equation (1.34) we can expand the derivative in terms of the basis functions and substitute for
g into equation (2.14):

∫
Eα

φiloc
dF (x)

dx
dx =

Nquad∑
δ=1

Nloc∑
β=1

φiloc (ξξξδ) fγ(α,β)

(
1

∆xα

dφβ(ξξξδ)

dξ2

)
∆xαwδ, iloc = 1 . . . Nloc (2.16)

2.2.1 Numerical evaluation

Using this derivation and equations (2.16) and (2.12) in particular, we have defined the weak form of
equation (2.15) only in terms of the following quantities:

• A set of quadrature points and corresponding quadrature weights on the specimen element;

• the values of the basis functions of the discrete space [Ω,Φ] at the quadrature points of each
element;

• the derivatives of those basis functions at the same quadrature points;

• the positions of the mesh nodes; and

• the values of the coefficient vector f defining the function F .

Let’s use the Simpson’s rule for quadrature. This rule uses three points per element so Nquad = 3 and
we have the following quadrature points:

ξ1 ξ2 w

ξξξδ=1 1 0 1/6
ξξξδ=2 0.5 0.5 2/3
ξξξδ=3 0 1 1/6

Here ξξξδ=1 is the first quadrature point while in local coordinates while ξ1 the name of the first local
coordinate.

Since we are using linear basis functions, their values and derivatives at these points are:
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φ1 φ2
dφ1
dξ1

dφ1
dξ2

dφ2
dξ1

dφ2
dξ2

ξξξδ=1 1 0 1 -1 -1 1
ξξξδ=2 0.5 0.5 1 -1 -1 1
ξξξδ=3 0 1 1 -1 -1 1

Notice that the gradient of each basis function is constant across the element.

The mesh nodes are at [0, 1/3, 2/3, 1] so that NE = 3 and ∆xα = 1/3 for any α ∈ {1 . . . 3}. The
coefficients of the function F are, as given before: f = [0, 1, 1, 0].

Because we have chosen an equispaced mesh, the local mass matrix Mα is the same on each element.
It is given by:

Mα(1, 1) =

∫
Eα

φ1φ1dx

=

Nquad(=3)∑
δ=1

φ1 (ξξξδ)φ1 (ξξξδ) ∆xαwδ

= φ1 (ξξξ1)φ1 (ξξξ1)
1

3
w1 + φ1 (ξξξ2)φ1 (ξξξ2)

1

3
w2 + φ1 (ξξξ3)φ1 (ξξξ3)

1

3
w3

= 1× 1× 1

3
× 1

6
+ 0.5× 0.5× 1

3
× 2

3
+ 0× 0× 1

3
× 1

6

=
2

18

(2.17)

Mα(1, 2) =

∫
Eα

φ1φ2dx

=

Nquad(=3)∑
δ=1

φ1 (ξξξδ)φ2 (ξξξδ) ∆xαwδ

= φ1 (ξξξ1)φ2 (ξξξ1)
1

3
w1 + φ1 (ξξξ2)φ2 (ξξξ2)

1

3
w2 + φ1 (ξξξ3)φ2 (ξξξ3)

1

3
w3

= 1× 0× 1

3
× 1

6
+ 0.5× 0.5× 1

3
× 2

3
+ 1× 0× 1

3
× 1

6

=
1

18

(2.18)

Mα(2, 1) =

∫
Eα

φ2φ1dx

=

Nquad(=3)∑
δ=1

φ2 (ξξξδ)φ1 (ξξξδ) ∆xαwδ

= φ2 (ξξξ1)φ1 (ξξξ1)
1

3
w1 + φ2 (ξξξ2)φ1 (ξξξ2)

1

3
w2 + φ2 (ξξξ3)φ1 (ξξξ3)

1

3
w3

= 0× 1× 1

3
× 1

6
+ 0.5× 0.5× 1

3
× 2

3
+ 0× 1× 1

3
× 1

6

=
1

18

(2.19)
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Mα(2, 2) =

∫
Eα

φ2φ2dx

=

Nquad(=3)∑
δ=1

φ2 (ξξξδ)φ2 (ξξξδ) ∆xαwδ

= φ2 (ξξξ1)φ2 (ξξξ1)
1

3
w1 + φ2 (ξξξ2)φ2 (ξξξ2)

1

3
w2 + φ2 (ξξξ3)φ2 (ξξξ3)

1

3
w3

= 1× 1× 1

3
× 1

6
+ 0.5× 0.5× 1

3
× 2

3
+ 0× 0× 1

3
× 1

6

=
2

18

(2.20)

These can be combined to yield:

Mα =

[
2
18

1
18

1
18

2
18

]
(2.21)

To combine the Mα for α = 1 . . . 3 into the global mass matrix we need the local to global mapping
function γ. For this simple example, we can easily write this out. Recall that the first argument of γ
is the element number while the second is the local node number.

γ(1, 1) = 1

γ(1, 2) = 2

γ(2, 1) = 2

γ(2, 2) = 3

γ(2, 1) = 3

γ(2, 2) = 4

Using this function in the algorithm from section 2.1.1, we may assemble the global mass matrix:

M =


2
18

1
18 0 0

1
18

2
9

1
18 0

0 1
18

2
9

1
18

0 0 1
18

2
18

 (2.22)

We now need to follow an essentially similar process to evaluate the right hand side vector. Evaluat-
ing equation (2.14) for the first element (α == 1), we have:

rα=1(1) =

Nquad=3∑
δ=1

Nloc=2∑
β=1

φ1 (ξξξδ) fγ(1,β)

(
1

∆x1

dφβ(ξξξδ)

dξ2

)
∆x1wδ

= 1× 0×
(

1

1/3
×−1

)
× 1

3
× 1

6

+ 0.5× 0×
(

1

1/3
×−1

)
× 1

3
× 2

3

+ 0× 0×
(

1

1/3
×−1

)
× 1

3
× 1

6

+ 1× 1×
(

1

1/3
× 1

)
× 1

3
× 1

6

+ 0.5× 1×
(

1

1/3
× 1

)
× 1

3
× 2

3

+ 0× 1×
(

1

1/3
× 1

)
× 1

3
× 1

6

=
1

3

(2.23)
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rα=1(2) =

Nquad=3∑
δ=1

Nloc=2∑
β=1

φ2 (ξξξδ) fγ(1,β)

(
1

∆x1

dφβ(ξξξδ)

dξ2

)
∆x1wδ

= 0× 0×
(

1

1/3
×−1

)
× 1

3
× 1

6

+ 0.5× 0×
(

1

1/3
×−1

)
× 1

3
× 2

3

+ 1× 0×
(

1

1/3
×−1

)
× 1

3
× 1

6

+ 0× 1×
(

1

1/3
× 1

)
× 1

3
× 1

6

+ 0.5× 1×
(

1

1/3
× 1

)
× 1

3
× 2

3

+ 1× 1×
(

1

1/3
× 1

)
× 1

3
× 1

6

=
1

3

(2.24)

In summary, the right hand side contribution from the first element is:

rα=1 =

[
1
3
1
3

]
(2.25)

Skipping the arithmetic details, the contributions from the other two elements are:

rα=2 =

[
0
0

]
(2.26)

rα=3 =

[
−1

3
−1

3

]
(2.27)

Notice that the contribution from each element is piecewise constant. This stems directly from the fact
that the gradients of the basis functions are constant over each element. Using the global assembly
algorithm from section 2.1.2 we obtain:

r =


1
3
1
3 + 0

0 − 1
3

− 1
3



=


1
3
1
3
−1

3
−1

3


(2.28)

This allows us to form the equation for g:
2
18

1
18 0 0

1
18

2
9

1
18 0

0 1
18

2
9

1
18

0 0 1
18

2
18

 g =


1
3
1
3
−1

3
−1

3

 (2.29)

This system can be solved using a computer numerics package such as Numerical Python, Octave or
Matlab or (for the very keen) by hand to produce:

g =


2.4
1.2
−1.2
−2.4

 (2.30)
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Figure 2.1: A continuous piecewise linear function and two diffent realisations of its derivative. The
pointwise derivative (black) is piecewise constant and discontinuous at element boundaries. The
green line shows a piecewise linear and continuous approximation to the derivative calculated using
a Galerkin projection.

g is our continuous linear approximation to the gradient of F . Figure 2.1 shows g in green. The
difference between the green line and the black pointwise gradient is the error in the approximation
which is caused by projecting the discontinuous pointwise gradient into the space of continuous
piecewise linear functions. This projection, which is performed by the inversion of the mass matrix
M onto the right hand side vector r is known as the Galerkin projection and is the basis of the finite
element method. The magnitude of the error in the projection is affected by the mesh resolution, the
function spaces involved and the function being approximated. An exploration of these possibilities,
however, depends on first getting a computer to do the assembly for us.
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Chapter 3

Extension to more dimensions

3.1 Local coordinates on triangles and tets

In section 1.1 we introduced the local coordinate system on a one-dimensional unit element. To
recapitulate, there are two local coordinates, ξ1 and ξ2 with the property that:

ξ1 + ξ2 = 1 (3.1)

ξ1 takes the value 1 at the first end of the interval and 0 at the second end of the interval and varies
linearly in between while ξ2 is 1 at the second end of the interval and 0 at the first. For two dimen-
sional simplices (triangles) and three-dimensional simplices (tetrahedra), the local coordinate system
on an element is defined in an analogous manner. On a triangle there are three local coordinates, ξ1,
ξ2 and ξ3. Once again, these have the property that:

ξ1 + ξ2 + ξ3 = 1 (3.2)

so that there are actually two independent coordinates. The vertices of the triangle are labelled 1, 2
and 3 and local coordinate ξn takes the value 1 at vertex n and 0 at each of the other two vertices.
Figure 3.1 shows the value of ξ1 over an element. The value of each coordinate varies linearly along
lines joining the corresponding vertex to the opposite edge of the triangle and is constant along lines
parallel to that edge. The local coordinates of the point x in figure 3.1 are therefore given by:

ξξξ =

 a
a+b
c
c+d
e

e+f

 (3.3)

where the symbols a . . . f denote the lengths of the intervals indicated in the figure.

The local coordinates on a tetrahedron are similar except that in this case there are four local coordi-
nates. Once again, ξn is 1 at vertex n and in this case zero over the face opposite that vertex.

3.2 Integration over an element

Integration over an element in two or three dimensions is achieved using numerical quadrature in a
manner similar to equation (1.25). That is to say, if we have a function:

F (ξξξ) =

Nloc∑
iloc=1

fiφi(ξξξ) (3.4)

Then: ∫∫∫
E
F (ξξξ)dξ1 . . . dξNdim

≈
Nloc∑
β=1

Nquad∑
δ=1

fβφβ(ξξξδ)wδ (3.5)
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Figure 3.1: Local coordinates of the triangle. Left, the value of the local coordinate ξ1 over each point
in the triangle. Right, the quantities required to calculate the local coordinates of the point x.

where {ξξξδ|δ = 1 . . . Nquad} is a set of quadrature points and {wδ|δ = 1 . . . Nquad} are the correspond-
ing weights. As previously, for complete quadrature, the approximation becomes exact and we will
assume complete quadrature and write = rather than ≈. We will also henceforth write a single inte-
gral sign for an integral in any number of dimensions.

