
Fluidity�Manual

Applied Modelling and Computation Group (AMCG)
http://amcg.ese.ic.ac.uk

Department of Earth Science and Engineering,
South Kensington Campus,
Imperial College London,

London, SW7 2AZ, UK

Version 4.1 branch

(27 February 2013)

ii

Overview

Fluidity is an open source, general purpose, multi-phase CFD code capable of solving numerically
the Navier-Stokes and accompanying field equations on arbitrary unstructured finite element meshes
in one, two and three dimensions. It uses a moving finite element/control volume method which
allows arbitrary movement of the mesh with time dependent problems. It has a wide range of finite
element/control volume element choices including mixed formulations. Fluidity is coupled to a
mesh optimisation library allowing for dynamic mesh adaptivity and is parallelised using MPI.

Chapter 1 of this manual gives details on how prospective users can obtain and set up Fluidity for use
on a personal computer or laptop. The fluid and accompanying field equations solved by Fluidity
and details of the numerical discretisations available are discussed in chapters 2 and 3 respectively.
When discretising fluid domains in order to perform a numerical simulations it is inevitable that at
certain scales the dynamics will not be resolved. These sub-grid scale dynamics can however play an
important in the large scale dynamics the user wishes to resolve. It is therefore necessary to parame-
terise these sub-grid scale dynamics and details of the parameterisations available within Fluidity are
given in chapter 4. Fluidity also contains embedded models for the modelling of non-fluid processes.
Currently, a simple biology (capable of simulating plankton ecosystems) and a sediments model are
available and these models are detailed in chapter 5.

As mentioned above, one of the key features of Fluidity is its ability to adaptively re-mesh to various
fields so that resolution can be concentrated in regions where the user wishes to accurately resolve
the dynamics. Details regarding the adaptive re-meshing and the manner in which Fluidity deals
with meshes are given in chapters 6 and 7.

Fluidity has its own specifically designed options tree to make configuring simulations as painless
as possible. This options tree can be viewed and edited using the diamond GUI. Details on how
to configure the options tree are given in chapter 8. Output from simulations is in the VTK format
and details regarding viewing and manipulating output files are given in chapter 9. Finally, in order
to introduce users to a range of common configurations and to the functionality available within
Fluidity, chapter 10 presents examples covering a range of fluid dynamics problems. For information
regarding the style and scope of this manual, please refer to Appendix A.

iii

iv

Fluidity Primer

Please check the Fluidity webpage at http://amcg.ese.ic.ac.uk/Fluidity to ensure you are reading
the most recent version of this manual. Methods for installing Fluidity may sometimes change, and
instructions may be updated!

This is a one-page primer for obtaining Fluidity and running a simple example. It assumes that:

• You are running Ubuntu Linux, release 10.10 (Maverick) or newer

• You have administrative rights on your computer

• You know how to run a terminal with a command prompt

• You have a directory in which you can create files

Set up your computer to access the Fluidity repository by typing:

sudo apt-add-repository -y ppa:fluidity-core/ppa

Type your password when prompted.

Once this completes, update your system and install Fluidity along with its supporting software by
typing:

sudo apt-get update
sudo apt-get -y install fluidity

Now uncompress the packaged examples to a directory in which you can create files (in this example,
/tmp) by typing:

cd /tmp
tar -zxvf /usr/share/doc/fluidity/examples.tar.gz

Change into an examples directory (top hat is suggested as a straightforward starter) and run the
example:

cd examples/top_hat/
make preprocess
make run
make postprocess

You have now run your first Fluidity model. Chapter 10 describes this and the other examples pro-
vided with Fluidity.

v

http://amcg.ese.ic.ac.uk/Fluidity

vi

Contents

1 Getting started 1
1.1 Introduction . 1
1.2 Obtaining Fluidity . 1

1.2.1 Overview . 1
1.2.2 Fluidity binary packages for Ubuntu Linux . 1
1.2.3 Fluidity source packages . 2
1.2.4 Bazaar . 2

1.3 Building Fluidity . 4
1.3.1 Setting up the build environment . 5
1.3.2 Configuring the build process . 5
1.3.3 Compiling Fluidity . 7
1.3.4 Installing Fluidity and diamond . 8

1.4 Running Fluidity . 9
1.4.1 Running Fluidity in serial . 9
1.4.2 Running Fluidity in parallel . 10

1.5 Running diamond . 10
1.6 Working with the output . 10

2 Model equations 13
2.1 How to navigate this chapter . 13
2.2 Advection–Diffusion equation . 13

2.2.1 General equation . 13
2.2.2 Scalar boundary conditions . 14

2.3 Fluid equations . 15
2.3.1 Mass conservation . 15
2.3.2 Momentum conservation . 16
2.3.3 Equations of state & constitutive relations . 17
2.3.4 Momentum boundary conditions . 19

2.4 Extensions, assumptions and derived equation sets . 20
2.4.1 Equations in a moving reference frame . 21
2.4.2 Linear Momentum . 23
2.4.3 The Boussinesq approximation . 23
2.4.4 Supplementary boundary conditions and body forces 25
2.4.5 Multi-material simulations . 26
2.4.6 Multiphase simulations . 27
2.4.7 Porous Media Darcy Flow . 28

3 Numerical discretisation 31
3.1 Introduction & some definitions . 31
3.2 Spatial discretisation of the advection-diffusion equation 31

3.2.1 Continuous Galerkin discretisation . 31
3.2.2 Boundary conditions . 37
3.2.3 Discontinuous Galerkin discretisation . 38

vii

viii CONTENTS

3.2.4 Control volume discretisation . 46
3.3 The time loop . 55

3.3.1 Time notation . 56
3.3.2 Nonlinear relaxation . 56
3.3.3 The θ scheme . 57

3.4 Time discretisation of the advection-diffusion equation 57
3.4.1 Discontinuous Galerkin . 57
3.4.2 Control Volumes . 58
3.4.3 Porous Media . 58

3.5 Momentum equation . 59
3.5.1 Boussinesq approximation . 60
3.5.2 Porous Media Darcy Flow . 60

3.6 Pressure equation for incompressible flow . 60
3.6.1 Pressure correction . 61
3.6.2 Porous Media Darcy Flow . 63

3.7 Velocity and pressure element pairs . 63
3.7.1 Continuous Galerkin pressure with control volume tested continuity 64

3.8 Balance pressure . 65
3.9 Free surface . 66
3.10 Wetting and drying . 66
3.11 Linear solvers . 67

3.11.1 Iterative solvers . 67
3.11.2 Preconditioned Krylov subspace methods . 69
3.11.3 Convergence criteria . 69

3.12 Algorithm for detectors (Lagrangian trajectories) . 70

4 Parameterisations 73
4.1 Turbulent flow modelling and simulation . 73

4.1.1 Reynolds Averaged Navier Stokes (RANS) Modelling 73
4.1.2 Large-Eddy Simulation (LES) . 80

4.2 Ice shelf parameterisation . 85
4.2.1 Boundary condition at ice surface . 85

5 Embedded models 87
5.1 Biology . 87

5.1.1 Four component model . 87
5.1.2 Six-component model . 89
5.1.3 Photosynthetically active radiation (PAR) . 90
5.1.4 Detritus falling velocity . 91

5.2 Sediments . 91
5.2.1 Hindered Sinking Velocity . 91
5.2.2 Deposition and erosion . 92
5.2.3 Sediment concentration dependent viscosity 93

6 Meshes in Fluidity 97
6.1 Supported mesh formats . 97
6.2 Surface and regions ids . 97
6.3 Meshes and function spaces . 98
6.4 Extruded meshes . 99
6.5 Periodic meshes . 99
6.6 Meshing tools . 99

6.6.1 Mesh Verification . 99
6.6.2 Mesh creation . 99
6.6.3 Mesh conversion . 100

CONTENTS ix

6.6.4 Decomposing meshes for parallel . 100
6.6.5 Decomposing a periodic mesh . 101

6.7 Non-Fluidity tools . 102
6.7.1 Terreno . 102
6.7.2 Gmsh . 102
6.7.3 Importing contours from bathymetric data into Gmsh 102

7 Adaptive remeshing 103
7.1 Motivation . 103
7.2 A typical adaptive loop . 104
7.3 Representing meshes as metric tensors . 105
7.4 Adaptive remeshing technology . 106
7.5 Using mesh adaptivity . 107

7.5.1 Choice of norm . 108
7.5.2 Absolute, relative and p– metrics . 109
7.5.3 Weights . 109
7.5.4 Gradation parameter . 109
7.5.5 Maximum and minimum edge length tensors 110
7.5.6 Maximum and minimum numbers of nodes 110
7.5.7 Metric advection . 111

7.6 Interpolation . 111
7.7 Parallel adaptivity . 113
7.8 The cost of adaptivity . 113

8 Configuring Fluidity 115
8.1 Overview . 115
8.2 Options syntax . 115

8.2.1 Allowed Characters . 115
8.2.2 Named options . 116

8.3 The options tree . 116
8.3.1 Simulation Name . 117
8.3.2 Problem Type . 117
8.3.3 Geometry . 117
8.3.4 IO . 119
8.3.5 Timestepping . 122
8.3.6 Physical parameters . 124

8.4 Meshes . 125
8.4.1 Reading meshes from file . 125
8.4.2 Deriving meshes from other meshes . 126

8.5 Material/Phase . 128
8.6 Fields . 128

8.6.1 Types of field . 128
8.6.2 Setting field values . 129
8.6.3 Region IDs . 131
8.6.4 Mathematical constraints on initial conditions 131

8.7 Advected quantities: momentum and tracers . 132
8.7.1 Spatial discretisations . 132
8.7.2 Temporal discretisations . 134
8.7.3 Source and absorption terms . 134
8.7.4 Sponge regions . 135

8.8 Solving for pressure . 135
8.8.1 Geostrophic pressure solvers . 135
8.8.2 First guess for poisson pressure equation . 135
8.8.3 Removing the null space of the pressure gradient operator 135

x CONTENTS

8.8.4 Continuous Galerkin pressure with control volume tested continuity 136
8.9 Solution of linear systems . 136

8.9.1 Iterative Method . 136
8.9.2 Preconditioner . 136
8.9.3 Relative Error . 137
8.9.4 Absolute Error . 137
8.9.5 Max Iterations . 137
8.9.6 Start from Zero . 137
8.9.7 Remove Null Space . 137
8.9.8 Solver Failures . 137
8.9.9 Reordering RCM . 138
8.9.10 Solver Diagnostics . 138

8.10 Equation of State (EoS) . 138
8.11 Sub-grid Scale Parameterisations . 139

8.11.1 GLS . 140
8.11.2 k-ε Turbulence Model . 140
8.11.3 Large Eddy Simulation Models . 142

8.12 Boundary conditions . 143
8.12.1 Adding a boundary condition . 143
8.12.2 Selecting surfaces . 143
8.12.3 Boundary condition types . 143
8.12.4 Special input date for boundary conditions . 146
8.12.5 Special cases . 147

8.13 Astronomical tidal forcing . 148
8.14 Ocean biology . 149
8.15 Sediment model . 149
8.16 Large scale low aspect ratio ocean simulations . 150

8.16.1 Options that must be switched on . 150
8.16.2 Recommended or optional settings . 151

8.17 Geophysical fluid dynamics problems . 152
8.17.1 Problem type . 152
8.17.2 Geometry . 152
8.17.3 Timestepping . 153
8.17.4 Material/phase . 153

8.18 Mesh adaptivity . 156
8.18.1 Field settings . 156
8.18.2 General adaptivity options . 157

8.19 Multiple material/phase models . 160
8.19.1 Multiple material models . 161
8.19.2 Multiple phase models . 163

8.20 Compressible fluid model . 165
8.20.1 Pressure options . 165
8.20.2 Density options . 165
8.20.3 Velocity options . 165
8.20.4 Restrictions: discretisation options and element pairs 165

8.21 Porous Media Darcy Flow . 166
8.21.1 Single Phase . 166

9 Visualisation and Diagnostics 169
9.1 Visualisation . 169
9.2 Online diagnostics . 169

9.2.1 Fields . 169
9.3 Offline diagnostics . 178

9.3.1 vtktools . 178

CONTENTS xi

9.3.2 Diagnostic output . 184
9.3.3 fltools . 184

9.4 The stat file . 202
9.4.1 File format . 203
9.4.2 Reading .stat files in python . 204
9.4.3 Stat file diagnostics . 204
9.4.4 Detectors . 209

10 Examples 211
10.1 Introduction . 211
10.2 One dimensional advection . 211

10.2.1 Overview . 211
10.2.2 Configuration . 212
10.2.3 Results . 214
10.2.4 Exercises . 215

10.3 The lock-exchange . 215
10.3.1 Overview . 215
10.3.2 Configuration . 216
10.3.3 Results . 216
10.3.4 Exercises . 218

10.4 Lid-driven cavity . 220
10.4.1 Overview . 220
10.4.2 Configuration . 220
10.4.3 Results . 220
10.4.4 Exercises . 221

10.5 2D Backward facing step . 222
10.5.1 Overview . 222
10.5.2 Geometry . 222
10.5.3 Initial and boundary conditions . 223
10.5.4 Results . 223

10.6 3D Backward facing step . 223
10.6.1 Configuration . 223
10.6.2 Geometry . 225
10.6.3 Initial and boundary conditions . 225
10.6.4 Results . 226

10.7 Flow past a sphere: drag calculation . 228
10.7.1 Overview . 228
10.7.2 Configuration . 228
10.7.3 Results . 228
10.7.4 Exercises . 230

10.8 Rotating periodic channel . 230
10.8.1 Overview . 230
10.8.2 Results . 231

10.9 Water column collapse . 232
10.9.1 Overview . 232
10.9.2 Problem specification . 233
10.9.3 Results . 233
10.9.4 Exercises . 235

10.10 The restratification following open ocean deep convection 238
10.10.1 Overview . 238
10.10.2 Configuration . 238
10.10.3 Results . 239

10.11 Tides in the Mediterranean Sea . 240
10.11.1 Overview . 240

xii CONTENTS

10.11.2 Configuration . 241
10.11.3 Results . 241

10.12 Hokkaido-Nansei-Oki tsunami . 242
10.12.1 Overview . 242
10.12.2 Configuration . 244
10.12.3 Results . 246
10.12.4 Exercises . 248

10.13 Tephra settling . 248
10.13.1 Overview . 248
10.13.2 Problem specification . 249
10.13.3 Results . 249
10.13.4 Exercises . 251

10.14 Stokes Square Convection . 251
10.14.1 Overview . 251
10.14.2 Problem Specification . 251
10.14.3 Results . 252
10.14.4 Exercises . 252

Bibliography 255

A About this manual 267
A.1 Introduction . 267
A.2 Audience and Scope . 267
A.3 Style guide . 268

A.3.1 Headings . 268
A.3.2 Language . 268
A.3.3 Labelling . 268
A.3.4 Images . 268
A.3.5 flml options . 269
A.3.6 Generating pdf and html output . 269
A.3.7 Representing source code . 269
A.3.8 Bibliography . 270
A.3.9 Mathematical notation conventions . 270

B The Fluidity Python state interface 273
B.1 System requirements . 273
B.2 Data types . 273

B.2.1 Field objects . 274
B.2.2 State objects . 274

B.3 Predefined data . 275
B.4 Importing modules and accessing external data . 275
B.5 The persistent dictionary . 275
B.6 Debugging with an interactive Python session . 275
B.7 Limitations . 276

C External libraries 277
C.1 Introduction . 277
C.2 List of external libraries and software . 277
C.3 Installing required libraries on Debian or Ubuntu . 278
C.4 Manual install of external libraries and software . 278

C.4.1 Supported compilers . 279
C.4.2 Build environment . 279
C.4.3 Compilers . 279
C.4.4 Python . 281

CONTENTS xiii

C.4.5 Numerical Libraries . 282
C.4.6 VTK and supporting software . 283
C.4.7 Supporting Libraries . 284

D Troubleshooting 287

E Mesh formats 289
E.1 Mesh data . 289

E.1.1 Node location . 289
E.1.2 Element topology . 289
E.1.3 Facets . 289
E.1.4 Surface IDs . 290
E.1.5 Region IDs . 290

E.2 The triangle format . 290
E.3 The Gmsh format . 292
E.4 The ExodusII format . 293

Index 297

xiv CONTENTS

List of Figures

2.1 Schematic of coordinates in a frame rotating with a sphere. The rotation is about a
vector pointing from South to North pole. A point on the surface of the sphere x and
its perpendicular distance from the axes of rotation x⊥ are shown. The latitude of x is
given by ϕ and the unit vectors i, j and k represent a local coordinate axes at a point
x in the rotating frame: i points Eastwards, j points Northwards and k points in the
radial outwards direction. 21

3.1 One-dimensional (a, b) and two-dimensional (c, d) schematics of piecewise linear (a,
c) and piecewise quadratic (b, d) continuous shape functions. The shape function has
value 1 at node A descending to 0 at all surrounding nodes. The number of nodes per
element, e, depends on the polynomial order while the support, s, extends to all the
elements surrounding node A. 33

3.2 Pure advection of a 1D top hat function in a periodic domain at CFL number 1/8 after
80 timesteps using a continuous Galerkin discretisation. 36

3.3 Pure advection of a 1D top hat function in a periodic domain at CFL number 1/8 af-
ter 80 timesteps using a continuous Galerkin discretisation with streamline-upwind
stabilisation. 37

3.4 Pure advection of a 1D top hat function in a periodic domain at CFL number 1/8 af-
ter 80 timesteps using a continuous Galerkin discretisation with streamline-upwind
Petrov-Galerkin stabilisation. 37

3.5 One-dimensional (a, b) and two-dimensional (c, d) schematics of piecewise linear (a,
c) and piecewise quadratic (b, d) discontinuous shape functions. The shape function
has value 1 at node A descending to 0 at all surrounding nodes. The number of nodes
per element, e, depends on the polynomial order while the support, s, covers the same
area as the element, e. 39

3.6 One-dimensional (a) and two-dimensional (b) schematics of piecewise constant, ele-
ment centred shape functions. The shape function has value 1 at node A and across
the element, e, descending to 0 at the element boundaries. As with other discontinuous
shape functions, the support, s, coincides with the element, e. 46

3.7 Comparison between (a) a two-dimensional finite volume simplex mesh and (b) the
equivalent control volume dual mesh (solid lines) constructed around a piecewise lin-
ear continuous finite element parent mesh (dashed lines). In the finite volume mesh
the nodes (e.g. A) are element centred whereas in the control volume dual mesh the
nodes are vertex based. In 2D the control volumes are constructed around A by con-
necting the centroids of the neighbouring triangles to the edge midpoints. See Figure
3.8 for the equivalent three-dimensional construction. 47

3.8 The six dual control volume mesh faces within a piecewise linear tetrahedral parent
mesh element. Each face is constructed by connecting the element centroid, the face
centroids and the edge midpoint. 48

xv

xvi LIST OF FIGURES

3.9 One-dimensional (a, b) and two-dimensional (c, d) schematics of piecewise constant
control volume shape functions and dual meshes based on the parent (dashed lines)
linear (a, c) and quadratic (b, d) finite element meshes. The shape function has value 1
at node A descending to 0 at the control volume boundaries. The support, s, coincides
with the volume, v. 49

3.10 Calculation of the upwind value, cuk , on an unstructured simplex mesh (a) internally
and (b) on a boundary. The control volume mesh is shown (solid lines) around the
nodes (black circles) which are co-located with the solution nodes of the parent piece-
wise linear continuous finite element mesh (dashed lines). An initial estimate of the
upwind value, c∗uk , is found by interpolation within the upwind parent element. The
point-wise gradient between this estimate and the donor node, cck , is then extrapo-
lated the same distance between the donor and downwind, cdk , to the upwind value,
cuk . 50

3.11 The Sweby (a) and ULTIMATE (b) limiters (shaded regions) represented on a nor-
malised variable diagram (NVD). For comparison the trapezoidal face value scheme
is plotted as a dashed line in both diagrams. γ is the Courant number at the control
volume face. 51

3.12 The HyperC face value scheme represented on a normalised variable diagram (NVD). 52
3.13 The UltraC face value scheme represented on (a) a normalised variable diagram (NVD)

and (b) a modified normalised variable diagram. For comparison (a) also shows the
HyperC face value scheme as a dotted line. 52

3.14 The coupled limiter for the field cI represented by the grey shaded area on a nor-
malised variable diagram (NVD). Labels in the upper left blue region refer to the case
when the difference between the parent sum downwind and upwind values has the
same sign as the limited field, sign

(
c
∑
I

dk
− c

∑
I

uk

)
= sign

(
cIdk − c

I
uk

)
. Similarly, labels

in the lower right yellow region refer to the case when the signs of the slopes are
opposite, sign

(
c
∑
I

dk
− c

∑
I

uk

)
6= sign

(
cIdk − c

I
uk

)
. The regions are separated by the up-

winding line, ¯̂cIf = c̄Ick + c̄
∑
I−1

ck − c̄
∑
I−1

f . 54
3.15 Outline of the principal steps in the nonlinear iteration sequence. 56
3.16 A sketch representing the Guided Search method used in combination with an explicit

Runge-Kutta algorithm to advect the Lagrangian detectors with the flow. 71

5.1 The fluxes between the biological tracers. Grazing refers to the feeding activity of
zooplankton on phytoplankton and detritus. 94

5.2 Six-component biology model. 94

6.1 An unstructured mesh around a NACA0025 aerofoil, the coloured patches show a
possible decomposition into 4 partitions. 100

7.1 Example of mesh modification operations. 107

8.1 A Diamond screenshot showing the /geometry/dimension option. Note that the
option path is displayed at the bottom of the diamond window 116

8.2 A Diamond screenshot showing the /geometry/mesh::Coordinate option. Note
that the name is shown in brackets in the main Diamond window but after double
colons in the path in the bottom bar. 117

8.3 Periodic unit square with surface IDs 1-4 shown. 127

9.1 Configuration of a diagnostic field using a diagnostic algorithm in Diamond. Here a
pressure gradient diagnostic is defined. 176

9.2 Visualisation of a heat flux diagnostic in a 2D cavity convection simulation using statplot.196
9.3 Visualisation of the six basis functions of the quadratic triangle generated by visu-

alise elements. 198
9.4 Example configuration of the stat file for .../vector field(Velocity). 202

LIST OF FIGURES xvii

10.1 Initial condition and numerical solutions after 100 s, for the 1D top hat tracer advection
problem. 213

10.2 Conservation and bounds checking using statplot. 215
10.3 Lock-exchange temperature distribution (colour) with meshes, over time (t) 218
10.4 Distance along the domain (X) and Froude number (Fr) for the no-slip and free-slip

fronts in the lock-exchange. The values of Härtel et al. [2000] and Simpson and Britter
[1979] are included for reference. 218

10.5 Mixing diagnostics for the lock–exchange. 219
10.6 Diagnostic fields from the lid-driven cavity problem at steady state at 1/128 resolution.

Left: the streamfunction. Right: the vorticity. The contour levels are taken from those
given by Botella and Peyret [1998] in their tables 7 and 8. 221

10.7 Convergence of the eight error metrics computed for the lid-driven cavity problem
with mesh spacing. The eight metrics are described in the text. 222

10.8 Schematic of the domain for the two-dimensional flow past a backward facing step. . 223
10.9 Snapshots of the velocity magnitude from the 2D run at times 5, 10 and 50 time units

(top to bottom) from the k-epsilon run. The evolution of the dynamics to steady state
can be seen, in particular the downstream movement of the streamline reattachment
point (where zero-magnitude contour touches bottom). 224

10.10Streamwise velocity profiles from the 2D run at x/h = 1.33, 2.66, 5.33, 8.0 and 16.0
downstream of the step, where h = 1 is the step height. The converged solution is
in blue. Ilinca’s numerical and Kim’s experimental data [Ilinca and Pelletier, 1997] are
in red and black respectively. The recirculation region is indicated by negative velocities.224

10.11Evolution of reattachment length in k-epsilon simulation. 225
10.12Schematic of the domain for the three-dimensional flow past a backward facing step

problem. 226
10.13From top to bottom: vertical plane cuts through the 3D domain showing the velocity

magnitude at times 5, 25 and 50 time units. The evolution of the dynamics to steady
state can be seen, in particular the downstream movement of the streamline reattach-
ment point (indicated by contours of U = 0). 227

10.14Streamwise velocity profiles from the 3d run at x/h = 4, 6, 10 and 19 downstream of
the step, where h = 1 is the step height, at t = 5 seconds. 227

10.15Streamlines and surface mesh in the flow past the sphere example. Top-left to bottom-
right show results from Reynolds numbers Re = 1, 10, 100, 1000. 229

10.16Details of the mesh and flow at Re = 1000. 229
10.17Comparison between the numerically calculated drag coefficients (CD, circles) and the

correlation (10.3) (solid line) for Re = 1, 10, 100, 1000. 230
10.18Velocity forcing term and analytic solutions for velocity and pressure for the rotating

periodic channel test case. Note that each of these quantities is constant in the x direction.231
10.19Error in the pressure and velocity solutions for the rotating channel as a function of

resolution. 232
10.20(a) Initial set-up of the water volume fraction, α1, and the velocity and pressure bound-

ary conditions for the two-dimensional water column collapse validation problem
[Zhou et al., 1999]. The presence of water is indicated as a blue region and the in-
terface to air is delineated by contours of the volume fraction at 0.025, 0.5 and 0.975.
The locations of the pressure (P2) and water depth gauges (H1, H2) are also indicated.
(b) The adapted mesh used to represent the initial conditions. 234

10.21The evolution of the water volume fraction, α1, over several timesteps. The presence of
water, α1 = 1, is indicated as a blue region and the interface to air, α1 = 0, is delineated
by contours at α1 = 0.025, 0.5 and 0.975. 236

10.22The evolution of the adaptive mesh over the same timesteps displayed in Figure 10.21.
The mesh can be seen to closely follow the interface between the water and air. 237

xviii LIST OF FIGURES

10.23Comparison between the experimental (circles) and numerical water gauge data at H1
(i) and H2 (ii), x1 = 2.725m and 2.228m respectively. Experimental data taken from
Zhou et al. [1999] through Park et al. [2009]. 238

10.24Comparison between the experimental (circles) and numerical pressure gauge data at
P2, x1 = 3.22m, x2 = 0.16m. Experimental data taken from Zhou et al. [1999] through
Park et al. [2009]. 239

10.25A vertical slice throught the domain showing the initial temperature stratification. The
domain is a cylinder of radius 250 km and height 1 km. 240

10.26The temperature cross-section at a depth of 40m. 240
10.27Results of the mixing stats diagnostic, showing how the temperature is mixed during

the simulation. There is initially most water with a temperature of 0.7-0.8. This mixes
during the course of the simulation. 241

10.28Plots of the tidal harmonic amplitudes in the Mediterranean Sea from ICOM and the
high resolution model of Tsimplis et al. [1995]. 243

10.29Plots of the tidal harmonic phases in the Mediterranean Sea from ICOM and the high
resolution model of Tsimplis et al. [1995]. 244

10.30Locations of 62 tide gauges in the Mediterranean Sea. Modified from Wells [2008] with
data originally taken from Tsimplis et al. [1995]. 245

10.31Scatter diagrams plotting harmonic amplitudes from ICOM at each gauge location
against tide gauge data. 246

10.32The bathymetry and the three gauge stations used for the Hokkaido-Nansei-Oki
tsunami example. 247

10.33The input wave elevation of the Okushiri tsunami test case (a) and the numerical and
experimental results at “Gauge 1” (top), “Gauge 2” (middle) and “Gauge 3” (bottom)
(b). 247

10.34Tephra (particle) phase volume fraction at time t = 10, 30, 50, 80, 110 seconds. These
images are from a lower-resolution version of the tephra settling example problem,
with a characteristic element size of ∆x = 0.01 m. 249

10.35Tephra (particle) phase volume fraction at time t = 10, 30, 50, 80, 110 seconds. The
onset of plumes is between 10 and 30 seconds. Note that these images are from a
high-resolution version of the tephra settling example problem, with a characteristic
element size of ∆x = 0.0025 m. 250

10.36Maximum velocity of the tephra phase against time. 250
10.37Steady–state temperature field from an isoviscous Stokes simulation at Ra = 1 × 105,

on a uniform structured mesh of 48× 48 elements. Contours are spaced at intervals of
0.1. 252

10.38Results from 2-D, isoviscous Stokes square convection benchmark cases: (a) Nusselt
number vs. number of triangle vertices, at Ra = 1 × 105 [case 1b: Blankenbach et al.,
1989], for a series of uniform, structured meshes. Filled circles reporesent the exam-
ple cases at a resolution of 24 × 24 and 48 × 48 elements respectively. The open circle
represents the result from a case at 96 × 96 elements, to illustrate that as mesh resolu-
tion is increased, solutions converge towards the benchmark values; (b) RMS velocity
vs. number of triangle vertices, at Ra = 1 × 105. Benchmark values are denoted by
horizontal dashed lines. Note that the highest resolution case is not included in the
example. 253

Chapter 1

Getting started

1.1 Introduction

This first chapter gives a brief guide to setting-up, running and visualising simulations. It is assumed
that you have access to a system running Linux or UNIX with all the Fluidity supporting libraries
installed. If not, you may wish to reference appendix C which contains detailed information for your
systems administrator to help setting up a Linux workstation.

1.2 Obtaining Fluidity

1.2.1 Overview

Fluidity is available both as precompiled binaries for Ubuntu Linux version 10.10 (Maverick) and
newer, and as source code available via bzr (bazaar) or as gzipped tarballs. Which method you use
to obtain Fluidity depends primarily on whether you use Ubuntu Linux and whether you wish to
modify the Fluidity source code.

Fluidity generally attempts to support any given release of Ubuntu for 18 months from the point of
release.

Users who run Ubuntu Linux and who have no need to change the source code will probably wish
to use binary packaged Fluidity. Developers and users on non-Ubuntu platforms will probably wish
to build Fluidity from source.

1.2.2 Fluidity binary packages for Ubuntu Linux

Fluidity is distributed via the fluidity-core launchpad package archive. If you run Ubuntu Linux
version 10.10 (Maverick) or newer (11.04 or newer after April 2012) and have administrative privi-
leges on your computer, you can add the package archive to your system by typing:

sudo apt-add-repository -y ppa:fluidity-core/ppa

Type your password if prompted. Once the repository has been added, update your system and
install Fluidity along with the required supporting software by typing:

sudo apt-get update
sudo apt-get -y install fluidity

1

2 Getting started

You now have Fluidity installed on your computer. Examples, as referred to in chapter 10, are avail-
able as a compressed tarball and can be expanded into a writeable directory with:

tar -zxvf /usr/share/doc/fluidity/examples.tar.gz

1.2.3 Fluidity source packages

Fluidity is released as compressed source archives which can be downloaded from the Fluidity
project page on Launchpad, https://launchpad.net/fluidity .

You can download just the source, or you can additionally download a tests archive containing the
Fluidity short and medium test suite.

To uncompress the Fluidity 4.1.3 source from an archive file in Linux, run:

tar -zxvf fluidity-4.1.3.tar.gz

This should create a directory, fluidity-4.1.3/, containing your copy of the source code. To add
the standard tests (sufficient to run ’make mediumtest’), download the additional fluidity-tests-4.1.3
archive into the fluidity-4.1.3/ directory, and in that directory run:

tar -zxvf fluidity-tests-4.1.3tar.gz

The files will appear in a tests/ directory.

1.2.4 Bazaar

The Fluidity source code is hosted on launchpad. Experienced bzr users can obtain the latest devel-
opment version of Fluidity from lp:fluidity. For inexperienced users, or those wanting a more
stable version than the development trunk, please read on to learn how to obtain a copy of Fluidity.

As a Fluidity user you need only be aware of two modes of operation in bazaar. The first is checking
out a copy of the source code from the central repository, the second is updating your copy of the
code to reflect changes that have been made to the central repository. Think of the repository as a
central archive of source code held on the Launchpad platform.

There are a few other bazaar features useful for users which will be mentioned in passing.

Details of how to commit changes to Fluidity back into the central repository are outside the scope
of this user manual; if you are transitioning to become a developer who commits changes back into
Fluidity please contact an existing Fluidity developer to find out how to get commit privileges.

1.2.4.1 Checking out a current copy of Fluidity

Fluidity can be obtained in two forms: release and trunk.

The first, release, is aimed at general users of Fluidity. Releases are static versions of the code, and
an individual release with a specific version number will never change content. New versions will
be produced whenever there is sufficient demand for new features to be included. Release are very
well tested and do not contain any code known to have bugs. As such, releases are infrequent so
will generally not contain the latest changes. The manual and other resources are written to support
releases.

The second, trunk, is the day to day development version of Fluidity. It is primarily used by devel-
opers and is not recommended for everyday users. Updates appear many times each day, and the
trunk will frequently have periods where not all tests are passing. Use at your own risk.

https://launchpad.net/fluidity

1.2 Obtaining Fluidity 3

To check out a copy of Fluidity you can use one of the following two commands for the release
and trunk versions respectively, which are given here in entirety but will be broken down in the
subsequent discussion so you can better understand them.

Release:

bzr co lp:fluidity/4.1 fluidity/

Trunk:

bzr co lp:fluidity fluidity/

The first part of this command calls the bzr program:

bzr

bzr takes a first argument which describes the mode in which it will run. In this case, it is going to
check out a copy of the code, which abbreviates to co :

bzr co

The second argument to bzr describes the location used to check out Fluidity from, in this case using
the Launchpad site (abbreviated to lp) and the series required (ie, fluidity/stable) :

bzr co lp:fluidity/stable

This is now a valid command line, and if you ran it would check out a copy of the stable series of
Fluidity into a directory stable/ in your current directory. If you prefer to have the code checked
out into a directory called fluidity/, append that directory name to the end of the command line
so bzr checks out the code where you want it to:

bzr co lp:fluidity/stable fluidity/

Bear in mind that the Fluidity check out is of the order of many hundreds of megabytes and should
be checked out onto a file system which has corresponding amounts of free space. As it checks out,
bzr should print progress information, and when it is complete should clear this information and
return to a command prompt.

If you are asked to check out a different series or branch of Fluidity you will simply need to change
the name after lp: and should be given the relevant information by whoever has requested the
checkout.

1.2.4.2 Updating your copy of Fluidity

This section does not apply to users having checked out a Fluidity release.

If you are interested in keeping up to date with the latest developments in Fluidity you will probably
want to update your local copy of the Fluidity code to reflect changes made to the central source
code repository. To do this, change directory so that you are in the directory which you checked out
Fluidity to (in the above case, a directory called fluidity/) and then run bzr’s update command,
which is abbreviated to up as per:

bzr up

You will probably see a number of lines with a leading M, denoting that a file in your local copy of
Fluidity is being modified, such as:

M preprocessor/Populate_State.F90

4 Getting started

This manual assumes that you are not modifying any of the files in your copy of Fluidity. If you
do so, and your changes clash with changes from the central repository, you may end up with bzr
reporting conflicts when you update. This is worth being aware of, but brings you into the realms of
Fluidity development, outside the scope of this manual.

1.2.4.3 Other useful Bazaar commands

If you can check out and update your copy of Fluidity then you are equipped to be an active Fluidity
user. However, you may wish to know about a few more useful subversion commands, including
getting information about your local version of the code using:

bzr info

You may well want to do this if someone asks you which branch of Fluidity you are using, at which
point you’re looking for a line such as:

checkout of branch: bzr+ssh://bazaar.launchpad.net/%2Bbranch/fluidity/

with the relevant information. If you are asked for the revision of Fluidity you’re using, a shortcut
command to give this is bzr revision-info.