In general, of course, we will wish to integrate over an element in a mesh, that is to say to inte-
grate with respect to the physical coordinates x rather than the local coordinates ξξξ. The change of
coordinates function in more dimensions is:∫

E
F (x)dx =

∫
E
F (ξ)

∣∣J−1
∣∣ dξξξ (3.6)

Where J is the Jacobian matrix of the coordinate transformation:

J =


∂ξ1
∂x1

· · · ∂ξ1
∂xNdim

...
. . .

...
∂ξNdim
∂x1

. . .
∂ξNdim
∂xNdim

 (3.7)

and therefore
∣∣J−1

∣∣ is the inverse Jacobian determinant. Note that in one dimension:

∣∣J−1
∣∣ =

∂x1

∂ξ1
(3.8)

which reduces to the previous one-dimensional case.
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Chapter 4

Common data structure features

4.1 The Femtools data structure heirarchy

Scalar field
( scalar field )

Vector field
( vector field )

Tensor field
( tensor field )

Mesh
(mesh type)

Nodal values
(field%val)

Shape functions
(element type)

Node element list
(mesh%ndglno)

Quadrature information
(quadrature type)

Local node numbering
(ele numbering type)

Figure 4.1: The dependency heirarchy of the field data structures in Femtools. From the top, field
data types associciate a mesh (function space) with the nodal values of the field. In turn, the mesh
has a specimen element and a list of the global node numbers associated with each element. In turn,
the element shape functions depend on a quadrature rule and a local node numbering convention.

4.2 Object descriptors vs. data space

A Femtools data object encapsulates one or more (possibly large) arrays containing data with some
descriptive information such as the object name and option path. We shall refer to the data arrays
as the data space of the object. The objects are implemented as a Fortran derived type which contains
components containing the descriptive information and components which are pointers to the data
space. We refer to this derived type as the object descriptor. The significance of the distinction between
the data space and the object descriptor flows from the semantics of assignment in fortran. If a and
b are Femtools data objects of the same type then the assignment:

a=b

causes a to be a copy of the object descriptor of b. The data space common between a and b. Alter-
natively, if a is a pointer to a data object with the same type as b then:
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a=>b

results in a and b refering to both the same descriptor and the same data space.

In most circumstances, it does not matter whether copies of field descriptors are made and to which
copy reference is made. Most operations which modify data objects act on the data space which is al-
ways shared. Similarly, reference counting applies to the data space, not to the object descriptors and
copies of object descriptors can typically be discarded when no longer needed without any impact
on memory or data integrity.

However, when taking any action which changes the object descriptor, it is necessary to take into
account that only that descriptor and not any copies will be modified. Operations which change the
object descriptor include allocation and deallocation, changing the name or options path of an object
and marking a field as aliased. This list is not exhaustive.

4.3 Option paths: integrating Femtools and Spud

Femtools is designed to be used with the Spud options system for scientific software. It is not neces-
sary to use Spud in order to use Femtools, however the use of Spud is encouraged and is facilitated
by the inclusion of option_path components in many object descriptors. The option_path com-
ponent should be used to store the Spud option path pertaining to that object and below which
options controlling that object are to be found. For further information on the use of Spud see
http://amcg.ese.ic.ac.uk/spud.

http://amcg.ese.ic.ac.uk/spud


Chapter 5

Quadrature

Linear and bilinear forms are integrated over elements using numerical quadrature as described in
sections 1.4 and 3.2. The quadrature data type contains the information encoding a quadrature rule
on a single element. A quadrature rule is defined by a set of quadrature points and the weights
corresponding to those points. For example, there is a degree 3 quadrature rule for triangles with the
following weights and positions:

ξ1 ξ2 ξ3 w

0.33333333 0.33333333 0.33333333 −0.28125
0.2 0.2 0.6 0.26041666
0.2 0.6 0.2 0.26041666
0.6 0.2 0.2 0.26041666
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Chapter 6

Elements

The element type data structure holds shape function information for a single specimen element. The
element type holds a reference to a particular quadrature type object and stores the shape function
information with respect to that quadrature object.

6.1 Shape functions at quadrature points

Finite element operations (that is, the evaluation of integrals over an element) only require the shape
functions and their derivatives to be evaluated at the quadrature points. To enable the efficient eval-
uation of these integrals, the element objects directly store the value of each shape function on the
element at each quadrature point on the element. For example, a quadratic triangle element has
six basis functions. If the four-point quadrature rule shown in chapter 5 is employed then the ele-
ment type corresponding to this element will store the following matrix:

N =
[
. . .
]

(6.1)

6.2 Evaluating shape functions at arbitrary points

6.3 Local node numbering

6.4 Changing coordinates
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Chapter 7

Meshes

A mesh is a collection of elements. The roles of the mesh as a data object in the finite element method
include:

1. defining which nodes belong to which elements;

2. associating shape functions with elements;

3. associating faces with elements.

From the mesh information it is further possible to calculate adjacency lists for nodes and elements.
A mesh defines a finite dimensional function space with respect to which fields may be defined.

Mathematically, a finite element function space is defined by a tesselation of the domain into elements
Ω = {Eα|α = 1 . . . NE} and a set of basis functions defined over Ω, Φ = {φα|α = 1 . . . Ndof}. The role
of the mesh type is to provide a data structure equivalent to the pair [Ω,Φ].

7.1 Node and element numbering

The association of nodes with elements is achieved by matching together the gobal node and ele-
ment numbers. To understand the interaction between these two numberings it is useful to have
an example. Figure 7.1 shows a mesh composed of linear triangles constrained to be continuous at
element boundaries. For example, in this mesh, element 5 is composed of nodes 3, 6 and 7 and has,
in common with all of the elements in this mesh, a basis composed of piecewise linear functions.

7.2 mesh type

The derived data type mesh type holds the information pertaining to a single mesh. In general, a
simulation will have as many distinct mesh objects as distinct finite element spaces. For example, if a
simulation has piecewise linear pressure and piecewise quadratic velocity, then there will need to be
distinct mesh objects for the linear and quadratic spaces. Similarly, mesh types may differ in whether
the function space they represent is continuous or permits discontinuities on element edges.

37



38 CHAPTER 7. MESHES

3 4

9

1
2

3

4

6

7
8

9
10

11 12
6

8

1
2

5

11
10

7 5

Figure 7.1: A continuous mesh composed of piecewise linear triangles. The node numbers are shown
in upright blue figures while element numbers are shown in italic red figures.



Chapter 8

Fields

A field is a data object which associates a value with each point in the domain. That is to say, a field
is a function defined at every point in the domain. In principle the function may have values drawn
from any space, however for computational mechanics purposes it is usually sufficient to consider
fields whose values are scalars (ie real numbers), vectors and square rank 2 tensors (matrices). For
example in fluid mechanics, temperature and pressure are scalar fields, velocity is a vector field and
diffusivity is a tensor field.

In the finite element method, functions are restricted to a finite dimensional space spanned by the set
of basis functions, φi such that a scalar field F (x) may be written:

F (x) =

Ndof∑
α=1

fαφα (8.1)

In chapter 7, we introduced the mesh type derived type to encapsulate the basis function and element
pair [Ω,Φ]. If we write f ≡ {fα|α = 1 . . . Ndof} then we can see fields as building on meshes thus:

F =
[
f, [Ω,Φ]

]
(8.2)

8.1 Vector and tensor fields

For vector and tensor fields, the situation is complicated by the the fact that there are multiple com-
ponents. We assume that a vector field may be written as:

F(x) =

Ndof∑
α=1

Ndim∑
i=1

fα,iφφφα,i (8.3)

Where φφφα,i is a basis function for the space which is the Cartesian product of Φ. For example, if
Ndim = 3 then:

φφφα,1 = [φα, 0, 0] (8.4)
φφφα,2 = [0, φα, 0] (8.5)
φφφα,3 = [0, 0, φα] (8.6)

It is apparent that the basis for the vector function space can be trivially written in terms of that for
the scalar space. It is therefore not necessary to have a separate mesh type for the vector case. If we
write f ≡ {fα,i|α = 1 . . . Ndof , i = 1, . . . Ndim} then we have:

F = [f , [Ω,Φ]] (8.7)
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A similar argument applies to tensor fields, in which case:

F (x) =

Ndof∑
α=1

Ndim∑
i=1

Ndim∑
j=1

fα,i,jφα,i,j (8.8)

where, as an example, if Ndim = 2 then:

φα,1,2 =

0 φα 0
0 0 0
0 0 0

 (8.9)

In this case we write f ≡ {fα,i,j |α = 1 . . . Ndof , i = 1, . . . Ndim, j = 1, . . . Ndim} and have:

F =
[
f, [Ω,Φ]

]
(8.10)

This representation of fields (8.2,8.7,8.10) means that scalar, vector and tensor fields can all be seen
as the associating basis function coefficients with the same mesh object [Ω,Φ]. A drawback of this
approach is that it does not naturally support vector basis functions, such as the Raviert-Thomas
element, which are not a Cartesian product of a scalar basis.

8.2 Field data types

There are separate data types for scalar, vector and tensor fields. In each case the field has a com-
ponent %mesh which is the mesh type upon which it builds and contain the list of basis function
coefficients (f , f and f for scalar, vector and tensor fields, respectively). Field types also include
other components containing information such as boundary conditions. The three separate field
data types are designed to be as identical as possible in interface and to the greatest extent possible,
all routines which take fields as arguments are overloaded to take any type of field. For this reason,
the documentation for these fields includes the metatype anyfield which is defined:

anyfield := scalar_field | vector_field | tensor_field

For most purposes, Fields are opaque data types which should be accessed via method routines.
However there are some public components which are accessible to user routines:

type scalar_field
!! The name of this field
character(len=FIELD_NAME_LEN) :: name=""
!! The Spud option path associated with this field.
character(len=OPTION_PATH_LEN) :: option_path=""
!! The mesh on which this field is built.
type(mesh_type) :: mesh

end type scalar_field

type vector_field
!! The name of this field
character(len=FIELD_NAME_LEN) :: name=""
!! The Spud option path associated with this field.
character(len=OPTION_PATH_LEN) :: option_path=""
!! The mesh on which this field is built.
type(mesh_type) :: mesh
!! The data dimension of this field
integer :: dim

end type vector_field



8.3. CONSTANT FIELDS 41

type tensor_field
!! The name of this field
character(len=FIELD_NAME_LEN) :: name=""
!! The Spud option path associated with this field.
character(len=OPTION_PATH_LEN) :: option_path=""
!! The mesh on which this field is built.
type(mesh_type) :: mesh
!! The data dimension of this field
integer :: dim

end type tensor_field

8.3 Constant fields

A frequently occuring special case of a field is one which is known to be constant in space. Treating
these fields specially can enable large memory savings since it is only necessary to store the value of
the field at a single point rather than at every degree of freedom in the mesh. Constant fields are cre-
ated by setting the optional field_type argument of the allocate call to FIELD_TYPE_CONSTANT.

Attempting to set the value of individual nodes of a constant field will result in an error. Instead, the
whole field version of set should be used.

8.4 The coordinate field

The mesh type object makes no mention of the geometric location of the nodes in the mesh. In fact,
position is just another vector field: every point in the domain has a coordinate vector associated
with it. In particular, the basis functions used for the coordinate field need not be linear: it is perfectly
possible to have curving elements over which position is not a linear function of the local coordinates.
Accordingly, there is no special data structure for position but rather a vector field, conventionally
named “Coordinate” which records the position data.

8.5 Topological and data dimension

There is an important distinction between the topological dimension of the mesh and the data di-
mension of a vector or tensor field which is easy to confuse and which may lead to subtle bugs in
software. The topological dimension of a mesh, as given by the %dim component of the mesh type
or by the mesh dim function refers to the topological dimension of the elements of the mesh. For
example, a mesh composed of triangular elements has a topological dimension of 2. On the other
hand, the data dimension of a field, given by the %dim component of the field data type, refers to the
extent of the vectors or tensors associated with each basis function. As a concrete example, we may
choose to solve an equation on a two dimensional slice through a flow field which we imagine to be
constant in the third dimension. In this case, the topological dimension of the mesh would be 2 but
we might require all 3 components of the Velocity field in order to calculate the Coriolis term in the
plane in which we are actually solving the equations.
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Chapter 9

State dictionaries

The state of a system of differential equations is determined by a number of fields together. State
objects provide a mechanism for grouping together arbitrary collections of fields, meshes, matrices
and sparsities which are in some way related. For many applications, there will be a single state
object which encompasses all of the data in that simulation, however more complex simulations may
require more. For example, a multiphase flow simulation might have one state object for each fluid
phase. The velocity, pressure, density and other fields belonging to each phase would be listed in
that phase.

9.1 Inserting and extracting objects in states

9.2 Aliased fields and listing the same field in multiple state dictionaries

Because a state dictionary simply holds a reference to a number of fields, it is perfectly possible to
insert the same field in multiple state dictionaries. In the example of multiphase flow, this might be
because there is a single pressure field applicable to all of the phases. Storing the same field in the
state dictionary for each phase can be a simplyfying step which also allows for general code which
may need to be aware of the multiphase nature of the simulation.

However, it is often desirable or necessary to have one state dictionary which is the defined owner
of a particular field and which, for example, might be the only state via which the field is updated.
For this purpose it is possible to designate a field descriptor as being an alias of the primary field. To
specify that a field descriptor is an alias, set the aliased component of the descriptor to .true..
For example:

function make_aliased_field(field) result (alias)
implicit none
use fields
type(scalar field) :: alias
type(scalar field), intent(in) :: field

alias=field
alias%aliased=.true.

end function

This function returns a variable containing the same field as the input, but the field descriptor is
a copy and the aliased component has been set to .true.. The aliased status of a field can be
queried using the aliased routine.
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Chapter 10

Reference counting

The key data types described here share complex relationships. For example, a single mesh might be
used by any number of fields in a wide range of routines in a programme. This presents an immediate
challenge for data management: how does the programme know when it is safe to deallocate the
memory associated with the mesh? Of course that mesh in turn depends on an element type which
must not be deallocated for as long as the mesh exists.

The solution to this problem which is adopted here is the reference counting. In this system, each
data object records the number of other objects which are currently using it. When a new data object
is created, the reference count associated with each object on which it depends is increased, and
when an object is destroyed, the reference count of each on which it depends is decreased. When
the reference count of an object falls to zero, the object itself is destroyed and the memory associated
with it freed.

As a brief example, consider just the case of element_type objects and the quadrature_type ob-
jects on which they depend. Suppose we have the subroutine shown in figure 10.1 which produces
two elements. In order to produce the elements, we first generate a quadadrature object by calling
make_quadrature. This produces a new quadrature object and sets it reference count to 1. Next we
call make_element_shape to produce the first element object, element1. Since element1 uses
quadrature, it increments the reference count of the quadrature object. quadrature now has a refer-
ence count of 2 and element1 has a reference count of 1. We next call make_element_shape again
to produce element2. At this stage quadrature has a reference count of 3: the original reference
created with the object itself plus one each created by element1 and element2. Finally, since we
have finished using quadrature to generate new elements, we call deallocate(quadrature).
This destroys the original reference which we created and reduces the reference count of quadrature
to 2. However, since the reference count of quadrature is still positive, the object itself is not de-
stroyed and the memory associated with it is not freed. This is, in fact, the desired behaviour as the
quadrature object must still be available for use by the elements we created.

Eventually, when the first element is no longer required, the program will call:

call deallocate(element1)

Assuming that there are no other objects which are using element1, this will reduce the reference
count of element1 to 0 and it will be destroyed and its memory freed. This will in turn cause
the reference count of the quadrature object to be reduced to 1. At the point at which element2
is deallocated, the reference count of the quadrature will drop to 0 and it will finally be actually
destroyed and its memory freed.
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subroutine generate_elements(element1, element2)
use quadrature
use shape_functions
type(element_type), intent(out) :: element1, element2
type(quadrature_type) :: quadrature

quadrature=make_quadrature(...)
! The reference count of quadrature is 1.

element1=make_element_shape(... degree=1, quad=quadrature ...)
! The reference count of quadrature is 2.

element2=make_element_shape(... degree=2, quad=quadrature ...)
! The reference count of quadrature is 3.

call deallocate(quadrature)
! The reference count of quadrature is 2.

end subroutine generate_elements

Figure 10.1: The reference count of a quadrature object as it is created and used to form elements.
Finally, one of the references to quadrature is discarded by calling deallocate.

10.1 Creating and destroying references

10.1.1 Allocate

When the allocate subroutine is called for an object, this allocates a new data space for that object
and creates a corresponding reference count for that object, which is set to 1.

In addition, the reference count of any object which the new object directly depends on is increased
by 1. For example, when a field is allocated, the reference count of the mesh typeon which that field
is based on is increased by one. In other words the field holds a reference to the mesh.

The reference counts of objects which the new field only indirectly depends on are not affected by a
call to allocate. For example, a mesh type holds a reference to the element type on which the mesh is
based. When a field is allocated using that mesh type object, the reference count of the corresponding
element type is unchanged.

It is important to note that these remarks apply only to the allocate subroutine called on a reference-
counted object. The Fortran allocate statement has no effect on reference counts.

10.1.2 Deallocate

When deallocate is called for an object, the reference count of that object is decreased by 1. If,
after this operation, the reference count is still positive, deallocate returns immediately and the
object remains allocated. On the other hand, if the reference count has fallen to 0 then the data space
associated with the object is deallocated thereby destroying the object.

In other words, routines call deallocate in order to release a reference which they hold. The object
itself is only destroyed once there are no more references to it held.

For objects which hold references to other objects, for example a field holds a reference to the mesh type
on which it is based, the reference to the other object is released when the first object is destroyed. If
this causes the reference count on the other object to fall to 0, then this will result in the deallocation
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of the other object too. Naturally this in turn may cause further references to be released and any
unused objects to be destroyed.

Calling deallocate on a state dictionary will cause the dictionary to delete the reference it holds to
each of the objects in the dictionary.

As with allocate only the deallocate routines associated with reference-counted objects will
destroy references. The Fortran deallocate object has no effect on reference counts.

10.1.3 Inserting into state

A state dictionary holds a reference to each object it contains. Inserting an object into a state therefore
increments the reference count of that object. A direct result of this is that if an object is created and
immediately inserted into a state, the reference count of that object will be 2. If it is desired that
the object should be controlled by that state dictionary and destroyed when that state dictionary is
deallocated, it will be necessary to call deallocate on the object after it is inserted into the state in
order to reduce its reference count to 1.

10.1.4 Extracting from states

The usual model of use of objects in a state dictionary is that they are accessed but remain under the
control of the dictionary. For example, a number of the fields in a state may be extracted and updated
each timestep but the fields remain in the state at the end of the timestep.

To make this morel of use as natural as possible, extracting an object from a state dictionary does not
increase the reference count of that object. Rather, it could be thought that the reference is borrowed
from the state but still belongs to the state. This means that a routine which extracts an object from
a state should not deallocate that object when it is finished with it. To do so would invalidly destroy
the reference held by the state.

A consequence of this model is that if the state dictionary is itself deallocated before the extract-
ing routine has finished with the object, the object may be destroyed and the pointer made invalid.
Should it be necessary to preserve a reference to an object during the deallocation of the state object
or after control passes from the routine extracting the object, this can be achieved by calling incref
on the object. In this case, it will be necesary to deallocate the object in order to destroy this reference
and avoid a memory leak.

10.1.5 Incref

In some circumstances, it may be necessary to manually create a new reference to an object. The
usual example would be where an object is extracted from a state dictionary and the extracting rou-
tine wishes to ensure that that object is not destroyed when control passes to another routine. The
subroutine incref is provided for this purpose. Calling incref on an object increases the reference
count of that object by 1. It is essential that code which manually increments references ensures that
those references are destroyed by an appropriate deallocate call. Failure to do so is likely to result
in a memory leak.

10.2 Creating new reference counted data types

10.3 Memory accounting diagnostics

Femtools maintains some accounting information concerning the amount of memory allocated to ref-
erence counted objects. This is useful for diagnosing which data structures occupy the most memory,
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Data structure Accounting bin Information recorded
mesh type MeshMemory element-node, face-node and face-element lists.

Boundary ID and surface node lists.
MatrixSparsityMemory element-element map.
MatrixMemory element-face map.

scalar field ScalarFieldMemory nodal coefficient values.
vector field VectorFieldMemory nodal coefficient values.
tensor field TensorFieldMemory nodal coefficient values.
csr sparsity MatrixSparsityMemory matrix nonzero locations.
csr matrix
block csr matrix

MatrixMemory matrix nonzero values.

Table 10.1: Forms of data about which memory accounting information is stored. Note that since the
mesh type data structure contains some information which is stored as sparse matrices, some mesh
data is recorded as sparse matrix data.

although it is important to note that the memory recorded here will not account for the total amount
of memory allocated by a program using the femtools library: only the large arrays associated with
the data objects listed here are stored.

Memory accounting data is recorded under a number of headings: MeshMemory, ScalarFieldMem-
ory, VectorFieldMemory, TensorFieldMemory, MatrixSparsityMemory and MatrixMemory. There is
also a TotalMemory heading which records all of the memory for which accounting data is available.
Table 10.1 shows for each data object, which memory is logged and under which category. At this
stage, not all memory associated with field boundary conditions and parallel halo data is logged.

For each memory heading, the current memory usage as well as the maximum and minimum ever
used are stored. It is also possible to reset the maximum and minimum values, in which case the
maximum and minumum values constitute the maximum and minimum values since the last reset.
This enables timestepping simulations to log the minimum and maximum memory usage in each
timestep.