To get information on what files have been modified in your local copy use the the following:

bzr status

Note that if you have compiled Fluidity you will see a large number of files in the ’unknown’ cate-
gory, which have been generated by the compilation process. To suppress those supply the parameter
-V:

bzr status -V

To get specific information on the difference between a local file and the central repository use the
following:

bzr diff <filename>

You can get help on the bzr command <command> with:

bzr help <command>

and list available commands with:

bzr help commands

replacing <filename> with the file you want differences reported for.

If you wish to delve deeper into Bazaar operation, an excellent source of detail is
http://doc.bazaar.canonical.com/bzr.2.4/en/user-guide/index.html which is the official Bazaar
User Guide.

1.3 Building Fluidity

The build process for Fluidity comprises a configuration stage and a compile stage. In the simplest
form, this can be completed with two commands, run in the directory containing your local source
code check out, which is denoted by <<fluidity source path>> in this manual:

http://doc.bazaar.canonical.com/bzr.2.4/en/user-guide/index.html

1.3 Building Fluidity 5

cd <<fluidity source path>>
./configure
make

You may often only wish to perform this basic build, but frequently you will want more fine-grained
control over the configuration procedure or you will want to perform non-default compilation steps.
The following section describes these procedures.

Note that at this point configuration refers to the build-time configuration options which define how
the Fluidity program will be compiled, and do not refer to configuration of the options that you will
run Fluidity with once it has built. However, presence or lack of features configured at the build
stage may change what is available to you at run time.

It is assumed throughout this section that you are in the top-level directory of your local copy of the
Fluidity code for the purposes of describing configuration and compilation commands.

1.3.1 Setting up the build environment

Depending on the computer you are building Fluidity on, you may need to set up the build environ-
ment before configuring Fluidity. On the standard Fluidity workstation built around Ubuntu Linux,
you will need to initialise the PETSc package by running:

module load petsc-gcc4

This is very specific to the standard Fluidity workstation, and other systems may well have detailed
requirements to be carried out before building Fluidity. If you are in any doubt, stop now, and consult
with your local systems administrator who should be able to help you resolve any problems ahead
of time. If you are not on a standard Fluidity workstation you may want to refer to (or refer your
systems administrator to) appendix C of this manual before proceeding.

The build environment is discussed in more detail in sections 1.3.2.2 and 1.3.2.3.

1.3.2 Configuring the build process

For a full list of the build-time configuration options available in fluidity, run:

./configure --help

Key configuration options are described here, but you are advised to check output from the above
command for any changed or new options which may have been introduced since the last update of
this manual.

Where you wish to specify multiple configuration options at once, supply them all on the same
configuration command line, separated by spaces. For example:

./configure --prefix=/data/fluidity --enable-debugging

Note that there is one key option NOT enabled by default which users running the Fluidity examples
will need to enable to make all examples work. This is --enable-2d-adaptivity , which cannot
be turned on as a default as it makes use of external code that is not license-compatible with all other
Fluidity codes. Hence, it is a reasonable default state for you to run:

./configure --enable-2d-adaptivity

One additional consideration is worth making at this point; do you want to put any components of
the Fluidity build outside the build directory for later use? An automatic installation for Fluidity

6 Getting started

(and also for diamond) is available, and defaults to using a directory which can (normally) only be
written to with superuser privileges. However, you can tell the install process to put files elsewhere
with the use of the ’prefix’ flag to configure. A typical use of this might be to tell the install process
to put files in your home directory, using the ’HOME’ environment variable which should be set by
the system automatically. To do this in addition to enabling 2D adaptivity, you would type:

./configure --enable-2d-adaptivity --prefix=$HOME

We’ll go on now to discussing enabling and disabling features.

1.3.2.1 Enabling and disabling features

Fluidity has a number of optional features which may be enabled or disabled at build time. For a
list of all these features see the output of configuring with the --help argument. This list should
indicate which options are enabled by default by appending (default) to the option description.
An example of enabling Fluidity’s debugging feature at build time would be:

./configure --enable-debugging

Whilst a number of options have the facility to be enabled and disabled, doing so may be prejudicial
to the expected normal running of Fluidity so unless you are fully aware of the consequences of
enabling or disabling features it is recommended that you do not do so.

1.3.2.2 Specifying locations of supporting libraries

Fluidity requires many supporting libraries, which can either be provided via environment variables
(see later discussion for how to do this) or, in specific cases, provided via options during configura-
tion. This uses the --with option, for example specifying the directory containing BLAS using:

./configure --with-blas-dir=/data/libraries/netlib/BLAS

Whilst there is also the option to supply --without arguments, this is likely to be highly prejudicial
to the normal running of Fluidity or, in many cases, be incompatible with building Fluidity such that
the configuration exits with an error.

1.3.2.3 Environment variables set for configuration

A description of environment variables is outside the scope of this manual, and Fluidity users are
encouraged to find an experienced UNIX user who can explain the rudiments of environment vari-
ables to them if they are not already familiar with how to set and use them. Influential environment
variables are listed towards the end of the help output from Fluidity’s configuration. Particularly
notable are:

LIBS, which allows passing a series of linker arguments such as "-L/data/software/libs" de-
scribing how to access libraries at link-time. This will often be set or appended to by loading modules
on modern UNIX systems.

FCFLAGS and FFLAGS which describe flags passed to the Fortran and Fortran77 compilers respec-
tively and allow you broad control of the overall the build process. This will also often be set or
appended to by loading modules on modern UNIX systems.

PETSC_DIR defines the base directory into which your PETSc install has been placed. This will
often be set by loading an environment module specific to your system, but if you have a local
build of PETSc you may need to set this variable yourself. Note that for most Fluidity users, hav-
ing PETSc to provide solver functionality is unavoidable so setting this variable by some means is

1.3 Building Fluidity 7

necessary in almost all cases. The standard Fluidity workstation allows you to do this by running
module load petsc-gcc4 .

VTK_INCLUDE and VTK_LIBS may be important to set if VTK is not installed at a system level. VTK
is critical to Fluidity for writing output files, and many UNIX systems lack some VTK components
so it frequently ends up installed in a nonstandard location.

1.3.3 Compiling Fluidity

Once you have successfully configured Fluidity, you need to compile the source code into binary
files including programs and libraries. In the simplest form you can do this by running:

make

which will generate Fluidity and Diamond programs in the bin/ directory and a set of libraries in
the lib/ directory.

If you have a modern, powerful computer then you can speed this process up significantly by paral-
lelising the make, running:

make -jN

where N is the number of CPU cores of your system.

Note that this is very resource-intensive and whilst most modern workstations should be equal to the
task it should not be run on shared machines (ie, login nodes of compute clusters) or systems with
smaller quantities of memory.

If you want to build the extended set of Fluidity tools which supplement the main Fluidity program,
section 9.3.3, run:

make fltools

If this is the first time you have run Fluidity on your computer and you want to check that it has
built correctly, you can run the included suite of test problems at three levels. The shortest tests test
individual units of code for correctness and can be run with:

make unittest

Please note that, due to compiler bugs which Intel have shown no inclination to fix, the ’make
unittest’ suite is known to fail with all releases of the Intel compiler. Thus, it is advised that you
not run ’make unittest’ if building Fluidity with any version of the Intel compiler.

To run the suite of short test cases which more extensively test the functionality of your Fluidity
build, run:

make test

For the most comprehensive set of tests included in your checked out copy of Fluidity, run:

make mediumtest

If you have obtained Fluidity through source archives rather than through subversion you will need
to have also downloaded and unpacked the standard tests archive to be able to run make test and
make mediumtest .

Note that even on the most modern systems make mediumtest may take on the order of an hour
and on slower systems may take on the order of many hours to complete.

8 Getting started

1.3.4 Installing Fluidity and diamond

It is perfectly possible to run Fluidity and diamond from inside the build tree, and many users do
just that with appropriate setting of variables. However, you may want to install at least diamond
if not the rest of the Fluidity package into the directory you had the option of specifying during the
configure stage.

There are three key commands to be aware of here.

The first is:

make install

This will install Fluidity and a full set of Fluidity tools into the directory you specified with ’pre-
fix’ during configuration. If you didn’t specify a directory there, it will try to install into the /usr
directory, which generally needs superuser privileges. If you get a lot of ’permission denied’ mes-
sages, you probably forgot to specify a prefix (or specified an invalid prefix) at configure time, and
the install is trying to write to a superuser-only or nonexistant directory.

Assuming you specified a prefix of \$HOME, Fluidity will install into directories such as bin/, lib/,
and share/ in your home directory.

Fluidity does not by default install diamond, the graphical configuration tool used to set up Fluidity.
If you do not already have a central installation of diamond on your computer, you may want to
install a copy of it into the directory you specified with ’prefix’ at configure time. To do this, run:

make install-diamond

which will install diamond into a bin/ directory inside your ’prefix’ directory. In the case we’ve
been working through, this would be your home directory. It will also install supporting python files
into a subdirectory of lib/.

To set up your environment for automatic running of diamond, you probably need to do three things.
For this process, we will assume you specified a prefix of \$HOME to configure.

First, set your path to automatically find the diamond program:

export PATH=$PATH:$HOME/bin

Next, run:

ls -d $HOME/lib/python*/site-packages/diamond

This should return something like:

/home/fred/lib/python2.6/site-packages/diamond

Copy all of the above apart from the trailing /diamond into the following command, so that you
type (for the above example):

export PYTHONPATH=$PYTHONPATH:/home/fred/lib/python2.6/site-packages

Finally, you should register Fluidity with diamond for your account by telling it where to find the
Fluidity schema, by typing:

make install-user-schemata

Note that this points to the current build tree that you are in; if you change the name of this build
tree, or move it, you will need to un the above command again to register the new location.

1.4 Running Fluidity 9

1.4 Running Fluidity

1.4.1 Running Fluidity in serial

To run Fluidity in serial use the following command:

<<fluidity source path>>/bin/fluidity foo.flml

Here, foo.flml is a Fluidity configuration file which defines the options for the model. These files
are covered in detail in Chapter 8 and are set up using a simple Graphical User Interface, Diamond.
See section 1.5 for more information on how to run Diamond.

There are other options that can be passed to the Fluidity executable. A full list can be obtained by
running:

<<fluidity source path>>/bin/fluidity

This will produce the following output:

Revision: 3575 lawrence.mitchell@ed.ac.uk-20110907125710-d44hcr4no0ev8icc
Compile date: Sep 7 2011 13:59:34
OpenMP Support no
Adaptivity support yes
2D adaptivity support yes
3D MBA support no
CGAL support no
MPI support yes
Double precision yes
CGNS support no
NetCDF support yes
Signal handling support yes
Stream I/O support yes
PETSc support yes
Hypre support yes
ARPACK support yes
Python support yes
Numpy support yes
VTK support yes
Zoltan support yes
Memory diagnostics no
FEMDEM support no
Hyperlight support no

Usage: fluidity [options ...] [simulation-file]

Options:
-h, --help

Help! Prints this message.
-l, --log

Create log file for each process (useful for non-interactive testing).
Sets default value for -v to 2.

-v <level>, --verbose
Verbose output to stdout, default level 0

-p, --profile
Print profiling data at end of run

10 Getting started

This provides aggregated elapsed time for coarse-level computation
(Turned on automatically if verbosity is at level 2 or above)

-V, --version
Version

Note that this also gives information on which version is being used, the build-time configuration
options used and a list of command-line options for Fluidity.

Running Fluidity will produce several output files. See Chapter 9 for more information.

1.4.2 Running Fluidity in parallel

Fluidity is a fully-parallel program, capable of running on thousands of processors. It uses the Mes-
sage Passing Interface (MPI) library to communicate information between processors. Running Flu-
idity in parallel requires that MPI is available on your system and is properly configured. The termi-
nology for parallel processing can sometime be confusing. Here, we use the term processor to mean
one physical CPU core and process is one part of a parallel instance of Fluidity. Normally, the number
of processors used matches the number of processes, i.e. if Fluidity is split into 256 parts, it is run on
256 processors.

To run in parallel one must first decompose the mesh. See section 6.6.4 for more information on how
to do this. Fluidity must then be run within the mpirun or mpiexec framework. Simply prepend the
normal command line with mpiexec:

mpiexec -n [PROCESSES] <<fluidity source path>>/bin/fluidity foo.flml

1.5 Running diamond

Diamond is the Graphical User Interface (GUI) by which a Fluidity simulation is configured. The
flml file that Fluidity uses is an XML file, which defines the meshes, fields and options for Fluidity.
Chapter 8 covers the options that are currently available. In addition, Diamond will display inline
help on options where available.

If the make command successfully completed, there will be an executable program diamond in the
bin/ directory. Running diamond is now as simple as typing:

<<fluidity source path>>/bin/diamond

If the make install command completed and a directory which executable programs were in-
stalled into to the PATH environment variable, one may also be able to run diamond simply by typing
diamond at the command line from any directory on your system. This may also be possible if the
Diamond package for Ubuntu or Debian is installed by running:

sudo apt-get install diamond

Note that installing Diamond on a system-wide basis will require superuser privileges on the system.

1.6 Working with the output

Once Fluidity has been built and run, result files will be generated, that will need visualising and
post-processing. These data are stored in VTK files, one per output dump. How these files can be
visualised and post-processed is covered in detail in chapter 9.

1.6 Working with the output 11

As well as visualisation, another important output resource is the stat file, described in detail in
section 9.4, which contains data from the model collected at run time.

See the AMCG website for more information.

http://amcg-www.ese.ic.ac.uk/

12 Getting started

Chapter 2

Model equations

2.1 How to navigate this chapter

This chapter covers the fluid and associated field equations modelled by Fluidity.

problem underlying equations boundary conditions other considerations
scalar advection 2.2.1, 2.2.1.1 2.2.2.1, 2.2.2.2
scalar advection-diffusion 2.2.1, 2.2.1.2 2.2.2.1, 2.2.2.2, 2.2.2.3
momentum equation 2.3 2.3.4.1, 2.3.4.2, 2.3.4.3, 2.3.4.4 2.4

The material covered in this chapter is dealt with in great detail in Batchelor [1967] and Landau and
Lifshitz [1987]. Cushman-Roisin [1994] is also a useful reference.

2.2 Advection–Diffusion equation

2.2.1 General equation

The general form the equation that governs the evolution of a scalar field c (e.g., passive tracer, species
concentration, temperature, salinity) is

∂c

∂t
+∇ · (uc) = ∇ · (κ∇c)− σc+ F, (2.1)

where u = (u, v, w)T is the velocity vector, κ is the diffusivity (tensor), σ is an absorption coefficient
(−σc is sometimes termed Rayleigh or linear friction) and F represents any source or reaction terms.

2.2.1.1 Advection

The advection term in (2.1), given by

∇ · (uc) = u · ∇c+ (∇ · u)c, (2.2)

expresses the transport of the scalar quantity c in the flow field u. Note that for an incompressible
flow ∇ · u = 0 (see section 2.3.3) resulting in the second term on the right hand side of (2.2) drop-
ping out. However, there may be numerical reasons why the discrete velocity field is not exactly

13

14 Model equations

divergence free, in which case this term may be included in the discretisation. Fluidity deals with the
advection term in the form

∇ · (uc) + (β − 1)(∇ · u)c, (2.3)

so that β = 1 corresponds to the conservative form of the equation and β = 0 to the non-conservative.

2.2.1.2 Diffusion

The diffusion term in (2.1), given by
∇ · (κ∇c), (2.4)

represents the mixing of c and may be due to molecular mixing of individual particles via Brownian
motion, or mixing via large scale (in comparison to the molecular scale) motion in the flow. For many
applications (2.4) can be written in simpler forms. Often, diffusion is isotropic giving κ = diag(κ, κ, κ)
and thus the diffusion term may be written as

∇ · (κ∇c) = κ∇ · ∇c = κ∇2c = κ∆c. (2.5)

In domains with high aspect ratio dynamics one often uses a smaller value of diffusivity in the ‘thin’
direction. For example, in the atmosphere or ocean we may choose a horizontal (eddy) diffusivity
κH and a vertical (eddy) diffusivity κV so that κ = diag(κH , κH , κV) with κV < κH . In this case the
diffusion term may be written as

∇ · (κ∇c) = κH

(
∂2c

∂x2
+
∂2c

∂y2

)
+ κV

∂2c

∂z2
. (2.6)

Note that the second-order terms defined above are often termed Laplacian diffusion.

2.2.1.3 Absorption, reaction and source terms

The absorption term in (2.1)
−σc, (2.7)

has the effect of decreasing the magnitude of c (note the minus sign and the fact that σ would typically
be positive). It is sometimes termed Rayleigh friction.

The remaining term in (2.1)
F =

∑
i

Fi, (2.8)

can encompasses a number of source and reaction terms. Those terms whereFi are a given function of
time, location or a-priori known fields are termed sources (and sometime sinks if they are negative).
Those terms which are also functions of other prognostic fields are termed reactions and are common
when dealing with chemistry or biology.

2.2.2 Scalar boundary conditions

To form a well-posed system upon which to attempt a numerical discretisation, the set of equations
(discussed above) describing the behaviour of the system must be supplemented with appropriate
boundary conditions.

2.2.2.1 Dirichlet condition for a scalar field

For a scalar field, c say, a Dirichlet condition on the boundary ∂Ω takes the form

c = c̃, on ∂Ω.

2.3 Fluid equations 15

2.2.2.2 Neumann condition for a scalar field

Taking the weak form (applying Green’s theorem to the diffusion term) of the advection-diffusion
equation (2.1) leads to a surface integral of the form∫

∂Ω
ϕ(κ∇c) · n dΓ,

where ϕ is a test function (see section 3). The Neumann condition is specified by assigning a value to
(κ∇c) · n, e.g.,

(κ∇c) · n = q, on ∂Ω,

and substituting in this surface integral to the discretised equation. Note that q is often termed a flux.

2.2.2.3 Robin condition for a scalar field

Taking the weak form (applying Green’s theorem to the diffusion term) of the advection-diffusion
equation (2.1) leads to a surface integral of the form∫

∂Ω
ϕ(κ∇c) · n dΓ,

where ϕ is a test function (see section 3). The Robin condition is specified by relating the surface
diffusive flux (κ∇c) · n to an ambient field value ca, with an associated surface transfer coefficient h.
This is given by the relationship

−(κ∇c) · n = h(c− ca), on ∂Ω,

where in general h and ca can vary spatially and temporally. This is substituted into the discretised
equation to give a surface absorption term given by hc and a surface source given by −hca.

2.3 Fluid equations

A starting point for describing the physics of a continuum are the conservation equations. Fluid vol-
umes deform in time as the fluid moves. If θ(x, t) is the density of some quantity (e.g., Temperature)
associated with the fluid, the time evolution of that quantity in a fluid volume V (t) is

d

dt

[∫
V (t)

θ(x, t)

]
=

∫
V (t)

(
Dθ

Dt
+ θ∇ · u

)
, (2.9)

which is the Reynolds’ Transport theorem. In (2.9) x = (x, y, z)T and u = (u, v, w)T are three-
dimensional position and velocity vectors respectively and

D

Dt
≡ ∂

∂t
+ u · ∇, (2.10)

is the material derivative (NB. it has many other commonly-used names including the total and La-
grangian derivative).

2.3.1 Mass conservation

Substituting θ = ρ in to (2.9) and noting that matter is neither created nor destroyed gives that the
left hand side of (2.9) is zero. Then, as the volume V (t) is arbitrary, it is seen that the mass density
satisfies

Dρ

Dt
= −ρ∇ · u, (2.11)

16 Model equations

or equivalently
∂ρ

∂t
+∇ · (ρu) = 0. (2.12)

The quantity ρu is called the mass flux or momentum and (2.12) is termed the equation of continuity.

2.3.2 Momentum conservation

The momentum associated with a unit volume of fluid is given by ρu. Initially, consider that the fluid
is ideal, that is, viscosity and conductivity are assumed to be unimportant. Then, the rate of change
of momentum is given by

∂

∂t
(ρu) = ρ

∂u

∂t
+
∂ρ

∂t
u. (2.13)

Using the equation of continuity (2.12) and Euler’s equation [Batchelor, 1967] (the force equation for
an inviscid fluid) in the form

∂u

∂t
= −u · ∇u− 1

ρ
∇p, (2.14)

gives
∂

∂t
(ρu) = −∇p−∇ · (ρuu), (2.15)

where uu is a tensor which represents the dyadic product of vectors which, using index notation,
can be written as uiuj . Writing Π = pI + ρuu, (2.15) can be written as

∂

∂t
(ρu) +∇ ·Π = 0, (2.16)

where Π is clearly a symmetric tensor and is termed the momentum flux density tensor.

The effects of viscosity on the motion of a fluid are now considered. To express the equations of
motion governing a viscous fluid, some additional terms are required. The equation of continuity
(conservation of mass) is equally valid for any viscous as well as inviscid fluid. However, Euler’s
equation (2.14) and hence (2.16) require modification.

By adding −τ to the previously introduced momentum flux density tensor, Π, so that

Π = pI + ρuu− τ = −σ + ρuu, (2.17)

where σ = −pI + τ , the viscous transfer of momentum in the fluid can be taken into account. σ is
called the stress tensor and gives the part of the momentum flux which is not due to direct transfer
of momentum with the mass of the fluid. τ is named the deviatoric or viscous stress tensor. These
tensors and the forms which they may take are discussed in more detail in section 2.3.3. Thus, the
most general form of the momentum equation of a compressible viscous fluid may be written as

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇ · σ + ρF , (2.18)

where F is a volume force per unit mass (e.g., gravity, astronomical forcing).

2.3.2.1 Compressible equations in conservative form

Using the conservation laws outlined above the following point-wise PDE system governing the
motion of a compressible fluid is obtained

2.3 Fluid equations 17

∂ρ

∂t
+∇ · (ρu) = 0, (2.19a)

∂

∂t
(ρu) +∇ · (ρuu− σ) = ρF , (2.19b)

∂

∂t
(ρE) +∇ · (ρEu− σu+ q) = ρF · u, (2.19c)

where E ≡ e+ |u|2/2 is the total specific energy (in which e is the internal energy). (2.19a) is exactly
the conservative form of the continuity equation given in (2.12), (2.19b) is equivalent to equation
(2.18) and (2.19c) is obtained from making the substitutions w = e+ p/ρ and E ≡ e+ |u|2/2 in (2.18).

2.3.2.2 Compressible equations in non-conservative form

Expanding terms in (2.19) yields the non-conservative form of the compressible equations1

Dρ

Dt
+ ρ∇ · u = 0, (2.20a)

ρ
Du

Dt
−∇ · σ = ρF , (2.20b)

ρ
De

Dt
− σ · ∇u+∇ · q = 0. (2.20c)

Note that, provided the fields (e.g., density and pressure) vary smoothly, that is, the fields are differ-
entiable functions, equations (2.19) and (2.20) are identical.

2.3.3 Equations of state & constitutive relations

Closure of the conservation equations requires an additional equation describing how the stress ten-
sor is related to density, temperature and any other state variables of relevance. In general, this rela-
tionship is dependent of the physical and chemical properties of the material in the domain; hence,
this relationship is known as the material model (note that in multi-material simulations a different
material model can and must be specified for each material).

It is convenient to separate the full stress tensor σ into an isotropic part, the pressure p, and a devi-
atoric part τ . With the convention that compressive stress is negative, the stress tensor is given by
σ = −pI + τ , where I is the identity matrix. If the stress tensor is separated in this way, the mate-
rial model comprises two parts: an equation of state2 f(p, ρ, T, . . .) = 0 relating density to pressure,
temperature, etc., and a constitutive relationship3 g(τ ,u) = 0.

2.3.3.1 Newtonian fluids

Two important classes of fluids are: (i) Newtonian fluids, where deviatoric strain rate
(
ε̇
)

is linearly

proportional to deviatoric stress (τ); and (ii) non-Newtonian fluids, where deviatoric strain rate is
non-linearly proportional to the deviatoric stress. At present Fluidity is only configured to deal with
Newtonian fluids.

1(2.20a) is trivial to obtain. (2.20b) makes use of (2.19a) and the divergence of the dyadic product, given by

∇ · (uu) = u · ∇u+ u∇ · u,

along with (2.10). (2.20c) makes use of both (2.20a) and (2.20b) and note that substituting for E ≡ e+ |u|2/2 results in the
cancellation of kinetic energy terms.

2Equation of state settings in Fluidity are described in section 8.10
3constitutive relationship settings in Fluidity are described in section (to be written)

18 Model equations

For a Newtonian fluid the relation between deviatoric stress and deviatoric strain rate can be ex-
pressed as:

τ = 2µε̇+ λ(∇ · u)I, (2.21)

where
ε̇ =

1

2
(∇u+ (∇u)T), (2.22)

is the deviatoric strain rate tensor, and I is the identity matrix. µ and λ are the two coefficients of
viscosity. Physical arguments yield the so-called Stokes’ relationship 3λ+ 2µ = 0, and hence:

τ = 2µ(ε̇− (∇ · u)I/3), (2.23)

where µ is the molecular viscosity. See Batchelor [1967] for further details.

2.3.3.2 Equation of state for incompressible flow

If a material is perfectly incompressible its density cannot change; in other words, the material density
is independent of pressure and temperature, giving ρ = ρ0, where ρ0 is the reference density. Note
that a flow may contain multiple incompressible materials of different densities, in which case ρk =
ρk0 applies for each individual material (indexed with the superscript k).

All real materials are compressible to some extent so that changes in pressure and temperature cause
changes in density. However, in many physical circumstances such changes in material density are
sufficiently small that the assumption of incompressible flow is still valid. If U/L is the order of
magnitude of the spatial variation in the velocity field, then the flow field can be considered incom-
pressible if the relative rate of change of density with time is much less than the spatial variation in
velocity; i.e., if 1

ρ
Dρ
Dt � U/L then [Batchelor, 1967, p.167].

∇ · u ≈ 0. (2.24)

The term incompressible flow is used to describe any such situation where changes in the density of
a parcel of material are negligible. Not all parcels in the flow need have the same density; the only
requirement is that the density of each parcel remains unchanged. For example, in the ocean where
salt content and temperature change with depth, the density of adjacent parcels changes but any one
parcel has a constant density Panton [2006]. In such cases it is often important to account for changes
in buoyancy caused by the dependence of density on pressure, temperature and composition C (see,
for example, section 2.4.3). If the change in ρ, p, T, C about a reference state ρ0, p0, T0, C0 is small,
the dependence of density on each state variable can be assumed to be linear. In this case, a general
equation of state takes the form

ρ = ρ0(1− α(T − T0) + β(C − C0) + γ(p− p0)), (2.25)

where α is the thermal expansion coefficient:

α = −1

ρ

∂ρ

∂T
,

β is a general compositional contraction coefficient

β =
1

ρ

∂ρ

∂C
, (2.26)

and γ is the isothermal compressibility

γ =
1

ρ

∂ρ

∂p
. (2.27)

2.3 Fluid equations 19

For ocean modelling applications the most important compositional variation is salinity S (the vol-
ume fraction of salt) and the compressibility of water γ is so small that the pressure dependence can
be neglected, giving the simple linear equation of state

ρ = ρ0(1− α(T − T0) + β(S − S0)), (2.28)

where β is the saline contraction coefficient (not to be confused with the beta plane parameters de-
fined in the section 2.4.1.)

2.3.3.3 Pade equation of state for ocean modelling

Within Fluidity it is also possible to relate the density of sea water to the in situ temperature and
salinity through the Padé approximation to the equation of state. This approximation offers an accu-
rate and computationally efficient method for calculating the density of seawater and is described by
McDougall et al. [2003].

2.3.4 Momentum boundary conditions

As with the scalar equations discussed previously in section 2.2, any well posed problem requires
appropriate boundary conditions for the momentum equation. Possible momentum boundary con-
ditions are discussed below.

2.3.4.1 Prescribed Dirichlet condition for momentum — no-slip as a special case

This condition for momentum is set by simply prescribing all three components of velocity. For
example, we might specify an inflow boundary where the normal component of velocity is non-zero,
but the two tangential directions are zero. A special case is where all three components are zero and
this is referred to as no-slip.

2.3.4.2 Prescribed stress condition for momentum — free-stress as a special case

As with the scalar equation (see section 2.2.2.2), applying Green’s theorem to the stress term and the
pressure gradient in (2.52a) results in a surface integral of the form

τ · n− pn = T , on ∂Ω, (2.29)

where T is an applied ‘traction’ force (actually a force per unit area or stress, it becomes a force when
the surface integral in the weak form is performed). An example of this might be were we set the
vertical component to zero (in the presence of a free surface) and impose the two tangential directions
(e.g., a wind stress).

The free-stress condition is the case where we take T ≡ 0.

2.3.4.3 Traction boundary condition for momentum — free-slip as a special case

In this case the normal component of velocity can be prescribed (e.g., inflow or no-flow (g = 0)
through the boundary)

u · n = g, on ∂Ω. (2.30)

The remaining two degrees of freedom are imposed by taking the tangential component of (2.29) and
specifying the tangential component of the force T τ , i.e.,

τ · (τ · n− pn) = τ · τ · n = T τ , on ∂Ω,

20 Model equations

An example of this might be where a rigid lid is used (so normal component is zero) and the tan-
gential components are a prescribed wind stress (in which case we take the two tangential directions
to correspond to the available stress or wind velocity information, i.e., east-west and north-south) or
bottom drag. The term free slip, is often used for the case where the tangential components of stress
are set to zero.

2.3.4.4 Free surface boundary condition

In the case of a free surface, the normal component of the velocity is related to the movement of
the free surface through the kinematic boundary condition. The free surface height η ≡ η(x, y, t) is
measured from the initial state of the fluid. The kinematic boundary condition is derived by stating
that a fluid particle following the flow at the free surface, should remain at the free surface. In other
words, its trajectory is described by t 7→ (x(t), y(t), η(x(t), y(t), t)). Its vertical velocity, w, should
therefore satisfy:

Dη

Dt
= uH · ∇Hη +

∂η

∂t
= w on Ω

where∇H ≡ (∂/∂x, ∂/∂y)T , and uH is the horizontal component of u. Using the fact that the normal
vector n at the free surface is (−∂η

∂x ,−
∂η
∂y , 1)T /‖(−∂η

∂x ,−
∂η
∂y , 1)‖, this can be reformulated to

∂η

∂t
=
u · n
n · k

, (2.31)

where k = (0, 0, 1) is the vertical normal vector. Note that in spherical geometries k is the radial
unit vector. Since this condition does not restrict the normal velocity, it simply prescribes what the
free surface movement is, we still need a stress condition in all directions, similar to equation (2.29).
The tangential components can be either free, T τ = 0, or given by a wind stress. For the normal
component, we get:

n · (τ · n− pn) = n · τ · n− p = −patm on ∂Ω. (2.32)

In ocean applications, the deviatoric part of the normal stress condition is usually neglected and a
simple Dirichlet pressure boundary condition p = patm is applied instead.

2.3.4.5 Wetting and drying

If wetting and drying occurs, the free surface boundary condition 2.31 needs to be changed to ensure
that the water level η does not sink below the bathymetry level b:

∂max(η, b+ d0)

∂t
=
u · n
n · k

, (2.33)

where d0 is a threshold defining the minimum water depth.

The details of the wetting and drying algorithm are described in Funke et al. [2011].

2.4 Extensions, assumptions and derived equation sets

In certain scenarios it is desirable to simplify the equations of sections 2.2 and 2.3 according to vari-
ous approximations. Such approximations can drastically reduce the complexity of the system under
consideration while maintaining much of the important physics. In this section we consider ap-
proximate forms and assumptions of the conservation equations that are appropriate to different
problems.

2.4 Extensions, assumptions and derived equation sets 21

Figure 2.1: Schematic of coordinates in a frame rotating with a sphere. The rotation is about a vector
pointing from South to North pole. A point on the surface of the sphere x and its perpendicular
distance from the axes of rotation x⊥ are shown. The latitude of x is given by ϕ and the unit vectors
i, j and k represent a local coordinate axes at a point x in the rotating frame: i points Eastwards, j
points Northwards and k points in the radial outwards direction.

2.4.1 Equations in a moving reference frame

Newton’s second law holds in a fixed inertial reference frame, i.e., fixed with respect to the distant
stars. Examples of systems which one may wish to study with boundaries moving with respect to
this fixed inertial frame include translating and spinning tanks and the rotating Earth. For these
systems it is often convenient to rewrite the underlying equations within the moving frame. Extra
terms then need to be considered which account for the fact that the acceleration of a fluid parcel
relative to the moving reference frame is different to the acceleration with respect to the fixed inertial
frame, and the latter is the one which allows us to invoke Newton’s Laws. For useful discussions see
[Batchelor, 1967, Cushman-Roisin, 1994, Gill, 1982].

It is possible to form the equations with respect to a moving reference frame as long as the additional
force or acceleration term is included. In the case of a rotating frame that is just by replacing the
material derivative in the momentum equation by

Du

Dt
+ 2Ω× u, (2.34)

where Ω is the angular velocity vector of the rotating system.

Consider the Earth with a rotation vector in an inertial reference frame given by

Ω = (0, 0,Ω)T . (2.35)

In a local rotating frame of reference where the x-axis is oriented Eastwards, the y-axis is oriented
Northwards and the z-axis is the local upwards direction, the Earth’s rotation vector is expressed as

Ω = Ω cosϕ j + Ω sinϕ k ≡ Ω(0, cosϕ, sinϕ)T ,

22 Model equations

where ϕ is the latitude. The acceleration terms in the three momentum equations now have the form

Du

Dt
+2Ω cosϕ w − 2Ω sinϕ v,

Dv

Dt
+ 2Ω sinϕ u,

Dw

Dt
−2Ω cosϕ v.

2.4.1.1 The ‘traditional’ approximation

Define the Coriolis and reciprocal Coriolis parameters [Cushman-Roisin, 1994] respectively by

f = 2Ω sinϕ, f∗ = 2Ω cosϕ. (2.36)

Due to dimensional considerations it is is usual to drop the f∗ term and hence simply assume that

Ω = (0, 0, f/2)T , (2.37)

in the local frame of reference, i.e., only to consider the locally vertical component of the rotation
vector. This approximation, when taken along with the assumption of hydrostatic balance in the
vertical constitutes what is generally known as the traditional approximation in geophysical fluid
dynamics.

2.4.1.2 The f -plane and β-plane approximations

If the Coriolis parameter f is approximated by a constant value:

f = f0, (2.38)

this is termed the f -plane approximation, where f0 = 2Ω sinϕ0 at a latitude ϕ0. This is obviously
only an applicable approximation in a domain of interest that does not have large extent in latitude.