10.3.1 Memory statistics in the .stat file

If the diagnostic_variables module is employed to produce a .stat file then the maximum and
minimum values will be reset after the .stat file entry for each timestep is written. For each memory
heading, the .stat file will contain fields recording the minimum, maximum and current memory
usage.
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Chapter 11

General principles for procedures

Much of Femtools is designed in an essentially object-oriented manner and many of the procedures
in the library should be understood as methods belonging to the data objects on which they act. In
keeping with widespread practice, the first argument of a method is the data object on which it acts.
This should be followed by any arguments which control which part of the object is affected. The
next arguments are the input data, if any and finally any status variable.

11.1 Field, mesh and matrix interfaces

Fields, meshes and matrices have a number of common features which makes many of their methods
amenable to consistent interfaces. To the extent to which it is applicable, methods for these data types
should have interfaces of the following form:

procedure_name(object[, dims][, items][, values][, stat])

The items in square brackets ([]) are optional. All of the arguments other than the object itself may not
appear in all interfaces however those which are present should appear in this order. For example,
the version of the addto routine which sets a single component of a tensor field at one node has the
argument sequence:

addto(field, dim1, dim2, node_number, val)

11.2 Status arguments

Routines which might not succeed typically have an optional integer output argument named stat.
If stat is present and the procedure returns successfully, it is set to zero while if an error occurs it is
set to a procedure-specific non-zero value. If stat is not present and an error occurs then execution
will terminate with an error.
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Chapter 12

Field and mesh methods

12.1 Global field and mesh enquiry routines

These routines return a single value for an entire mesh or field.

12.1.1 mesh dim

pure function mesh_dim(mesh)
integer :: mesh_dim
type(mesh type), intent(in) :: mesh

pure function mesh_dim(field)
integer :: mesh_dim
type(anyfield), intent(in) :: field

Return the topological dimension of the mesh or the mesh associated with the field provided. Note
that in the case of a vector or tensor field, this may be different from the topological dimension of the
mesh may be different from the dimension of the data in the field.

12.1.2 mesh periodic

pure function mesh_periodic(mesh)
logical :: mesh_periodic
type(mesh type), intent(in) :: mesh

pure function mesh_periodic(field)
logical :: mesh_periodic
type(anyfield), intent(in) :: field

Returns true if the mesh or the mesh associated with the field provided is periodic in any dimension.

12.1.3 node count

pure function node_count(mesh)
integer :: node_count
type(mesh type), intent(in) :: mesh

pure function node_count(field)
logical :: node_count
type(anyfield), intent(in) :: field
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Return the number of nodes in the mesh or field provided.

12.1.4 element count

pure function element_count(mesh)
integer :: element_count
type(mesh type), intent(in) :: mesh

pure function element_count(field)
logical :: element_count
type(anyfield), intent(in) :: field

Return the number of elements in the mesh or field provided.

12.1.5 surface element count

pure function surface_element_count(mesh)
integer :: surface_element_count
type(mesh type), intent(in) :: mesh

pure function surface_element_count(field)
logical :: surface_element_count
type(anyfield), intent(in) :: field

Return the number of surface elements in the mesh or field provided.

12.1.6 face count

pure function face_count(mesh)
integer :: face_count
type(mesh type), intent(in) :: mesh

pure function face_count(field)
logical :: face_count
type(anyfield), intent(in) :: field

Return the number of faces in the mesh or field provided. Note that this includes interior faces, not
just surface faces (for which see surface element count above). Note also that on internal faces, there
is a separate face for each of the two elements adjacent to the face.

12.1.7 aliased

Module: state module

pure function aliased(field)
type(anyfield), intent(in) :: field
logical :: aliased

Return .true. if field is an alias. See section 9.2 for information on aliased fields.

12.2 Element enquiry routines

These routines return information about the properties of a single element in a field or mesh.

12.2.1 ele loc
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pure function ele_loc(mesh, ele_number)
integer :: ele_loc
type(mesh type), intent(in) :: mesh
integer, intent(in) :: ele_number

pure function ele_loc(field, ele_number)
integer :: ele_loc
type(anyfield), intent(in) :: field
integer, intent(in) :: ele_number

Return the number of nodes in element ele_number of the field or mesh provided. Note that in the
current implementation, this is always a constant value for all elements. This is expected to change
in the future.

12.2.2 ele and faces loc

pure function ele_and_faces_loc(mesh, ele_number)
integer :: ele_and_faces_loc
type(mesh type), intent(in) :: mesh
integer, intent(in) :: ele_number

pure function ele_and_faces_loc(field, ele_number)
integer :: ele_and_faces_loc
type(anyfield), intent(in) :: field
integer, intent(in) :: ele_number

Return the number of nodes in element ele_number of the field or mesh provided plus the number
of nodes in each of the adjacent faces. This is primarily useful for calculating the size of temporary
matrices used in the local assembly of discontinuous Galerkin operators which include face integrals.
Figure 12.1 illustrates the calculation performed by this function for a linear discontinuous triangular
element.

Figure 12.1: Illustration of the area included in the node count for ele and faces loc for a linear tri-
angular element. In this case the element has 3 nodes and each of the three neighbouring faces has 2
nodes so the return value is 9.

Note that in the current implementation, this is always a constant value for all elements. This is
expected to change in the future.

12.2.3 ele vertices

pure function ele_vertices(mesh, ele_number)
integer :: ele_vertices
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type(mesh type), intent(in) :: mesh
integer, intent(in) :: ele_number

pure function ele_vertices(field, ele_number)
integer :: ele_vertices
type(anyfield), intent(in) :: field
integer, intent(in) :: ele_number

Return the number of vertices in element ele_number of the field or mesh provided. Vertices are
a purely geometric concept so a triangle always has three vertices regardless of the degree of poly-
nomials used as basis functions. In contrast, the number of nodes in an element is a function of the
degree of the polynomial basis functions. For example, a quadratic triangle has six nodes.

Note that in the current implementation, this is always a constant value for all elements. This is
expected to change in the future.

12.2.4 ele ngi

pure function ele_ngi(mesh, ele_number)
integer :: ele_ngi
type(mesh type), intent(in) :: mesh
integer, intent(in) :: ele_number

pure function ele_ngi(field, ele_number)
integer :: ele_ngi
type(anyfield), intent(in) :: field
integer, intent(in) :: ele_number

Return the number of quadrature points in element ele_number of the field or mesh provided. Note
that in the current implementation, this is always a constant value for all elements. This is expected
to change in the future.

12.2.5 ele nodes

function ele_nodes(mesh, ele_number)
integer, dimension(:), pointer :: ele_nodes
type(mesh type),intent(in) :: mesh
integer, intent(in) :: ele_number

function ele_nodes(field, ele_number)
integer, dimension(:), pointer :: ele_nodes
type(anyfield),intent(in) :: field
integer, intent(in) :: ele_number

Return a pointer to a vector containing the global node numbers of element ele_number in the mesh
provided or in the mesh associated with the field provided. For example, if this_mesh is the mesh
shown in figure 7.1, then ele_nodes(this_mesh, 5) will return a pointer to a 3-vector containin
the node numbers 3, 6 and 7. No guarantees are made about the order in which these node numbers
will be arranged.

12.3 Face enquiry routines

These routines return information about the properties of a single element face in a field or mesh.

12.3.1 face loc
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pure function face_loc(mesh, face_number)
integer :: face_loc
type(mesh type), intent(in) :: mesh
integer, intent(in) :: face_number

pure function face_loc(field, face_number)
integer :: face_loc
type(anyfield), intent(in) :: field
integer, intent(in) :: face_number

Return the number of nodes in face face_number of the field or mesh provided. Note that in the
current implementation, this is always a constant value for all faces. This is expected to change in the
future.

12.3.2 face vertices

pure function face_vertices(mesh, face_number)
integer :: face_vertices
type(mesh type), intent(in) :: mesh
integer, intent(in) :: face_number

pure function face_vertices(field, face_number)
integer :: face_vertices
type(anyfield), intent(in) :: field
integer, intent(in) :: face_number

Return the number of vertices in face face_number of the field or mesh provided. Vertices are a
purely geometric concept so a triangle always has three vertices regardless of the degree of polyno-
mials used as basis functions. In contrast, the number of nodes in an face is a function of the degree
of the polynomial basis functions. For example, a quadratic triangle has six nodes.

Note that in the current implementation, this is always a constant value for all faces. This is expected
to change in the future.

12.3.3 face ngi

pure function face_ngi(mesh, face_number)
integer :: face_ngi
type(mesh type), intent(in) :: mesh
integer, intent(in) :: face_number

pure function face_ngi(field, face_number)
integer :: face_ngi
type(anyfield), intent(in) :: field
integer, intent(in) :: face_number

Return the number of quadrature points in face face_number of the field or mesh provided. Note
that in the current implementation, this is always a constant value for all faces. This is expected to
change in the future.

12.3.4 face local nodes

function face_local_nodes(mesh, face_number)
integer, dimension(:), pointer :: face_local_nodes
type(mesh type),intent(in) :: mesh
integer, intent(in) :: face_number
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function face_local_nodes(field, face_number)
integer, dimension(:), pointer :: face_local_nodes
type(anyfield),intent(in) :: field
integer, intent(in) :: face_number

Return a pointer to a vector containing the local node numbers of face face_number in the mesh
provided or in the mesh associated with the field provided. Note that these are the local numbers in
the element containing face.

12.3.5 face global nodes

function face_global_nodes(mesh, face_number)
integer, dimension(:), pointer :: face_global_nodes
type(mesh type),intent(in) :: mesh
integer, intent(in) :: face_number

function face_global_nodes(field, face_number)
integer, dimension(:), pointer :: face_global_nodes
type(anyfield),intent(in) :: field
integer, intent(in) :: face_number

Return a pointer to a vector containing the global node numbers of face face_number in the mesh
provided or in the mesh associated with the field provided.

12.4 Data retrieval routines

12.4.1 ele val

Return the value of a field at all of the nodes in an element. The precise shape of the function value
depends on the rank and dimension of the field.

function ele_val(field, ele_number)
type(scalar field), intent(in) :: field
integer, intent(in) :: ele_number
real, dimension(ele loc(field, ele_number)) :: ele_val

The scalar field version of this routine returns a vector with length equal to the number of nodes in
this element.

function ele_val(field, ele_number)
type(vector field),intent(in) :: field
integer, intent(in) :: ele_number
real, dimension(field%dim, ele loc(field, ele_number)) :: ele_val

function ele_val(field, ele_number)
type(tensor field),intent(in) :: field
integer, intent(in) :: ele_number
real, dimension(field%dim, field%dim, ele loc(field, ele_number)) :: ele_val

Note that for these vector and tensor versions of the routine, the dim dimensions come first, followed
by the number of element nodes.

function ele_val(field, ele_number, dim)
type(vector field), intent(in) :: field
integer, intent(in) :: ele_number, dim
real, dimension(ele loc(field, ele_number)) :: ele_val
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function ele_val(field, ele_number, dim1, dim2)
type(tensor field), intent(in) :: field
integer, intent(in) :: ele_number, dim1, dim2
real, dimension(ele loc(field, ele_number)) :: ele_val

These versions of the routine return the value of a single component of the vector or tensor field at
all of the nodes of the element.