For slightly larger domains a more accurate approximation is to use

f = f0 + βy, (2.39)

where y is the local coordinate in the Northwards direction. Taking ϕ = ϕ0 + y/RE and expanding
(2.36) in a Taylor series yields

f = f0 + 2Ω cosϕ0
y

RE
+ . . . , β =

2Ω

RE
cosϕ0,

where RE ≈ 6378 km. Typical values of these terms are:

Ω =
2π

24× 60× 60
= 7.2722× 10−5rad s−1,

(NB. a sidereal day should be used to give a more accurate value of 7.2921× 10−5rad s−1) and

ϕ0 = 30 ϕ0 = 45 ϕ0 = 60
f0 7.2722e-05 1.0284e-04 1.2596e-04
β 1.9750e-11 1.6124e-11 1.1402e-11

2.4 Extensions, assumptions and derived equation sets 23

2.4.2 Linear Momentum

Newton’s second law states that the sum of forces applied to a body is equal to the time derivative
of linear momentum of the body, ∑

f = d(mu)/dt. (2.40)

Applying this law to a control volume4 of fluid and making use of equation 2.9 leads to the linear
momentum equation for a fluid which can be written as

∂

∂t

∫
V
ρudV = −

∫
S
uρu · ndA+

∫
V
F ρdV +

∫
S
σ · ndA, (2.41)

where V is the control volume, S is the surface of the control volume and n is the unit normal to the
surface of the control volume and F is a volume force per unit mass. Physically, 2.41 states that the
sum of all forces applied on the control volume is equal to the sum of the rate of change of momentum
inside the control volume and the net flux of momentum through the control surface. More details
regarding the derivation and properties of this equation can be found in Batchelor [1967].

2.4.3 The Boussinesq approximation

Under certain conditions, one is able to assume that density does not vary greatly about a mean
reference density, that is, the density at a position x can be written as

ρ(x, t) = ρ0 + ρ′(x, t), (2.42)

where ρ′ � ρ0. Such an approximation, namely, the Boussinesq approximation, involves two steps.
The first makes use of (2.24) — mass conservation thus becomes volume conservation and sound
waves are filtered. The second part of the Boussinesq approximation follows by replacing ρ by ρ0

in all terms of (2.18), except where density is multiplied by gravity (i.e., in the buoyancy term where
full density must be retained — these are the density variations that drive natural convection). This
yields

ρ0
Du

Dt
−∇ · σ = ρg + ρ0F , (2.43)

where the gravity term has been separated explicitly from the forcing term F and g is the gravita-
tional vector (e.g. g = −gk in planar problems when gravity points in the negative z direction and
g = −gr on the sphere).

2.4.3.1 Buoyancy and hydrostacy

In absence of viscosity the vertical momentum equation can be written as:

Dw

Dt
= −∂p

∂z
+ ρg. (2.44)

If the fluid is in a state of rest, the left hand-side is zero, giving:

∂p

∂z
= −ρg (2.45)

This is known as hydrostatic balance. If the pressure ptop at the top of the domain is given, e.g., an
atmospheric pressure or a given ice load, the hydrostatic pressure can be computed as

p(x, y, z) = ptop(x, y) +

∫ η(x,y)

z=z
ρgdz, (2.46)

4The concept of a control volume and how they are defined within fluidity is discussed more in section 3.2.4

24 Model equations

where z = η(x, y) denotes the location of the top of the domain, e.g. a free surface. Here, we assume
a coordinate system with x and y in the horizontal and z in the vertical direction. The integral repre-
sents the weight of the water above a point at a given height z. For a constant density this simplifies
to:

p(x, y, z) = ptop(x, y) + ρg (η(x, y)− z) . (2.47)

If we consider the general case, that is not in hydrostatic balance and where the density is not con-
stant, but we have a small perturbation density ρ′, we may still write:

p(x, y, z) = p0(z) + p′(x, y, z) = −ρ0gz + p′(x, y, z). (2.48)

Here, we have separated the pressure p0 = −ρ0gz, due to the weight of a fluid of reference density
ρ0 below a reference level at z = 0 near the top, from a perturbation pressure p′. This perturbation
pressure still contains the hydrostatic pressure due to the perturbation density, and non-hydrostatic
parts of the pressure. In the case of a free surface at z = η, the additional weight of ρgη, that is not
taken into account in p0 is also included in p′.

By construction, the pressure gradient of p0 exactly balances ρ0g, the reference density part of the
gravity term

ρg = ρ0g + ρ′g (2.49)

We can therefore simply replace p by p′ in the pressure gradient term, if we subtract ρ0g from the
gravity term, to obtain a buoyancy term ρ′g.

2.4.3.2 Combining pressure and free surface

In many models with a free surface, the ρ0gη part of pressure (known in ocean models as barotropic
pressure), is subtracted from the pressure as well, and treated separately. Since this part still depends
on the horizontal coordinates, its 3D gradient does not simply balance with the buoyancy, and a
horizontal gradient ρ0g∇Hη remains, which is added as an extra term in the momentum equation in
such models. In Fluidity however, we keep this part in the perturbation pressure and it is therefore
solved for in conjunction with the non-hydrostatic parts of pressure.

In this approach, care has to be taken when applying boundary conditions. If a pressure boundary
condition of p = patm is enforced at z = η, then the boundary condition for the perturbation changes
to:

p′ = p+ ρ0z = patm + ρ0gη on ∂Ω. (2.50)

If a normal stress condition is applied, see (2.32), we similarly get:

−n · τ · n+ p′ = patm + ρ0gη on ∂Ω. (2.51)

2.4.3.3 The non-hydrostatic Boussinesq equations

Applying the approximations outlined in section 2.4.3 to (2.18) and (2.12), along with scalar transport
equations for salinity and temperature (see (2.1)) and an appropriate equation of state (see section
2.3.3), the three-dimensional non-hydrostatic Boussinesq equations can be written as

∂u

∂t
+ u · ∇u+ 2Ω× u = −∇p′ + ρ′g +∇ · τ + F , (2.52a)

∇ · u = 0, (2.52b)
∂T

∂t
+ u · ∇T = ∇.

(
κT∇T

)
, (2.52c)

∂S

∂t
+ u · ∇S = ∇.

(
κS∇S

)
, (2.52d)

f(p, ρ, T, . . .) = 0, (2.52e)

2.4 Extensions, assumptions and derived equation sets 25

where p′ is the perturbation pressure (see section 2.4.3.1), ρ = ρ0 + ρ′ where ρ′(= (ρ − ρ0)/ρ0) is
the perturbation density, T is the temperature, S is salinity, and τ , κT , κS are the viscosity, thermal
diffusivity and saline diffusivity tensors respectively. The rotation vector is Ω, and F contains addi-
tional source terms such as the astronomical tidal forcing. A discussion regarding the validity of the
Boussinesq approximation is given in Gray [1976]

2.4.4 Supplementary boundary conditions and body forces

2.4.4.1 Bulk parameterisations for oceans

In order to simulate real-world ocean scenarios, realistic boundary conditions for the momentum,
freshwater and heat fluxes must be applied to the upper ocean surface. Fluidity can apply such
boundary conditions in the form of the bulk formulae of Large and Yeager [2004], COARE 3.0 [Fairall
et al., 2003] and Kara et al. [2005] in combination with the ERA-40 reanalysis data [Uppala et al., 2005].

Three surface kinematic fluxes calculated: heat – 〈wθ〉, salt – 〈ws〉, and momentum – 〈wu〉 and 〈wv〉,
which can be related to the surface fluxes of heat Q, the freshwater F , and the momentum −→τ =
(τu, τv), via:

〈wθ〉 = Q (ρCp)
−1 (2.53)

〈ws〉 = F
(
ρ−1S0

)
(2.54)

(〈wu〉, 〈wv〉) = −→τ ρ−1 = (τu, τv) ρ
−1 (2.55)

where ρ is the ocean density, Cp is the heat capacity (4000 JkS−1K−1) and S0 is a reference ocean
salinity, which is the current sea surface salinity. These fluxes are then applied as upper-surface
Neumann boundary conditions on the appropriate fields.

2.4.4.2 Co-oscillating boundary tides

Boundary tides can be applied to open ocean domain boundaries through setting a Dirichlet condi-
tion on the non-hydrostatic part of the pressure. Co-oscillating tides are forced as cosine waves of
specified phase and amplitude along designated boundaries:

h =
∑
i

Ai cos(σit− ϕi) +
∑
j

Aj cos(σjt− ϕj) +
∑
k

Ak cos(σkt− ϕk), (2.56)

where h is the free surface height (m), A is the amplitude of the tidal constituent (m), t is the time (s),
ϕ is the phase of the tidal constituent (radians) [Wells, 2008].

The nature of the co-oscillating tide can take the form of either one fixed cosine wave of constant
amplitude and phase applied across the entire length of the boundary, or it can be variable as de-
limited via an interpolation of different amplitudes and phases at a series of points spread along the
boundary [Wells, 2008]. Within Fluidity, co-oscillating boundary tides can be applied through e.g.,
the FES2004 data set (see 10.11).

2.4.4.3 Astronomical tides

Astronomical forcing can also be applied to a fluid as a body force5. The astronomical tidal potential
is calculated at each node of the finite element mesh using the multi-constituent equilibrium theory

5Note that use of the word body force in this context should not be confused with the application of a body force through
the options tree discussed later in 8. The astronomical forcing is applied separately.

26 Model equations

of tides equation:

ηeq (λ, θ, t) = sin2 θ
∑
i

Ai cos (σit+ χi + 2λ)

+ sin 2θ
∑
j

Aj cos (σjt+ χj + λ) (2.57)

+
(
3 sin2 θ − 2

)∑
k

Ak cos (σkt+ χk) ,

where ηeq is the equilibrium tidal potential (m), λ is the east longitude (radians), θ is the colatitude
[(π/2)− latitude], χ is the astronomical argument (radians), σ is the frequency of the tidal constituent
(s-1), t is universal standard time (s) and A is the equilibrium amplitude of the tidal constituent (m).
Subscript i represents the semidiurnal constituents (e.g. M2), subscript j the diurnal constituents (e.g.,
K1) and subscript k the long period constituents (e.g., Mf; Wells, 2008). The overall forcing is applied
as the product of the gradient of the resulting equilibrium tidal potential and the acceleration due
to gravity (g) [Mellor, 1996, Kantha and Clayson, 2000, Wells et al., 2007]. The multi-constituent
equilibrium theory of tides is flexible in that it enables astronomical tides to be forced as individual
constituents (e.g. M2 or S2) or as a combination of different constituents (e.g. M2 + S2) [Wells, 2008].

As there is no interest in calculating the tide for an exact date, the astronomical argument is typically
excluded from the multi-constituent theory of tides equation for ICOM applications meaning that all
satellites start at 0◦ latitude [Wells, 2008].

The astronomical tidal potential can be modified to account for the deformation of the solid Earth
(the body tide) if desired. The multi-constituent equilibrium theory of tides equation includes the
effects of the solid Earth deformation, adding this to the overall free surface height. This is fine when
validating model results against measurements that record the overall elevation of the Earth’s oceans
(e.g. satellite altimeter readings and surface tide gauges). If however, the model is validated against
measurements that do not include the effects of the Earth’s body tide such as with pelagic pressure
gauges, then a correction to the equilibrium tidal potential is required. This can be applied as:

η = (1 + k − h)ηeq, (2.58)

where η is the corrected tidal potential, ηeq is the uncorrected equilibrium tidal potential and k (0.3)
and h (0.61) are Love numbers (after Love, 1909). Both k and h are dimensionless measures of the
elastic behaviour of the solid Earth. k accounts for the enhancement to the Earth’s gravitational
potential brought about by the re-distribution of the Earth’s mass whereas h is a correction for the
physical distortion to the Earth’s surface [Pugh, 1987].

The exact values of k and h vary for different tidal constituents and the numbers shown are given
for the semidiurnal M2 constituent. Typical variations to k and h are less than 0.01 which corre-
sponds to a <1% change to the equilibrium tidal potential. These errors are sufficiently small that
the stated values are a suitable approximation to use in body tide corrections to the majority of tidal
constituents.

2.4.5 Multi-material simulations

The ability to differentiate between regions with distinct material properties is of fundamental impor-
tance in the modelling of many physical systems. Two different approaches exist for achieving this:
the multi-material approach and the multiphase approach. The multi-material approach is imple-
mented within Fluidity, and the multiphase approach (discussed in the next subsection) is currently
under development. In situations where the model can resolve physical mixing of immiscible ma-
terials, or where there is no mixing, only one velocity field (and hence one momentum equation) is
required to describe the flow of all materials. The multi-material approach, considers all materials to
be immiscible materials separated by a sharp interface.

2.4 Extensions, assumptions and derived equation sets 27

In a multi-material approach, the various forms of the conservation equations can be solved for mul-
tiple material flows if the point-wise mass density ρ in the equations is defined as the bulk density at
each point. If the flow comprises n materials and the volume fraction of the ith material is denoted
ϕi then the bulk density is given by:

ρ =

n∑
i=1

ϕiρi (2.59)

where ρi is the density of each material. For incompressible materials ρi = ρi0; for materials whose
density is defined by an equation of state (see section 2.3.3) ρi = f(p, T, S, . . .). Conservation of mass
at each point also requires that

n∑
i=1

ϕi = 1. (2.60)

In an n-material problem, the multi-material approach requires that n − 1 advection equations are
solved, to describe the transport of the volume fraction of all but one of the materials. The volume
fraction of the remaining material can be derived from the other volume fractions by

ϕn = 1−
n−1∑
i=1

ϕi. (2.61)

The transport of the ith volume fraction is given by

∂ϕi
∂t

+ u · ∇ϕi = 0, (2.62)

where the volume fraction field at time zero must be specified.

2.4.6 Multiphase simulations

Multiphase flows are defined by Prosperetti and Tryggvason [2007] to be flows in which two or more
phases of matter (solid, liquid, gas, etc) are simultaneously present and are allowed to inter-penetrate.
Simple examples include the flow of a fizzy drink which is composed of a liquid and a finite number
of gas bubbles, the transportation of solid sediment particles in a river, and the flow of blood cells
around the human body.

Further to the above definition, each phase is classed as either continuous or dispersed, where a con-
tinuous phase is a connected liquid or gas substance in which dispersed phases (comprising a finite
number of solid particles, liquid droplets and/or gas bubbles) may be immersed [Crowe et al., 1998].

To enable the mixing and inter-penetration of phases, a separate velocity field (and hence a separate
momentum equation) is assigned to each one and solved for. Extra terms are then included to account
for inter-phase interactions. Furthermore, the model currently assumes no mass transfer between
phases, incompressible flow, and a common pressure field p so that only one continuity equation is
used. The form of the governing equations depends on whether we are dealing with incompressible
or compressible flow.

2.4.6.1 Incompressible flow

For an incompressible multiphase flow, the continuity equation and momentum equation for phase
i (based on the derivation in Ishii [1975], written in non-conservative form) are:

N∑
i=1

∇ · (αiui) = 0, (2.63)

28 Model equations

αiρi
∂ui
∂t

+ αiρiui · ∇ui = −αi∇p+ αiρig +∇ ·
(
αiτ i

)
+ Fi, (2.64)

where ui, ρi, τ i and αi are the velocity, density, viscous stress tensor and volume fraction of phase i
respectively, and Fi represents the forces imposed on phase i by the other N − 1 phases. Details of
momentum transfer terms are given in Chapter 8.

2.4.6.2 Compressible flow

Fluidity currently only supports the case where the continuous phase is compressible. All other
phases (the dispersed phases) are incompressible. The momentum equation is the same as the one
given above, but the continuity equation becomes:

α1
∂ρ1

∂t
+∇ · (α1ρ1u1) + ρ1

(
N∑
i=2

∇ · (αiui)

)
= 0, (2.65)

where the compressible phase has an index of i = 1 here.

An internal energy equation may also need to be solved depending on the equation of state used for
the compressible phase. This is given by:

αiρi
∂ei
∂t

+ αiρiui · ∇ei = −p∇ · (αiui) +Qi (2.66)

where ei is the internal energy and Qi is an inter-phase energy transfer term described in Chapter 8.

2.4.7 Porous Media Darcy Flow

2.4.7.1 Single Phase

In this section the single phase porous media Darcy flow equations that Fluidity can model are de-
scribed.

The force balance for single phase Darcy flow in a porous media is given by:

σuϕ = −∇P + ρg, (2.67)

where σ is the velocity absorption coefficient tensor, uϕ is the is the single phase Darcy velocity, P is
the pressure, ρ the density and g the gravity vector. The single phase Darcy velocity uϕ is given by:

uϕ = uϕ, (2.68)

where u is the interstitial velocity and ϕ the porosity. The absorption coefficient tensor σ, assuming
that it is diagonal, is given by:

σii =
µ

Kii

, (2.69)

where i is a spatial dimension, µ is the viscosity (assumed isotropic) and K is the porous media
permeability tensor (assumed to be diagonal).

For single phase incompressible flow the global continuity equation is given by:

∇ · uϕ = −∂ϕ
∂t
, (2.70)

which is reduced to∇ ·uϕ = 0 for a temporally constant porosity (which is what is currently permit-
ted).

2.4 Extensions, assumptions and derived equation sets 29

The general form of the transport equation (ignoring the diffusion, absorption and source terms) for
a scalar field (2.1) is modified such as to be given by:

∂ϕc

∂t
+∇ · (uϕc) = 0, (2.71)

which is reduced to
ϕ
∂c

∂t
+∇ · (uϕc) = 0 (2.72)

for a temporally constant porosity.

30 Model equations

Chapter 3

Numerical discretisation

3.1 Introduction & some definitions

This chapter covers the numerical discretisation of the model equations given in the previous chapter
as they are assembled and solved in Fluidity. For a more general introduction into finite element
theory we refer to a.o. Elman et al. [2005] and Gresho and Chan [1988].

In this chapter we define the domain we are solving over as Ω. The boundary to Ω is defined as ∂Ω
and can be split into different sections, e.g. ∂Ω = ∂ΩN ∪ ∂ΩR ∪ ∂ΩD where ∂ΩN is that part of the
boundary over which Neumann conditions are applied, ∂ΩR is the part of the boundary over which
Robin conditions are applied and ∂ΩD is that part of the boundary over which Dirichlet conditions
are applied. For clarity a subscript showing the field in question will be given on the N , R and D
characters.

The unit vector n is always assumed to be the outward facing normal vector to the domain. In
the following this notation is used to describe both the normal vector at the boundary and between
elements in the interior.

3.2 Spatial discretisation of the advection-diffusion equation

The advection-diffusion equation for a scalar tracer c, is given in conservative form by

∂c

∂t
+∇ · (uc)−∇ · κ · ∇c = 0. (3.1)

We now define a partition of the boundary such that ∂Ω = ∂ΩN ∪ ∂ΩR ∪ ∂ΩD, and impose boundary
conditions on c:

n · κ · ∇c = gNc on ∂ΩNc , (3.2)

−n · κ · ∇c = h(c− ca) on ∂ΩRc , (3.3)

c = gDc on ∂ΩDc . (3.4)

3.2.1 Continuous Galerkin discretisation

The Continuous Galerkin method (often abbreviated to CG, not to be confused with Conjugate Gra-
dient methods), is a widely used finite element method in which the solution fields are constrained
to be continuous between elements. The fields are only assumed to be C0 continuous, that is to say
there is no assumption that the gradient of a field is continuous over element boundaries.

31

32 Numerical discretisation

3.2.1.1 Weak form

Development of the finite element method begins by writing the equations in weak form. The weak
form of the advection-diffusion equation (here presented in conservative form) is obtained by pre-
multiplying it with a test function ϕ and integrating over the domain Ω, such that∫

Ω
ϕ

(
∂c

∂t
+∇ · (uc)−∇ · κ · ∇c

)
= 0. (3.5)

Integrating the advection and diffusion terms by parts yields∫
Ω
ϕ
∂c

∂t
−∇ϕ · uc+∇ϕ · κ · ∇c+

∫
∂Ω
ϕ(n · uc− n · κ · ∇c) = 0. (3.6)

For simplicity sake let us first assume the boundaries are closed (u · n = 0) and we apply a homoge-
neous Neumann boundary condition everywhere, such that ∂c/∂n = 0, which gives∫

Ω
ϕ
∂c

∂t
−∇ϕ · uc+∇ϕ · κ · ∇c = 0. (3.7)

Note that due to the Neumann boundary condition the boundary term has dropped out. The tracer
field c is now called a weak solution of the equations if (3.7) holds true for all ϕ in some space of test
functions V . The choice of a suitable test space V is dependent on the equation (for more details see
Elman et al. [2005]).

An important observation is that (3.6) only contains first derivatives of the field c, so that we can
now include solutions that do not have a continuous second derivative. For these solutions the
original equation (2.52c) would not be well-defined. These solutions are termed weak as they do not
have sufficient smoothness to be classical solutions to the problem. All that is required for the weak
solution is that the first derivatives of c can be integrated along with the test function. A more precise
definition of this space, the Sobolev space, can again be found Elman et al. [2005].

3.2.1.2 Finite element discretisation

Instead of looking for a solution in the entire function (Sobolev) space, in finite element methods
discretisation is performed by restricting the solution to a finite-dimensional subspace. Thus the
solution can be written as a linear combination of a finite number of functions, the trial functions ϕi
that form a basis of the trial space, defined such that

c(x) =
∑
i

ciϕi((x)).

The coefficients ci can be written in vector format. The dimension of this vector equals the dimension
of the trial space. In the sequel any function in this way represented as a vector will be denoted as c.

Since the set of trial functions is now much smaller (or rather finite as opposed to infinite-
dimensional), we also need a much reduced set of test functions for the equation in weak form (3.7)
in order to find a unique solution. A common choice is, in fact, to choose the same test and trial space.
Finite element methods that make this choice are referred to as Galerkin methods — the discretisation
can be seen as a so called Galerkin projection of the weak equation to a finite subspace.

There are many possibilities for choosing the finite-dimensional trial and test spaces. A straight-
forward choice is to restrict the functions to be polynomials of degree n 6 N within each element.
These are referred to as PN discretisations. As we generally need functions for which the first deriva-
tives are integrable, a further restriction is needed. If we allow the functions to be any polynomial
of degree n 6 N within the elements the function can be discontinuous in the boundary between
elements. Continuous Galerkin methods therefore restrict the test and trial functions to arbitrary

3.2 Spatial discretisation of the advection-diffusion equation 33

A

e

(a)

s

A

s

e

(b)

(c)

s

A

e

(d)

s

Ae

Figure 3.1: One-dimensional (a, b) and two-dimensional (c, d) schematics of piecewise linear (a, c)
and piecewise quadratic (b, d) continuous shape functions. The shape function has value 1 at node
A descending to 0 at all surrounding nodes. The number of nodes per element, e, depends on the
polynomial order while the support, s, extends to all the elements surrounding node A.

polynomials that are continuous between the elements. Discontinuous Galerkin methods, that allow
any polynomial, are also possible but require extra care when integrating by parts (see section 3.2.3).

If we choose P1 as our test and trial functions, i.e., piecewise linear functions, within each element
we only need to know the value of the function at 3 points in 2D, and 4 points in 3D. In Fluidity
these points are chosen to be the vertices of the triangles (in 2D) or tetrahedra (in 3D) tessellating
the domain. For continuous Galerkin the continuity requirement then comes down to requiring the
functions to have a single value at each vertex. A set of basis functions ϕi for this space is easily
found by choosing the piecewise linear functions ϕi that satisfy:

ϕi(xi) = 1, ∀i
ϕi(xj 6=i) = 0, ∀i, j,

where xi are the vertices in the mesh. This choice of basis functions has the following useful property:

ci = c(xi), for all nodes xi in the mesh.

This naturally describes trial functions that are linearly interpolated between the values ci in the
nodes. Higher order polynomials can be represented using more nodes in the element (see Figure
3.1).

As discussed previously the test space in Galerkin finite element methods is the same as the trial
space. So for PN the test functions can be an arbitrary linear combination of the same set of basis
functions. To make sure that the equation we are solving integrates to zero with all such test func-
tions, all we have to do is make sure that the equation tested with the basis functions integrate to
zero. The discretised version of (3.7) therefore becomes∑

j

{∫
Ω
ϕiϕj

dcj
dt
−∇ϕi · uϕjcj +∇ϕi · κ · ∇ϕjcj

}
= 0, for all ϕi. (3.8)

34 Numerical discretisation

where we have substituted c =
∑

j ϕjcj . From this it is readily seen that we have in fact obtained a
matrix equation of the following form

M
dc

dt
+ A(u)c+ Kc = 0, (3.9)

where M,A and K are the following matrices

Mij =

∫
Ω
ϕiϕj , Aij = −

∫
Ω
∇ϕi · uϕj , Kij =

∫
Ω
∇ϕi · κ · ∇ϕj . (3.10)

3.2.1.3 Advective stabilisation for CG

It is well known that a continuous Galerkin discretisation of an advection-diffusion equation for an
advection dominated flow can suffer from over- and under-shoots which are qualitatively incorrect
errors. Furthermore, these overshoot errors are not localised: they can propagate throughout the
simulation domain and pollute the global solution [Hughes, 1987]. Consider a simple 1D linear
steady-state advection-diffusion problem for a single scalar c with a source term f :

u
∂c

∂x
− κ ∂

2c

∂x2
= f(x), (3.11)

or equivalently in weak form: ∫
Ω

{
ϕ

(
u
∂c

∂x
− f

)
+ κ

∂ϕ

∂x

∂c

∂x

}
= 0, (3.12)

where we have integrated by parts and applied the natural Neumann boundary condition ∂c/∂x =
0 on ∂Ω. Discretising (3.12) with a continuous Galerkin method leads to truncation errors in the
advection term equivalent to a negative diffusivity term of magnitude [Donea and Huerta, 2003]:

κ̄ = ξκPe, (3.13)

where:
ξ =

1

tanh(Pe)
− 1

Pe
, (3.14)

and:
Pe =

uh

2κ
, (3.15)

is a grid Péclet number, with grid spacing h.

This implicit negative diffusivity becomes equal to the explicit diffusivity at a Péclet greater than
one, and hence instability can occur for Pe > 1. In order to achieve a stable discretisation using a
continuous Galerkin method one is therefore required either to increase the model resolution so as to
reduce the grid Péclet number, or to apply advective stabilisation methods.

Balancing diffusion A simple way to stabilise the system is to add an extra diffusivity of equal
magnitude to that introduced by the discretisation of the advection term, but of opposite sign. This
method is referred to as balancing diffusion. Note, however, that for two or more dimensions, we re-
quire this balancing diffusion to apply in the along-stream direction only [Brooks and Hughes, 1982,
Donea and Huerta, 2003]. For this reason this method is also referred to as streamline-upwind sta-
bilisation. The multi-dimensional weak-form (assuming we consider non-conservative or advective
form) of equation (3.11) is: ∫

Ω

{
ϕ (u · ∇c− f) +∇ϕ · κ · ∇c− f)

}
= 0, (3.16)

3.2 Spatial discretisation of the advection-diffusion equation 35

is therefore modified to include an additional artificial balancing diffusion term [Donea and Huerta,
2003]: ∫

Ω
ϕ(u · ∇c+ κ∇ϕ · ∇c− f(x)) +

∫
Ω

κ

||u||2
(u · ∇ϕ)(u · ∇c) = 0. (3.17)

The exact form of the multidimensional stability parameter κ̄ is a research issue. See 3.2.1.3 for im-
plementations in Fluidity.

The addition of the balancing diffusion term combats the negative implicit diffusivity of the contin-
uous Galerkin method. However, we are no longer solving the original equation – for pure advec-
tion we are now solving a modified version of the original equation with the grid Péclet number
artificially reduced from infinity to unity everywhere. Hence streamline-upwind is not a consistent
stabilisation method, and there can be a reduction in the degree of numerical convergence.

Streamline-upwind Petrov-Galerkin (SUPG) The streamline-upwind stabilisation method can be
extended to a consistent (and hence high order accurate) method by introducing stabilisation in the
form of a weighted residual [Donea and Huerta, 2003]:∫

Ω
ϕ(u · ∇c+ κ∇ϕ · ∇c− f(x)) +

∫
Ω
τP (ϕ)R(ϕ) = 0,

where:
R(ϕ) = u · ∇c−∇ · κ∇c− f(x),

is the equation residual, τ is a stabilisation parameter and P (ϕ) is some operator. Note that this
is equivalent to replacing the test function in the original equation with ϕ̃ = ϕ + τP (ϕ). Looking
at equation (3.17), it can seen that the balancing diffusion term is equivalent to replacing the test
function for the advection term only with:

ϕ̃ = ϕ+
κ

||u||2
u · ∇. (3.18)

This suggests a stabilisation method whereby the test function in the advection-diffusion equation is
replaced with the test function in (3.18). This approach defines the streamline-upwind Petrov-Galerkin
(SUPG) method. The weighted residual formulation of this method guarantees consistency, and
hence preserves the accuracy of the method. Furthermore, while this method can still possess under-
and over-shoot errors in the presence of sharp solution gradients, these errors remain localised
[Hughes, 1987].

Stabilisation parameter Note that, as mentioned in 3.2.1.3, the choice of stabilisation parameter κ̄
is somewhat arbitrary. Fluidity implements [Brooks and Hughes, 1982, Donea and Huerta, 2003]:

κ̄ =
1

2

∑
ξiuihi, (3.19)

where ξ is defined in (3.14) and the summation is over the quadrature points of an individual element.
The grid spacings hi are approximated from the elemental Jacobian.

As an alternative, Raymond and Garder [1976] show that for 1D transient pure-advection a choice of:

κ̄ =
1√
15

∑
ξiuihi, (3.20)

minimises phase errors.

36 Numerical discretisation

Computing the ξ factor at quadrature points is potentially expensive due to the evaluation of a
hyperbolic-tangent (3.14). Sub-optimal but more computationally efficient approximations for ξ are
the critical rule approximation [Brooks and Hughes, 1982]:

ξ =

−1− 1/Pe Pe < −1

0 −1 6 Pe 6 1

1 + 1/Pe Pe > 1,

(3.21)

and the doubly-asymptotic approximation [Donea and Huerta, 2003]:

ξ =

{
Pe/3 |Pe| 6 3

sgn(Pe) otherwise.
(3.22)

Implementation limitations The SUPG implementation in Fluidity does not modify the test func-
tion derivatives or the face test functions. Hence the SUPG implementation is only consistent for
degree one elements with no non-zero Neumann, Robin or weak Dirichlet boundary conditions.

SUPG is considered ready for production use for scalar advection-diffusion equation discretisation,
but is still experimental for momentum discretisation.

3.2.1.4 Example

The following example considers pure advection of a 1D top hat of unit magnitude and width 0.25
in a periodic domain of unit size. The top hat is advected with a Courant number of 1/8. Figure 3.2
shows the solution after 80 timesteps using a continuous Galerkin discretisation. Figure 3.3 shows
the solution when streamline-upwind stabilisation is applied. Figure 3.4 shows the solution when
streamline-upwind Petrov-Galerkin is applied, using a stabilisation parameter as in (3.19).

Figure 3.2: Pure advection of a 1D top hat function in a periodic domain at CFL number 1/8 after 80
timesteps using a continuous Galerkin discretisation.

3.2 Spatial discretisation of the advection-diffusion equation 37

Figure 3.3: Pure advection of a 1D top hat function in a periodic domain at CFL number 1/8 after 80
timesteps using a continuous Galerkin discretisation with streamline-upwind stabilisation.

Figure 3.4: Pure advection of a 1D top hat function in a periodic domain at CFL number 1/8 af-
ter 80 timesteps using a continuous Galerkin discretisation with streamline-upwind Petrov-Galerkin
stabilisation.

3.2.2 Boundary conditions

In the derivation of (3.6) we have assumed a homogeneous Neumann boundary condition on all
boundaries. If we are considering all possible solutions c, the boundary term we have left out is∫

∂Ω
ϕ n · κ · ∇c. (3.23)

A natural way of imposing an inhomogeneous Neumann boundary condition

n · κ · ∇c = gN ,

where gN can be any prescribed function on the boundary ∂Ω, is to impose it weakly. This is done in
the same way as the weak form of the advection-diffusion equation was formed:∫

∂Ω
ϕ n · κ · ∇c =

∫
∂Ω
ϕ gN , for all ϕ. (3.24)

Thus (3.24) can be used to replace the missing boundary term (3.23) with an integral of ϕ gN over the
boundary.

38 Numerical discretisation

The Robin boundary condition
−n · κ · ∇c = h(c− ca),

where h and ca can be any prescribed function on the boundary ∂Ω, is also imposed weakly. As for
the Neumann boundary condition, weighting the Robin boundary condition with a test function and
integrating over the relevant domain boundary gives the weak form:

−
∫
∂Ω
ϕ n · κ · ∇c =

∫
∂Ω
ϕ h(c− ca), for all ϕ. (3.25)

Thus (3.25) can be used to replace the missing boundary term (3.23) with an integral of ϕ h(c − ca)
over the relevant part of the boundary. The two terms within the integral can be treated slightly
differently. The term ϕ hca is always included in the right hand side of the linear system. The term
ϕ hc is effectively a surface absorption term where any implicit contributions are included in the left
had side matrix, while any explicit contributions are included into the right hand side of the linear
system.

In a similar way, a weakly imposed Dirichlet boundary condition can be related to an integration by
parts of the advection term. Let us consider a pure advection problem (κ ≡ 0). The weak form of this
equation integrated by parts reads:∫

Ω
ϕ
∂c

∂t
− (∇ · ϕ u) c+

∫
∂Ω
ϕn · u c = 0.

The final (boundary) term can again be substituted with a weakly imposed boundary condition c =
gD. In this case however, for physical and consequently numerical reasons, we only want to impose
this on the inflow boundary, and the original term remains for the outflow boundary:∫

Ω
ϕ
∂c

∂t
− (∇ · ϕ u) c+

∫
∂Ω−

ϕn · u gD +

∫
∂Ω+

ϕn · u c = 0, (3.26)

where ∂Ω− and ∂Ω+ refer to respectively the inflow (n · u > 0) and outflow boundaries (n · u < 0).

It is to be noted that when we are applying boundary conditions weakly we still consider the full
set of test functions, even those that don’t satisfy the boundary condition. This means the discrete
solution will not satisfy the boundary condition exactly. Instead the solution will converge to the
correct boundary condition along with the solution in the interior as the mesh is refined.

An alternative way of implementing boundary conditions, so called strongly imposed boundary con-
ditions, is to restrict the trial space to only those functions that satisfy the boundary condition. In
the discrete trial space this means we no longer allow the coefficients ci that are associated with the
nodes xi on the boundary, to vary but instead substitute the imposed Dirichlet boundary condition.
As this decreases the dimension of the trial space, we also need to limit the size of the test space.
This is simply done by removing the test function ϕi associated with the nodes xi on the boundary,
from the test space. Although this guarantees that the Dirichlet boundary condition will be satisfied
exactly, it does not at all mean that the discrete solution converges to the exact continuous solution
more quickly than it would with weakly imposed boundary conditions. Strongly imposed boundary
conditions may sometimes be necessary if the boundary condition needs to be imposed strictly for
physical reasons.

3.2.3 Discontinuous Galerkin discretisation

Integration by parts can be used to avoid taking derivatives of discontinuous functions. When using
discontinuous test and trial functions (see Figure 3.5) however, neither the original advection equa-
tion, (3.6) with κ ≡ 0, nor the version (3.26) integrated by parts are well-defined. Within an element

3.2 Spatial discretisation of the advection-diffusion equation 39

e

(a)

A

s

e

(b)

s

A

(c)

e
A

s

(d)

e
A

s

Figure 3.5: One-dimensional (a, b) and two-dimensional (c, d) schematics of piecewise linear (a, c)
and piecewise quadratic (b, d) discontinuous shape functions. The shape function has value 1 at
node A descending to 0 at all surrounding nodes. The number of nodes per element, e, depends on
the polynomial order while the support, s, covers the same area as the element, e.

e however the functions are continuous, and everything is well defined. So within a single element
we may write

∫
e
ϕ
∂c

∂t
− (∇ · ϕ u) c+∇ϕ · κ · ∇c+

∫
∂e
ϕn̂ · u c− ϕ ̂n · κ · ∇c = 0, (3.27)

The hatted terms represent fluxes across the element facets, and therefore from one element to the
other. Due to the discontinuous nature of the fields, there is no unique value for these flux terms,
however the requirement that c be a conserved quantity does demand that adjacent elements make
a consistent choice for the flux between them. The choice of flux schemes therefore forms a critical
component of the discontinuous Galerkin method.