12.4.2 ele val at quad

function ele_val_at_quad_scalar(field, ele_number)
type(scalar field),intent(in) :: field
integer, intent(in) :: ele_number
real, dimension(ele ngi(field, ele_number)) :: ele_val_at_quad

12.4.3 face val

Return the value of a field at all of the nodes in an face. The precise shape of the function value
depends on the rank and dimension of the field.

function face_val(field, face_number)
type(scalar field), intent(in) :: field
integer, intent(in) :: face_number
real, dimension(face loc(field, face_number)) :: face_val

The scalar field version of this routine returns a vector with length equal to the number of nodes in
this face.

function face_val(field, face_number)
type(vector field),intent(in) :: field
integer, intent(in) :: face_number
real, dimension(field%dim, face loc(field, face_number)) :: face_val

function face_val(field, face_number)
type(tensor field),intent(in) :: field
integer, intent(in) :: face_number
real, dimension(field%dim, field%dim, face loc(field, face_number)) :: face_val

Note that for these vector and tensor versions of the routine, the dim dimensions come first, followed
by the number of face nodes.

function face_val(field, face_number, dim)
type(vector field), intent(in) :: field
integer, intent(in) :: face_number, dim
real, dimension(face loc(field, face_number)) :: face_val

function face_val(field, face_number, dim1, dim2)
type(tensor field), intent(in) :: field
integer, intent(in) :: face_number, dim1, dim2
real, dimension(face loc(field, face_number)) :: face_val

These versions of the routine return the value of a single component of the vector or tensor field at
all of the nodes of the face.
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12.4.4 node val

Return the value of a field at one or more specified nodes. The shape of the value returned is given
by the rank and dimension of the field and the number of nodes queried.

function node_val(field, node_number)
type(scalar field),intent(in) :: field
integer, intent(in) :: node_number
real :: node_val

function node_val(field, node_numbers)
type(scalar field),intent(in) :: field
integer, dimension(:), intent(in) :: node_numbers
real, dimension(size(node_numbers)) :: node_val

For a scalar field, there is clearly one real number per node.

function node_val(field, node_number)
type(vector field),intent(in) :: field
integer, intent(in) :: node_number
real, dimension(field%dim) :: node_val

function node_val(field, node_numbers)
type(vector field),intent(in) :: field
integer, dimension(:), intent(in) :: node_numbers
real, dimension(field%dim, size(node_numbers)) :: node_val

function node_val(field, node_number)
type(tensor field),intent(in) :: field
integer, intent(in) :: node_number
real, dimension(field%dim, field%dim) :: node_val

function node_val(field, node_numbers)
type(tensor field),intent(in) :: field
integer, dimension(:), intent(in) :: node_numbers
real, dimension(field%dim, field%dim, size(node_numbers)) :: node_val

In the result of the full vector and tensor versions of this routine, the dimension components come
first followed by the number of nodes, for the multiple node version.

function node_val(field, node_number, dim)
type(vector field),intent(in) :: field
integer, intent(in) :: node_number
integer, intent(in) :: dim
real :: node_val

function node_val(field, node_numbers, dim)
type(vector field),intent(in) :: field
integer, dimension(:), intent(in) :: node_numbers
integer, intent(in) :: dim
real, dimension(size(node_numbers)) :: node_val

function node_val(field, dim1, dim2, node_number)
type(tensor field),intent(in) :: field
integer, intent(in) :: node_number
integer, intent(in) :: dim1, dim2
real :: node_val
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function node_val(field, dim1, dim2, node_numbers)
type(tensor field),intent(in) :: field
integer, dimension(:), intent(in) :: node_numbers
integer, intent(in) :: dim1, dim2
real, dimension(size(node_numbers)) :: node_val

These versions of the the routine return the value of a single component of the field at one or more
nodes.

12.5 Data setting routines

The routines in this section are typically the field versions of interfaces which are also available for
structures such as sparse matrices.

12.5.1 addto

Adding to node values

Addto is the generic calling name for a number of subroutines which update their first argument by
adding values to it. The first basic form of this routine adds a value to one or more nodes of a field.
Its generic forms are:

subroutine addto(field, node_number, val)
type(anyfield), intent(inout) :: field
integer, intent(in) :: node_number
real, dimension(valshape), intent(in) :: val

subroutine addto(field, node_numbers, val)
type(anyfield), intent(inout) :: field
integer, dimension(:), intent(in) :: node_numbers
real, dimension(valshape, size(nodenumbers)), intent(in) :: val

The shape of the val argument varies according to the field type:

field type valshape
scalar field
vector field field%dim
tensor field field%dim, field%dim

In the case of a scalar field, the value is clearly a scalar and so valshape does not contribute to the rank
of val at all.

There are related forms of the routine which add to the value of a single component of a vector or
tensor field at one or more nodes:

subroutine addto(field, dim, node_number, val)
type(vector field), intent(inout) :: field
integer, intent(in) :: dim
integer, intent(in) :: node_number
real, intent(in) :: val

subroutine addto(field, dim, node_numbers, val)
type(vector field), intent(inout) :: field
integer, intent(in) :: dim
integer, dimension(:), intent(in) :: node_numbers
real, dimension(size(nodenumbers)), intent(in) :: val
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subroutine addto(field, dim1, dim2, node_number, val)
type(vector field), intent(inout) :: field
integer, intent(in) :: dim1, dim2
integer, intent(in) :: node_number
real, intent(in) :: val

subroutine addto(field, dim1, dim2, node_numbers, val)
type(vector field), intent(inout) :: field
integer, intent(in) :: dim1, dim2
integer, dimension(:), intent(in) :: node_numbers
real, dimension(size(nodenumbers)), intent(in) :: val

Adding fields to each other

Simple whole field addition operations are only mathematically defined where all of the fields share
the same mesh. Where this is not the case, addto will call remap field on field2 to produce a well-
defined operation.

subroutine addto(field1, field2, scale)
type(anyfield), intent(inout) :: field1
type(anyfield), intent(in) :: field2
real, intent(in), optional :: scale

This form of the routine performs the assignment:

F1(x) = s× F2(x) (12.1)

Clearly the two fields must have the same rank. If scale is not present then a value of 1.0 is assumed.

There are also versions of this subroutine which add a scalar field to a single component of a vector
or tensor field:

subroutine addto(field1, dim, field2, scale)
type(vector field), intent(inout) :: field1
integer, intent(in) :: dim
type(scalar field), intent(in) :: field2
real, intent(in), optional :: scale

subroutine addto(field1, dim1, dim2, field2, scale)
type(tensor field), intent(inout) :: field1
integer, intent(in) :: dim1, dim2
type(scalar field), intent(in) :: field2
real, intent(in), optional :: scale

12.5.2 scale

The scale family of routines perform various versions of the operation:

F (x) = s× F (x) (12.2)

In the simplest version, the input field is simply scaled by a constant scalar:

subroutine scale(field, factor)
type(anyfield), intent(inout) :: field
real, intent(in) :: factor
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It is also possible to scale any field by the entries of a scalar field on the same mesh:

subroutine scale(field, sfield)
type(anyfield), intent(inout) :: field
type(scalar field), intent(in) :: sfield

However, care must be taken in using this routine since the product of the nodal values is not in
general equal to the product of the discretised fields. Taking the example of two scalar fields F and
G, this is because:

F (x)G(x) ≡
Ndof∑
α=1

Ndof∑
β=1

fαφαgβφβ 6=
Ndof∑
α=1

fαgαφα (12.3)

Using the scale subroutine to multiply two fields amounts to the rightmost expression. Subject to the
same caveat, it is also possible to scale a vector field by another vector field:

subroutine scale(field, vfield)
type(anyfield), intent(inout) :: field
type(vector field), intent(in) :: vfield

12.5.3 set

As with addto, set is a family of routines which set the value of part or all of their first argument.

Setting node values

The first version of this routine sets the value of field at one or more nodes:

subroutine set(field, node_number, val)
type(anyfield), intent(inout) :: field
integer, intent(in) :: node_number
real, dimension(valshape), intent(in) :: val

subroutine set(field, node_number, val)
type(anyfield), intent(inout) :: field
integer, dimension(:), intent(in) :: node_number
real, dimension(valshape, size(nodenumbers)), intent(in) :: val

The shape of the val argument varies according to the field type:

field type valshape
scalar field
vector field field%dim
tensor field field%dim, field%dim

In the case of a scalar field, the value is clearly a scalar and so valshape does not contribute to the rank
of val at all.

Setting the whole field to a constant value

It is sometimes useful to set an entire field to a constant value. This is a chieved with:

subroutine set(field, val)
type(anyfield), intent(inout) :: field
real, dimension(valshape), intent(in) :: val

Where valshape has the meaning given above.
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Setting a field to the value of another field

Setting one field to the value of another field is currently only supported where the two fields are on
the same mesh.

subroutine set(out_field, in_field )
type(anyfield), intent(inout) :: out_field
type(anyfield), intent(in) :: in_field

Clearly for this to be defined, in field and out field must have the same rank and dimension. Note
that this does not allocate out field, so it must already be allocated.

A related case which occurs frequently when implementing schemes for time-varying PDEs is that
of assigning a linear combination of two other fields to a field. That is:

F (x) = θFnew(x) + (1− θ)Fold(x) (12.4)

This is achieved with the following form of set:

subroutine set(out_field, in_field_new, in_field_old, theta)
type(anyfield), intent(inout) :: out_field
type(anyfield), intent(in) :: in_field_new, in_field_old
real, intent(in) :: theta

12.5.4 zero

subroutine zero(field)
type(anyfield), intent(inout) :: field

This routine simply sets every entry in field to zero. There are also forms of this subroutine which
zero single vector and tensor field components:

subroutine zero(field, dim)
type(vector field), intent(inout) :: field
integer, intent(in) :: dim

subroutine zero(field, dim1, dim2)
type(tensor field), intent(inout) :: field
integer, intent(in) :: dim1, dim2
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State dictionary methods

State objects provide a unified way of grouping a diverse range of femtools objects. The list of objects
which can be contained in a state dictionary are listed in table 13.1

object object type
field anyfield
mesh mesh type
halo halo_type
matrix csr_matrix

block_csr_matrix
petsc_csr_matrix

Table 13.1: List of object argument names and corresponding object types supported by the
state_type and its various access methods.

13.1 Inserting objects in states

13.1.1 insert

Module: state module

subroutine insert(state, object, name)
type(state_type), intent(inout) :: state
type(object type), intent(in) :: object
character(len=*), intent(in) :: name

subroutine insert(state, object, name)
type(state_type), dimension(:), intent(inout) :: state
type(object type), intent(in) :: object
character(len=*), intent(in) :: name

These routines insert an object into a state dictionary. The first form inserts an object into a single
state dictionary while the second form inserts the object into the first state and an alias of the object
into each subsequent state. The object argument can be any of those listed in table 13.1.

13.2 Extracting objects from states

Objects in states may be accessed by name or by index. The index of an object in a state is arbitrary
and may change as objects are added to and deleted from the state so this latter option is mostly of
use for iterating over all of the objects of a particular type in the state.
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In each case, the routine returns a pointer to the object concerned. If the object is only to be read or
if changes are only to be made to the data space then the pointer may be assigned to a non-pointer
variable. On the other hand, if changes are made to the object descriptor then these should be made
via the pointer in order to ensure that it is the descriptor in the state dictionary which is updated
rather than a local copy.

13.2.1 Extracting objects by name

function extract_object type(state, name, stat[, allocated])
type{object type}, pointer :: extract_object type
type(state_type), intent(in) :: state
character(len=*), intent(in) :: name
integer, intent(out), optional :: state
logical, intent(out), optional :: allocated

function extract_object type(state, name, stat[, allocated])
type{object type}, pointer :: extract_object type
type(state_type), dimension(:), intent(in) :: state
character(len=*), intent(in) :: name
integer, intent(out), optional :: state
logical, intent(out), optional :: allocated

In each case, the object type can be any of the types listed in table 13.1.

The first form of the routine takes a single state dictionary as an argument. If there is an object of the
corresponding type with name matching name then a pointer to that object is returned. If stat is
present then it is set to 0.

If there is no matching object with the correct name in the dictionary then if stat is present it is set
to 1 and the function returns a pointer to a dummy object whose components should not be accessed.
If stat is not present then execution will halt with an error.

The second form of the routine takes a vector of states and will return the first object it finds in any
of the states matching the name provided. The return values of the stat argument and the handling
of the case where there is no match is as before.

Reference counts of objects extracted from states

With the exception of the extraction of a scalar component from a vector field discussed below, the
extraction of a pointer to an object from a state does not create a new reference to that object. Conse-
quently the object returned should not be deallocated as this would result in the premature destruc-
tion of that object. See section 10.1.3 for a full discussion of the interaction between reference counts
and state objects.

Extracting scalar components of vector fields

It is also possible to extract a single component of a vector field stored in a state dictionary. The syntax
for this is to call extract_scalar_field and provide a logical variable in as the allocated
argument. The name of the field should be specified as name%n where name is the name under which
the vector field is stored in the state and n is the number of the component to be extracted. If the
name and component number match then a new scalar field descriptor will be allocated and the
corresponding data spaces will be associated with the correct component of the vector.

This form of extract_scalar_field extract scalar field can be an exception to the rule that ex-
tracting an object reference from a state dictionary does not create a new reference. If the allocated
argument returns .true. then a new reference has been created and the resulting field will need to
be deallocated in order for that reference to be destroyed.
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It is possible to pass a vector of state dictionaries to extract_scalar_field in which case the
scalar field returned will be extracted from the first matching vector field.

13.2.2 Extracting objects by index

It is frequently convenient to perform some action for each object of a particular type in a state. To
facilitate this, the following alternative form of the extraction routines is provided:

function extract_object type(state, index)
type{object type}, pointer :: extract_object type
type(state_type), intent(in) :: state
integer, intent(in) :: index

This routine is available for any of the types in table 13.1. In each case index must not exceed the
number of objects of that type in state. See object counts.

13.3 Auxiliary state routines

13.3.1 deallocate

subroutine deallocate_state(state)
type(state_type), intent(inout) :: state

This routine removes all of the objects from state and calls deallocate on each of them to release
the reference held by the state object.

13.3.2 remove object

subroutine remove_object type(state, name, stat)
type(state_type), intent(inout) :: state
character(len=*), intent(in) :: name
integer, optional, intent(out) :: stat

If there is an object of the specified type in state stored under the name name, then that object is
removed fron state and deallocate is called for the object to release the reference which state
is holding to it.

If stat is present then it will be set to 0 for success and nonzero for failure, which occurs if there
was no matching object to remove. If the routine fails to remove an object and stat has not been
specified, execution will cease with an error.

13.3.3 object counts

pure function object type_count(state)
integer :: object type_count
type(state_type), intent(in) :: state

This routine returns the number of objects of the given type stored in the state. object type can be
any of the types listed in table 13.1.
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Chapter 14

Element methods

14.1 Quadrature methods

14.1.1 make quadrature

Module: quadrature

function make_quadrature(vertices, dim, degree, ngi, family, stat)
type(quadrature_type) :: make_quadrature
integer, intent(in) :: vertices, dim
integer, intent(in), optional :: degree, ngi
integer, intent(in), optional :: family
integer, intent(out), optional :: stat

This routine creates a new quadrature type object. The element geometry for which the quadrature
is produced is specified by the vertices and dim arguments. Valid combinations of these are:

vertices dim Element geometry
1 1 point
2 1 interval
3 2 triangle
4 2 quad
4 3 tet
8 3 hex

The accuracy of the quadrature rule is given by the degree argument which specifies the degree
of polynomial which will be integrated exactly by this quadrature rule. If the specified quadrature
degree is unavailable but a higher degree rule is supported then this will be substituted. Specifying
a higher degree than is supported is an error. An alternative method of specifying the quadrature
rule is to directly specify the number of quadrature points via the ngi argument. This approach is
deprecated.

The family argument specifies the family of quadrature rules which should be applied. The default
is FAMILY_COOLS and this is the only supported choice for quadrilateral and hexahedral elements.
The available options are:

family valid geometries maximum degree
FAMILY_COOLS all 8
FAMILY_WANDZURA triangle 30
FAMILY_GM interval,triangle,simplex 30
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If present, stat is set to 0 to indicate successful completion. Errors are indicated by the following
values:

stat value meaning
QUADRATURE_VERTEX_ERROR Unsupported vertex count.
QUADRATURE_DEGREE_ERROR Quadrature degree requested is not available.
QUADRATURE_DIMENSION_ERROR Elements with this number of dimensions are not available.
QUADRATURE_NGI_ERROR Unsupported number of quadrature points.
QUADRATURE_ARGUMENT_ERROR Not enough arguments specified.

If the stat argument is not present then any error will cause execution to cease with an error mes-
sage.

14.1.2 deallocate

Module: quadrature

subroutine deallocate(quad,stat)
type(quadrature_type), intent(inout) :: quad
integer, intent(out), optional :: stat

This routine releases one reference to quad. For a full discussion of deallocation of reference-counted
data types see section 10.1.2.

14.2 Shape function methods

14.2.1 make element shape

Module: shape functions

There are two forms of the make_element_shape function. The first is the basic form:

function make_element_shape(vertices, dim, degree, quad, type,&
stat, quad_s)

type(element_type) :: make_element_shape
integer, intent(in) :: vertices, dim, degree
type(quadrature_type), intent(in), target :: quad
integer, intent(in), optional :: type
integer, intent(out), optional :: stat
type(quadrature_type), intent(in), optional, target :: quad_s

This routine formulates a basis for a discrete function space over a single element. The geometry of
the element is defined by the arguments vertices and dim as follows:

vertices dim Element geometry
1 1 point
2 1 interval
3 2 triangle
4 2 quad
4 3 tet
8 3 hex

The integration rule is provided by the quadrature type argument, quad. The geometry of quad
must match that specified in this call.

The argument type selects the element family from which the shape functions should be drawn:
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element type description
ELEMENT_LAGRANGIAN Equispaced Lagrangian elements.
ELEMENT_LAGRANGIAN P1NC non-conforming elements on triangles.
ELEMENT_CONTROLVOLUME_SURFACE A control volume surface interior to the domain.
ELEMENT_CONTROLVOLUMEBDY_SURFACE A control volume surface on the boundary of the domain.

ELEMENT_LAGRANGIAN is the default.

As with other routines, the stat argument, if present, returns 0 for successful completion and a non-
zero value otherwise. If stat is not present then unsuccessful completion of the routine results in
the termination of execution and an error message.

The quad_s argument provides a mechanism for providing quadrature for the surfaces of the ele-
ment. Not sure when this is used.

The second form of make_element_shape allows an element type to be based on another variable
of the same type:

function make_element_shape(model, vertices, dim, degree, quad, type,&
stat, quad_s)

type(element_type) :: make_element_shape
type(element_type), intent(in) :: model
integer, intent(in), optional :: vertices, dim, degree
type(quadrature_type), intent(in), optional, target :: quad
integer, intent(in), optional :: type
integer, intent(out), optional :: stat
type(quadrature_type), intent(in), optional, target :: quad_s

In this form of the subroutine, all the arguments are optional except for model. Where any argument
is absent, the corresponding value will be taken from model.

14.2.2 deallocate

subroutine deallocate(element, stat)
type(element_type), intent(inout) :: element
integer, intent(out), optional :: stat

This routine releases one reference to element. If this reduces the reference count to zero, element
is deallocated and the quadrature reference held by element will be released.

14.2.3 local coords

function element_local_coords(n, element)
integer, intent(in) :: n
type(element_type), intent(in) :: element
real, dimension(local_coord_count(element)) :: element_local_coords

This routine returns the local coordinates in element of the node with local number n.

14.2.4 local coord count

function element_local_coord_count(element)
integer :: element_local_coord_count
type(element_type), intent(in) :: element

This routine returns the number of local coordinates associated with element. The results of the
function are as follows:
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element geometry number of local coordinates
point 1
interval 2
triangle 3
quadrilateral 2
tet 4
hex 3

14.2.5 eval shape

pure function eval_shape(shape, node, l)
real :: eval_shape
integer, intent(in) :: node
type(element_type), intent(in) :: shape
real, dimension(element_local_coord_count(element)), intent(in) :: l

pure function eval_shape(shape, l) result(eval_shape)
type(element_type), intent(in) :: shape
real, dimension(element_local_coord_count(element)), intent(in) :: l
real, dimension(shape%loc) :: eval_shape

This routine evaluates one or more of the shape functions associated with the element shape at the
local coordinates specified by l. In the first form of the routine, node is the local number of the node
associated with the shape function to be evaluated. In the second form, all of the shape functions
associated with the element are evaluated and the results returned as a vector.



Chapter 15

Functions implementing integrals over
elements

15.1 Bilinear forms

The routines in this section form the local contributions pertaining to a bilinear form evaluated over
a single element. As such they are the building blocks for the assembly of equations. Many of the
arguments are essentially common across the routines. These are shown in table 15.1.

Argument Shape Mathematical notation Meaning
shape1 {φi : i = 1 . . . Nloc(φ)} The set of local basis functions

for the test space on the cur-
rent element.

shape2
{
φ̂j : j = 1 . . . Nloc(φ̂)

}
The set of local basis functions
for the trial space on the cur-
rent element.

dshape1 Nloc ×Nquad ×Ndim {∇φi : i = 1 . . . Nloc(φ)} The set of gradients of the lo-
cal basis functions for the test
space on the current element.

dshape2 Nloc ×Nquad ×Ndim

{
∇φ̂j : j = 1 . . . Nloc(φ̂)

}
The set of gradients of the lo-
cal basis functions for the trial
space on the current element.

detwei Nquad

{
wgi

∣∣∣J−1
gi

∣∣∣ : gi = 1 . . . Nquad

}
The quadrature weights trans-
formed by the change of coor-
dinates from the current ele-
ment to the reference element.

vector
vector1
vector2

Ndim ×Nquad {vα : α = 1 . . . Ndim(v)} A vector quantity evaluated at
each quadrature point. This
might be a value returned by
ele val at quad.

tensor Ndim ×Ndim ×Nquad {ταβ : α, β = 1 . . . Ndim(τ)} A tensor quantity evaluated at
each quadrature point. This
might be a value returned by
ele val at quad.