The application of boundary conditions occurs in the same manner as for the continuous Galerkin
method. The complete system of equations is formed by summing over all the elements. Assuming
weakly applied boundary conditions, this results in:

∑
e

{∫
e
ϕ
∂c

∂t
− (∇ · ϕ u) c+∇ϕ · κ · ∇c

+

∫
∂e∩∂ΩDc−

ϕn · u gD +

∫
∂e∩∂ΩDc+

ϕn · u c−
∫
∂e∩∂ΩDc

ϕn · κ · ∇c

+

∫
∂e∩∂ΩNc

ϕn · u c− ϕn · κ · ∇gN +

∫
∂e \∂Ω

ϕn̂ · u c− ϕ ̂n · κ · ∇c

}
= 0. (3.28)

40 Numerical discretisation

3.2.3.1 Discontinuous Galerkin advection

Consider first the case in which κ ≡ 0. In this case, equation (3.27) reduces to:∫
e
ϕ
∂c

∂t
− (∇ · ϕ u) c+

∫
∂e
ϕn̂ · u c = 0, (3.29)

and the question becomes, how do we represent the flux n̂ · u c ?

Fluidity supports two different advective fluxes for DG. Upwind and local Lax-Friedrichs. For each
flux scheme, there are two potentially discontinuous fields for which a unique value must be chosen.
The first is the advecting velocity u. The default behaviour is to average the velocity on each side of
the face. The velocity is averaged at each quadrature point so decisions on schemes such as upwind-
ing are made on a per-quadrature point basis. The second scheme is to apply a Galerkin projection
to project the velocity onto a continuous basis. This amounts to solving the following equation:∫

Ω
ψ̂ · û =

∫
Ω
ψ̂ · u, (3.30)

where the hatted symbols indicate that the quantity in question is continuous between elements. In
the following sections, û will be used to indicate the flux velocity, which will have been calculated
with one of these methods. Note that using the averaging method, û = u on the interior of each
element with only the inter-element flux differing from u while for the projection method, û and u
may differ everywhere.

Upwind Flux In this case, the value of c at each quadrature point on the face is taken to be the
upwind value. For this purpose the upwind value is as follows: if the flow is out of the element then
it is the value on the interior side of the face while if the flow is into the element, it is the value on
the exterior side of the face. If we denote the value of c on the upwind side of the face by cupw then
equation (3.29) becomes: ∫

e
ϕ
∂c

∂t
− (∇ · ϕ û) c+

∫
∂e
ϕn · û cupw = 0, (3.31)

Summing over all elements, including boundary conditions and writing cint to indicate flux terms
which use the value of c from the current element only, we have:∑

e

{∫
e
ϕ
∂c

∂t
− (∇ · ϕ û) c +

∫
∂e∩∂ΩDc−

n · û gD

+

∫
∂e∩∂ΩNc∩∂ΩDc+

n · û cint

+

∫
∂e\(∂ΩD∩∂ΩN)

n · û cupw

}
= 0.

(3.32)

Second integration by parts In Fluidity the advection term with upwinded flux may be subse-
quently integrated by parts again within each element. As this is just a local operation on the con-
tinuous pieces of c within each element, the new boundary integrals take the value of c on the inside
of the element, cint. On the outflow boundary of each element this means the cint cancels against
cupw (when the summation over all elements occurs). Writing ∂e− for the inflow part of the element
boundary, we therefore obtain:∑

e

{∫
e
ϕ
∂c

∂t
− ϕ û · ∇c +

∫
∂e−∩∂ΩDc−

n · û (gD − cint)

+

∫
∂e−\(∂ΩD∩∂ΩN)

n · û (cupw − cint)

}
= 0.

(3.33)

3.2 Spatial discretisation of the advection-diffusion equation 41

The difference cint− cupw on the inflow boundary remains, and is often referred to as a jump condition.
Note also that the boundary terms on the Neumann domain boundary and the outflow part of the
Dirichlet boundary (really also a Neumann boundary) have disappeared. Note that (3.32) and (3.33)
are completely equivalent. The advantage of the second form, referred to in Fluidity as “integrated-
by-parts-twice”, is that the numerical evaluation of the integrals (quadrature), may be chosen not
to be exact (incomplete quadrature). For this reason the second form may be more accurate as the
internal outflow boundary integrals are cancelled exactly.

Local Lax-Friedrichs flux The local Lax-Friedrichs flux formulation is defined in Cockburn and Shu
[2001, p208]. For the particular case of tracer advection, this is given by:

n̂ · u c =
1

2
n · û (cint + cext)−

C

2
cint − cext, (3.34)

where cext is the value of c on the exterior side of the element boundary and in which for each facet
s ⊂ ∂e:

C = sup
x∈s
|û · n|. (3.35)

3.2.3.2 Advective stabilisation for DG

As described by Cockburn and Shu [2001], the DG method with p-th order polynomials using an
appropriate Riemann flux (the upwind flux in the case of the scalar advection equation) applied to
hyperbolic systems is always stable and (p + 1)-th order accurate. However, Godunov’s theorem
states that linear monotone1 schemes are at most first-order accurate. Hence, for p > 0, we expect
the DG method to generate new extrema, which are observed as undershoots and overshoots for the
scalar advection equation. However, the DG method does have the additional property that if the
DG solution fields2 are bounded element-wise, i.e. at each element face a solution field lies between
the average value for that element and the average value for the neighbouring element on the other
side of the face, then the element-averaged DG field (i.e. the projection of the DG field to P0) does
not obtain any new minima. This result only holds if the explicit Euler timestepping method (or
one of the higher-order extensions, namely the Strongly Structure Preserving Runge-Kutta (SSPRK)
methods) is used. Hence, the DG field can be made monotonic by adjusting the solution at the end
of each timestep (or after each SSPRK stage) so that it becomes bounded element-wise. This is done
in a conservative manner i.e. without changing the element-averaged values. For P1 , only the slopes
can be adjusted to make the solution bounded element-wise, and hence the adjustment schemes are
called slope limiters.

Types of slope limiter There are two stages in any slope limiter. First all the elements which do
not currently satisfy the element bounded condition must be identified. Secondly, the slopes (and
possibly higher-order components of the solution) in each of these elements must be adjusted so that
they satisfy the bounded condition. In general, this type of adjustment has the effect of introducing
extra diffusion, and so it is important to (a) identify as few elements as possible, and (b) adjust the
slopes as little as possible, in order to introduce as little extra diffusion as possible. For high-order
elements, exactly how to do this is a very contentious issue but a few approaches are satisfactory for
low-order elements.

Vertex-based limiter This limiter, introduced in Kuzmin [2010], works on a hierarchical Taylor ex-
pansion. It is only currently implemented for linear elements. In this case, the DG field c in one

1A monotone scheme is a scheme that does not generate new extrema.
2For a system of equations this refers to the characteristic variables obtained from the diagonalisation of the hyperbolic

system.

42 Numerical discretisation

element e may be written as

c = c̄+ c′, c̄ =

∫
e cdV

V ol(e)
,

and the limiter replaces c with cL given by

c = c̄+ αc′,

finding the maximum value α > 0 such that at each vertex, c is bounded by the maximum and
minimum of the values of T at that vertex over all elements that share the vertex. This limiter has no
parameters, and is the currently recommended limiter.

Cockburn-Shu limiter This limiter, introduced in Cockburn and Shu [2001], only checks the el-
ement bounded condition at face centres. There is a tolerance parameter, the TVB factor, which
controls how sensitive the method is to the bounds (the value recommended in the paper is 5) and a
limit factor, which scales the reconstructed slope (the value recommended in the paper is 1.1). The
method seems not to be independent of scaling, and the paper assumes anO(1) field, so these factors
need tuning for other scalings.

Hermite-WENO limiter This limiter makes use of the Weighted Essentially Non-Oscillatory
(WENO) interpolation methods, originally used to obtain high-order non-oscillatory fluxes for fi-
nite volume methods, to reconstruct the solution in elements which do not satisfy the element-wise
bounded condition (sometimes referred to as “troubled elements”). The principle is the following:
if we try to reconstruct the solution as a p-th order polynomial in an element by fitting to the cell
average of the element and of some neighbouring elements, then if there is a discontinuity in the
solution within the elements used then the p-th order polynomial is very wiggly and will exceed its
bounds. The WENO approach is as follows:

1. Construct a number of polynomials approximations using various different combinations of
elements, each having the same cell-average in the troubled element.

2. Calculate a measure of the wiggly-ness of each polynomial (called an oscillation indicator).

3. The reconstructed solution is a weighted average of each of the polynomials, with the weights
decreasing with increasing oscillation indicator.

Thus if there is a discontinuity to one side of the element, the reconstructed solution will mostly use
information from the other side of the discontinuity. The power law relating the weights with the
oscillation indicators can be selected by the user, but is configured so that in the case of very smooth
polynomials, the reconstruction accuracy exceeds the order of the polynomials e.g. 5th order for 3rd
order polynomials.

In practise, making high order reconstructions from unstructured meshes is complicated since many
neighbouring elements must be used. If one also uses the gradients from the element and the direct
neighbours (Hermite interpolation) this is sufficient to obtain an essentially non-oscillatory scheme.
This is called the Hermite-WENO method. In this method applied to P1 , the complete set of approx-
imations used for the solution in an element are:

• The original solution in the element E.

• Solutions with gradient constructed from the mean value of the elementE and d other elements
which share a face with E. In 2D this is 3 solutions, and in 3D this is 4 solutions. Each of these
solutions has the same mean value as the original solution.

3.2 Spatial discretisation of the advection-diffusion equation 43

• Solutions with gradient the same as one of the d neighbouring elements. Each of these solutions
has the same mean value as the original solution.

This is a total of 2d+1 solutions which must be weighted according to their oscillator indicator value.

The advantage of using WENO (and H-WENO) reconstruction is that it preserves the order of the
approximation, and hence it is not quite so important to avoid it being used in smooth regions (other
limiters would introduce too much diffusion in those regions). However, reconstruction is numeri-
cally intensive and so to make H-WENO more computationally feasible, it must be combined with a
discontinuity detector which identifies troubled cells. It does not do too much damage to the solution
if the discontinuity detector is too strict i.e. identifies too many elements as troubled, but will reduce
the efficiency of the method.

3.2.3.3 Diffusion term for DG

In this section we describe the discretisation of the diffusion operator using discontinuous Galerkin
methods. We concentrate on solving the Poisson equation

∇2c = f, (3.36)

although this can easily be extended to the advection-diffusion and momentum equations by re-
placing f with the rest of the equation. Discretising the Poisson equation (3.36) using discontinu-
ous Galerkin is a challenge since discontinuous fields are not immediately amenable to introducing
second-order operators (they are best at advection): the treatment of the diffusion operator is one of
the main drawbacks with discontinuous Galerkin methods. The standard continuous finite element
approach is to multiply equation (3.36) by a test function and integrate the Laplacian by parts, lead-
ing to integrals containing the gradient of the trial and test functions. In DG methods, since the trial
and test functions contain discontinuities, these integrals are not defined. There are two approaches
to circumventing this problem which have been shown to be essentially equivalent in Arnold et al.
[2002], which we describe in this section.

The first approach, which leads to the class of interior penalty methods, is to integrate the Laplacian
by parts separately in each element (within which the functions are continuous), and the equations
become ∑

e

(
−
∫
e
∇ϕδ · ∇cδ +

∫
∂e
ϕδn · ∇cδ

)
=
∑
e

∫
e
ϕδf δ, (3.37)

where e is the element index
∫
e indicates an integral over element e,

∫
∂e indicates an integral over the

boundary of e, ϕδ is the DG test function, cδ is the DG trial function, and f δ is the DG approximation
of f . The next step is to notice that for each facet (face in 3D, edge in 2D or vertex in 1D) there is a
surface integral on each side of the facet, and so equation (3.37) becomes

−
∑
e

∫
e
∇ϕδ · ∇cδ +

∑
Γ

∫
Γ
[[∇cδϕδ]] =

∑
e

∫
e
ϕδf δ, (3.38)

where Γ is the facet index,
∫

Γ indicates an integral over facet Γ, and the jump bracket [[vδ]] measures
the jump in the normal component of vδ across Γ and is defined by

[[vδ]] = vδ|e+ · n+ + vδ|e− · n−,

where e+ and e− are the elements on either side of facet Γ, vδe± is the value of the vector-valued
DG field vδ on the e± side of Γ, and n± is the normal to Γ pointing out of E±. The problem with
this formulation is that there is still no communication between elements, and so the equation is
not invertible. The approximation is made consistent by making three changes to equation (3.38).

44 Numerical discretisation

Firstly, in the facet integral, the test function ϕδ (which takes different values either side of the face)
is replaced by the average value, {ϕδ} defined by

{ϕδ} =
ϕδ|E+ + ϕδ|E−

2
,

leading to

−
∑
e

∫
e
∇ϕδ · ∇cδ +

∑
Γ

∫
Γ
[[∇cδ]]{ϕδ} =

∑
e

∫
e
ϕδf δ. (3.39)

Secondly, to make the operator symmetric (required for adjoint consistency, also means that the con-
jugate gradient method can be used to invert the matrix), an extra jump term is added, leading to

−
∑
e

∫
e
∇ϕδ · ∇cδ +

∑
Γ

∫
Γ
[[∇cδ]]{ϕδ}+ {cδ}[[∇ϕδ]] =

∑
e

∫
e
ϕδf δ. (3.40)

Note that this symmetric averaging couples together each node in element e with all the nodes in the
elements which share facets with element e. Thirdly, a penalty term is added which tries to reduce
discontinuities in the solution, and the discretised equation becomes

−
∑
e

∫
e
∇ϕδ · ∇cδ +

∑
Γ

∫
Γ
[[∇cδ]]{ϕδ}+ {cδ}[[∇ϕδ]] + α(ϕδ, cδ) =

∑
e

∫
e
ϕδf δ, (3.41)

where α(·, ·) is the penalty functional which satisfies the following properties:

1. Symmetry: α(cδ, ϕδ) = α(ϕδ, cδ).

2. Positive semi-definiteness: α(cδ, cδ) > 0.

3. Continuity-vanishing: α(cδ, cδ) = 0 when cδ is continuous across all facets.

4. Discontinuity-detecting: α(cδ, cδ) increases as the discontinuities across facets increase.

The form of equation (3.41) is called the primal form. Note that, due to the continuity-vanishing
property, equation (3.41) is satisfied by the exact solution (which is always continuous) to the Poisson
equation, which is the required consistency condition. In defining the particular form of the penalty
functional α it is necessary to maintain a balance: if the functional penalises discontinuities too much
then the resulting matrix is ill-conditioned, if it penalises discontinuities too little then there is not
enough communication between elements and the numerical solution does not converge to the exact
solution. The particular form of α for the Interior Penalty method is described below.

The second approach (the Local Discontinuous Galerkin (LDG) framework [Cockburn and Shu, 1998,
Sherwin et al., 2006] which leads to Bassi-Rebay and Compact Discontinous Galerkin methods) is to
introduce a vector field ξ, to rewrite the Poisson equation as a system of first-order equations

∇ · ξ = f, ξ = ∇c, (3.42)

and to finally eliminate the vector field ξ. This elimination is possible to do locally (i.e. only depend-
ing on the values of c in nearby elements) since the mass matrix for DG fields is block diagonal and so
the inverse mass matrix does not couple together nodes from different elements. For discontinuous
Galerkin methods, we introduce a discontinuous vector test functionwδ. Multiplication of equations
(3.42) by test functions, integrating over a single element E and applying integration by parts leads
to

−
∫
e
∇ϕδ · ξδ +

∫
∂e
ϕδn · ξ̂δ =

∫
e
ϕδf δ, −

∫
e
∇ ·wδcδ +

∫
∂e
n ·wδ ĉδ =

∫
e
wδ · ξδ. (3.43)

This form of the equations is called the dual form. The exact definition of the particular scheme

depends on how the surface values (fluxes) ξ̂
δ

and ĉδ are defined. The choice of these fluxes has

3.2 Spatial discretisation of the advection-diffusion equation 45

an impact on the stability (whether there are any spurious modes), consistency (whether the discrete
equation is satisfied by the exact solution), convergence (whether and how fast the numerical solution
approaches the exact solution), and sparsity (how many non-zero elements there are in the resulting
matrix). It is worth noting at this point that the method of rewriting the second-order operator as
a first-order system has some superficial connections with the discrete pressure projection method
for continuous finite element methods as described in Section 3.6.1. However, many of the ideas
do not carry over to the discontinuous Galerkin framework, for example, it is neither necessary nor
sufficient to reduce the polynomial order of ϕδ relative to the polynomial order of ξδ. The issues of
stability, consistency, convergence and sparsity for DG discretisations of the diffusion operator are
extremely subtle and there is an enormous literature on this topic; it remains a dangerous tar pit for
the unwary developer looking to invent a new DG diffusion operator discretisation.

It was shown in Arnold et al. [2002] (which is an excellent review of DG methods for elliptic prob-
lems) that numerical schemes obtained from this second approach can be transformed to primal form,
resulting precisely in discretisations of the form (3.41) with some particular choice of the functional
α. Hence, it is possible to describe the three options available in Fluidity together, in the following
subsections.

Interior Penalty The Interior Penalty method is a very simple scheme with penalty functional of
the form

α(ϕδ, cδ) =
∑

Γ

CΓ

∫
Γ
[[ϕδ]] · [[cδ]], (3.44)

where for a scalar function ϕδ, the jump bracket [[·]] is a vector quantity defined as

[[ϕδ]] = ϕδ|E+n+ + ϕδ|E−n−.

For convergence, the constant CΓ should be positive and proportional to h−1, where h is the element
edge length. This needs to be carefully defined for anistropic meshes.

Bassi-Rebay The scheme of Bassi-Rebay [Bassi and Rebay, 1997] is in some sense the most simple
choice within the LDG framework, in which the fluxes are just taken from the symmetric averages:

ξ̂δ = {ξδ}, ϕ̂δ = {ϕδ}.

This scheme was analysed in Arnold et al. [2002], and was shown to only converge in the following
rather weak sense: if the numerical solution and exact solution are projected to piecewise constant
(P0) functions then these projected solutions converge to each at order p+ 1, without this projection
they only converge at order p, where p is the polynomial order used in the DG element. Furthermore,
the Bassi-Rebay scheme has a very large stencil (large number of non-zero values in the resulting
matrix). For this reason, other more sophisticated flux choices have been investigated.

Compact Discontinuous Galerkin The Compact Discontinuous Galerkin (CDG) scheme Peraire
and Persson [2008] has a rather complex choice of fluxes based on “lifting operators” (see the paper
for more information). When transforming the equations to primal form, this choice of flux results
in a sophisticated penalty function with two terms. The first term exactly cancels part of the flux
integrals in equation (3.41) so that all of the symmetric fluxes using the averaging bracket {·} are re-
placed by the flux evaluated on one particular (arbitrarily chosen) side of the facet (there are various
schemes for making this choice). The second term only couples together nodes which share the same
facet. Both of these terms result in a much smaller stencil than for the Bassi-Rebay scheme in particu-
lar and other LDG schemes in general. Furthermore, the scheme is observed to be stable, consistent,
and optimally convergent (numerical solutions converge at order (p + 1)). The scheme optionally
includes the interior penalty term from equation (3.44), but the constant may be independent of h.

46 Numerical discretisation

e

(a)

s

A

(b)

e
A

s

Figure 3.6: One-dimensional (a) and two-dimensional (b) schematics of piecewise constant, element
centred shape functions. The shape function has value 1 at node A and across the element, e, de-
scending to 0 at the element boundaries. As with other discontinuous shape functions, the support,
s, coincides with the element, e.

This term only appears to be necessary for the mathematical proofs of stability and convergence since
in practise good results are obtained without this term (in fact the results are usually more accurate
without this term). Since the penalty term has only one tunable constant (which may be set to zero)
with does not depend on h, this makes the CDG scheme very attractive for anisotropic elements,
including large aspect ratio meshes such as those used in large scale ocean modelling.

3.2.4 Control volume discretisation

Finite volume discretisations may be thought of as the lowest order discontinuous Galerkin method,
using piecewise constant shape functions (see Figure 3.6). In Fluidity this type of element centred dis-
cretisation is handled through the discontinuous Galerkin method, however the model also supports
an alternative finite volume discretisation referred to as a control volume (CV) discretisation.

The control volume discretisation uses a dual mesh constructed around the nodes of the parent finite
element mesh. In two dimensions this is constructed by connecting the element centroids to the
edge midpoints while in three dimensions the face centroids are also introduced. For cube meshes
(quadrilaterals in 2D and hexahedra in 3D) this produces a staggered mesh of the same type. For
simplex meshes this process produces complex polyhedra (see Figures 3.7 and 3.8).

Once the dual control volume mesh has been defined, it is possible to discretise the advection-
diffusion equation (3.6) using piecewise constant shape functions within each volume, v (see Figure
3.9). However, as with the discontinuous Galerkin method the equation is only well defined when
integrated by parts within such a volume, v, allowing us to write:∫

v

∂c

∂t
+

∫
∂v
n̂ · u c− ̂n · κ · ∇c = 0, (3.45)

Note that the test function present in the previous discretisation sections, ϕ, can be dropped from the
equation as it is 1 everywhere within the volume v. Furthermore, terms involving the gradient of

3.2 Spatial discretisation of the advection-diffusion equation 47

A

(a)

centroid

(b)

A

edge midpoint

Figure 3.7: Comparison between (a) a two-dimensional finite volume simplex mesh and (b) the equiv-
alent control volume dual mesh (solid lines) constructed around a piecewise linear continuous finite
element parent mesh (dashed lines). In the finite volume mesh the nodes (e.g. A) are element centred
whereas in the control volume dual mesh the nodes are vertex based. In 2D the control volumes
are constructed around A by connecting the centroids of the neighbouring triangles to the edge mid-
points. See Figure 3.8 for the equivalent three-dimensional construction.

either ϕ or c can be dropped as both as constant functions. The boundary integral for the diffusivity
κ is a special case that will be dealt with in a later section.

As with the discontinuous Galerkin discretisation, the hatted terms represent fluxes across the vol-
ume facets: and therefore from one volume to the other. Due to the discontinuous nature of the fields,
there is no unique value for these flux terms, however the requirement that c by a conserved quantity
does demand that adjacent volumes make a consistent choice for the flux between them. The choice
of flux schemes therefore forms a critical component of the control volume method.

The application of boundary conditions occurs in the same manner as for the discontinuous Galerkin
method. The complete system of equations is formed by summing over all the volumes. Assuming
weakly applied boundary conditions, this results in:

∑
v

{∫
v

∂c

∂t
+

∫
∂v ∩∂ΩDc−

n · u gD +

∫
∂v ∩∂ΩDc+

n · u c−
∫
∂v ∩∂ΩDc

n · κ · ∇c

+

∫
∂v ∩∂ΩNc

n · u c− n · κ · ∇gN +

∫
∂v \∂Ω

n̂ · u c− ̂n · κ · ∇c

}
= 0. (3.46)

3.2.4.1 Control Volume advection

Consider first the case in which κ ≡ 0. In this case, equation (3.45) reduces to:∫
v

∂c

∂t
+

∫
∂v
n̂ · u c = 0, (3.47)

and the question becomes, how do we represent the flux n̂ · u c ?

Fluidity supports multiple different advective fluxes for CV. Unlike with DG the advection velocity u
is always well-defined at the control volume facets owing to the fact that they cross through the centre

48 Numerical discretisation

tetrahedron centroid

face centroid

edge midpoint

Figure 3.8: The six dual control volume mesh faces within a piecewise linear tetrahedral parent mesh
element. Each face is constructed by connecting the element centroid, the face centroids and the edge
midpoint.

of the elements of the parent mesh where the velocity is continuous. Therefore it is only necessary to
describe how the face value of c is defined.

In the following paragraphs we will refer to the donor or central value, cck , and the downwind value,
cdk . These are associated with facet k of the control volume dual mesh and are defined depending on
the direction of the flux across that facet. If the flow across facet k is exiting volume v, i.e. n ·u|k > 0,
then the donor value, cck is the value in the volume, cv and the downwind value, cdk is the value in
the volume that the flux is entering. Similarly if the flow is entering the volume v, i.e. n ·u|k < 0, then
the donor value, cck , is the value from the neighbouring control volume while the downwind value,
cdk , is the value in the volume, cv. By default only first order quadrature is performed on the control
volume facets, however if higher order control volume facet quadrature is selected then k refers to
each quadrature point on the facet.

First Order Upwinding In this case, the value of c at each quadrature point on each facet is taken
to be the donor value, cck . Then (3.47) becomes:∫

v

∂c

∂t
+
∑
k

∫
∂vk

n · u cck = 0. (3.48)

First order upwinding is stable in the sense of boundedness, assuming an appropriate temporal dis-
cretisation is selected, it is however very diffusive so normally a higher order but less stable face
value scheme is selected.

Trapezoidal In this case, the average of the donor and downwind values,
cck+cdk

2 , is taken as the
value of c at each facet. This is generally unstable regardless of the temporal discretisation chosen so
requires limiting (see below).

Finite Element Interpolation In this case, the value of c at each quadrature point of the facet is
interpolated using the finite element basis functions on the parent mesh. This is possible as the
nodes of both the dual and parent meshes are co-located. Like the trapezoidal face value this method
is also generally unstable so normally requires limiting (see below).

3.2 Spatial discretisation of the advection-diffusion equation 49

A

s

(a)

v

A

(b)

v

s

v

s

(c)

A

(d)

s

Av

Figure 3.9: One-dimensional (a, b) and two-dimensional (c, d) schematics of piecewise constant con-
trol volume shape functions and dual meshes based on the parent (dashed lines) linear (a, c) and
quadratic (b, d) finite element meshes. The shape function has value 1 at node A descending to 0 at
the control volume boundaries. The support, s, coincides with the volume, v.

First Order Downwinding In this case, the value of c at each quadrature point of the facet is set to
the downwind value, cdk . First order downwinding is unconditionally unstable and is intended for
demonstration purposes only.

Face Value Limiting As noted above, several of the face value schemes above result in unstable, un-
bounded advective fluxes. To compensate for this it is possible to limit the face value in an attempt
to maintain boundedness. This requires an estimate of the upwind flux entering the control volume
so we introduce a new value, cuk , for the value upwind of the donor volume, cck . On a fully unstruc-
tured mesh this value is not directly available so instead it must be estimated. For cube meshes the
default behaviour is to estimate the upwind value from the minimum or maximum of the surround-
ing nodes depending on the gradient between the donor and downwind values. On simplex meshes
Fluidity defaults to more accurate schemes that project the value at the upwind position based on all
the nodes in the parent element immediately upwind of the donor node (see Figure 3.10(a)). As this
value is not necessarily bounded itself it is also possible to bound it so that it falls within the values
of the upwind element. Additionally, on a boundary it is possible to reflect the upwind value back
into the domain (see Figure 3.10(b)), which may be more appropriate.

Once an upwind value, cuk , is available it is possible to estimate whether the chosen face value, cfk ,
will cause the solution to become unbounded. Fluidity uses a normalised variable diagram [NVD,
Waterson and Deconinck, 2007, Wilson, 2009] based scheme to attempt to enforce a total variation
diminishing [TVD, LeVeque, 2002] definition of boundedness. First, a normalised donor value:

c̄ck =
cck − cuk
cdk − cuk

, (3.49)

and a normalised face value:
c̄fk =

cfk − cuk
cdk − cuk

, (3.50)

50 Numerical discretisation

cuk

ũini
cdkcck

c∗uk

(a)
(b)

cck
c∗uk

cuk

cdk

ũini

Figure 3.10: Calculation of the upwind value, cuk , on an unstructured simplex mesh (a) internally and
(b) on a boundary. The control volume mesh is shown (solid lines) around the nodes (black circles)
which are co-located with the solution nodes of the parent piecewise linear continuous finite element
mesh (dashed lines). An initial estimate of the upwind value, c∗uk , is found by interpolation within
the upwind parent element. The point-wise gradient between this estimate and the donor node, cck ,
is then extrapolated the same distance between the donor and downwind, cdk , to the upwind value,
cuk .

are defined. These are then used to define the axes of the NVD. This has the advantage of dealing
with multiple configurations in a single coordinate system [NVD, Waterson and Deconinck, 2007,
Wilson, 2009].

Many face value limiting schemes can be implemented on the NVD [Leonard, 1991]. Fluidity pro-
vides two options: the Sweby [Sweby, 1984] and ULTIMATE [Leonard, 1991] limiters (see Figure
3.11).

Sweby Limiter The Sweby limiter [Sweby, 1984] defines a region on the NVD (shaded grey in
Figure 3.11(a)) that is considered bounded. Any combination of normalised face and donor values
falling within this region is left unchanged. Values falling outside this area are ‘limited’ along lines
of constant normalised donor value back onto the top or bottom of the stable region, or if they fall
outside the range 0 < c̄ck < 1, back to first order upwinding (represented by the diagonal line on a
NVD).

As an example the trapezoidal face value scheme is plotted as a dashed line in Figure 3.11(a). It only
crosses the Sweby limiter region for a small range of normalised donor values and it is only across
this range that the face value will not be limited. Outside of this range the trapezoidal face value
scheme is considered unstable and must be limited. This is akin to saying that the trapezoidal face
value scheme may only be used in regions where the solution is sufficiently smooth. In particular,
outside the range 0 < c̄ck < 1, the solution is already locally unbounded (in a TVD sense) and hence
only first order upwinding may be used to restore local boundedness.

ULTIMATE Limiter An alternative definition of the sufficiently smooth region of the NVD is pro-
vided by the ULTIMATE limiter [see Figure 3.11(b), Leonard, 1991]. This works using the same
principals as the Sweby limiter however the region defined as being stable now incorporates an up-
per bound that depends on the Courant number at the control volume face to the donor value, γcf .

3.2 Spatial discretisation of the advection-diffusion equation 51

-1 1

c̄fk = c̄ck

1

(a) Sweby Limiter - NVD

c̄ck

c̄fk = 1

c̄fk = 1
2 (c̄ck + 1)

c̄fk = 2c̄ck

c̄fk

-1 1

c̄fk = c̄ck

1

(b) ULTIMATE Limiter - NVD

c̄ck

c̄fk = 1

c̄fk = 1
2 (c̄ck + 1)

c̄fk

c̄fk =
c̄ck
γcf

Figure 3.11: The Sweby (a) and ULTIMATE (b) limiters (shaded regions) represented on a normalised
variable diagram (NVD). For comparison the trapezoidal face value scheme is plotted as a dashed
line in both diagrams. γ is the Courant number at the control volume face.

Hence the region expands and contracts depending on the Courant number, collapsing back entirely
to first order upwinding once a Courant number of one is attained. It is therefore principally designed
for explicit advection. In fact for explicit advection, with the correct control volume based definition
of the Courant number, this limiter exactly defines the total variation bounded region, guaranteeing
boundedness in that sense [Leonard, 1991, Després and Lagoutière, 2001].

HyperC HyperC uses the same principals as the ULTIMATE limiter but instead of limiting other
face value schemes using it, HyperC uses the NVD as a face value scheme directly [Leonard, 1991].
Given a donor, downwind and upwind value (and hence a normalised donor value) it simply uses the
upper boundary of the TVD zone to calculate the normalised face value (and hence a face value, see
Figure 3.12). For explicit advection, with the correct definition of the control volume based Courant
number, γcf , this scheme aims to produces a minimally diffusive advection scheme. It is however,
only intended for the advection of step-like functions as it results in distortion and staircasing of
smoother functions. Wilson [2009] discusses the implementation of HyperC in Fluidity and its exten-
sion to multiple dimensions.

UltraC Like HyperC, UltraC uses the NVD to define a face value directly. The difference is that is
uses a total variation bounded (TVB) rather than a total variation diminishing (TVD) definition of
boundedness. As with HyperC this aims to minimise numerical diffusion while advecting step-like
functions but will distort smoother fields.

UltraC can be represented on an NVD (see Figure 3.13(a)), where it is obvious that the bounded range
has been extended beyond TVD range used by HyperC, 0 < c̄ck < 1 (shown as a dotted line in Figure
3.13(a)). Instead it is now dependent on two new values: a target upwind value, ctu, and a target

52 Numerical discretisation

γck
-1 1

1

c̄ck

c̄fk = 1
c̄fk

c̄fk =
c̄ck
γcf

HyperC - NVD

c̄fk = c̄ck

Figure 3.12: The HyperC face value scheme represented on a normalised variable diagram (NVD).

(a) UltraC - NVD

-1
c̄fk = c̄ck

c̄td
c̄fk = c̄td

c̄ck

c̄fk

(1− γck) c̄tu + γck c̄td

c̄tdc̄tu

c̄fk =
c̄ck+(γck−1)c̄tu

γck

(b) UltraC - Modified NVD

1

čck1γck

čfk čfk = 1

čfk =
čck
γck

-1 čfk = čck

Figure 3.13: The UltraC face value scheme represented on (a) a normalised variable diagram (NVD)
and (b) a modified normalised variable diagram. For comparison (a) also shows the HyperC face
value scheme as a dotted line.

3.2 Spatial discretisation of the advection-diffusion equation 53

downwind value, ctd and their equivalent normalised versions:

c̄tuk =
ctuk − cuk
cdk − cuk

, (3.51)

and a normalised face value:
c̄tdk =

ctdk − cuk
cdk − cuk

, (3.52)

respectively. These are defined based on user prescribed target maximum and target minimum val-
ues depending on the local slope of the solution. These maximum and minimum values describe the
range of values in which any solution is bounded.

The target upwind and downwind values can also be used to modify the definition of the normalised
donor and face values:

čck =
cck − ctuk
ctdk − ctuk

, (3.53)

and a normalised face value:
čfk =

cfk − ctuk
ctdk − ctuk

, (3.54)

which allows a modified normalised variable diagram to be defined. In this case UltraC looks super-
ficially like HyperC (see Figure 3.13(b)).

For more information on the development of UltraC in Fluidity see Wilson [2009].

PotentialUltraC One side effect of using a total variation bounded scheme, as in UltraC, is that
small isolated regions of field that are already easily within the minimum and maximum bounds are
advected at spurious velocities. This can be solved by either switching to HyperC or modifying the
flux in the vicinity of these regions. PotentialUltraC implements these options. More details of this
scheme can be found in Wilson [2009].

Coupled Limiting Under some circumstances it becomes necessary to limit the face values of a
field based not only on the boundedness of the field itself but based on the boundedness of other
fields as well. This is implemented in Fluidity as a coupled control volume spatial discretisation.
This allows the user to select any of the above face value schemes, which are then limited to ensure
that both the field and the sum of the field with the other related fields is in some sense bounded.
This is particularly useful for multiple material simulations where the volume fractions must not
only remain individually bounded between 0 and 1 but their sum must also be similarly bounded.

Limiting based on a summation of fields requires the user to specify a priority ordering describing
the order in which the individual fields should be advected and summed. Hence we now consider a
field cI , where I indicates the priority of the field from 1 (highest priority) to the number of related
fields, N (lowest priority). We then introduce the variables:

c
∑
I =

I∑
i=1

ci, (3.55)

and

c
∑
I−1 =

I−1∑
i=1

ci, (3.56)

along with their related normalised versions. Using these variable and the total variation bounded
(TVB) definition of boundedness introduced in UltraC it is possible to check whether the current field
face value, cIf (and its normalised equivalent c̄If), falls within a region on the normalised variable
diagram in which the summation up to the current field, c

∑
I , is itself bounded, in a TVB sense (see

Figure 3.14).

54 Numerical discretisation

c̄Ic = c
∑

I
tu − cIu − c̄

∑
I−1

cc̄Ic = c
∑

I
td − cIu − c̄

∑
I−1

c

c̄If
c̄If = c̄Ic + c̄

∑
I−1

c − c̄
∑

I−1

f

c̄If = c
∑

I
td − cIu − c̄

∑
I−1

f

c̄If =
c̄Ic+c̄

∑
I−1

c +(γ−1)

(
c

∑
I

tu −cIu
)
−γc̄

∑
I−1

f

γ

c̄Ic = (1− γ)

(
c
∑

I
tu − cIu

)
+ γ

(
c
∑

I
td − cIu

)
− c̄

∑
I−1

c

c̄Ic

c̄If = c
∑

I
tu − cIu − c̄

∑
I−1

f

c̄Ic = c
∑

I
tu − cIu − c̄

∑
I−1

c

c̄If = c
∑

I
td − cIu − c̄

∑
I−1

f

c̄If = c
∑

I
tu − cIu − c̄

∑
I−1

f

c̄If =
c̄Ic+c̄

∑
I−1

c +(γ−1)

(
c

∑
I

tu −cIu
)
−γc̄

∑
I−1

f

γ

c̄Ic = c
∑

I
td − cIu − c̄

∑
I−1

c

c̄Ic = (1− γ)

(
c
∑

I
tu − cIu

)
+ γ

(
c
∑

I
td − cIu

)
− c̄

∑
I−1

c

c̄If = c̄Ic + c̄

∑
I−1

c − c̄
∑

I−1

f

Figure 3.14: The coupled limiter for the field cI represented by the grey shaded area on a nor-
malised variable diagram (NVD). Labels in the upper left blue region refer to the case when the
difference between the parent sum downwind and upwind values has the same sign as the limited
field, sign

(
c
∑
I

dk
− c

∑
I

uk

)
= sign

(
cIdk − c

I
uk

)
. Similarly, labels in the lower right yellow region refer to

the case when the signs of the slopes are opposite, sign
(
c
∑
I

dk
− c

∑
I

uk

)
6= sign

(
cIdk − c

I
uk

)
. The regions

are separated by the upwinding line, ¯̂cIf = c̄Ick + c̄
∑
I−1

ck − c̄
∑
I−1

f .

3.3 The time loop 55

The coupled limiter described in Figure 3.14 uses information from the previous summation of fields,
c
∑
I−1 , to asses whether the addition of the current field will make the new summation, c

∑
I un-

bounded. Hence on the highest priority field no additional restrictions will be imposed beyond
ensuring that the field itself is TVB and the coupled limiter is simplified significantly. Subsequent
fields are increasingly restricted by the constraints of previously advected fields, however only in
control volumes that have values greater than zero for more than one field. If the initial state of a
field or any of the higher priority fields already breaks the boundedness criterion then the coupled
limiter is unable to guarantee boundedness of the sum.

Further details of the coupled control volume algorithm can be found in Wilson [2009].

3.2.4.2 Control Volume diffusion

In the case where diffusion, κ, is not zero we need to discretise the term:

−
∫
∂v

̂n · κ · ∇c, (3.57)

in (3.45). As with discontinuous Galerkin methods this is complicated by the fact that ∇c is now
defined on the boundary of the volume. Fluidity offers three strategies for dealing with this with
control volumes - element based gradients, equal order Bassi-Rebay and staggered mesh Bassi-Rebay
discretisations.

Element Gradient As previously discussed the control volume boundaries intersect the parent el-
ements at points where the parent basis functions are continuous. The element gradient control
volume diffusion scheme uses this fact to estimate the field gradients on the control volume bound-
aries using the parent element basis functions. This is possible because the nodes of the parent finite
element mesh and its control volume dual mesh are co-located (see Figure 3.7). This scheme is some-
what similar to standard finite volume diffusion schemes on structured meshes described in Ciarlet
and Lions [2000].

Bassi-Rebay The Bassi-Rebay discretisation [Bassi and Rebay, 1997] method was discussed in sec-
tion 3.2.3.3 for discontinuous Galerkin discretisations. It introduces an auxilliary variable and equa-
tion for the gradient. As in DG, this equation can be directly solved and implicitly reinserted into the
control volume equation. However this has the disadvantage over the element gradient scheme that
the sparsity structure is extended resulting in a larger matrix and more computationally expensive
solves. It may also produce spurious modes in the solution.

Both disadvantages of the simplest Bassi-Rebay discretisation may be overcome for fields, c, repre-
sented on piecewise linear parent finite element meshes by selecting a piecewise constant (element
centred) representation of the diffusivity. This results in the auxilliary equation for the gradient be-
ing solved for on the elements rather than at the nodes. This can still be implicitly inserted into the
equation but results in the same first order sparsity structure as the element gradient scheme. Addi-
tionally the use of staggered finite/control volume meshes stabilises the equation and helps eliminate
spurious modes.

3.3 The time loop

Fluidity solves a coupled system of nonlinear equations with (typically) time-varying solutions. The
time-marching algorithm employed uses a non-linear iteration scheme known as Picard iteration in
which each equation is solved using the best available solution for the other variables. This process

56 Numerical discretisation

for each tracer solve the advection-diffusion equation for c̃n+1

evaluate the equation of state for ρn+θnl

solve the momentum equation for u∗

calculate a pressure correction∆p

using ∆p correct u∗ to ũn+1 and update p̃n+1

perform next Picard iteration or finish timestep

Figure 3.15: Outline of the principal steps in the nonlinear iteration sequence.

is then repeated either a fixed number of times or until convergence is achieved. Figure 3.15 shows
the sequence of steps in the Picard iteration loop.

3.3.1 Time notation

It is assumed that we know the state of all variables at the nth timestep and that we wish to calculate
their value at the (n + 1)st step. To take as an example the general tracer denoted c, the value at
the nth timestep will be denoted cn and that at the new timestep cn+1. The Picard iteration process
results in a series of tentative results for c at the next timestep on the basis of the best available data.
This tentative result will be written c̃n+1. At the end of the final Picard iteration, the tentative results
become final (i.e., cn+1 := c̃n+1). Conversely, at the start of the timestep, the only available value of c
is c̃n+1 so at the start of the timestep, c̃n+1 := cn. This notation naturally applies mutatis mutandis to
all other variables.

3.3.2 Nonlinear relaxation

Where a variable is used in the solution of another variable, there are two available values of the first
variable which might be employed: that at time n and the latest result for time n + 1. For instance
the velocity, u, is used in solving the advection-diffusion equation for c so un and ũn+1 are available
values of u. The choice between these values is made using the nonlinear relaxation parameter θnl

which must lie in the interval [0, 1]. This allows us to define:

un+θnl = θnlũ
n+1 + (1− θnl)u

n. (3.58)

3.4 Time discretisation of the advection-diffusion equation 57

Note at the first nonlinear iteration we generally have ũn+1 = un.

3.3.3 The θ scheme

The θ timestepping scheme requires the expression of a linear combination of the known field values
at the present timestep and the as-yet unknown values at the next timestep. Taking the example of c,
we write:

cn+θc = θcc̃
n+1 + (1− θc)cn. (3.59)

θc must lie in [0, 1]. The subscript c in θc indicates that it is generally possible to choose different theta
timestepping schemes for different solution variables.

3.4 Time discretisation of the advection-diffusion equation

Regardless of the spatial discretisation options used, the advection-diffusion equation produces a
semi-discrete matrix equation of the following form:

M
dc

dt
+ A(u)c+ Kc = r, (3.60)

in whichM is the mass matrix, A(u) is the advection operator, K is the diffusion operator and r is the
right-hand side vector containing boundary, source and absorption terms. For continuous Galerkin,
the matrices take the following form:

Mij =

∫
Ω
ϕiϕj , Aij = −

∫
Ω
∇ϕi · uϕj , Kij =

∫
Ω
∇ϕi · κ · ∇ϕj . (3.61)

This is discretised using a classical θ scheme while u is as given in equation (3.58):

M
c̃n+1 − cn

∆t
+ A(un+θnl)cn+θc + Kcn+θc = rn+θc . (3.62)

Here, rn+θc indicates that the boundary condition functions will be evaluated at θc∆t after the time at
timestep n. Using equation (3.59), this can be rearranged as a single matrix equation for the unknown
vector c̃n+1:(

M + θc∆t
(

A(un+θnl) + K
))

c̃n+1 =
(
M − (1− θc)∆t

(
A(un+θnl) + K

))
cn + rn+θc . (3.63)

Fluidity actually uses a somewhat different rearrangement of the equations however this is an im-
plementation detail which has no impact for the user.

3.4.1 Discontinuous Galerkin

The slope limiters used with the discontinuous Galerkin formulation only guarantee a bounded so-
lution in conjunction with an explicit advection scheme. While the whole equation could be treated
explicitly, it can be advantageous to be able to treat only certain terms explicitly while others are
treated implicitly. To achieve this, the equation is considered in two stages: first the tracer is ad-
vected, then diffusion occurs. This produces the following system:

M
c∗ − cn

∆t
+ A(un+θnl)cn = rn+θc

D (3.64)

M
c̃n+1 − c∗

∆t
+ Kcn+θc = rn+θc

N + rn+θc
s , (3.65)

58 Numerical discretisation

where now r has been split into Dirichlet and Neumann boundary components, and a source compo-
nent. Equation (3.65) can be solved directly in exactly the manner of the preceding section however
the explicit Euler scheme shown in equation (3.64) is subject to a tight CFL criterion. Accordingly,
the timestep is split into n subtimesteps to satisfy a user-specified Courant number and the following
equation is solved for each:

Mcnew =

(
M− ∆t

n
A(un+θnl)

)
cold + rn+θc

D . (3.66)

At the start of the timestep, cold := cn and at the end of the timestep c∗ := cnew. Since the discontin-
uous Galerkin mass matrix is block diagonal with only the nodes on each element being connected,
it is trivial to construct M−1 so this equation may be solved trivially with minimal cost. Note also
that the matrix M− (∆t/n)A(un+θnl) is constant within one timestep so assembling and solving each
subtimestep reduces to two matrix multiplies and a vector addition.

If a slope limiter is employed, the slope limiter is applied to cnew after each subtimestep.

3.4.2 Control Volumes

Advection subcycling based upon a CFL criterion or a fixed number of subcycles is also available for
control volume discretisations, although in this case the θ value is applied globally so no advection
diffusion splitting takes place. This is generally applied to explicit discretisations of the advection
equation.

When face value limiting (see section 3.2.4.1) is used in implicit control volume discretisations a non-
linearity is introduced by the requirement to ‘test’ a face value, cfk , against an upwind value value,
cuk , which must be estimated. This restricts any such high order or limited face values to the right
hand side of the equation, which severely limits the timestep that can be used. To overcome this a
lower order implicit pivot face value is introduced and the face value in equation 3.45 is replaced by:

cfk = θpc
LOn+1
fk

+ θc̃HOfk + θcHOnfk
− θpc̃LOfk (3.67)

where cLOfk is the low order face value and c̃HOfk and c̃LOfk are the current best estimates, based on the
most recent solution, of the high order and low order face values respectively [see LeVeque, 2002,
for further details].

In Fluidity the low order pivot value uses first order upwinding (see section 3.2.4.1) and the pivot
implicitness factor, θp, defaults to 1. This implicit pivot is then used to overcome the timestep restric-
tion and an extra advection iteration loop is introduced to update the values of c̃HOfk and c̃LOfk . If this
converges, then after a number of iterations cLOn+1

fk
≈ c̃LOfk and cfk ≈ θcHOn+1

fk
+ θcHOnfk

. Hence an
implicit high order face value is achieved. If the iteration does not converge, either due to too few
advection iterations being selected or as a result of non-convergent behaviour in the face value lim-
iter, then cfk is just a linear combination of low order and high order face values. This still results in
a valid face value, although as is generally the case for implicit advection methods, it is not possible
to guarantee the boundedness of this scheme.

3.4.3 Porous Media

In this section the modification to the temporal discretisation of the general scalar transport equation
to include porosity is described.

Using the product rule for the time partial derivative of the modified scalar transport equation (2.71)
gives:

ϕ
∂c

∂t
+
∂ϕ

∂t
c+∇ · (uϕc) = 0. (3.68)

3.5 Momentum equation 59

This is discretised using the classical θ scheme to give:

ϕn
cn+1 − cn

∆t
+∇ · (un+θnl

ϕ cn+θ) = −cnϕ
n+1 − ϕn

∆t
. (3.69)

This discretisation has chosen to explicitly represent ϕ when associated with the discretised time
derivative of c and vice versa. In a similar manner to that derived in section 3.4 this can be expressed
in semi discrete form as:(

Mϕn + θc∆tA(un+θnl
ϕ)

)
c̃n+1 =

(
Mϕn − (1− θc)∆tA(un+θnl

ϕ)
)
cn −Mcn(ϕn+1 − ϕn). (3.70)

Taking ψ to represent the test and basis function space associated with c and ζ to represent the basis
function space associated with the porosity ϕ, the modified mass matrices take the form:

Mϕnij
=

∫
Ω
ψiψjϕ

n, Mcnij
=

∫
Ω
ψiζjc

n, (3.71)

where ϕn and cn are known functions (which are thus numerically evaluated at the quadrature points
during the integration sum). If the rate of change of porosity with time is negligible then the discre-
tised equation for c reduces to(

Mϕn + θc∆tA(un+θnl
ϕ)

)
c̃n+1 =

(
Mϕn − (1− θc)∆tA(un+θnl

ϕ)
)
cn. (3.72)

This form of the porous media scalar transport equation is the one permitted in Fluidity for control
volume discretisations with ζ equal to ψ or piece wise constant over an element. A similar derivation
is used for the transport of the individual components of the metric tensor associated with mesh
adaptivity.

3.5 Momentum equation

The discretisation of the momentum equation in non-conservative form (2.20b) is very similar to that
of the advection-diffusion equation. Assuming a tensor form for viscosity, we can write it in the same
matrix form as (3.9)

M
du

dt
+ A(u)u+ Ku+ Cp = 0, (3.73)

with a mass matrix M, advection matrix A, viscosity matrix K and pressure gradient matrix C. For
a continuous Galerkin discretisation of velocity and ignoring boundary conditions, M,A and K are
given by:

Mij =

∫
Ω
ρϕi ·ϕj , Aij =

∫
Ω
ϕi · (ρu · ∇ϕj) , Kij =

∑
α,β,γ

∫
Ω

(∂βϕi,α)κβγ (∂γϕj,α) , (3.74)

where α, β and γ are summed over the spatial dimensions. (Weak) Dirichlet and Neuman boundary
conditions are implemented by surface integrals over the domain boundary in the same way as for
the advection-diffusion equation. The discontinuous Galerkin discretisation is again the same as that
for advection-diffusion involving additional integrals over the faces of the elements.

The pressure gradient term is new. In Fluidity it is possible to use a different set of test/trial functions
for pressure and velocity — a so-called mixed element discretisation. From this section on, we will
use the notation ϕi for the velocity basis functions and ψi for the pressure basis functions.

The pressure gradient matrix is then simply given by

Cij =

∫
Ω
ϕi · ∇ψj . (3.75)

In fact this is a vector of matrices, where each matrix corresponds to one of the derivatives contained
in the ∇ operator. Note that Fluidity only supports a continuous pressure discretisation so that the
same pressure gradient matrix is well defined for a discontinuous Galerkin velocity.

60 Numerical discretisation

3.5.1 Boussinesq approximation

The discretisation of the velocity equation (2.52a) in the Boussinesq approximation is given by simply
dropping the density in the mass and advection terms:

M
du

dt
+ A(u)u+ Cor u−Ku+ Cp = b(ρ′) + F ,

where (again assuming CG and ignoring boundary conditions):

Mij =

∫
Ω
ϕi ·ϕj , Aij =

∫
Ω
ϕi · (u · ∇ϕj) , Corij =

∫
Ω
ϕi · (2Ω×ϕj) ,

Kij =
∑
α,β,γ

∫
Ω

(∂βϕi,α)uβγ (∂γϕj,α) ,Cij =

∫
Ω
ϕi · ∇ψj , bi(ρ

′) =

∫
Ω
ϕi · gρ′, F i =

∫
Ω
ϕi · F

3.5.2 Porous Media Darcy Flow

3.5.2.1 Single Phase

The discretisation of the Darcy velocity equation (2.67) is given by:

Mσuϕ = −Cp+ b(ρ), (3.76)

where (ignoring boundary conditions):

Mσij =

∫
Ω
ϕi ·ϕjσ, Cij =

∫
Ω
ϕi · ∇ψj , bi(ρ) =

∫
Ω
ϕi · gρ.

3.6 Pressure equation for incompressible flow

For incompressible flow the momentum equation needs to be solved in conjunction with the conti-
nuity equation ∇ · u = 0. Using test functions represented as ζi the discretised weak form of the
continuity equation, integrated by parts, is given by∑

j

∫
Ω

(∇ζi) ·ϕjuj −
∫
∂Ω
ζiϕj · nuj = 0.

Similar to the scalar advection equation, Dirichlet boundary conditions for the normal component of
the velocity can be implemented by replacing theu·n in the boundary integral by its prescribed value
gD. For this purpose we split up the boundary ∂Ω into a part ∂ΩD where we prescribe u · n = gD
and ∂Ωopen where the normal component is left free.

If we define a gradient matrix as

Bij =

∫
Ω
ϕi · ∇ζj −

∫
∂Ωopen

ϕi · nζj ,

we can write the continuity equation in the following form:

BTu = MD gD, with MD,ij =

∫
∂ΩD

ζiϕj · n. (3.77)

If we choose the continuity equation test functions ζi to be the same as the pressure basis functions
ψi the discrete continuity equation (3.77) becomes

CTu = MD gD, with MD,ij =

∫
∂ΩD

ψiϕj · n, (3.78)

3.6 Pressure equation for incompressible flow 61

where we have redefined the pressure gradient matrix (3.75) as

Cij =

∫
Ω
ϕi · ∇ψj −

∫
∂Ωopen

ϕi · nψj .

The extra surface integral over ∂Ωopen in C in the momentum equation will enforce a p = 0 boundary
condition at this part of the boundary (together with the boundary condition of the viscosity term this
will form a no normal stress condition). An inhomogoneous pressure boundary condition can also be
applied by adding the corresponding surface integral term into the right-hand side of the momentum
equation. Using the transpose of the pressure gradient operator, including its boundary terms, for
the continuity equation thus automatically enforces the correct physical boundary conditions in the
normal direction. The boundary conditions in the tangential direction (slip/no-slip) are independent
of this choice.

For a discontinuous Galerkin (DG) discretisation of velocity with a continuous Galerkin (CG) pres-
sure space, the integration by parts of the continuity equation means only derivatives of continuous
functions are evaluated and hence no additional face integrals are required. Vice versa, for a DG
pressure with a CG velocity, we simply do not integrate by parts so that again no face integrals are
required. For this reason, Fluidity currently only supports mixed velocity, pressure finite element
pairs where at least one of them is continuous.

3.6.1 Pressure correction

After solving the momentum equation (3.73) for the velocity using a pressure guess, the solution
does not satisfy the continuity equation. A common way to enforce the continuity is to project the
velocity to the set of divergence-free functions. After this projection step the continuity equation is
satisfied, but in general the solution does not satisfy the momentum equation anymore, which is why
the combination of momentum solve and pressure correction has to be repeated until a convergence
criterium has been reached. More information about pressure correction methods can be found in
Gresho and Chan [1988].

The derivation of the pressure-correction step starts with two variations of the time-discretisation of
the momentum equation (3.73). The first one is used to solve for a preliminary un+1

∗ :

M
un+1
∗ − un

∆t
+ A(un+θnl)un+θ

∗ + Kun+θ
∗ + Cp∗ = 0, (3.79)

where we use an initial guess pressure p∗, that may be obtained from the previous time step (denoted

by pn−
1
2). The second variation describes the momentum equation that will be satisfied by un+1 after

the pressure correction:

M
ũn+1 − un

∆t
+ A(un+θnl)un+θ

∗ + Kun+θ
∗ + Cp̃n+

1
2 = 0, (3.80)

here p̃n+
1
2 is the pressure obtained after the pressure correction.

Note that A depends on u itself. For the definition of the un+θnl term used to calculate A, see section
3.3.2.

Subtracting (3.79) from (3.80) yields:

M
ũn+1 − un+1

∗
∆t

+ C(p̃n+
1
2 − p∗) = 0, (3.81)

Left-multipliying by BTM−1 and some rearrangement results in:

BTM−1C(pn+
1
2 − p∗) = −BT (ũn+1 − un+1

∗)

∆t
,

62 Numerical discretisation

The left hand side of this equation contains the sought after pressure correction ∆p = pn+
1
2 − p∗.

Taking into account the discretised incompressible continuity (3.77) evaluated at tn+1, we finally
arrive at the pressure correction equation:

BTM−1C ∆p =
BTun+1

∗ −MD gD

∆t
. (3.82)

If we choose the continuity equation test functions ζi to be the same as the pressure basis functions
ψi the discrete pressure correction equation (3.82) becomes

CTM−1C ∆p =
CTun+1

∗ −MD gD

∆t
. (3.83)

If the continuity test functions are chosen to be the same as the pressure basis functions then the
symmetric discrete Poisson equation given by (3.83) can now be solved for ∆p. If the continuity
test functions are chosen to be the different to the pressure basis functions then the non symmetric
discrete Poisson equation given by (3.82) can now be solved for ∆p. For the latter case to be well
posed there must be the same number of continuity test functions ζi as pressure basis functions ψi
such that the matrix BTM−1C is square.

After obtaining the pressure correction the pressure and velocity can be updated by:

p̃n+
1
2 = p∗ + ∆p,

ũn+1 = un+1
∗ −∆tM−1C∆p

Note that by construction the obtained ũn+1 and p̃n+
1
2 satisfy both the continuity equation (3.77) and

the momentum equation (3.80). This momentum equation however still used the intermediate u∗ and
p∗. A more accurate answer can therefore be obtained using multiple non-linear iterations within a
time-step. At the beginning of the subsequent non-linear iterations the pressure p∗ and the advective

velocity un+θnl
∗ are updated using the best available values p̃n+

1
2 and ũn+1 from the previous non-

linear iteration.

3.6.1.1 Inverting the mass matrix

The pressure correction equation (3.82) contains the inverse of the mass matrix M. For a continuous
Galerkin discretisation of velocity, this inverse will result in a dense matrix, so in general we do
not want to explicitly construct this. This can be avoided by approximating the mass matrix by the
so-called lumped mass matrix:

ML,ii =
∑
k

Mik, MLij 6=i = 0.

This lumped mass matrix ML replaces M in the discretised momentum equation. Since the lumped
mass matrix is diagonal it is trivial to invert. This lumping procedure is more often used to avoid
mass matrix inversions, for instance in Galerkin projections. The lumping procedure is conservative,
but leads to a loss in accuracy.

With a discontinuous Galerkin discretisation of velocity, the mass matrix becomes easier to invert.
This is because the test functions only overlap if they are associated with nodes in the same element.
Therefore the mass matrix takes on a block-diagonal form, with n × n blocks along the diagonal,
where n is the number of nodes per element. These blocks can be independently inverted and the in-
verse mass matrix still has the same block-diagonal form. As a consequence the matrix BTM−1C (or
CTM−1C) is sparse and can be explicitly constructed. Moreover for the case where the continuity test
functions and pressure basis functions are the same, with a continuous Pn+1 discretisation of pres-
sure, and a discontinuous Pm,m 6 n discretisation of velocity, we have the following property[Cotter

3.7 Velocity and pressure element pairs 63

et al., 2009]:

CTM−1Cij =

∫
Ω
∇ψi · ∇ψj .

That is, the discretised pressure equation (3.82) is the same as that would be obtained from a direct
Pn+1 discretisation of the continuous pressure poisson equation.

3.6.2 Porous Media Darcy Flow

3.6.2.1 Single Phase

To solve the single phase porous media Darcy force balance (2.67) and incompressible mass conser-
vation (2.70) the pressure correction algorithm described in section 3.6.1 requires modification. As
there is no momentum time term the absorption term is instead included in the correction step. The
pressure correction algorithm then takes the same steps as before but solving for the Darcy veloc-
ity rather than the interstitial velocity. The first step is to solve for a preliminary u∗ϕ from an initial
pressure guess p∗ via:

Mσuϕ∗ = −Cp∗ + b(ρ). (3.84)

A pressure correction is then solved for via the derived equation

BTM−1
σ C ∆p = BTuϕ∗ −MD g

D
. (3.85)

After obtaining the pressure correction the pressure and velocity can be updated by:

p̃ = p∗ + ∆p,

ũϕ = uϕ∗ −M
−1
σ C∆p.

For incompressible flow as there is no Darcy velocity time dependence and because all the Darcy
velocity terms (being only the absorption) are included in the pressure correction step there is no
requirement for multiple non linear iterations, unless there is a non linear absorption coefficient or
source term.

3.7 Velocity and pressure element pairs

As we have seen, various methods are available in Fluidity for the discretisation of velocity and
pressure. The momentum equation can be discretised using continuous or discontinuous Galerkin
for velocity, with arbitrary degree polynomials PN . For pressure the continuous Galerkin (again with
arbitrary degree PN) and control volume (here denoted by P1CV) are available. Not every available
pair of velocity and pressure elements is suitable however.

An important criteria for selecting a suitable element pair, is based on the LBB stability condition. For
a precise definition and detailed discussion of this condition, see Gresho and Chan [1988]. Element
pairs that do not satisfy this condition suffer from spurious pressure modes. All equal order element
pairs PNPN (same order N for velocity and pressure), including the popular P1P1, suffer from this
problem. A common workaround is to add a stabilisation term to the pressure equation. This how-
ever introduces a numerical error in the continuity equation – i.e. equation (3.6) is not strictly adhered
to. The fact that the discrete velocity is no longer divergence free may also have repercussions for the
solution of the advection-diffusion equations.

Another consideration for choosing the right element pair is based on an analysis of the dominant
terms in the momentum equation. For instance, for ocean applications the so called geostrophic bal-
ance between Coriolis, buoyancy and the pressure gradient is very important. For a balance between
Coriolis and pressure gradient it is necessary that pressure itself is discretised in a higher order poly-
nomial space than velocity, so that its gradient can match the Coriolis term. Another approach is

64 Numerical discretisation

to separate out this balance in an additional balance solve as discussed in the next section. If the
viscous term is dominant in the momentum equation, a higher order velocity discretisation than
pressure may be desirable. For instance in Stokes problems the P2P1 element pair is popular.

The following table gives an overview of element pairs available in Fluidity.

P1P1 Because of its simplicity this element pair in which pressure and velocity are both
piecewise linear, is very popular. It does however have a number of disadvan-
tages. Because it is not stable, a stabilisation of the pressure equation is usually
required. Also in problems where buoyancy or Coriolis are dominant terms, an
additional balance solve may be required (see next section).

P1DGP2 This is element pair (P1DG for velocity and P2 for pressure), is highly recom-
mended for large scale ocean applications of Fluidity. It is LBB stable and can
represent the discrete geostrophic balance exactly. See Cotter et al. [2009] for
more information on the use of this element pair in ocean applications. One of
the advantages of choosing a discontinuous element pair is that the mass matrix
can be inverted locally, so that the mass matrix does not have to be lumped, as
explained in section 3.6.1.1.

P0P1 The P1DGP2 pair can be extended to a family of velocity, pressure pairs
PN+1DGPN . The P0P1 pair can therefore be seen as a lower order version of
P1DGP2, which is less accurate but also cheaper to compute. Unfortunately it
is known that for P0 velocity, the viscosity schemes available in fluidity only
really give an accurate answer for structured meshes.

P0P1CV This is similar to the P0P1 pair but with a P1CV discretisation for pressure. This
has the advantage that in the advection equation for P1CV tracers, the advective
velocity will be exactly divergence free, as the continuity equation is tested with
P1CV test functions. This is therefore the element pair of choice for multimaterial
runs.

P2P1 This is a well known, stable element pair (also known as Taylor Hood. It does
require a special mass lumping procedure. It is often used in problems with a
dominant viscosity term (e.g. pure Stokes problems).

3.7.1 Continuous Galerkin pressure with control volume tested continuity

As was shown in section 3.6 the continuity test functions ζi need not be chosen to be the same as the
pressure basis functions ψi. As well as being required to form a valid discrete finite element function
space the continuity test function space must contain the same number of functions as the pressure
basis function space. This is necessary such that the pressure correction matrix is square.

A particular choice for a different continuity test function space is to use the control volume dual
space of the pressure basis standard finite element function space (for example consisting of La-
grangian functions). This is available in Fluidity when the pressure basis functions are continuous.
The purpose of this choice is to select a velocity and pressure element pair to satisfy a particular
balance and to then also ensure a discrete velocity divergence suitable for the transport of tracers (or
volume fractions) using a control volume discretisation. An immediate drawback of this test func-
tion choice is that the pressure correction matrix is not symmetric, which must be considered when
selecting a linear algebra solver.

Currently the capabilities and stability of using this method with different element pairs has not been
fully established.

3.8 Balance pressure 65

3.8 Balance pressure

In a balanced pressure decomposition the pressure correction equation (3.81) is modified to:

M
ũn+1 − un+1

∗
∆t

+ C(p̃n+
1
2

r
− p

r,∗) + Cbpb,= 0, (3.86)

where p
b

is some solution for the pressure field associated with buoyancy and Coriolis accelerations,
p
r

is the residual pressure enforcing incompressibility, and Cb is a balanced pressure gradient matrix.
If a solution for p

b
can be found via some method that is more accurate that the pressure projection

method used to solve for the residual pressure p
r
, then this leads to a more accurate representation

of geostrophic and hydrostatic balance. In particular, for the P1P1 element pair, a second-order
accurate solution for p

b
enables a second-order accurate solution for the Helmholtz decomposition

of the velocity increment associated with the buoyancy and Coriolis accelerations, even with the
introduction of pressure stabilisation.

The pressure correction equation is the Galerkin projection of the Helmholtz decomposition of the
divergent velocity increment computed from the discretised momentum equation. In the continuous
space, this is equivalent to the Helmholtz decomposition of the forcing terms in the momentum
equation, and takes the form:

F = F ∗ −∇p, (3.87)
∇ · F = 0, (3.88)

where F ∗ are all forcing terms in the continuous momentum equation (including advection, buoy-
ancy, Coriolis, and any other forcings). Decomposing the pressure into a component pb associated
with the buoyancy and Coriolis accelerations B∗, and a residual component pr associated with all
other forcing terms F ∗ −B∗, yields:

B = B∗ −∇pb, (3.89a)

F −B = F ∗ −B∗ −∇pr, (3.89b)

∇ ·B = 0, (3.89c)

∇ · (F −B) = 0. (3.89d)

Taking the divergence of equation (3.89a) yields a Poisson equation for the diagnostic balanced pres-
sure component pb:

0 = ∇ ·B∗ −∇2pb. (3.90)

For no-slip boundary conditions on ∂Ω bounding Ω, this equation has boundary conditions
(B∗ +∇pb) · n̂ = 0 on ∂Ω. This corresponds to no acceleration of fluid parcels in the direction normal
to the boundary by the non-divergent (and dynamically significant) component of the buoyancy and
Coriolis accelerations. Performing a continuous Galerkin discretisation of equation (3.90) subject to
these boundary conditions yields:

∫
Ω
∇ξi∇ξjpb =

∫
Ω
∇ξi ·B∗, (3.91)

66 Numerical discretisation

where the ξi are the balanced pressure elemental basis functions. Hence equation (3.91) can be used to
gain a solution for pb, which can in turn be used in equation (3.86). Since pb is computed via a Galerkin
projection of the Poisson equation for the balanced pressure, rather than a Galerkin projection of the
Helmholtz decomposition of the buoyancy and Coriolis accelerations, LBB stability constraints do
not apply in the selection of a space for p

b
.

3.9 Free surface

Assuming that the atmospheric pressure is zero, the pressure boundary condition (2.50) simplifies to
p = gη. Here, and elsewhere in this section we assume p is the pressure that is solved for, which in
this case is the perturbation pressure p’. By substitution of this equation into the kinematic bound-
ary condition, this condition can be enforce, weakly, as a normal flow condition related to the time
derivative of pressure:

1

g

∫
Ωfs

ψi
∂p

∂t
z · n =

∫
Ωfs

ψin · u ∀ψi, (3.92)

and Ωfs is the boundary where the free surface condition is to be applied. This condition is now
incorporated into the boundary integrals of the continuity equation (3.6), taking the continuity test
functions to be the same as the pressure basis functions, giving:

−
∫

Ω
∇ψi · u+

∫
∂ΩD

ψiun +
1

g

∫
∂ΩFS

ψi
∂p

∂t
z · n+

∫
∂Ω\∂ΩD\∂ΩFS

ψin · u = 0, ∀ψi. (3.93)

Following the spatial and temporal discretisation described in section 3.6, the matrix form of the
continuity equation now includes the free surface boundary term (compare with (3.78)):

θCTun+1 + (1− θ)CTun +Ms
p̂n+1 − p̂n

g∆t
= 0 (3.94)

Repeating the steps from section 3.6.1, the pressure correction equation takes the form:(
θCT (

Mu

∆t
)−1θC +

Ms

g(∆t)2

)
∆p̂ = −θC

Tun+1
∗ + (1− θ)CTun

∆t
− Ms

g(∆t)2
(p̂n+1
∗ − p̂n) (3.95)

In the approach above, we have completely eliminated η as a variable from the equations that we
solve for. The free surface value can however be obtained , diagnostically, via the relation p = ρ0gη at
the free surface. In case the stress term is included and the normal stress condition (2.51) is applied,
we need to maintain the values of the free surface elevation ηi at the nodes on the surface of the mesh,
as seperate variables. The equations can however still be combined in a single pressure projection
step. Details of this method can be found in Kramer et al. [2012].

3.10 Wetting and drying

The discretisation of free surface boundary condition with wetting and drying is very similar to the
derivation in section 3.9, but uses p = gmax(η, b + d0) as relationship between pressure and free
surface eleveation. Hence the free surface boundary condition with wetting and drying becomes
(compare with equation 3.92):

1

g

∫
Ωfs

ψi
∂max(p, g(b+ d0))

∂t
z · n =

∫
Ωfs

ψin · u ∀ψi, (3.96)

3.11 Linear solvers 67

where Ωfs is the boundary where the free surface is to be applied.