Table 15.1: Common arguments used in linear and bilinear form routines.
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15.1.1 shape shape

Module: fetools

function shape_shape(shape1, shape2, detwei)
type(element_type), intent(in) :: shape1, shape2
real, dimension(shape1%ngi), intent(in) :: detwei

real, dimension(shape1%loc,shape2%loc) :: shape_shape

This routine constructs the following matrix:

M(i, j) =

∫
E
φiφ̂jdV i = 1 . . . Nloc(φ), j = 1 . . . Nloc(φ̂) (15.1)

Where the arguments are as given in table 15.1.

15.1.2 shape shape vector

Module: fetools

function shape_shape_vector(shape1, shape2, detwei, vector)
type(element_type), intent(in) :: shape1, shape2
real, dimension(shape1%ngi), intent(in) :: detwei
real, dimension(:,:), intent(in) :: vector

real, dimension(vector_dim(vector),shape1%loc,shape2%loc) :: &
& shape_shape_vector

This routine constructs the following tensor:

M(α, i, j) =

∫
E
φiφ̂jvαdV α = 1 . . . Ndim(v), i = 1 . . . Nloc(φ), j = 1 . . . Nloc(φ̂) (15.2)

Where the arguments are as given in table 15.1.

15.1.3 shape shape tensor

Module: fetools

function shape_shape_tensor(shape1, shape2, detwei, tensor)
type(element_type), intent(in) :: shape1, shape2
real, dimension(shape1%ngi), intent(in) :: detwei
real, dimension(:,:,:), intent(in) :: tensor

real, dimension(tensor_dim(tensor,1),tensor_dim(tensor,2),shape1%loc,shape2%loc) :: &
& shape_shape_tensor

This routine constructs the following tensor:

M(α, β, i, j) =

∫
E
φiφ̂jταβdV α, β = 1 . . . Ndim(τ),

i = 1 . . . Nloc(φ), j = 1 . . . Nloc(φ̂)

(15.3)

Where the arguments are as given in table 15.1.
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15.1.4 shape shape vector outer vector

Module: fetools

function shape_shape_vector_outer_vector(shape1, shape2, detwei, &
& vector1, vector2)

type(element_type), intent(in) :: shape1, shape2
real, dimension(shape1%ngi), intent(in) :: detwei
real, dimension(:,:), intent(in) :: vector1
real, dimension(:,:), intent(in) :: vector2

real, dimension(vector_dim(vector1),vector_dim(vector2), &
& shape1%loc,shape2%loc) :: shape_shape_vector_outer_vector

This routine constructs the following tensor:

M(α, β, i, j) =

∫
E
φiφ̂juαvβdV α = 1 . . . Ndim(u), β = 1 . . . Ndim(v),

i = 1 . . . Nloc(φ), j = 1 . . . Nloc(φ̂)

(15.4)

Where the arguments are as given in table 15.1.

15.1.5 shape dshape

Module: fetools

function shape_dshape(shape, dshape, detwei)
type(element_type), intent(in) :: shape
real, dimension(:,:,:), intent(in) :: dshape
real, dimension(shape%ngi), intent(in) :: detwei

real, dimension(dshape_dim(dshape), shape%loc, dshape_loc(dshape)) :: shape_dshape

This routine constructs the following tensor:

M(α, i, j) =

∫
E
φi(∇φ̂j)αdV

=

∫
E
φi

dφ̂j
dxα

dV α = 1 . . . Ndim(φ̂), i = 1 . . . Nloc(φ), j = 1 . . . Nloc(φ̂)

(15.5)

Where the arguments are as given in table 15.1.

15.1.6 dshape shape

Module: fetools

function dshape_shape(dshape, shape, detwei)
real, dimension(:,:,:), intent(in) :: dshape
type(element_type), intent(in) :: shape
real, dimension(shape%ngi), intent(in) :: detwei

real, dimension(dshape_dim(dshape), shape%loc, dshape_loc(dshape)) :: shape_dshape
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This routine constructs the following tensor:

M(α, i, j) =

∫
E

(∇φi)αφ̂jdV

=

∫
E

dφi
dxα

φ̂jdV α = 1 . . . Ndim(φ), i = 1 . . . Nloc(φ), j = 1 . . . Nloc(φ̂)

(15.6)

Where the arguments are as given in table 15.1.

15.1.7 shape vector dot dshape

Module: fetools

function shape_vector_dot_dshape(shape, vector, dshape, detwei)
type(element_type), intent(in) :: shape
real, dimension(:,:), intent(in) :: vector
real, dimension(:,:,:), intent(in) :: dshape
real, dimension(shape%ngi) :: detwei

real, dimension(shape%loc,dshape_loc(dshape)) :: shape_vector_dot_dshape

This routine constructs the following matrix:

M(i, j) =

∫
E
φiv · ∇φ̂jdV

=

∫
E
φivα

dφ̂j
dxα

dV α = 1 . . . Ndim(v) i = 1 . . . Nloc(φ), j = 1 . . . Nloc(φ̂)

(15.7)

Where the arguments are as given in table 15.1. Summation is implied over the repeated index α
with the effect that this operator is only defined if Ndim(v) = Ndim(φ̂).

15.1.8 dshape dot vector shape

Module: fetools

function dshape_dot_vector_shape(dshape, vector, shape, detwei)
real, dimension(:,:,:), intent(in) :: dshape
real, dimension(:,:), intent(in) :: vector
type(element_type), intent(in) :: shape
real, dimension(shape%ngi) :: detwei

real, dimension(dshape_loc(dshape),shape%loc) :: dshape_dot_vector_shape

This routine constructs the following matrix:

M(i, j) =

∫
E
∇φi · vφ̂jdV

=

∫
E

dφi
dxα

vαφ̂jdV α = 1 . . . Ndim(v) i = 1 . . . Nloc(φ), j = 1 . . . Nloc(φ̂)

(15.8)

Where the arguments are as given in table 15.1. Summation is implied over the repeated index α
with the effect that this operator is only defined if Ndim(v) = Ndim(φ).
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15.1.9 dshape dot tensor shape

Module: fetools

function dshape_dot_tensor_shape(dshape, tensor, shape, detwei)
real, dimension(:,:,:), intent(in) :: dshape
real, dimension(:,:,:), intent(in) :: tensor
type(element_type), intent(in) :: shape
real, dimension(dshape_ngi(dshape)) :: detwei

real, dimension(tensor_dim(tensor,2),dshape_loc(dshape),shape%loc) :: &
& dshape_dot_tensor_shape

This routine constructs the following matrix:

M(β, i, j) =

∫
E
∇φi · τ φ̂jdV

=

∫
E

dφi
dxβ

ταβφ̂jdV α, β = 1 . . . Ndim(τ) i = 1 . . . Nloc(φ), j = 1 . . . Nloc(φ̂)

(15.9)

Where the arguments are as given in table 15.1. Summation is implied over the repeated index α
with the effect that this operator is only defined if Ndim(τ) = Ndim(φ).

15.1.10 shape vector outer dshape

Module: fetools

function shape_vector_outer_dshape(shape, vector, dshape, detwei)
type(element_type), intent(in) :: shape
real, dimension(:,:), intent(in) :: vector
real, dimension(:,:,:), intent(in) :: dshape
real, dimension(shape%ngi) :: detwei

real, dimension(vector_dim(vector), dshape_dim(dshape), &
& shape%loc, dshape_loc(dshape)) :: shape_vector_outer_dshape

This routine constructs the following tensor:

M(α, β, i, j) =

∫
E
φivα(∇φ̂j)βdV

=

∫
E
φivα

dφ̂j
dxβ

dV α = 1 . . . Ndim(v), β = 1 . . . Ndim(φ̂),

i = 1 . . . Nloc(φ), j = 1 . . . Nloc(φ̂)

(15.10)

Where the arguments are as given in table 15.1.

15.1.11 dshape outer vector shape

Module: fetools

function dshape_outer_vector_shape(dshape, vector, shape, detwei)
type(element_type), intent(in) :: shape
real, dimension(:,:), intent(in) :: vector
real, dimension(:,:,:), intent(in) :: dshape
real, dimension(dshape_ngi(dshape)) :: detwei
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real, dimension(dshape_dim(dshape), vector_dim(vector), &
& dshape_loc(dshape,1), shape%loc) :: dshape_outer_vector_shape

This routine constructs the following tensor:

M(α, β, i, j) =

∫
E

(∇φi)αvβφ̂jdV

=

∫
E

dφi
dxα

vβφ̂jdV α = 1 . . . Ndim(φ), β = 1 . . . Ndim(v),

i = 1 . . . Nloc(φ), j = 1 . . . Nloc(φ̂)

(15.11)

Where the arguments are as given in table 15.1.

15.1.12 dshape dot dshape

Module: fetools

function dshape_dot_dshape(dshape1, dshape2, detwei)
real, dimension(:,:,:), intent(in) :: dshape1, dshape2
real, dimension(shape1%ngi), intent(in) :: detwei

real, dimension(dshape_loc(dshape1),dshape_loc(dshape2)) :: dshape_dot_dshape

This routine constructs the following matrix:

M(i, j) =

∫
E
∇φi · ∇φ̂jdV i = 1 . . . Nloc(φ), j = 1 . . . Nloc(φ̂) (15.12)

Where the arguments are as given in table 15.1.

15.1.13 dshape tensor dshape

Module: fetools

function dshape_tensor_dshape(dshape1, tensor, dshape2, detwei)
real, dimension(:,:,:), intent(in) :: dshape1, dshape2
real, dimension(:,:,:), intent(in) :: tensor
real, dimension(shape1%ngi), intent(in) :: detwei

real, dimension(dshape_loc(dshape1),dshape_loc(dshape2)) :: dshape_tensor_dshape

This routine constructs the following matrix:

M(i, j) =

∫
E
∇φi · τ · ∇φ̂jdV

=

∫
E

(∇φi)αταβ(∇φ̂j)βdV α = 1 . . . Ndim(φ), β = 1 . . . Ndim(φ̂)

i = 1 . . . Nloc(φ), j = 1 . . . Nloc(φ̂)

(15.13)

Where the arguments are as given in table 15.1. Implicit summation occurs over both the indices α
and β so that the dimensions of φ, φ̂ and τ must match accordingly.
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15.1.14 dshape outer dshape

Module: fetools

function dshape_dot_dshape(dshape1, dshape2, detwei)
real, dimension(:,:,:), intent(in) :: dshape1, dshape2
real, dimension(shape1%ngi), intent(in) :: detwei

real, dimension(dshape_dim(dshape1), dshape_dim(dshape2), &
& dshape_loc(dshape1), dshape_loc(dshape2)) :: dshape_dot_dshape

This routine constructs the following matrix:

M(α, β, i, j) =

∫
E

(∇φi)α(∇φ̂j)βdV α = 1 . . . Ndim(φ), β = 1 . . . Ndim(φ̂)

i = 1 . . . Nloc(φ), j = 1 . . . Nloc(φ̂)

(15.14)

Where the arguments are as given in table 15.1.