Following the steps in section 3.92 yields the pressure correction equation with free surface and wet-
ting and drying: (

θCT (
Mu

∆t
)−1θC

)
∆p̂+

Mn+1,wet
s

g(∆t)2
p̂n+1 +

Mn+1,dry
s

(∆t)2
(b+ d0) =

−θC
Tun+1
∗ + (1− θ)CTun

∆t
+
Mn,wet
s

g(∆t)2
p̂n +

Mn,dry
s

(∆t)2
(b+ d0),

(3.97)

where a wet (dry) superscript denotes that the matrix is assembled on only wet (dry) mesh elements.

3.11 Linear solvers

The discretised equations (such as (3.9) or (3.73)) form a linear system of equations that can be written
in the following general form:

Ax = b,

where A is a matrix, x is a vector of the values to solve for (typically the values at the nodes of a field
x), and b contains all the terms that do not depend on x. One important property of the matrices
that come from finite element discretisations is that they are very sparse, i.e., most of the entries are
zero. For the solution of large sparse linear systems so called iterative methods are usually employed
as they avoid having to explicitly construct the inverse of the matrix (or a suitable decomposition
thereof), which is generally dense and therefore costly to compute (both in memory and computer
time).

3.11.1 Iterative solvers

Iterative methods try to solve a linear system by a sequence of approximations xk such that xk con-
verges to the exact solution x̂. In each iteration one can calculate the residual

rk = b−Axk.

When reaching the exact solution xk → x̂ the residual rk → 0. The following important relation holds

rk = A
(
x̂− xk

)
. (3.98)

3.11.1.1 Stationary iterative methods

Suppose we have an approximation M of A, for which the inverse M−1 is easy to compute, and we
apply this inverse to (3.98), we get the following approximation of the error in each iteration

ek = x̂− xk ≈ M−1rk (3.99)

This leads to an iterative method of the following form

xk+1 = xk + M−1rk. (3.100)

Because the same operator is applied at each iteration, these are called stationary methods.

A well known example is the Jacobi iteration, where for each row i the associated unknown xi is
solved approximately by using the values of the previous iteration for all other xj , j 6= i. So in
iteration k we solve for xk+1

i in ∑
j<i

Aijx
k
j + Aiix

k+1
i +

∑
j>i

Aijx
k
j = bi

68 Numerical discretisation

Using the symbols L,U and D for respectively the lower and upper diagonal part, and the diagonal
matrix, this is written as

Lxk + Dxk+1 + Uxk = b.

Because when solving for xk+1
i all the xk+1

j<i are already known, one could also include these in the
approximate solve. This leads to the Gauss-Seidel iterative method

Lxk+1 + Dxk+1 + Uxk = b.

After some rewriting both can be written in the form of (3.100)

Jacobi: xk+1 = xk + D−1rk,

Gauss-Seidel forward: xk+1 = xk + (L + D)−1 rk,

Gauss-Seidel backward: xk+1 = xk + (U + D)−1 rk.

(3.101)

3.11.1.2 Krylov subspace methods

Another class of iterative methods are the so called Krylov Subspace methods. Consider the following
very simple iterative method

xk+1 = xk + αkr
k,

where αk is a scalar coefficient which, in contrast to that used in stationary methods, may be different
in each iteration. It is then easy to show that

rk+1 = rk + αkAr
k.

Since therefore the residual in each iteration is the linear combination of the residual in the previous
iteration and A applied to the previous residual, one can further derive that the residual is a linear
combination of the following vectors:

r0,Ar0,A2r0, . . . ,Akr0. (3.102)

The subspace spanned by these vectors is called the Krylov subspace and Krylov subspace methods
solve the linear system by choosing the optimal set of coefficients αk that minimises the residual.

A well known, generally applicable Krylov method is GMRES (Generalised Minimum RESidual, see
Saad [1993]). Because the approximate solution is built from all vectors in (3.102), all of these need
to be stored in memory. For solves that require a large number of iterations this will become too
expensive. Restarted GMRES therefore sets a maximum of those vectors to be stored (specified by
the user), after reaching this maximum the corresponding coefficients are fixed and a new Krylov
subspace is built. This typically leads to a temporary decay in the convergence

A very efficient Krylov method that only works for symmetric positive definite (SPD) matrices is the
Conjugate Gradient (CG) method (see Shewchuk [1994] for an excellent non-expert explanation of
the method). An SPD matrix is a symmetric matrix for which

〈x,Ax〉 > 0, ∀x ∈ Rn.

Using this property the CG method can find an optimal solution in the Krylov subspace without
having to store all of its vectors. If the matrix is SPD, CG is usually the most effective choice. Linear
systems to be solved in Fluidity that are SPD comprise the pressure matrix (only for incompressible
flow), and the diffusion equation.

3.11 Linear solvers 69

3.11.2 Preconditioned Krylov subspace methods

Because Krylov methods work by repeatedly applying the matrix A to the initial residual, eigenvec-
tors with large eigenvalues will become dominant in the subsequent iterations, whereas eigenvectors
with small eigenvalues are rapidly “overpowered”. This means the component of the error associ-
ated with small eigenvalues is only very slowly reduced in a basic Krylov method. A measure for
the spread in the magnitude of eigenvalues is the so called condition number

CA =
λlargest

λsmallest
,

the ratio between the smallest and largest eigenvalue. A large condition number therefore means the
matrix system will be hard to solve.

A solution to this problem is to combine the stationary methods of section 3.11.1.1 with the Krylov
subspace methods of section 3.11.1.2

By pre-multiplying the equation Ax = b by the approximate inverse M−1, we instead solve for

M−1Ax = M−1b.

If M−1 is a good approximation of the inverse of A, then M−1A ≈ I and therefore M−1A should have
a much better condition number than the original matrix A. This way of transforming the equation
to improve the conditioning of the system is referred to as preconditioning. Note that we in general
do not compute M−1A explicitly as a matrix, but instead each iteration apply matrix A followed by a
multiplication with M−1, the preconditioner.

For SPD matrix systems solved with CG we can use a change of variables to keep the transformed
system SPD as long as the preconditioner M−1 is SPD as well.

3.11.2.1 Multigrid methods

Even though simple preconditioners such as SOR will improve the conditioning of the system it can
be shown that they don’t work very well on systems in which multiple length scales are present. The
preconditioned iterative method will rapidly reduce local variations in the error, but the larger scale,
smooth error only decreases very slowly. Multigrid methods (see e.g. Trottenberg et al. [2001] for an
introduction) tackle this problem by solving the system on a hierarchy of fine to coarse meshes.

Because Fluidity is based on a fully unstructured mesh discretisation only so called algebraic multi-
grid (AMG) methods are applicable (see e.g. Stüben [2001] for an introduction). An AMG method
that in general gives very good results for most Fluidity runs is the smoothed aggregation approach
by Vanek et al. [1996] (available in Fluidity as the “mg” preconditioner). For large scale ocean simula-
tions a specific multigrid technique, called vertical lumping[Kramer et al., 2010], has been developed,
that deals with the large separation between horizontal (barotropic) and vertical modes in the pres-
sure equation.

3.11.3 Convergence criteria

In each iterative method we need some way of telling when to stop. As we have seen in equation
(3.99) the preconditioner applied to the residual gives a good estimate of the error we have. So a
good stop condition might be

‖M−1rk‖ 6 εatol,

with a user specified absolute tolerance εatol, a small value that indicates the error we are willing to
tolerate.

70 Numerical discretisation

One problem is that we quite often don’t know how big the typical value of our field is going to
be (also it might change in time), so we don’t know how small εatol should be. A better choice is
therefore to use a relative tolerance εrtol which relates the tolerated error to a rough order estimate of
the answer:

‖M−1rk‖ 6 εrtol ‖M−1b‖. (3.103)

In some exceptional cases the right-handside of the equation may become zero. For instance the
lock exchange problem (see 10.3) starts with an unstable equilibrium in which the righthand side of
the momentum equation will be zero. The right solution in this case is of course x = 0, but due to
numerical round off the solver may never exactly reach this, and therefore never satisfy 3.103. In this
case it is best to specify both a relative and an absolute tolerance.

Note, that the stopping criterion is always based on an approximation of the actual error. Especially in
ill-conditioned systems this may not always be a very good approximation. The quality of the error
estimate is then very much dependent on the quality of the preconditioner.

3.12 Algorithm for detectors (Lagrangian trajectories)

Detectors can be set in the code at specific positions where the user wants to know the values of
certain variables at each time step. They are virtual probes in the simulation and can be fixed in space
(static detectors) or can move with the flow (Lagrangian detectors). The configuration of detectors in
Fluidity is detailed in chapter 8. This section summarises the method employed in the calculation of
the new position of each Lagrangian detector as it moves with the flow.

Lagrangian detectors are advected using an explicit Runge-Kutta method, defined as

xn+1 = xn + ∆t
s∑
i=1

bifi (3.104)

where xn denotes the value x(tn),

fi = f

xn + ∆t
i−1∑
j=1

aijfj , tn+ ci∆t

 (3.105)

s is the number of stages and ∆t is the timestep. The values bi, ci and aij are the entries of the
corresponding Butcher array

ci a11 · · · a1s
...

...
...

cs as1 · · · ass
b1 · · · bs

In combination with the previous algorithm, the Guided Search method proposed by Coppola et al.
[2001] is used to track the detector across elements and, in parallel runs, across partitions. This
method allows a detector leaving an element to be traced without resorting to an iterative procedure,
and is based on the observation that each stage of the Runge-Kutta scheme can be considered as a
linear substep.

Starting from an initial position P in Figure 3.16, a linear step in physical space would take the de-
tector to position Q. For the Guided Search procedure we now evaluate the velocity field in physical
space and translate the intermediate position for each RK stage to parametric space. In general, the

3.12 Algorithm for detectors (Lagrangian trajectories) 71

detector will have left the element. However, we can determine the new containing element by in-
specting the local coodinates of the arrival point (R for the first stage, S for the second) with respect
to the element enclosing the previous intermediate position. This procedure is now repeated for all
stages of the RK scheme, using the intermediate positions to sample the velocity field in their re-
spective elements. The final position T of the detector can thus be evaluated with a fixed number of
substeps.

Q

T

S

R

P

Figure 3.16: A sketch representing the Guided Search method used in combination with an explicit
Runge-Kutta algorithm to advect the Lagrangian detectors with the flow.

72 Numerical discretisation

Chapter 4

Parameterisations

Although Fluidity is capable of resolving a range of scales dynamically using an adaptive mesh, it is
not always feasible to resolve all processes and spatial scales that are required for a simulation, and
therefore some form of parameterisation is required. This chapter introduces the paramateristations
that are available in Fluidity.

4.1 Turbulent flow modelling and simulation

4.1.1 Reynolds Averaged Navier Stokes (RANS) Modelling

4.1.1.1 Generic length scale turbulence parameterisation

The generic length scale (GLS) turbulence parameterisation is capable of simulating vertical turbu-
lence at a scale lower than that of the mesh. There is no dependency on the mesh resolution, so is
ideal for adaptive ocean-scale problems. GLS has the additional advantage that it can be set-up to
behave as a number of classical turbulence models: k − ε, k − kl, k − ω, and an additional model
based on Umlauf and Burchard [2003], the gen model.

Briefly, all implementations rely on a local, temporally varying, kinematic eddy viscosity KM that
parametrises turbulence (local Reynolds stresses) in terms of mean-flow quantities (vertical shear)
as, along with a buoyancy term that parameterises the kinematic eddy diffusivity, KH :

u′w′ = −νM
∂u

∂z
, v′w′ = −νM

∂v

∂z
, w′ρ′ = −νH

∂ρ

∂z
, (4.1)

with
νM =

√
klSM + ν0

M , νH =
√
klSH + ν0

H , (4.2)

Here, we follow the notation of Umlauf and Burchard [2003], where u and v are the horizontal com-
ponents of the Reynolds-averaged velocity along the x- and y-axes, w is the vertical velocity along
the vertical z-axis, positive upwards, and u′, v′ and w′ are the components of the turbulent fluctua-
tions about the mean velocity. ν0

H is the background diffusivity, ν0
M is the background viscosity, SM

and SH are often referred to as stability functions, k is the turbulent kinetic energy, and l is a length-
scale. When using GLS the values of νM and νH become the vertical components of the tensors τ
and κT in equation 2.52 respectively. Other tracer fields, such as salinity use the same diffusivity as
temperature, i.e. κT = κS .

The generic length scale turbulence closure model [Umlauf and Burchard, 2003] is based on two
equations, for the transport of turbulent kinetic energy (TKE) and a generic second quantity, Ψ. The

73

74 Parameterisations

TKE equation is:
∂k

∂t
+ ui

∂k

∂xi
=

∂

∂z

(
νM
σk

∂k

∂z

)
+ P +B − ε, (4.3)

where σk is the turbulence Schmidt number for k, ui are the velocity components (u, v and w in the
x, y and z directions respectively), and P and B represent production by shear and buoyancy which
are defined as:

P = −u′w′∂u
∂z
− v′w′∂v

∂z
= νMM

2, M2 =

(
∂u

∂z

)2

+

(
∂v

∂z

)2

, (4.4)

B = − g

ρ0
ρ′w′ = −νHN2, N2 = − g

ρ0

∂ρ

∂z
(4.5)

Here N is the buoyancy frequency; u and v are the horizontal velocity components. The dissipation
is modelled using a rate of dissipation term:

ε =
(
c0
µ

)3+ p
n k

3
2

+m
n Ψ−

1
n (4.6)

where c0
µ is a model constant used to make Ψ identifiable with any of the transitional models, e.g. kl,

ε, and ω, by adopting the values shown in Table 4.1 [Umlauf and Burchard, 2003].

There is also the option to add an extra term to account for various oceanic parameters, such an in-
ternal waves breaking. This is based on the NEMO ocean model and takes a user-defined percentage
of the surface k and adds it down-depth using an exponential profile:

kz = kzo + p ∗ ksur ∗ exp (−z/lk) (4.7)

where kz is the new turbulent kinetic energy value at depth, z, kzo is the original TKE, ksur is the
surface TKE, p is a constant, and lk is a lengthscale. The options for this can be found in .../
subgridscale parameterisations/gls/ocean parameterisation.

The second equation is:

∂Ψ

∂t
+ ui

∂Ψ

∂xi
=

∂

∂z

(
νM
σΨ

∂Ψ

∂z

)
+

Ψ

k
(c1P + c3B − c2εFwall), (4.8)

The parameter σΨ is the Schmidt number for Ψ and ci are constants based on experimental data.
The value of c3 depends on whether the flow is stably stratified (in which case c3 = c−3) or unstable
(c3 = c+

3). Here,
Ψ =

(
c0
µ

)p
kmln, (4.9)

and
l =

(
c0
µ

)3
k

3
2 ε−1, (4.10)

By choosing values for the parameters p, m, n, σk, σΨ, c1, c2, c3, and c0
µ one can recover the exact for-

mulation of three standard GLS models, k− ε, k− kl (equivalent of the Mellor-Yamada formulation),
k − ω, and an additional model based on Umlauf and Burchard [2003], the gen model (see Tables 4.1
and 4.2 for values).

Wall functions

The k − kl closure scheme requires that a wall function as the value of n is positive (see Umlauf and
Burchard [2003]). There are four different wall functions enabled in Fluidity. In standard Mellor-
Yamada models [Mellor and Yamada, 1982], Fwall is defined as:

Fwall =

(
1 + E2

(
l

κ

db + ds
dbds

)2
)

(4.11)

4.1 Turbulent flow modelling and simulation 75

where E2 = 1.33, and ds and db are the distance to the surface and bottom respectively.

An alternative suggestion by Burchard et al. [1998] suggests a symmetric linear shape:

Fwall =

(
1 + E2

(
l

κ

1

MIN (db, ds)

)2
)

(4.12)

Burchard [2001] used numerical experiments to define a wall function simulating an infinitely deep
basin:

Fwall =

(
1 + E2

(
l

κ

1

ds

)2
)

(4.13)

Finally, Blumberg et al. [1992] suggested a correction to the wall function for open channel flow:

Fwall =

(
1 + E2

(
l

κdb

)2

+ E4

(
l

κds

)2
)

(4.14)

where E4 = 0.25.

Stability functions
Setting the parameters described above, i.e., selecting which GLS model to use, closes the second-
order moments, bar the definition of the stability functions, SM and SH , which are a function of αM
and αN , defined as:

αM =
k2

ε2
M2, αN =

k2

ε2
N2.

The two stability can be defined as:

SM (αM , αN) =
n0 + n1αN + n2αM

d0 + d1αN + d2αM + d3αNαM + d4α2
N + d5α2

M

,

and
SH(αM , αN) =

nb0 + nb1αN + nb2αM
d0 + d1αN + d2αM + d3αNαM + d4α2

N + d5α2
M

.

However, using the equilibrium condition for the turbulent kinetic energy as (P + B)/ε = 1, one
can write αM and a function of αN , allowing elimination of αM in the above equations [Umlauf and
Burchard, 2005]:

SM (αM , αN)αM − SN (αM , αN)αN = 1

eliminating some of the terms. A limit on negative values of αN needs to applied to ensure αM does
not also become negative.

The parameters n0, n1, n2, d0, d2, d3, d4, nb0, nb1, nb2 depend on the model parameters chosen and can
be related to traditional stability functions [Umlauf and Burchard, 2005].

Fluidity contains four choices of stability functions, GibsonLauder78 [Gibson and Launder, 1978],
KanthaClayson94 [Kantha and Clayson, 1994], CanutoA and CanutoB [Canuto et al., 2001], each of
which can be used in conjunction with any of gen, k − ε, and k − ω closures; and CanutoA and
KanthaClayson94 available with the k − kl closure scheme.

Boundary conditions
The boundary conditions for the two GLS equations can be either of Dirichlet or Neumann type. For
the turbulent kinetic energy, the Dirichlet condition can be written as:

k =
(u∗)2(
c0
µ

)2 , (4.15)

76 Parameterisations

where u∗ is the friction velocity. However, as the viscous sublayer is not resolved, the Dirichlet
condition can be unstable unless the resolution at the boundary is very high [Burchard et al., 1999].
It is therefore advisable to use the Neumann condition:

νM
σk

∂k

∂z
= 0. (4.16)

Similarly for the generic quantity, Ψ, the Dirichlet condition is written as:

Ψ =
(
c0
µ

)p
lnkm (4.17)

At the top of the viscous sublayer the value of Ψ can be determined from equation 4.9, specifying
l = κz and k from equation 4.15, giving:

Ψ =
(
c0
µ

)p−2m
κn (u∗s)

2m (κzs)
n (4.18)

where zs is the distance from the boundary surface (either surface or bottom) and u∗s is the friction at
the surface or bottom respectively.

Calculating the corresponding Neumann conditions by differentiating with respect to z, yields:(
KM

σΨ

∂Ψ

∂z

)
= n

KM

σΨ

(
c0
µ

)p
kmκnzn−1

s (4.19)

Note that it is also an option to express the Neumann condition above in terms of the friction velocity,
u∗. Previous work has shown this causes numerical difficulties in the case of stress-free surface
boundary layers [Burchard et al., 1999].

4.1.1.2 Standard k − ε Turbulence Model

Available under .../subgridscale parameterisations/k-epsilon.

The widely-used k−ε turbulence model has been implemented in Fluidity based on the descriptions
given in Wilcox [1998] and Rodi [1993]. It is distinct from the k − ε option in the generic length scale
(GLS) model (see Section 4.1.1.1), in that it uses a 3D eddy-viscosity tensor and can be applied to
any geometry. The eddy viscosity is added to the user-specified molecular (background) viscosity
when solving for velocity, and if solving for additional prognostic scalar fields, it is scaled by a user-
specified Prandtl number to obtain the field eddy diffusivity.

The model is based on the unsteady Reynolds-averaged Navier-Stokes (RANS) equations, in which
the velocity is decomposed into quasi-steady (moving average) and fluctuating (turbulent) compo-
nents:

ρ
∂u

∂t
+ ρu · ∇u = −∇p+ ρg +∇ · τ +∇ ·

(
−ρu′u′

)
, (4.20)

where u is the steady velocity, u′ is the fluctuating velocity, and p is the steady pressure. The fourth
term on the right, containing the Reynolds stress tensor −ρu′u′, represents the effect of turbulent
fluctuations on the steady flow and is modelled as:

−ρu′u′ = τR = µT

(
∇u + (∇u)T − 1

3
(∇ · u) I

)
− 2

3
kρI, (4.21)

where k = (u′ · u′)/2 is the turbulent kinetic energy and µT (x, t) is the dynamic eddy viscosity. For
incompressible flow this becomes:

−ρu′u′ = τR = µT

(
∇u + (∇u)T

)
− 2

3
kρI, (4.22)

4.1 Turbulent flow modelling and simulation 77

The eddy viscosity is estimated as:

µT = ρCµ
k2

ε
, (4.23)

where ε is the turbulent dissipation. The equations are closed by solving transport equations for k
and the turbulent energy dissipation ε:

ρ
∂k

∂t
+ ρu · ∇k = ∇ ·

((
µ+

µT
σk

)
∇k
)

+ τR · ∇u− µT
ρσT

g · ∇ρ− ρε, (4.24)

ρ
∂ε

∂t
+ ρu · ∇ε = ∇ ·

((
µ+

µT
σε

)
∇ε
)

+ Cε1

(ε
k

)(
τR · ∇u− Cε3

µT
ρσT

g · ∇ρ
)
− Cε2ρ

ε2

k
, (4.25)

The right hand side terms in the k and ε equations relate to the diffusion, production, production/de-
struction due to buoyancy, and destruction of k and ε. Within the buoyancy term, g is the gravita-
tional vector, σT is the Prandtl or Schmidt number for the Density field, and Cε3 varies depending on
the direction of the flow with respect to gravity. This is approximated to be:

Cε3 = tanh

(
uz
uxy

)
, (4.26)

where uz is the magnitude of the velocity in the same direction as gravity and uxy is the magnitude
of the velocity in all other directions.

The last term in equations 4.21 and 4.22 is not added explicitly. This term is determined during the
conservation equation solve and is absorbed into the calculated pressure gradient. This means that
the pressure gradient calculated by the model is actually:

∇p′ = ∇
(
p+

2

3
k

)
. (4.27)

The pressure field will therefore no longer be the pressure, but instead a modified pressure p′. The
real pressure can be obtained by subtracting 2

3k.

A turbulence length scale is associated with the dissipation of turbulent kinetic energy by the subgrid
scale motions:

l =
k3/2

ε
. (4.28)

The five model coefficients are in Table 4.3. These are the default values but they can be changed in
Diamond.

Important notes on applying the model in Fluidity

• The background viscosity must be set as an anisotropic symmetric tensor, with all values
set equal to the isotropic viscosity.

• The velocity stress terms should be in partial-stress form, which is set under
../vector field::Velocity/prognostic/spatial discretisation/../
stress terms/.

• If using anything other than a P1 Velocity mesh, mass-lumping does not work
when calculating the source and absorbtion terms for the model. ../k-epsilon/
mass lumping in diagnostics/solve using mass matrix must be selected.

78 Parameterisations

For more notes on usage see 8.11.2

Low Reynolds number model
When simulating low Reynolds numbers (Re < 104) it is recommended that the low-Re k-epsilon
model is used. .../boundary conditions/type::k epsilon/Low Re/ boundary conditions
should be selected for both the k and ε fields, for all solid boundaries, and the DistanceToWall field
must be set. The distance to the closest solid boundary is a prescribed field and can be described using
a python function for simple geometries. For more complex geometries where this is not possible an
estimate of the distance to the closest wall can be generated using a Poisson’s, or Eikonal, equation,
as described in Tucker [2011].

The Lam and Bremhorst low-reynolds RANS model is implemented in Fluidity, as detailed in Wilcox
[1998]. Damping functions are applied to the equations 4.25 and 4.23 as:

µT = ρCµfµ
k2

ε
, (4.29)

ρ
∂ε

∂t
+ ρu · ∇ε = ∇ ·

(
µT
σε
∇ε
)

+ Cε1f1
ε

k

(
τR · ∇u + Cε3

µT
σT

g · β∇c
)
− Cε2ρf2

ε2

k
, (4.30)

where:

fµ =
(
1− e−0.0165Ry

)2
(1 + 20.5/ReT) , (4.31)

f1 = 1 + (0.05/fµ)3 , (4.32)

f2 = 1− e−Re2T , (4.33)

Ry =
ρk1/2y

µ
, (4.34)

ReT =
ρk2

εµ
, (4.35)

Additionally:

• fµ is limited to a maximum value of 1.0.

• For stability, f1 and f2 are limited to a value set under .../max damping value/.

The associated boundary conditions are:

u = 0, (4.36)
k = 0, (4.37)

ε =
µ

ρ

∂2k

∂y2
=

2µ

ρ

(
∂k1/2

∂n

)
. (4.38)

High Reynolds number boundary conditions
For high Reynolds numbers (Re > 104), the high Rewall functions are recommended [Wilcox, 1998]:

4.1 Turbulent flow modelling and simulation 79

u = u∗

[
1

κ
ln(ρu∗y/µ) +B

]
, (4.39)

k =
u2
∗

C
1/2
µ

, (4.40)

ε =
u3
∗
κy
, (4.41)

u∗ = (τw/ρ)1/2 =

(
µT
ρ

∂US
∂n

)1/2

, (4.42)

where B is a model constant, y is the distance to the wall, u∗ is the friction velocity, US is the stream-
wise velocity parallel to the wall, κ = 0.43 is Von Karman’s constant, µ is the dynamic laminar
(background) viscosity, µT is the dynamic eddy (turbulent) viscosity, ρ is the density and ∂

∂n is the
gradient operator in the wall-normal direction. For implementation details see 8.11.2.

Turbulent diffusivity of scalar fields
When using scalar fields, such as a temperature or sediment field, The k-ε model simulates subgrid-
scale eddies by increasing the diffusivity of the scalar fields such that the diffusivity tensor, κ, in the
advection diffusion equation 2.1 becomes:

κ = D + µT /σT (4.43)

where D is the background diffusivity tensor for the fluid or the scalar field, and σT is the Prandtl
number, PrT , for temperature fields or the Schmidt number, ScT , for massive fields.

The Prandtl number is the ratio of momentum diffusivity (eddy viscosity) to the eddy thermal diffu-
sivity. The Schmidt number is the ratio of momentum diffusivity to the diffusivity of mass.

Time discretisation and coupling
The k and ε equations are coupled and are highly non-linear. In Fluidity, the equations are linearised
and decoupled using available values from previous iterations and time steps as follows.

Being consistent with all advection diffusion equations in Fluidity, the density and velocity values
used are defined by non-linear relaxation of the available values for these variables as defined in
section 3.3.2, which are denoted as û = un+θnl and ρ̂ = ρn+θnl for the remainder of this section.

Two discretisations are used for k and ε. The coupled, non-linear source terms and eddy viscosity are
calculated using a discretisation of k and ε similar to the non-linear relaxation of u and ρ. i.e. based
upon values from the previous non-linear iteration, γ̃n+1 (where γ implies either k or ε), and values
from the previous time step γn. The choice between these values is made using the k − ε nonlinear
relaxation parameter, θkε, which must lie in the interval [0, 1]. This allows us to define:

γ̂ = γn+θkε = θkεγ̃
n+1 + (1.0− θkε) γn. (4.44)

Other terms in these equations are discretised using the θ scheme described in section 3.3.3, as in
section 3.4. These values are denoted as γ̄ throughout the remainder of this section.

Equations 4.21 to 4.26 therefore become:

τ̂R = µ̂T

(
∇û + (∇û)T − 1

3
(∇ · û) I

)
− 2

3
k̂ρ̂I, (4.45)

µ̂T = ρ̂Cµ
k̂2

ε̂
(4.46)

80 Parameterisations

µ̂T is evaluated both at the beginning of each non-linear iteration and also before the momentum
solve so that the most up to date value is used for all equation solves.

ρ̂
∂k

∂t
+ ρ̂û · ∇k̄ = ∇ ·

((
µ+

µ̂T
σk

)
∇k̄
)

+ τ̂R · ∇û− Ĝk − ρ̂εn+θkε , (4.47)

where:
Ĝk =

µ̂T
ρ̂σT

g · ∇ρ̂, (4.48)

ρ̂
∂ε

∂t
+ ρ̂û · ∇ε̄ = ∇ ·

((
µ+

µ̂T
σε

)
∇ε̄
)

+ Cε1

(
ε̂

k̂

)(
τ̂R · ∇û− Ĝε

)
− Cε2ρ̂

ε̂2

k̂
, (4.49)

where:
Ĝε = Cε3

µ̂T
ρ̂σT

g · ∇ρ̂, (4.50)

Cε3 = tanh

(
ûz
ûxy

)
, (4.51)

The low-Reynolds number model follows the same convention with equations 4.34 and 4.35 becom-
ing:

R̂y =
ρ̂k̂1/2y

µ
, (4.52)

ˆReT =
ρ̂k̂2

ε̂µ
, (4.53)

Additionally, it is possible to implement each of the source terms that are specific to the k − ε model
as absorbtion terms. When this is done, the chosen source term, denoted as Ŝ, becomes:

Ŝabsorbtion =
Ŝ

γ̂
γ̄ (4.54)

where γ is k or ε depending upon the equation the source term is from. This can help stability in
some cases and is the recommended approach for the destruction terms.

4.1.2 Large-Eddy Simulation (LES)

In Large Eddy Simulations the large scales in the flow are captured while the effect of the small scales
is modelled. Formally, a filtering operator is defined and a decomposition, similar to the Reynolds
decomposition, is introduced:

ui =

∫ ∞
−∞

Gm (−→r)ui (−→x −−→r) d−→r (4.55)

and
ui = ui + u′i (4.56)

where u′i denotes the subgrid-scale fluctuation. Applying the filtering operator to the continuity and
momentum equations for constant-property, incompressible flow and introducing the decomposition
(4.56) to the non-linear terms gives,

∂ui
∂xi

= 0 (4.57)

∂ui
∂t

+
∂ui uj
∂xj

= −1

ρ

∂p

∂xi
+ 2ν

∂Sij
∂xj

− ∂τij
∂xj

(4.58)

4.1 Turbulent flow modelling and simulation 81

where Sij denotes the strain-rate tensor of the filtered velocity field and τij is usually termed the
residual stress tensor,

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(4.59)

τij = uiuj − ui uj (4.60)

The above, formal, definition of LES involves an explicit filtering operation. Various options are
available for the filtering kernel Gm (−→r) in the convolution (4.55), see Pope [2000] and Sagaut [1998].
However, in most implementations the filtering kernel is tied to the mesh and the numerical approx-
imation.

The residual stress tensor is an unknown and a subgrid-scale model is used to close the Navier-Stokes
equations. All three subgrid-scale models implemented in Fluidity are based on the eddy-viscosity
concept: The small scales in the flow act as a diffusive agent, so the subgrid stress can be expressed
in a way similar to the viscous stress:

τija = τij − δij
1

3
τkk = −2ντSij (4.61)

where only the anisotropic part of τij is treated explicitly. This is usual practise, as the isotropic
part can be added to the pressure. In addition, this allows for the diagonal components of τij to be
non-zero when Sij = 0. Equation (4.58) becomes:

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

[
(ν + ντ)

(
∂ui
∂xj

+
∂uj
∂xi

)]
, (4.62)

In comparison with the unfiltered Navier-Stokes equations, equation (4.58) features an addi-
tional term. This is reflected in the options that must be adjusted in order to perform large
eddy simulations using Fluidity. In particular, the user must activate the option with path
...Velocity/prognostic/spatial_discretisation/continuous_galerkin/les_model
(See chapter 8 for how to configure Fluidity options and interact with diamond). Note however,
currently Fluidity supports “explicit” LES only with continuous Galerking discretisations. Once
the aforementioned option is activated, the user can select and configure one of the three models
outlined in the next section. The available models (and option paths) are:

• Second order dissipation model (.../les_model/second_order)

• Fourth order dissipation model (.../les_model/fourth_order)

• Dynamic Smagorinsky model (.../les_model/dynamic_les)

4.1.2.1 Subgrid-scale modelling

The subgrid-scale models available in Fluidity are based on the Smagorinsky model [Smagorinsky,
1963]. The Smagorinsky model itself is a mixing length model, where by dimensional analysis [Dear-
dorff, 1970, Germano, 1992] the eddy viscosity is expressed as:

ντ = c l
4
3 ε

1
3 (4.63)

where c is a dimensionless constant, l is the Smagorinsky length-scale (the mixing length) and ε is the
rate of dissipation. The assumption that ε is equal to the production rate P is then used, correct only
if the cut-off frequency of the filter is placed in the inertial sub-range of the spectrum:

ε = P = τijaSij (4.64)

82 Parameterisations

Equations (4.61), (4.63) and (4.64) give:

ντ = C2
s l

2
∣∣S∣∣ (4.65)

where Cs is the Smagorinsky coefficient and
∣∣S∣∣ is the local strain rate (the second invariant of the

strain-rate tensor): ∣∣S∣∣ =
(
2SijSij

)1/2 (4.66)

Second-Order Dissipation model

The following model developed by Bentham [2003] is similar to the original Smagorinsky model, but
allows for an anisotropic eddy viscosity that gives better results for flow simulations on unstructured
grids:

∂τij
∂xj

=
∂

∂xi

[
νjk

∂uj
∂xk

]
, (4.67)

with the anisotropic tensorial eddy viscosity:

νjk = 4C2
s

∣∣S∣∣M−1, (4.68)

whereM is the length-scale metric from the adaptivity process (see Pain et al. [2001]), used here to
relate eddy viscosity to the local grid size. The factor of 4 arises in both of the above formula because
the filter width separating resolved and unresolved scales is assumed to be twice the local element
size, which is squared in the viscosity model.

There is also a scalar (rather than tensorial) length scale metric available, defined by

l = 2V
1
n , (4.69)

where n is the dimension of the problem, and V is the volume (if n = 3) or area (if n = 2) of the
element. Using this yields an isotropic eddy viscosity tensor:

νjk = 4C2
s

∣∣S∣∣V 1
n . (4.70)

The options for this model are available under the spud path .../les_model/second_order.
The following options are available to the user:

• .../les_model/second_order/smagorinsky_coefficient : (Compulsory) The user
can here specify the value of the Smagorinsky coefficient Cs. A value of 0.1 is recommended for
most flows. However, many researchers have carried out calibration studies for particular flows
and mesh resolutions, for example see Deardorff [1971], Nicoud and Durcos [1999], Germano
et al. [1991] and Canuto and Cheng [1997].

• .../les_model/second_order/length_scale_type : (Compulsory) The user can select
between the scalar or tensor length scales, described above.

• .../les_model/second_order/tensor_field::EddyViscosity : (Optional) When
this option is active the eddy viscocity is calculated as a diagnostic field. Further sub-options
allow the user to store this field for later visualisation and post-processing.

Fourth-Order Dissipation model

The fourth-order method is designed as an improvement to the second-order eddy viscosity method,
which can be too dissipative [Candy, 2008]. The fourth-order term is taken as the difference of two

4.1 Turbulent flow modelling and simulation 83

second-order eddy viscosity discretisations, where one is larger than the other. Usually a smaller
time-step and finer grid are necessary to make fourth-order worthwhile.

Currently the only option for this model allows the specification of
the Smagorinsky coefficient. This option is available at the spud path
.../les_model/fourth_order/smagorinsky_coefficient , see the corresponding op-
tion of the second-order dissipation model above for more information.

Dynamic Smagorinsky model

The most important disadvantage of Smagorinsky-type models such as discussed in sections 4.1.2.1
and 4.1.2.1 is the behaviour of the eddy viscosity near walls and non-turbulent regions. As shown
in Pope [2000], in a fully developed channel flow the sub-grid eddy viscosity ντ should diminish as
ντ ∝ z3, z the wall-normal coordinate. Conversely, it is shown in Nicoud and Durcos [1999] that the

Smagorinsky model gives
√

2S̃ijS̃ij ∼ O(1) near walls leading to an incorrect subgrid-scale viscos-
ity. In addition, the Smagorinsky model is absolutely dissipative: energy transfer is only allowed
from resolved scales to subgrid scales. The opposite (commonly termed as backscatter), commonly
occurs in transitional flows, and absolutely dissipative models have been shown in Piomelli et al.
[1990] to under-predict the growth rate of perturbations in the flow, leading to delayed transition to
turbulence.

Dynamical models were designed to overcome the aforementioned disadvantages by using argu-
ments with better physical grounding as a starting point towards the evaluation of the subgrid vis-
cosity. In particular, at the core of dynamical Smagorinsky type models lies the idea of scale similarity
[Bardina et al., 1980], which states that in the inertial subrange, the statistical properties of the fluc-
tuations at a given wave-number are similar to the statistical properties of fluctuations of near-by
wave-numbers.

Formally, a second filtering of equations (4.57) and (4.58) is introduced:

ũi =

∫ ∞
−∞

Gt (−→r)ui (−→x −−→r) d−→r (4.71)

∂ũi
∂xi

= 0 (4.72)

∂ũi
∂t

+
∂ũi ũj
∂xj

= −1

ρ

∂p̃

∂xi
+ 2ν

∂S̃ij
∂xj

− ∂Tij
∂xj

(4.73)

The first filter is the mesh filter Gm(x) (see equation (4.55)) and has a characteristic filter width 4 in
physical space. ui is simply the velocity represented on the computational mesh. The second filter,
Gt(x), is called the test filter and has a characteristic filter width 4̃. The filter widths are related by,

4̃/4 = α (4.74)

where α = 2 for best results [Germano et al., 1991]. The residual stress resulting from mesh-filtering,
τij is given in equation (4.60). The residual stress tensor resulting from test-filering, Tij is:

Tij = ũiuj − ũiũj , (4.75)

The Germano identity postulates the relation bewteen the test-filtered τij and Tij :

Lij = Tij − τ̃ij = ũiuj − ũiũj . (4.76)

84 Parameterisations

The Smagorinsky model is used to obtain an expression for the stress tensors on the right-hand-side
of the germano identity above. The Smagorinsky model is here written as:

τij = −2ντSij where, ντ = C42 ∣∣S∣∣ (4.77)

Where C = C2
s is used, for convenience. The Germano identity is used in conjuction with equation

(4.77) and after contraction with the strain rate tensor (4.59) an expression for the model coefficient
C is derived (see Germano et al. [1991], Germano [1992] for details):

C(x, t) = −1

2

LijSij

4̃
2
|S̃|S̃ijS −4

2 |̃S|SijS
. (4.78)

Then the eddy viscosity is given by

ντ (x, t) = −1

2

LijSij

(1 + α2)|S̃|S̃ijS − |̃S|SijS

∣∣S∣∣ . (4.79)

Unlike the Smagorinsky-based models of Bentham [2003], the eddy viscosity is isotropic in equation
(4.79), since the anisotropic filter widths have cancelled top and bottom. The anisotropy of the mesh
is accounted for in the definition of the test filter Gt(x).

A major drawback of the Germano variant of the dynamic Smagorinsky model is that the denom-
inator in equations (4.78) and (4.79) can become very small. In addition, equation (4.79) can give
large fluctuations in the subgrid scale viscosity, which can also lead to instability. Planar averaging
of the terms in the numerator and denominator of equations (4.78) and (4.79) is used in Germano
et al. [1991] to stabilise turbulent channel flow simulations. In Fluidity the Germano variant is im-
plemented as well as the Lilly variant. In the latter, in order to remove the instability caused by the
denominator of (4.78) becoming small, a modified expression for C is proposed in Lilly [1992]:

C(x, t) = −1

2

LijMij

M2
ij

, (4.80)

where

Mij = 4̃|S̃|S̃ij − 4̃|̃S|Sij . (4.81)

This represents a least-squares error minimisation of the equation Lij − 1
3δijLkk = 2CMij . The mod-

ification is reported to remove the need for planar averaging.

The numerators of (4.78) and (4.80) can become negative, resulting in negative eddy viscosity. In this
case, energy is transferred from the subgrid scales to the resolved scales. Germano et al. [1991] report
that the stresses were closer to DNS as a result. This is an option in Fluidity.

Equations (4.78) and (4.80) require the calculation of the test-filtered velocity field ũi. The inverse
Helmholtz filter is implemented in Fluidity for use with the dynamic model:

ui =
(
1− α2∇2

)
ũi (4.82)

where α is the filter width ratio defined above. It is related to the local mesh size by α2 = 42
/24

[Pope, 2000]. In Fluidity equation (4.82) is constructed in weak finite element form with a strong
Dirichlet boundary condition on the filtered field: ũi = ui. Similar problems must be solved for

calculation of |̃S|Sij in equations (4.78), (4.79) and (4.81)

The options available to the user are located under path .../les_model/dynamic_les.

4.2 Ice shelf parameterisation 85

• .../les_model/dynamic_les/alpha : (Compulsory) The test-to-mesh filter ratio, see
equation (4.74).

• .../les_model/dynamic_les/solver : (Compulsory) Sub-options allow the user to se-
lect the matrix solver used in solving equation (4.82), during the calculation of test-filtered
fields. See section 3.11 for available linear solvers and their options.

• .../les_model/dynamic_les/enable_lilly : (Optional) When active, the Lilly variant
of the model is used.

• .../les_model/dynamic_les/enable_backscatter : (Optional) When inactive the
subgrid eddy viscocity is constrained to be positive, ντ > 0.

• .../les_model/dynamic_les/vector_field::FilteredVelocity : (Optional) Sub-
options allow the user to store realisations of the twice-filtered velocity field, ũi i = 1, 2, 3, for
post-processing.

• .../les_model/dynamic_les/tensor_field::FilterWidth : (Optional) Sub-options
allow the user to store realisations of the mesh filter width field,4, for post-processing.

• .../les_model/dynamic_les/tensor_field::StrainRate : (Optional) Sub-options
allow the user to store realisations of the strain rate of the mesh-filtered velocity, for post-
processing.

• .../les_model/dynamic_les/tensor_field::FilteredStrainRate : (Optional)
Sub-options allow the user to store realisations of the strain rate of the twice-filtered velocity,
for post-processing.

• .../les_model/dynamic_les/tensor_field::EddyViscosity : (Optional) Sub-
options allow the user to store realisations of the eddy viscosity, ντ , for post-processing.

4.2 Ice shelf parameterisation

Exchange of heat and salt between the ice and ocean drives the circulation. The temperature Tb and
salinity Sb at the ice-ocean interface are determined by the balance of heat and salt fluxes between
the ice and ocean [e.g. McPhee, 2008, Jenkins and Bombosch, 1995]:

mL+mcI(Tb − TI) = c0γT |u|(T − Tb); mSb = γS |u|(S − Sb), (4.83)

where co = 3974 J kg−1 ◦C−1 and cI = 2009 J kg−1 ◦C−1 are the specific heat capacity of seawater
and ice, respectively. The variable m and L = 3.35× 105 J kg−1 represent the melt rate and the latent
heat of ice fusion. We assume the temperature of ice to be TI = −25 ◦C. The velocity, tempera-
ture, and salinity of the ocean are u, T , and S, respectively.These two flux balances are linked with
constraining the interface to be at the local freezing temperature:

Tb = aSb + b+ cP, (4.84)

where a = −0.0573◦C, b = 0.0832◦C and c = −7.53e−8 ◦C Pa−1. The three unknowns Tb, Sb, and m
are solved by the three equations (4.83)-(4.84).

4.2.1 Boundary condition at ice surface

At the ice surface, heat and salt fluxes to the ocean based on the melt rate are

FH = c0(γT |u|+m)(T − Tb); FS = (γS |u|+m)(S − Sb). (4.85)

These boundary conditions are applied to the surface field specified in the flml file.

86 Parameterisations

Model: k − kl k − ε k − ω gen
Ψ = k1l1

(
c0
µ

)3
k

3
2 l1

(
c0
µ

)−1
k

1
2 l1

(
c0
µ

)2
k1l

2
3

p 0.0 3.0 -1.0 2.0
m 1.0 1.5 0.5 1.0
n 1.0 -1.0 -1.0 -0.67
σk 2.44 1.0 2.0 0.8
σΨ 2.44 1.3 2.0 1.07
c1 0.9 1.44 0.555 1.0
c2 0.5 1.92 0.833 1.22
c−3 See Table 4.2
c+

3 1.0 1.0 1.0 1.0
kmin 5.0× 10−6 7.6× 10−6 7.6× 10−6 7.6× 10−6

Ψmin 1.0× 10−8 1.0× 10−12 1.0× 10−12 1.0× 10−12

Fwall See sec 4.1.1.1 1.0 1.0 1.0

Table 4.1: Generic length scale parameters

Model: k − kl k − ε k − ω gen
Ψ = k1l1

(
c0
µ

)3
k

3
2 l1

(
c0
µ

)−1
k

1
2 l1

(
c0
µ

)2
k1l

2
3

KC 2.53 -0.41 -0.58 0.1
CA 2.68 -0.63 -0.64 0.05
CB - -0.57 -0.61 0.08
GL - -0.37 -0.492 0.1704

Table 4.2: Values for the c+
3 parameter for each combination of closure scheme and stability function

Coefficient Standard value
Cµ 0.09
Cε1 1.44
Cε2 1.92
σε 1.3
σk 1.0
σT 1.0

Table 4.3: k − ε model coefficients

Chapter 5

Embedded models

The parameterisations described in chapter 4 are used to model fluids processes which cannot be
resolved by the model. In contrast, the models described in this chapter detail models embedded in
Fluidity which model non-fluids processes.

5.1 Biology

The Biology model in Fluidity contains a number of different submodels. All are currently popula-
tion level models where variables evolve under an advection-diffusion equation similar to that for
other tracers, such as temperature and salinity, but modified by the addition of a source term which
contains the interactions between the biological fields. The fluxes depend on which model is selected
and which tracers are available.

There are two models currently distributed with Fluidity: a four-component model and a six-
component model.

5.1.1 Four component model

Figure 5.1 shows the interactions between the biological tracers in the four component model. Nu-
trients (plus sunlight) are converted into phytoplankton. Zooplankton feed on phytoplankton and
detritus but in doing so produce some nutrients and detritus so grazing also results in fluxes from
phytoplankton and detritus to nutrient and detritus. Both phytoplankton and zooplankton die pro-
ducing detritus and detritus is gradually converted to nutrient by a remineralisation process.

5.1.1.1 Biological source terms

The source terms for phytoplankton (P), zooplankton (Z), nutrient (N) and detritus (D) respectively
are given by the following expressions:

SP = RP −GP −DeP , (5.1)
SZ = γβ(GP + GD)−DeZ , (5.2)

SN = −RP + DeD + (1− γ)β(GP + GD), (5.3)
SD = −DeD + DeP + DeZ + (1− β)GP − βGD). (5.4)

The definitions of each of these terms are given below. It is significant that the right-hand sides
of these equations sum to zero. This implies that, for a closed biological system, the total of the

87

88 Embedded models

Symbol Meaning Typical value Section
RP phytoplankton growth rate 5.1.1.1
GP rate of zooplankton grazing on phytoplankton 5.1.1.1
DeP death rate of phytoplankton 5.1.1.1
GD rate of zooplankton grazing on detritus 5.1.1.1
DeZ death rate of zooplankton 5.1.1.1
DeD death rate of detritus 5.1.1.1
I photosynthetically active radiation 5.1.3
α sensitivity of phytoplankton to light 0.015 m2 W−1 day−1 5.1.1.1
β assimilation efficiency of zooplankton 0.75
γ zooplankton excretion parameter 0.5
µP phytoplankton mortality rate 0.1 day−1 5.1.1.1
µZ zooplankton mortality rate 0.2 day−1 5.1.1.1
µD detritus remineralisation rate 0.05 day−1 5.1.1.1
g zooplankton maximum growth rate 1 day−1 5.1.1.1
kN half-saturation constant for nutrient 0.5 5.1.1.1
k zooplankton grazing parameter 0.5 5.1.1.1
pP zooplankton preference for phytoplankton 0.75 5.1.1.1
v maximum phytoplankton growth rate 1.5 day−1 5.1.1.1

Table 5.1: Meanings of symbols in the biology model. Typical values are provided for externally set
parameters.

biological constituents is always conserved. The terms in these equations are given in table 5.1. The
variable terms are explained in more detail below.

RP , the phytoplankton growth rate

RP is the growth-rate of phytoplankton which is governed by the current phytoplankton concentra-
tion, the available nutrients and the available light:

RP = J P Q, (5.5)

where J is the light-limited phytoplankton growth rate which is in turn given by:

J =
vαI

(v2 + α2I2)1/2
. (5.6)

In this expression, v is the maximum phytoplankton growth rate, α controls the sensitivity of growth
rate to light and I is the available photosynthetically active radiation.

Q is the nutrient limiting factor and is given by:

Q =
N

kN +N
, (5.7)

where kN is the half-saturation constant for nutrient.

GP , the rate of phytoplankton grazing by zooplankton The rate at which zooplankton eat phyto-
plankton is given by:

GP =
gpPP

2Z

k2 + pPP 2 + (1− pP)D2
, (5.8)

in which pP is the preference of zooplankton for grazing phytoplankton over grazing detritus, g is
the maximum zooplankton growth rate and k is a parameter which limits the grazing rate if the
concentration of phytoplankton and detritus becomes very low.

GD, the rate of detritus grazing by zooplankton The rate at which zooplankton eat detritus is given
by:

GD =
g(1− pP)D2Z

k2 + pPP 2 + (1− pP)D2
, (5.9)

5.1 Biology 89

in which all of the parameters have the meaning given in the previous section.

DeP , the phytoplankton death rate

A proportion of the phytoplankton in the system will die in any given time interval. The dead
phytoplankton become detritus:

DeP =
µPP

2

P + 1
, (5.10)

in which µP is the phytoplankton mortality rate.

DeZ , the zooplankton death rate

A proportion of the zooplankton in the system will die in any given time interval. The dead zoo-
plankton become detritus:

DeZ = µZZ
2. (5.11)

DeD, the detritus remineralisation rate

As the detritus falls through the water column, it gradually converts to nutrient:

DeD = µDD. (5.12)

5.1.2 Six-component model

The six-component model is based on the model of Popova et al. [2006] which is designed to be appli-
cably globally. Figure 5.2 shows the interactions between the six biological tracers. Nutrients, either
ammonium or nitrate, (plus sunlight) are converted into phytoplankton. Zooplankton feed on phyto-
plankton and detritus but in doing so produce some nutrients and detritus so grazing also results in
fluxes from phytoplankton and detritus to nutrient and detritus. Both phytoplankton and zooplank-
ton die producing detritus and detritus is gradually converted to nutrient by a re-mineralisation
process. In addition, chlorophyll is present as a subset of the phytoplankton.

The source terms for phytoplankton (P), Chlorophyll-a (Chl), zooplankton (Z), nitrate (N), ammo-
nium (A), and detritus (D) respectively are given by the following expressions:

SP = PJ(QN + QA)−GP −DeP , (5.13)
SChl = (RP ∗ J ∗ (QN + QA) ∗ P + (−GP −DeP)) ∗ θ/ζ), (5.14)

SZ = δ ∗ (βP ∗GP + βD ∗GD)−DeZ , (5.15)
SN = −J ∗ P ∗QN + DeA, (5.16)

SA = −J ∗ P ∗QA + DeD + (1− δ) ∗ (βP ∗GP + βD ∗GD) + (1− γ) ∗DeZ −DeA, (5.17)
SD = −DeD + DeP + γ ∗DeZ + (1− βP) ∗GP − βD ∗GD (5.18)

The terms in these equations are given in table

5.2. The variable terms are explained in more detail below.

5.1.2.1 Biological source terms

Unlike the model of Popova et al. [2006] we use a continuous model, with no change of equations
(bar one exception) above or below the photic zone. For our purposes, the photic zone is defined as
100m water depth. First we calculate θ:

θ =
Chl

Pζ
(5.19)

However, at low light levels, Chl might be zero, therefore we take the limit that θ → ζ at low levels
(1e−7) of chlorphyll-a or photoplankton.

90 Embedded models

We then calculate α:
alpha = αcθ (5.20)

Using the PAR available at each vertex of the mesh, we now calculate the light-limited phytoplankton
growth rate, J :

J =
vαIn√

v2 + α2 + I2
n

(5.21)

The limiting factors on nitrate and ammonium are now calculated:

QN =
N exp−ΨA

KN +N
, (5.22)

QA =
A

KA +A
(5.23)

From these the diagnostic field, primary production (XP), can be calculated:

XP = J (QN +QA)P (5.24)

The chlorophyll growth scaling factor is given by:

RP = QNQA

(
θm
θ

)(
v√

v2 + α2 + I2
n

)
(5.25)

The zooplankton grazing terms are now calculated:

GP =
gpPP

2Z

ε+ (pPP 2 + pDD2)
, (5.26)

GD =
gpDD

2 ∗ Z
ε+ (pPP 2 + pDD2)

(5.27)

Finally, the four death rates and re-mineralisation rates are calculated:

DeP =
µpP

2

P + kp
+ λbio ∗ P, (5.28)

DeZ =
µzZ

3

Z + kz
+ λbio ∗ Z, (5.29)

DeD = µDD + λbio ∗ P + λbio ∗ Z, (5.30)

DeA = λAA where z < 100 (5.31)

5.1.3 Photosynthetically active radiation (PAR)

Phytoplankton depends on the levels of light in the water column at the frequencies useful for photo-
synthesis. This is referred to as photosynthetically active radiation. Sunlight falls on the water surface
and is absorbed by both water and phytoplankton. This is represented by the following equation:

∂I

∂z
= (Awater +APP)I, (5.32)

5.2 Sediments 91

where Awater and AP are the absorption rates of photosynthetically active radiation by water and
phytoplankton respectively.

This equation has the form of a one-dimensional advection equation and therefore requires a single
boundary condition: the amount of light incident on the water surface. This is a Dirichlet condition
on I .

As the PAR equation is relatively trivial to solve, the following options are recommended:

• Discontinuous discretisation

• Solver: gmres iterative method, with no preconditioner.

5.1.4 Detritus falling velocity

Phytoplankton, zooplankton and nutrient are assumed to be neutrally buoyant and therefore move
only under the advecting velocity of the water or by diffusive mixing. Detritus, on the other hand, is
assumed to be denser than water so it will slowly sink through the water-column. This is modelled
by modifying the advecting velocity in the advection-diffusion equation for detritus by subtracting
a sinking velocity usink from the vertical component of the advecting velocity.

5.2 Sediments

Fluidity is capable of simulating an unlimited number of sediment concentration fields. Each sed-
iment field, with concentration, ci, behaves as any other tracer field, except that it is subject to a
settling velocity, usi. The equation of conservation of suspended sediment mass thus takes the form:

∂ci
∂t

+∇ · ci(u− δj3usi) = ∇ · (κ∇ci) (5.33)

Source and absorption terms have been removed from the above equation. These will only be present
on region boundaries.

Each sediment field represents a discrete sediment type with a specific diameter and density. A
distribution of sediment types can be achieved by using multiple sediment fields.

Notes on model set up

Each sediment field must have a sinking velocity. Note that this is not shown as a required element
in the options tree as it is inherited as a standard option for all scalar fields.

A sediment density, and sediment bedload field must also be defined. The sediment bedload field
stores a record of sediment that has exited the modelled region due to settling of sediment particles.

To use sediment, a linear equation of state must also be enabled .../equation of state/
fluids/linear

5.2.1 Hindered Sinking Velocity

The effect of suspended sediment concentration on the fall velocity can be taken into account by
making the Sinking Velocity field diagnostic. The equation of Richardson and Zaki [1954] is then
used to calculate the hindered sinking velocity, usi, based upon the unhindered sinking velocity, us0,

92 Embedded models

and the total concentration of sediment, c.

usi = us0(1− c)2.39 (5.34)

5.2.2 Deposition and erosion

A surface can be defined, the sea-bed, which is a sink for sediment. Once sediment fluxes through
this surface it is removed from the system and stored in a separate field: the Bedload field. Each
sediment class has its on bedload field.

Erosion of this bed can be modelled by applying the sediment reentrainment boundary condition.
There are several options for the re-entrainment algorithm that is used to calculate the amount of
sediment eroded from the bed.

1. Garcia’s re-entrainment algorithm

Erosion occurs at a rate based upon the shear velocity of the flow at the bed, u∗, the distribution of
particle classes in the bed, and the particle Reynolds number, Rp,i. The dimensionless entrainment
rate for the ith sediment class, Ei, is given by the following equation:

Ei = Fi
AZ5

i

1−AZ5
i /0.3

(5.35)

Zi = λm
u∗

usi
R0.6
p,i

(
di
d50

)0.2

(5.36)

Where Fi is the volume fraction of the relevant sediment class in the bed, di is the diameter of the
sediment in the ith sediment class and d50 is the diameter for which 50% of the sediment in the bed is
finer. A is a constant of value 1.3× 107

u∗ and Rp,i are defined by the following equations:

u∗ =
√
τb/ρ (5.37)

Rp,i =
√
Rgd3/ν (5.38)

This is given dimension by multiplying by the sinking velocity, usi, such that the total entrainment
flux is:

Em = usiEi (5.39)

2. Generic re-entrainment algorithm

Erosion occurs when the bed-shear stress is greater than the critical shear stress. Each sediment
class has a separate shear stress, which can be input or calculated depending on the options chosen.
Erosion flux, Em is implemented as a Neumann boundary condition on the bedload/erosion surface.

Em = E0m (1− ϕ)
τsf − τcm
τcm

(5.40)

5.2 Sediments 93

where E0m is the bed erodibility constant (kgm−1s−1) for sediment class m, τsf is the bed-shear
stress, ϕ is the bed porosity (typically 0.3) and τcm is the critical shear stress for sediment classm. The
critical shear stress can be input by the user or automatically calculated using:

τcm = 0.041 (s− 1) ρgD (5.41)

where s is the relative density of the sediment, i.e. ρSm
ρ and D is the sediment diameter (mm). The

SedimentDepositon field effectively mixes the deposited sediment, so order of bedload is not pre-
served.

5.2.3 Sediment concentration dependent viscosity

The viscosity is also affected by the concentration of suspended sediment. This can be taken account
for by using the sediment concentration dependent viscosity algorithm on a diagnostic viscosity
field. If using a sub-grid scale parameterisation this must be applied to the relevant background
viscosity field.

The equation used is that suggested by Krieger and Dougherty, 1959, and more recently by Sequeiros,
2009. Viscosity, ν, is a function of the zero sediment concentration viscosity, ν0, and the total sediment
concentration, c, as follows.

ν = ν0(1− c/0.65)−1.625 (5.42)

Note: a ZeroSedimentConcentrationViscosity tensor field is required.

94 Embedded models

Phytoplankton Zooplankton

Nutrient Detritus

grazing

fertilisation grazing

remineralisation

grazing

deathgrazing

death

grazing

Figure 5.1: The fluxes between the biological tracers. Grazing refers to the feeding activity of zoo-
plankton on phytoplankton and detritus.

Phytoplankton

Detritus

Sinking

Mortality
NH4

NO3 Zooplankton

Grazing

Mortality
and sloppy

feeding

Excretion

Excretion

Growth

Remineralisation

Chlorophyll

Figure 5.2: Six-component biology model.

5.2 Sediments 95

Symbol Meaning Typical value Equation
α initial slope of P − I curve,(W m−2)−1 day−1 (5.20)
αc Chl-a specific initial slope of P − I curve 2 (gCgChl−1Wm−2)−1day−1

βP , βD assimilation coefficients of zooplankton 0.75
DeD rate of breakdown of detritus to ammonium (5.30)
DeP rate of phytoplankton natural mortality (5.28)
DeZ rate of zooplankton natural mortality (5.29)
DeA ammonium nitrification rate (5.31)
δ excretion parameter 0.7
ε grazing parameter relating capture of prey

items to prey density
0.4

GP rate of zooplankton grazing on phytoplankton (5.26)
GD rate of zooplankton grazing on detritus (5.27)
g zooplankton maximum growth rate 1.3 day−1

γ fraction of zooplankton mortality going to de-
tritus

0.5

I0 photosynthetically active radiation (PAR) im-
mediately below surface of water. Assumed to
be 0.43 of the surface radiation

J light-limited phytoplankton growth rate,
day−1

(5.21)

kA half-saturation constant for ammonium uptake 0.5 mmol m−3

kN half-saturation constant for nitrate uptake 0.5 mmol m−3

kP half-saturation constant for phytoplankton
mortality

1 mmol m−3

kZ half-saturation constant for zooplankton mor-
tality

3 mmol m−3

kw light attenuation due to water 0.04 m−1

kc light attenuation due to phytoplankton 0.03 m2 mmol−1

λbio rate of the phytoplankton and zooplankton
transfer into detritus

0.05 day−1

λA nitrification rate 0.03 day−1

µP phytoplankton mortality rate 0.05 day−1

µZ zooplankton mortality rate 0.2 day−1

µD detritus reference mineralisaiton rate 0.05 day−1

Ψ strength of ammonium inhibition of nitrate up-
take

2.9 (mmol m−3)−1

pP relative grazing preference for phytoplankton 0.75
pD relative grazing preference for detritus 0.25
QN non-dimensional nitrate limiting factor (5.22)
QA non-dimensional ammonium limiting factor (5.23)
RP Chl growth scaling factor (5.25)
v Maximum phytoplankton growth rate 1 day−1

wg detritus sinking velocity 10 m day−1

z depth
θ Chl to carbon ratio, mg Chl mgC−1

θm maximum Chl to carbon ratio 0.05 mg Chl mgC−1

ζ conversion factor from gC to mmolN based on
C:N ratio of 6.5

0.0128 mmolN ngC−1

Table 5.2: Meanings of symbols in the six-component biology model. Typical values are provided for
externally set parameters.

96 Embedded models

Chapter 6

Meshes in Fluidity

In each run of Fluidity an input mesh needs to be provided. Even in adaptive mesh runs an initial
mesh is needed to define the initial condition of the fields on. This chapter covers a number of topics
related to meshes in Fluidity: what mesh formats are supported (section 6.1) , how different regions
and boundary surfaces can be marked (section 6.2), the relation between meshes and function spaces
(section 6.3), the extrusion of horizontal meshes in the vertical (section 6.4), the creation of periodic
meshes (section 6.5), and finally an overview of meshing tools provided with Fluidity (section 6.6).

6.1 Supported mesh formats

Fluidity supports two mesh file formats:

1. Gmsh .msh files. Gmsh is a mesh generator freely available on the web at http://geuz.org/
gmsh/, and is included in Linux distributions such as Ubuntu. This is the recommended file
format.

2. Triangle format. This is stored as a set of 3 files: a .node file, a .ele file and a .face (3D) or .edge
(2D) or .bound (1D) file. This file format is mainly supported for special purposes, like 1D
meshes, and some offline tools.

3. ExodusII: ExodusII is a model developed by Sandia National Laboratories which can be used
for pre- and postprocessing of finite element analyses. In Fluidity we currently only read in the
mesh from an ExodusII file which can be created using Cubit. Cubit should preferably be used
when dealing with complex engineering geometries, e.g. a turbine.

For a detailed, technical description of the three mesh file formats see appendix E. In addition, in-
structions on how to generate a mesh using Gmsh in simple geometries as well as complex ocean
domains can be found in the Gmsh tutorial available at http://amcg.ese.ic.ac.uk/files/
amcg-gmsh-tutorial.pdf. Tutorials on how to use Cubit a documentation can be found at
http://cubit.sandia.gov/tutorials.html.

6.2 Surface and regions ids

Surface ids are used in Fluidity to mark different parts of the boundary of the computational domain
so that different boundary conditions can be associated with them. Regions ids are used to mark
different parts of the domain itself. Both ids can be defined in Gmsh by assigning physical ids to
different geometrical objects. In two dimensions surface ids can be defined by assigning a physical

97

http://geuz.org/gmsh/
http://geuz.org/gmsh/
http://cubit.sandia.gov/
http://amcg.ese.ic.ac.uk/files/amcg-gmsh-tutorial.pdf
http://amcg.ese.ic.ac.uk/files/amcg-gmsh-tutorial.pdf
http://cubit.sandia.gov/tutorials.html

98 Meshes in Fluidity

id to each group of lines that make up a part of the boundary that needs to be considered separately.
Region ids can be defined by dividing the domain up in different (groups of) surfaces and assigning
different physical ids to them. Similarly, in three dimensions surface ids are defined by assigning
physical surface ids in Gmsh, and regions ids by assigning physical volume ids.

It is recommended, and required in parallel, that all parts of the domain boundary are marked with
a surface id. Region ids are optional. They can be used to instruct the adaptivity library to strictly
maintain the interface between different regions of the domain. They are also useful to set different
constant field values in the regions.

In ExodusII/Cubit region ids and surface ids are defined by block ids and sideset ids respectively.

6.3 Meshes and function spaces

The choice of computational mesh directly controls how the fields (velocity, pressure, temperature,
etc.) of the model are discretised. For example, using a triangular mesh with a P1 continuous
Galerkin discretisation, the field values are stored in the vertices of the mesh and the field is linearly
interpolated inside the triangles. For a discontinuous P1DG discretisation the field values are stored
in the three corners of each triangle separately. The locations of these field values are referred to as
nodes. As another example, the nodes of the P2 discretisation correspond to the triangle vertices, and
the midpoints of the edges.

This combination of the set of polygons (triangles, tetrahedrals, quadrilaterals, etc.) covering the
domain and a choice of polynomial order and continuity between elements (P1 , P1DG , P2 , etc.)
therefore defines the discrete function space in which the approximate discrete fields are found, and
the nodes in which the field values are stored. In Fluidity the term mesh is often used to refer to this
specific combination, and fields are said to be defined on such meshes. In other words “meshes” in
Fluidity correspond to the (polynomial) discrete function spaces.

Both simplicial meshes (triangles in 2D and tetrahedrals in 3D) and cubical meshes (quadrilaterals
in 2D and hexagons in 3D) are supported. Note however that the choice between these two types of
input meshes also has an influence on the function space. For simplicial meshes, a polynomial order
of one means linear polynomials are used (P1), whereas in cubical meshes this leads to bilinear (tri-
linear in 3D) polynomials (known as the Q1 discretisation). Therefore to use the P1P1 or the P1DGP2

discretisation a simplicial input mesh is needed. Structured meshes in two or three dimensions can
be generated by stacking two triangles in a rectangle, or six tetrahedrals in a cube respectively. Such
meshes are easily obtained using Gmsh.

In mixed finite element discretisations, where different fields are discretised using different function
spaces (again P1DGP2 is a clear example), a mesh needs to be defined for every function space that is
used. In Fluidity, the input mesh is always considered to be a continuous linear mesh (P1 for simpli-
cial and Q1 for cubical meshes), as its vertices correspond to the nodes of the P1 /Q1 discretisation.
For a P1DGP2 discretisation we therefore need two additional meshes: a P1DG mesh and P2 mesh. In
section 8.3.3.2 it is explained how these can be derived from the input mesh.

In finite element discretisations the actual shape of the elements in physical space is given by a func-
tion from local coordinates on the element to coordinates in physical space, the coordinate map. This
map is typically linear, resulting in elements with straight edges. For some applications, for example
ocean models on the sphere, it may be desirable to use higher order polynomials however, so that
large elements can be bended to fit the geometry. The mesh (function space) that is used for the
coordinate map is referred to as the coordinate mesh. For standard, uncurved elements the coordi-
nate mesh simply corresponds to the (linear) input mesh (except for periodic meshes, see section 6.5
below).

6.6 Meshing tools 99

6.4 Extruded meshes

Given a 1D or 2D input mesh, Fluidity can extrude this mesh to create a layered 2D or 3D mesh,
on which simulations can be performed. The extrusion is always downwards (in the direction of
gravity), and the top of the domain is always flat, corresponding to the y = 0-level in 2 dimension,
the z = 0 level in 3 dimensions, or the equilibrium free surface geoid when running on the sphere.

The advantage of this approach is that the user can provide a horizontal mesh, that has been created
in the normal way (usually Gmsh), and all the configuration related to bathymetry, number of layers
and layer depths can be done in the .flml (see section 8.4.2.4 for all options available). It also enables
the application of mesh adaptivity in the horizontal and vertical independently. This means we
can choose to apply adaptivity in the horizontal only and keep a fixed number of layers, or we can
choose to keep the horizontal mesh fixed and dynamically adjust the vertical grid spacing (vertical
adaptivity). The combination of both horizontal and vertical adaptivity is referred to as “2+1D”
adaptivity. For the configuration of this kind of adaptivity see section 8.18.2.1.

6.5 Periodic meshes

Periodic meshes are those that are “virtually” connected on one side of the domain to the boundary
on the opposite side. This can be done in one or more directions. To make a periodic mesh you must
first create an input mesh where the edges on the two sides that will be connected can be mapped
exactly by a simple transformation. For a 2d mesh that is periodic in the x-direction this simply
means all the nodes on left and right boundary need to be at the same y-height. For 3d meshes, not
only the nodes on the two sides need to be “periodic”, but also the edges connecting them. For a
simple box geometry, this can be easily accomplished using the create_aligned_mesh script in
the tools folder.

Alternatively, if you require a more complex periodic mesh with some structure between the peri-
odic boundaries you can create one using gmsh. This can be achieved by setting up the periodic
boundaries by using extrude and then deleting the ’internal’ mesh.

The use of periodic domains requires additional configuration options. See section 8.4.2.3.

6.6 Meshing tools

There are a number of meshing tools in tools directory. These can be built by running make fltools
in the top directory of the Fluidity trunk. The following binaries will then be created in the bin/
directory (see section 9.3.3).

6.6.1 Mesh Verification

The checkmesh tool can be used to form a number of verification tests on a mesh in triangle mesh
format. More information can be found in section 9.3.3.1.

6.6.2 Mesh creation

The interval tool (section 9.3.3.17) generates a 1D line mesh in triangle format.

The gen_square_meshes tool (section 9.3.3.14) will generate triangle files for multiple 2D square
meshes with a specified number of internal nodes.

100 Meshes in Fluidity

The create_aligned_mesh tool (section 9.3.3.3) creates the triangle files for a mesh that lines up
in all directions, so that it can be made it into a singly, doubly or triply periodic mesh.

6.6.3 Mesh conversion

The gmsh2triangle tool (section 9.3.3.15) converts ASCII Gmsh mesh files into triangle format.

The triangle2vtu tool (section 9.3.3.36) can be used to convert triangle format files into vtu format.

The gmsh_mesh_transform script (section 9.3.3.16) applies a coordinate transformation to a region
of a given mesh.

6.6.4 Decomposing meshes for parallel

To run in parallel one must first divide the mesh into a number of blocks, a process commonly re-
ferred to as mesh decomposition. Figure 6.1 shows a possible partition of an example mesh. When
Fluidity is run in parallel (see section 1.4.2), each processor then reads the mesh corresponding to a
single block. This section outlines how to decompose a mesh with Fluidity tools.