15.1.15 shape curl shape 2d

Module: fetools

function shape_curl_shape_2d(shape, dshape, detwei)
type(element_type), intent(in) :: shape
real, dimension(:,:,:), intent(in) :: dshape
real, dimension(shape%ngi) :: detwei

real, dimension(2,shape%loc,dshape_loc(dshape)) :: shape_curl_shape_2d

This routine constructs the following matrix:

M(:, i, j) =

∫
E
φi∇× φ̂φφidV

=

∫
E

 φi
dφ̂φφ1,j

dy

−φi
dφ̂φφ2,j

dx

dV

(15.15)

Note that due to the dimension-specific nature of the curl operator, this routine only works in two
dimensions. For information on the treatment of vector shape functions in femtools, see section 8.1

15.2 Linear Forms

In contrast to the bilinear forms in the previous section, the routines here do not accept a trial function
argument. This is primarily useful for assembling right hand side contributions for which all the
functions in the integral other than the test function are already known and have been multiplied by
detwei in the function arguments.

15.2.1 shape rhs

Module: fetools

function shape_rhs(shape, detwei)
type(element_type), intent(in) :: shape
real, dimension(shape1%ngi), intent(in) :: detwei
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real, dimension(shape%loc) :: shape_rhs

This routine constructs the following vector:

l(i) =

∫
E
φidV i = 1 . . . Nloc(φ) (15.16)

Where the arguments are as given in table 15.1.

15.2.2 shape vector rhs

Module: fetools

function shape_vector_rhs(shape, vector, detwei)
type(element_type), intent(in) :: shape
real, dimension(:,:), intent(in) :: vector
real, dimension(shape1%ngi), intent(in) :: detwei

real, dimension(shape%loc, vector_dim(vector)) :: shape_vector_rhs

This routine constructs the following matrix:

l(α, i) =

∫
E
φivαdV α = 1 . . . Ndim(v), i = 1 . . . Nloc(φ) (15.17)

Where the arguments are as given in table 15.1.

15.2.3 shape tensor rhs

Module: fetools

function shape_tensor_rhs(shape, tensor, detwei)
type(element_type), intent(in) :: shape
real, dimension(:,:,:), intent(in) :: tensor
real, dimension(shape1%ngi), intent(in) :: detwei

real, dimension(shape%loc, tensor_dim(tensor,1), tensor_dim(tensor,2)) &
& :: shape_tensor_rhs

This routine constructs the following tensor:

l(α, β, i) =

∫
E
φiταβdV α, β = 1 . . . Ndim(v), i = 1 . . . Nloc(φ) (15.18)

Where the arguments are as given in table 15.1.

15.2.4 shape tensor dot vector rhs

Module: fetools

function shape_tensor_dot_vector_rhs(shape, tensor, vector, detwei)
type(element_type), intent(in) :: shape
real, dimension(:,:,:), intent(in) :: tensor
real, dimension(:,:,:), intent(in) :: vector
real, dimension(shape1%ngi), intent(in) :: detwei

real, dimension(tensor_dim(tensor,1), shape%loc) :: shape_tensor_rhs
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This routine constructs the following tensor:

l(α, i) =

∫
E
φiταβvβdV α, β = 1 . . . Ndim(v), i = 1 . . . Nloc(φ) (15.19)

Where the arguments are as given in table 15.1. Implicit summation is applied to β so the corre-
sponding dimensions of τ and v must match accordingly.

15.2.5 dshape rhs

Module: fetools

function dshape_rhs(dshape, detwei)
real, dimension(:,:,:), intent(in) :: dshape
real, dimension(:), intent(in) :: detwei

real, dimension(dshape_loc(dshape)) :: dshape_rhs

This routine constructs the following tensor:

l(α, i) =

∫
E
∇φidV

=

∫
E

(∇φi)αdV α = 1 . . . Ndim(∇φ), i = 1 . . . Nloc(φ)

(15.20)

Where the arguments are as given in table 15.1. Implicit summation occurs over α so the dimensions
of φ and v must match accordingly.

15.2.6 dshape dot vector rhs

Module: fetools

function dshape_dot_vector_rhs(dshape, vector, detwei)
real, dimension(:,:,:), intent(in) :: dshape
real, dimension(:,:), intent(in) :: vector
real, dimension(:), intent(in) :: detwei

real, dimension(dshape_loc(dshape)) :: dshape_dot_vector_rhs

This routine constructs the following tensor:

l(i) =

∫
E
∇φi · vdV

=

∫
E

(∇φi)αvαdV α = 1 . . . Ndim(v), i = 1 . . . Nloc(φ)

(15.21)

Where the arguments are as given in table 15.1. Implicit summation occurs over α so the dimensions
of φ and v must match accordingly.

15.2.7 dshape dot tensor rhs

Module: fetools

function dshape_dot_tensor_rhs(dshape, tensor, detwei)
real, dimension(:,:,:), intent(in) :: dshape
real, dimension(:,:,:), intent(in) :: tensor
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real, dimension(:), intent(in) :: detwei

real, dimension(tensor_dim(tensor,2), dshape_loc(dshape)) :: dshape_dot_tensor_rhs

This routine constructs the following tensor:

l(β, i) =

∫
E
∇φi · τdV

=

∫
E

(∇φi)αταβdV α, β = 1 . . . Ndim(τ), i = 1 . . . Nloc(φ)

(15.22)

Where the arguments are as given in table 15.1. Implicit summation occurs over α so the dimensions
of φ and τ must match accordingly.

15.3 Auxiliary form functions

These functions are used to provide the sizes of the linear and bilinear forms. Note that these func-
tions are written to make the manual make sense and do not yet actually exist in the code! These will
get put in the code, probably as preprocessor macros, when I get back on dry land.

15.3.1 dshape loc

Module: none

function dshape_loc(dshape)
integer :: dshape_loc
real, dimension(:,:,:) :: dshape

This routine returns the number of nodes in the shape function gradient given by dshape. This is
equivalent to size(dshape,1).

15.3.2 dshape ngi

Module: none

function dshape_ngi(dshape)
integer :: dshape_ngi
real, dimension(:,:,:) :: dshape

This routine returns the number of quadrature points of the shape function gradient given by dshape.
This is equivalent to size(dshape,2).

15.3.3 dshape dim

Module: none

function dshape_dim(dshape)
integer :: dshape_dim
real, dimension(:,:,:) :: dshape

This routine returns the topological dimension of the shape function gradient given by dshape. This
is equivalent to size(dshape,3).



15.3. AUXILIARY FORM FUNCTIONS 83

15.3.4 vector dim

Module: none

function vector_dim(vector)
integer :: vector_dim
real, dimension(:,:) :: vector

This routine returns the data dimension of vector, where vector is a real array providing a vector
value at each quadrature point of an element. This is equivalent to size(vector,1).

15.3.5 tensor dim

Module: none

function tensor_dim(tensor, dim)
integer :: tensor_dim
real, dimension(:,:,:) :: tensor

This routine returns the dimth data dimension of tensor, where tensor is a real array providing a rank
2tensor value at each quadrature point of an element. This is equivalent to size(tensor,dim).
Valid values of dim are 1 and 2.
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Chapter 16

Diagnostic statistics

16.1 Diagnostic I/O routines

document ewrite and friends here

16.2 Memory statistics

The memory statistics are automatically output in the .stat file, if one is in use, however there are
some routines which may be useful for debugging purposes.

16.2.1 print current memory stats

subroutine print_current_memory_stats(priority)
integer, intent(in) :: priority

This routine prints to screen the current memory allocated to each memory heading. The priority
determines whether or not the print will occur: the verbosity of the simulation must be at least equal
to the priority or printing will be supressed. Printing is also suppressed if the priority is 0 and there
is no memory currently allocated. This facilitates the use of this routine at the end of a simulation to
highlight memory leaks.

16.2.2 print memory stats

subroutine print_memory_stats(priority)
integer, intent(in) :: priority

This routine prints to screen the current, minimum and maximum memory allocated to each memory
heading. The priority determines whether or not the print will occur: the verbosity of the simulation
must be at least equal to the priority or printing will be supressed.

16.2.3 reset memory logs

subroutine reset_memory_logs

This routine resets the minimum and maximum statistics of all the memory headings to the current
value for that heading. This is useful for recording the memory peaks in some part of a simulation,
for example one timestep. If a stat file is being generated, this routine will automatically be called

85
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each time a new row in the stat file is generated.

16.3 Register diagnostics in the .stat file

The way registered diagnostics are added to the .stat file is similar to the way the options are
checked. The script scripts/make_register_diagnostics is executed when Fluidity is com-
piled. All the modules that contain a subroutine called MODULE_NAME_register_diagnostic are
in turn listed in preprocessor/register_diagnostics.F90. These subroutines are executed
before the simulation starts and they register the diagnostics appearing in the module.

A diagnostic has the type registered_diagnostic_item, i.e.

type registered_diagnostic_item
integer :: dim
character(len=FIELD_NAME_LEN) :: name
character(len=FIELD_NAME_LEN) :: statistic
character(len=FIELD_NAME_LEN) :: material_phase
logical :: have_material_phase
real, dimension(:), allocatable :: value
type(registered_diagnostic_item), pointer :: next => null()

Each diagnostic is registered by the subroutine:

subroutine register_diagnostic(dim, name, statistic, material_phase)
integer, intent(in) :: dim
character(len=*), intent(in) :: name, statistic
character(len=*), intent(in), optional :: material_phase

It initialises all the attributes of the diagnostic and appends it to a list of registered diagnostics. An
error occurs if the diagnostic has already been registered. The registered diagnostics are added to the
header of the .stat file in the subroutine initialise_diagnostics. After the initialisation, the
attributes of each registered diagnostic are printed in the log by:

subroutine print_registered_diagnostics

The value of a diagnostic is set by:

subroutine set_diagnostic(name, statistic, material_phase, value)
character(len=*), intent(in) :: name, statistic
character(len=*), intent(in), optional :: material_phase
real, dimension(:), intent(in) :: value

which searches for the appropriate diagnostic in the list of registered diagnostics and sets its value.
Finally, the diagnostics are destroyed by:

subroutine destroy_registered_diagnostics

This subroutine is called to clean up the diagnostics in uninitialise_diagnostics.

To summarise, the procedure to register diagnostics in the .stat file is the following.

1. In the module where the diagnostic is created, add a public subroutine called
MODULE_NAME_register_diagnostic. In this subroutine, call register_diagnostic
for each diagnostic to register, specifying its dimension, statistic name, statistic type and mate-
rial phase (the latter being optional).

2. Set the value of each diagnostic by calling set_diagnostic.
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