Figure 6.1: An unstructured mesh around a NACA0025 aerofoil, the coloured patches show a possi-
ble decomposition into 4 partitions.

6.6.4.1 flredecomp

flredecomp can be used to perform the initial decomposition of a mesh, or to perform a re-
decomposition of a Fluidity checkpoint. flredecomp runs in parallel. For example, to decompose
the serial file foo.flml into four parts, running on 4 processors type:

mpiexec -n 4 <<fluidity source path>>/bin/flredecomp \
-i 1 -o 4 foo foo_flredecomp

The output of running flredecomp is a series of mesh and vtu files as well as the new flml to be used
in the subsequent run of Fluidity. In the example above, this file is foo_flredecomp.flml. Note
that flredecomp must be run on a number of processors equal to the larger number of processors
between input and output.

6.6 Meshing tools 101

When using flredecomp, it is possible to partition the mesh based upon a user defined weight-
ing. This is achieved by prescribing a scalar field, bounded between values of 0 and 1, under /
flredecomp/field weighted partitions. Flredecomp will then try to ensure that the sum of
weights on each partition is approximately equal.

Further information on flredecomp can be found in section 9.3.3.12.

6.6.4.2 fldecomp

fldecomp will be removed in a future release of Fluidity.

fldecomp is a tool similar to flredecomp but runs in serial. flredecomp is the recommended tool
for mesh decomposition.

Here is an example of how to convert from using fldecomp to using flredecomp. For a Fluidity
input file called simulation.flml referring to a mesh file with basename mesh, the fldecomp
workflow would be

<generate mesh>
fldecomp -n <nparts> <other options> mesh
mpiexec -n <nparts> fluidity <other options> simulation.flml

To use flredecomp, the workflow becomes

<generate mesh>
mpiexec -n <nparts> flredecomp -i 1 -o <nparts> \

simulation simulation_flredecomp
mpiexec -n <nparts> fluidity <other options> simulation_flredecomp.flml

fldecomp is retained only to decompose Terreno meshes (section 6.7.1), which flredecomp cannot
process.

For example, if your Terreno mesh files have the base name foo and you want to decompose the
mesh into four parts, type:

<<fluidity source path>>/bin/fldecomp -n 4 -t foo

See section 9.3.3.10 for more details.

6.6.5 Decomposing a periodic mesh

To be able to run Fluidity on a periodic mesh in parallel you have to use two tools:

• periodise (section 9.3.3.22)

• flredecomp (section 9.3.3.12)

The input to periodise is your flml (in this case foo.flml). This flml file should already contain
the mapping for the periodic boundary as described in section 8.4.2.3. Periodise is run with the
command:

<<fluidity source path>>/bin/periodise foo.flml

The output is a new flml called foo_periodised.flml and the periodic meshes. Next run flre-
decomp (section 9.3.3.12) to decompose the mesh for the number of processors required. The flml
output by flredecomp is then used to execute the actual simulation:

102 Meshes in Fluidity

mpiexec -n [number of processors] \
<<fluidity source path>>/bin/fluidity [options] \
foo_periodised_flredecomp.flml

6.7 Non-Fluidity tools

In addition to the tools and capabilities of Fluidity, there are numerous tools and software packages
available for mesh generation. Here, we describe two of the tools commonly used.

6.7.1 Terreno

Terreno uses a 2D anisotropic mesh optimisation algorithm to explicitly optimise for element qual-
ity and bathymetric approximation while minimising the number of mesh elements created. The
shoreline used in the mesh generation process is the result of a polyline approximation algorithm
that where the minimum length of the resulting edges is considered as well as the distance an edge
is from a vertex on the original shoreline segment being approximated. The underlying philosophy
is that meshing and approximation should be error driven and should minimise user intervention.
The latter point is two pronged: usability is paramount and the user should not need to be an ex-
pert in mesh generation to generate high quality meshes for their ocean model; fundamentally there
must be clearly defined objectives to the mesh generation process to ensure reproducibility of results.
The result is an unstructured mesh, which may be anisotropic, which focuses resolution where it is
required to optimally approximate the bathymetry of the domain. The criterion to judge the quality
of the mesh is defined in terms of clearly defined objectives. An important feature of the approach
is that it facilitates multi-objective mesh optimisation. This allows one to simultaneously optimise
the approximation to other variables in addition to the bathymetry on the same mesh, such as back-
scatter data from soundings, material properties or climatology data.

See the Terreno website for more information.

6.7.2 Gmsh

Gmsh is a 3D finite element mesh generator with a build-in CAD engine and post-processor. Its
design goal is to provide a fast, light and user-friendly meshing tool with parametric input and
advanced visualisation capabilities. Gmsh is built around four modules: geometry, mesh, solver and
post-processing. The specification of any input to these modules is done either interactively using
the graphical user interface or in ASCII text files using Gmsh’s own scripting language.

For more information see the Gmsh website or the AMCG website. An online manual is available at
geuz.org/gmsh/doc/texinfo/gmsh.html.

6.7.3 Importing contours from bathymetric data into Gmsh

Gmsh can be used to create a mesh of a ‘real’ ocean domain for use with Fluidity. An online guide
to using Gmsh’s built in GSHHS plug-in is available at gmsh ocean. It is also possible to import
contours from arbitrary bathymetry data sources into Gmsh. A guide and sample code detailing this
process will in the future be available on the AMCG website.

http://amcg.ese.ic.ac.uk/terreno
http://geuz.org/gmsh/
http://amcg.ese.ic.ac.uk
http://geuz.org/gmsh/doc/texinfo/gmsh.html
http://perso.uclouvain.be/jonathan.lambrechts/gmsh_ocean/
http://amcg.ese.ic.ac.uk

Chapter 7

Adaptive remeshing

7.1 Motivation

Historically, numerical analysts concerned themselves with a priori error bounds of particular numer-
ical schemes, i.e. asymptotic analyses of the order of convergence of a discretisation with respect to
some discretisation parameter such as mesh sizing h or polynomial order p. However, such a priori
error bounds do not provide useful estimates of the simulation error of a particular physical system
on a particular mesh for a specified norm: they merely describe how that error behaves as the dis-
cretisation is modified. Since such a priori error bounds involve the unknown exact solution, they are,
in general, not computable.

In the late 1970s, the pioneering work of Babuška and Rheinboldt laid the foundations for a posteriori
error estimates [Babuška and Rheinboldt, 1978a,b]. In contrast to a priori bounds, a posteriori error
estimates involve only the approximate computed solution and data from the problem, and are thus
computable (or approximately so, if they involve the solution of an auxiliary problem). These error
estimates can then be used in an adaptive loop, modifying the discretisation until some user-specified
error criterion is reached. Most a posteriori error estimation literature deals with estimating the error
in the natural norm induced by the bilinear form of the problem, the energy norm. For a review
of a posteriori error estimation with emphasis on energy norm estimation see the books of Verfürth
[Verfürth, 1996] and Ainsworth and Oden [Ainsworth and Oden, 2000]. The goal-oriented adaptive
framework of Rannacher and co-workers, which estimates the error in the computation of a given
goal functional, is detailed in Becker and Rannacher [2001] and Bangerth and Rannacher [2003].

Once a posteriori estimates have been computed, there are many possible ways of modifying the dis-
cretisation to achieve some error target. These include h-adaptivity, which changes the connectivity
of the mesh [Berger and Colella, 1989]; p-adaptivity, which increases the polynomial order of the
approximation [Babuška and Suri, 1994]; and r-adaptivity, which relocates the vertices of the mesh
while retaining the same connectivity [Budd et al., 2009]. Combinations of these methods are also
possible (e.g., Houston and Süli [2001], Ledger et al. [2003]).

This review focuses on adaptive remeshing in multiple dimensions, as this is the technology avail-
able in Fluidity. This approach is the most powerful of all hr-adaptive methods, since the meshes
produced are not constrained by the previous mesh; therefore, this approach allows for maximum
flexibility in adapting to solution features. However, this flexibility comes at a cost: guiding the adap-
tive remeshing procedure (choosing what mesh to construct), executing the adaptation (constructing
the chosen mesh) and data transfer of solution fields (from the previous mesh to the newly adapted
mesh) become more complicated than with hierarchical refinement.

This chapter is divided as follows. Firstly, we orient the user by describing a typical adaptive loop
used in Fluidity (section 7.2). Before discussing how to configure mesh adaptivity, we introduce
some necessary background ideas: section 7.3 describes how a metric tensor field may be used to

103

104 Adaptive remeshing

encode the desired mesh, and section 7.4 describes how the mesh optimisation procedure in Fluidity
uses this metric tensor to generate an adapted mesh. Finally, the chapter ends with a discussion of
how to use mesh adaptivity in Fluidity, with a discussion of the various algorithms offered and their
advantages and disadvantages (section 7.5).

7.2 A typical adaptive loop

This section presents a typical adaptive loop, as used in the lock–exchange example, section 10.3
(examples/lock exchange/lock exchange.flml).

1. The initial conditions of the prognostic variables (velocity, temperature) are applied.

2. The adaptive procedure is invoked 6 times to adapt the initial mesh to represent the desired
initial conditions. This involves:

(a) Computing the Hessian of velocity (which is zero, as the initial velocity condition is zero).

(b) Converting the Hessian of velocity into a metric tensor (in this case, the tensor will request
the maximum edge length size everywhere, as velocity can be represented exactly). This
depends on the norm chosen and the minimum and maximum edge length sizes.

(c) Computing the Hessian of temperature (which is nonzero, as the initial temperature con-
dition is a step-function).

(d) Converting the Hessian of temperature into a metric tensor (in this case, the tensor will
request fine resolution at the step, and the maximum edge length size everywhere else).

(e) The size requirements of these two metrics are merged to give one metric tensor describing
the desired mesh.

(f) The metric is then smoothed with a gradation algorithm to avoid large jumps in mesh
sizing.

(g) The metric is scaled so that the expected number of nodes it will yield after adapting is no
more than the maximum number of nodes.

(h) The metric is then passed to the adaptivity algorithm, which modifies the mesh until it
satisfies the sizing requirements given in the metric.

(i) Since the simulation time has not yet advanced, the initial conditions are reapplied on the
newly-generated adapted mesh.

This procedure is iterated 6 times so that the adaptive algorithm can recognise the anisotropy
of the step.

3. Once the initial mesh has converged, the simulation time loop proceeds. The lock–exchange
simulation invokes the adaptive algorithm every 10 timesteps to ensure that the dynamics do
not extend beyond the zone of adapted resolution. Each invocation of the adaptive algorithm
involves:

(a) Computing the Hessians of velocity and temperature (both of which will be nonzero).

(b) Converting the Hessians to metrics (again depending on the norms chosen and the mini-
mum and maximum edge length sizes).

(c) Merging the metrics for each field to yield a combined metric which satisfies both of their
size demands.

(d) The metric is then smoothed and scaled, as before, and passed to the adaptivity library.

(e) Once the adaptivity library is finished, the field data from the previous mesh is transferred
to the new mesh by interpolation.

7.3 Representing meshes as metric tensors 105

7.3 Representing meshes as metric tensors

The process of adaptive remeshing divides naturally into three parts. The first is to decide what
mesh is desired; the second is to actually generate that mesh; the third is to transfer data from the
old mesh to the new mesh. The form of communication between the first two stages is a metric: a
symmetric positive-definite tensor field which encodes the desired geometric properties of the mesh.
This representation was first introduced in Vallet [1990], and has proven key to the success of adap-
tive remeshing methods. This section describes the mathematical details of how a metric encodes the
desired size and shape information: however, understanding this section is not necessary to success-
fully use adaptivity in Fluidity.

Firstly, consider how the size and shape information about a mesh might be encoded. A natural first
attempt would be to define a size function h(x) which describes the desired mesh spacing at a partic-
ular point. This works, and is used in many isotropic adaptive algorithms. However, its deficiency
becomes clear when we consider the anisotropic examples that we wish to exploit: consider again the
step function initial condition of the lock–exchange example. In this case, we want the mesh sizing
across the step to be small (to capture the jump), but we want the mesh sizing along the step to be
large (parallel to the step, the field does not change at all). Therefore, the mesh sizing desired is not
only a function of space, it is also a function of direction. At a given point, the desired mesh sizing differs
in different directions. This cannot be encoded in a scalar size function, as that associates only one
number with each point in space. The solution to this problem is to increase the rank of the object
returned by the size function, from a rank-0 single real value to a rank-2 tensor.

Let M be a symmetric positive-definite tensor (constant over the domain for now). M induces an
inner product by

〈x, y〉M = xTMy (7.1)

and so M also induces a notion of distance between two points in the usual manner:

dM (x, y) = ||x− y||M =
√
〈x− y, x− y〉. (7.2)

Note that the symmetric positive-definite condition is necessary for the tensor to induce a sense of
distance: for otherwise, the tensor does not induce a norm.

Now let M be a symmetric positive-definite tensor field. As long as M is sufficiently smooth, then
it also induces an inner product (see Simpson [1994] for details). We say that a mesh T satisfies M
if every edge has unit edge length with respect to its inner product; T is a unit mesh with respect to
this metric.

The metric warps space, in the same manner that space is warped in General Relativity. The metric
encodes a new sense of distance, and a regular unit mesh (a mesh of edge length one) is built with re-
spect to this new sense of distance. For example, if the metric encodes that two points are “far apart”,
then when a unit mesh is built, many mesh nodes will lie between them, and the mesh concentration
will be dense. Conversely, if the metric encodes that two points are “close together”, then when a
unit mesh is built, few mesh nodes will lie between them and the mesh concentration will be sparse.

In the adaptive procedure employed in Fluidity, the metric passed to the adaptivity library encodes
the desired mesh sizing. That is, the adaptive procedure is a function that takes in a metric and re-
turns a mesh matching that metric. Conversely, it is also possible to derive the metric for a given
mesh. In order to see how the metric representing a mesh may be derived, consider the transfor-
mation from the reference element to the physical element inherent in the finite element assembly
procedure [Imp, 2009]. Let K be an element of a linear simplicial mesh. K is geometrically char-
acterised by the affine map TK : K̂ → K, where K̂ is the reference isotropic element. Since TK is
assumed affine, we can write this transformation as

x = TK(x̂) = JK x̂+ tK , (7.3)

106 Adaptive remeshing

where JK is the Jacobian of the transformation. The metric for this element is derived from the polar
decomposition of the Jacobian, which yields

JK = MKZK (7.4)

where MK is a symmetric positive-definite matrix referred to as the metric, and ZK is orthogonal
[Micheletti and Perotto, 2006]. The geometric properties of a simplicial mesh can be represented as
a piecewise constant (P0) field over it. The same argument applies to nonlinear or non-simplicial
elements, but here the Jacobian varies over the element, and so the metric does too.

The book of George and Borouchaki [1998] gives a thorough discussion of the role of metrics in
mesh adaptivity. F. Alauzet and co-workers have recently published some thought-provoking pa-
pers advocating that metrics are in fact the continuous analogue of meshes: in the same way as the
continuous equations are discretised to yield the discrete equations, a continuous metric is discre-
tised to give a mesh on which those equations are solved. For more details, see e.g. Alauzet et al.
[2006], Courty et al. [2006], Alauzet et al. [2008], Loseille and Alauzet [2011a,b].

7.4 Adaptive remeshing technology

This section briefly reviews the second problem solved by the adaptivity algorithm: given the desired
size and shape information, how can a mesh satisfying this be generated?

Given a metric M , there are three main ways to generate a mesh which satisfies that metric: global
remeshing, local remeshing, and mesh optimisation. For a thorough discussion of the history of these
three approaches, see Farrell [2009].

Global remeshing is the act of generating an entirely new mesh of the same domain satisfying the siz-
ing specification, by means of an automatic mesh generator. This was first introduced in Peraire et al.
[1987] by incorporating sizing and directionality inputs to an advancing front mesh generator. While
this is the fastest approach if the existing mesh and the desired mesh are very different, developing
a robust metric-aware mesh generator is very difficult, and to the best of the author’s knowledge no
open-source algorithm is available for this problem.

By contrast, local remeshing is a mechanism of adaptive remeshing in which cavities of elements
are removed and the hole remeshed [Hassan et al., 1998]. These cavities are identified by measuring
their conformity to the given sizing specification. Again, this relies on the availability of a robust
metric-aware mesh generator to fill the cavities.

Mesh optimisation is a mechanism of adaptive remeshing which deforms the previous mesh to the
adapted mesh by a sequence of local operations. The first ingredient in a mesh optimisation algo-
rithm is the functional: how the quality of an element is determined, and how one element is deemed
better than another. In the adaptive remeshing case, the functional is the point at which the metric
comes in to play: the basic job of the functional is to measure the compatibility of the element to the
metric specifying the size and shape of that element. Many different functionals have been consid-
ered in the literature: for a review, see Knupp [2003]. For the functional used in the 2D case, see
Vasilevskii and Lipnikov [1999]; for the functional used in the 3D case, see Pain et al. [2001].

The second ingredient in a mesh optimisation algorithm is the set of operations the algorithm may
perform in an attempt to improve the mesh. Example operations might include merging adjacent
elements, splitting an element into two or more child elements, swapping edges or faces, and moving
nodes in the mesh. For diagrams of some example optimisation operations see figure 7.1.

The mesh optimisation library provisionally executes one or more optimisation operations, and then
invokes the functional to decide whether those operations improved the mesh. If the mesh was
improved, then the proposed changes are committed; otherwise, they are reverted. The scheduling

7.5 Using mesh adaptivity 107
Anisotropic mesh adaptivity 4593

node
insertion

(a) (b)

(d)(c)

edge
swap

node
deletion

node
movement

Figure 1. Local element operations used to optimize the mesh in two dimensions. (a) Node insertion
or edge split. (b) Node deletion or edge collapse. (c) Edge swap. (d) Node movement.

barotropic gyre-based examples are presented to demonstrate the advantages that
anisotropic variable resolution may deliver over the use of fixed uniform isotropic
resolution. The paper concludes with a summary of the findings of this work and
discussions on some of the extensions required for the use of mesh adaptivity on
more complex real-world problems.

2. Optimization-based mesh adaptivity

(a) Mesh optimization operations

Given an unstructured mesh and information regarding the ideal shape and sizes
of the elements making up the mesh, an optimization-based adaptivity algorithm
can be formulated via the use of local topological operations that seeks to improve
the quality of elements.

In the examples presented in this work, a two-dimensional mesh optimization
algorithm (Agouzal et al. 1999; Vasilevskii & Lipnikov 1999) is used that employs
the following local operations depicted in figure 1.

(i) Node insertion or edge split. Here a node is inserted on a pre-existing
edge in the mesh so that the four new elements have improved shape/size
characteristics compared with the original two; while the location of this
new node along the pre-existing edge can be optimized, it is common to
simply split it at its midpoint.

(ii) Node deletion or edge collapse. Here the inverse operation is performed
whereby an edge in the mesh is collapsed, and consequently a node is
deleted and two elements removed from the mesh.

(iii) Edge swap. Here an edge between two elements is removed and replaced
with the only other possible configuration in two dimensions; the number
of nodes and elements is preserved through the operation, but the edge
lengths and element shapes are manipulated.

Phil. Trans. R. Soc. A (2009)

 on 18 November 2009rsta.royalsocietypublishing.orgDownloaded from

(a) 2D

*� ��� �� �
�� ��� ���������
 ���(�(���	 ������((��� +����� 	�
��
 .����� ���� B��.���(� �� ���

������ �� ������(��� 	�
��
 �� �����. ����
���
 ��� �� ��������� ����� ��� ���� ���	���
������C
	�
� ��.���
 �� ���	��
�����
����� �)�	���
 �� ��
 ��� ���
����� � 3����� G .�� ��������� ��
��
����� ,�� ,�. ���
������
���� ������� ����
���� ������	
�

�	 � ���� ������������ �� ��������� �����

��� 	�
� �������� �������� ��
����� ����.
 ��
�� �� � ��������� ��������� .��� (��(�
 ���
+����� �� ��� 	�
� ������(���� ���	���
-� ���
���� �
 ��;�����
� ��� ���������
 ���	
�� �
�(
�����
������
 �� ��� 	�
� ���������� ��� ���� ��
���
� �� ���������� ������� �� � 	���� ��
�� ��
��� "�

�� ����.
 �
�����
 � ��� ��
��� ��������
���� �� �� ����������� .��� � ���� ����.
 ���
���	��� 0���(��1
-� �� �� ���������� ��� ��� �)�	���� �
������ ����������� ������

%�-� 5����������	 ����������

��� ���	
���� 	����� �	
 �� 	������ �������� ��� .��
� ���	���� ��� ������� ��;����� �������

��� ���	��� +����� �

������ .�� ��� .��
� ���	��� �� ��� 	�
�� O��� ��� ���	
����� ���� ���	��� �
��� 	�
�
 �
��� � ���� ��� ��� �����.�(��������
 ��� ������	�� .��� ��� ����� �� ��� ���	���E
0'1 ��(� ������
�(6 0$1 ��(�
�����(6 0?1 ���� �� ��(� 07(� '0�11 ��� ��(� �� ���� 07(� '0�11
.����(6
0G1 ��(�
.����(6 0H1 ���� 	���	����

��� 	�
� ���	
�� �����
�
 � ��. ��(��������� 	�
� ����(������ 0����� 	�
� ����
���	����1
.���
 �
	��� ����(� � ��� 	�
�� �
�(��� �� ��� ����� ��������
� ��

 �������� �
 ��� ������� 	�
�
����(������ � ��� ����(� � ��� 	�)	�	 ��������� �

������ .�� ��� ��� ���	���
 �9����� �� ���
����(��
 ��(���� ��� ��

 ���� �
	�����

 ����	���� �� *� ������� � ��� 	�)	�	 ��������� ����� ��
��� ��� ���	���
 ���� .���� �� �9����� �� � ����� 	�
� ����
���	����
 ��

 ���� � ������ ����
���� �����
�� 0� ����� �� 2�'H
 �
�� ����1 ���� ��
 	�
� ����
���	����
 ��� ���
������ ��� �����
 �� � ��� ��

��� ������ �����(� 	�� ��� ���	��� +������ ��� 	�
� ��		�� �� .��� 0����� 	�
� ���	
����1

����� 2�$ 	��
���� �� �+� 0H1�
�� 3����� G� ����
�

	�)
�����

���� � �	�)
���

����� � � ��� 	�)
���

���� � �� �'�

��� ���	���
 � ���
�� � ��� ���	��� ���������
 �� �� � � 0.��� 	��
��� ��� +����� �� ���	���
 �1 ����
.�� �� �������� �� � �����
�� ����� 	�
� ����
���	����6 ��
 ���
�� ��� ��� ��� ��� ��� ��������� �����
 ��
��� ���	���
 ����(�� �� ������� �� ��� �����
�� ����� 	�
� ����
���	����� � ��
��� ����-��� ����� �� �

 �
�� �� ���� ������	
 .�� ��������� ����� ��� ��
� ������

�	� �������� ������� ���� ��� ���
��+���	���
 �� ��� ��(����	 0� 	 2�2'
 ��� ������� ���
 �
�� � ��� ���������
1�

7(� '� :(��	
��.�(E 0�1 ��(� �� ���� ��� ���� �� ��(�
.����(6 0�1 ��(� �� ��(�
.����(.�� ���� ���	���
�

���� ���	 �� �
� + ������� ������� ,��
� ����� �	���� -./ 0%//-1 2$$-32$.4 ?DD?

(b) 3D

Figure 7.1: Example of mesh modification operations. (a): Node insertion or edge splitting, node
deletion or edge collapse, edge swap and node movement in two dimensions [2D, from Piggott et al.,
2009]. (b): Edge to face and face to edge swapping in three dimensions [3D, from Pain et al., 2001].

of the operations has a large impact on the effectiveness of the procedure [Li et al., 2005], and ensuring
that the optimisation operations are robust is quite delicate [Compère et al., 2010].

Mesh optimisation is available by default in three dimensions using the algorithm of Pain et al. [2001].
It is available in two dimensions using the mba2d algorithm of Vasilevskii and Lipnikov [1999] if
Fluidity was configured with the --enable-2d-adaptivity flag, section 1.3.2; this is not enabled
by default as mba2d is licensed under the GPL, while Fluidity is licensed under the LGPL, and so its
default inclusion would cause licensing complications.

7.5 Using mesh adaptivity

This section contains the practical advice for configuring and optimising adaptive simulations. Fur-
ther information about the configuration options can be found in section 8.18

The first golden rule is to start with a fixed-mesh simulation that works (i.e., gives sensible answers
for the resolution used). Mesh adaptivity is a complex extra nonlinear operation bolted on to the dis-
cretisation, and it will make reasoning about and debugging the simulation more difficult. Therefore,
make sure that you are happy with the well-posedness of the problem, the stability of the discretisa-
tion, the convergence of the solutions, etc. before attempting to employ adaptivity.

Secondly, be aware that employing adaptivity can require a nontrivial amount of tuning to get exactly
the result desired. Be prepared to iterate on the adaptivity settings, and make changes conservatively,
one parameter at a time. As you gain more experience of the adaptivity options offered in Fluidity,
it will become easier to identify problems and how they can be solved.

As a first step, configure Fluidity to adapt only to one field, usually the most important in the sim-
ulation. The adaptivity options for each field are found in the .../adaptivity options option
under each field. As the initial settings, choose absolute measure (section 7.5.2), and set p norm
to 2 (section 7.5.1). This configures the metric to optimise for the L2 norm of interpolation error. Un-
der the InterpolationErrorBound, set the value to a constant, and as an initial guess use 10%
of the L2 norm of the field under consideration (this value is available in the .stat file). See section
7.5.3 for more information about this setting. Unless you are running a simulation with DG fields,
leave the interpolation algorithm as consistent interpolation; if you have DG fields, set their
interpolation algorithm to galerkin projection. This is explained in further detail in section 7.6.

Field-specific adaptivity options are configured under the field in question, and non-field- specific
options are configured in /mesh adaptivity/hr adaptivity. It is recommended that the oper-
ator first configure the adaptivity options so that it is only invoked at the very start of the simulation

108 Adaptive remeshing

(using the adapt at first timestep option), and only once this is configured satisfactorily move
on to dynamic adaptivity. There are several reasons for this. Firstly, since the adaptive algorithm
is invoked at the start of the simulation, the time between configuration and feedback is lessened,
making it easier for the operator to get a feel for the effect of the different settings. Secondly, since
the system state at the initial condition is known exactly, the complicating effects of interpolation
algorithms are excised. Thirdly, accurately representing the initial condition is usually a requirement
for a sensible answer at later simulation times, and so configuring the initial adaptivity is necessary
anyhow.

For the initial adaptive configuration, set the period in timesteps to 20, and the maximum number of
nodes to be 200000 times the number of processors you are using. (This is deliberately set high so that
it does not influence the mesh produced; later on, it can be turned down to control the computational
requirements of the simulation. See section 7.5.6.) Under /mesh adaptivity/hr adaptivity/
enable gradation, set the gradation parameter to 2. This allows the edge length to dou-
ble from element to element, and is quite a weak gradation parameter. (Again, we wish to min-
imise the influence of the gradation algorithm on the mesh produced; if necessary, the metric can be
smoothed by reducing this value. See section 7.5.4.) Under /mesh adaptivity/hr adaptivity/
tensor field::MaximumEdgeLengths/anisotropic symmetric/constant, set the diago-
nal entries to the diameter of your domain. (The maximum edge length can be anisotropic, in the
same way that the desired edge length can be anisotropic. See section 7.5.5.) Similarly, under .../
tensor field::MinimumEdgeLengths/anisotropic symmetric/constant, set the diago-
nal entries to something small (e.g., the diameter of the domain divided by 10000). Again, we wish to
remove the influence of these settings by default, so that their effect can be applied by the operator if
it is desired.

Activate /mesh adaptivity/hr adaptivity/adapt at first timestep, and set the
number of adapts to 6. Under /mesh adaptivity/hr adaptivity/debug, activate the
write adapted state option. This ensures that after each invocation of the adaptivity algorithm
the mesh is dumped, so that the convergence of the adaptive algorithm for the initial condition may
be inspected. Finally, configure the timestepping options so that the simulation terminates after one
timestep, so that the adaptivity settings may be configured for the initial condition.

Now run the problem, and inspect the adapted state *.vtu that result. Each VTU is the out-
put of the adaptivity loop, and hopefully convergence of the adaptive procedure towards some
mesh should be observed. If the adapted mesh is satisfactory, then record the adaptivity pa-
rameters used for this field, and repeat the procedure on any other fields to which you wish
to adapt that have nontrivial boundary conditions. Once you are happy with the initial mesh,
run the simulation further and inspect the output of the adaptivity library, tuning the parame-
ters to get the optimal mesh. (In this case, you may wish to cache the output of the adaptation
to the initial condition with /mesh adaptivity/hr adaptivity/adapt at first timestep/
output adapted mesh.) The following sections offer guidance on the parameters that can be varied
and the effect that this has on the adaptive simulation.

7.5.1 Choice of norm

The basic strategy used to compute the error metric is to control the interpolation error of the function
represented. Let f(x) be a continuous, exact field, and let fh(x) be its representation on the finite
element mesh. Then, the interpolation error is defined as |f − fh|, which is itself a function over the
domain Ω. The “size” of this interpolation error may be quantified in different ways, using different
norms. Historically, the interpolation error was first controlled in the L∞ norm, which considers the
maximum value of the interpolation error over the domain. The metric formulation which controls
the L∞ norm is the simplest, and remains the default in Fluidity. Since the L∞ norm considers
only the least accurate point in the domain, without regard to the relative size of the interpolation
error there, then it can have a tendency to focus the resolution entirely on the dynamics of largest

7.5 Using mesh adaptivity 109

magnitude. Other authors have instead proposed the use of the Lp norm, which incorporates more
influence from dynamics of smaller magnitude [Alauzet et al., 2008, Loseille and Alauzet, 2011b].
Empirical experience indicates that choosing p = 2, and hence the L2 norm, generally gives better
results, and for that reason we recommend it as the default for all new adaptivity configurations.

7.5.2 Absolute, relative and p– metrics

Consider again the metric for controlling the L∞ norm of the interpolation error. This metric takes
the form

M =
|H|
ε
, (7.5)

where H is the Hessian of the field under consideration and ε is the target interpolation error. As
mentioned in the previous section, this metric tends to neglect smaller-scale dynamics, and so Castro-
Dı́az et al. [1997] proposed an alternative metric formulation to fix this. They suggested to compute

M =
|H|

max(ε · |f | , εmin)
, (7.6)

where f is the field under consideration, ε is now a relative tolerance, and εmin is a user-configurable
parameter. For example, if ε = 0.01, then the tolerance on the denominator of the metric formulation
will be 1% of the value of the field, and so it will scale the target interpolation error with the mag-
nitude of the field. εmin is the minimum tolerance, and is employed to ensure that the denominator
never becomes zero. However, empirical experience indicates that this metric formulation is very
sensitive to the value of εmin, and that it generally yields poor results. The approach of using the Lp
norm instead of the relative L∞ norm is much more mathematically rigorous, and for this reason the
relative metric option is deprecated.

The metric that controls the Lp norm of the interpolation error takes the form [Chen et al., 2007,
Loseille and Alauzet, 2011b]

M = det |H|−
1

2p+n
|H|
ε
, (7.7)

where p ∈ Z and n is the dimension of the space.

The options for the metric are selected by field and can be found under name of field/
adaptivity options. For more information see section 8.18.1.2.

7.5.3 Weights

The target value of the norm of the interpolation error is set in the InterpolationErrorBound
field under the .../adaptivity options for a particular field. Usually, this will be constant
throughout space and time, but advanced users may wish to vary this, and so it is possible to set this
value as a Python field. When configuring an adaptive simulation for the first time, the general advice
would be to start with a high weight and thus a high interpolation error (10% of the range of the field
is a good rule of thumb), and reduce the weight as necessary to represent the desired dynamics. In
all cases, the field weights should be the main parameters to vary to control the resolution of the
adapted meshes.

7.5.4 Gradation parameter

In numerical simulations, a smooth transition from small elements to large elements is generally
important for mesh quality. A mesh sizing function derived from error considerations may yield
sudden changes in desired mesh edge length, due to the nature of the problem being resolved. Such
sudden changes are undesirable in a mesh: for example, sudden changes in mesh sizing can cause

110 Adaptive remeshing

the spurious reflection of waves Bažant [1978], Bangerth and Rannacher [2001]. Therefore, a mesh
gradation algorithm is applied to smooth out sudden variations in the mesh sizing function.

Various mesh gradation algorithms have been introduced to solve this problem. Löhner [1996] uses
various functions of distance to point sources where edge length is specified by the user to control
the isotropic sizing function for an advancing front grid generator. Owen and Saigal [2000] applies
natural neighbour interpolation to smooth sudden variations in an isotropic sizing function. Persson
[2006] bounds the gradient of an isotropic sizing function by solving a partial differential equation.
Borouchaki et al. [1998] introduced two gradation algorithms for scalar isotropic mesh sizing func-
tions, bounding the gradient of the sizing function or the ratio of the length of two adjacent edges,
along with anisotropic generalisations of these. These algorithms have been successfully applied in
many diverse application areas (e.g. Frey [2004], Alauzet et al. [2003], Laug and Borouchaki [2002],
Lee [2003]).

Fluidity uses an algorithm based on that of Borouchaki et al. [1998]. It has only
one user-configurable parameter, /mesh adaptivity/hr adaptivity/enable gradation/
gradation parameter. This number constrains the rate of growth in desired edge lengths along
an edge. A value of 1 would force the mesh to have constant edge length everywhere. A value
of 2 would allow desired edge lengths to double from node to node. The default value is 1.5.
Optionally, the algorithm may be disabled by choosing /mesh adaptivity/hr adaptivity/
disable gradation instead of /mesh adaptivity/hr adaptivity/enable gradation.

7.5.5 Maximum and minimum edge length tensors

For robustness of the mesh adaptivity procedure, and to limit refinement/coarsening of the mesh it is
possible to set maximum and minimum allowed edge length sizes. The input to these quantities are
tensors allowing one to impose different limits in different directions. Assuming that these directions
are aligned with the coordinate axes allows one to define diagonal tensors.

There are both good and bad reasons that one may need to impose these constraints. The good rea-
sons are based on physics: a maximum size may be based on the size of the domain, or that it resolves
a spatial scale that allows an instability to develop (the latter case would be better handled with a
more advanced a posteriori error measure of course), or simply a consequence of the time/memory
constraints of the machine the problem is running on. The bad reason is to control the mesh when
the field weights have been chosen poorly. However, it is often unavoidable that the weights and
max/min edge length sizes will be chosen in tandem to achieve an appropriate mesh, especially for
experienced users — new users should be wary whenever maximum and particularly minimum size
constraints are actually hit in the mesh and as a first stage should look to vary the weights to achieve
the mesh they desire.

Finally, note that these constraints are achieved through manipulations to the metric, which in turn
controls an optimisation procedure. They are therefore not hard constraints and one may observe the
constraints being broken (slightly) in places.

7.5.6 Maximum and minimum numbers of nodes

Similar to the edge length size constraint above, it is possible to limit the maximum and minimum
number of nodes that the mesh optimisation procedure returns. For reasons very similar to above
this is potentially dangerous, but somewhat necessary.

This is effected by computing the expected number of nodes from the given metric. If the expected
number of nodes is greater than the maximum number of nodes, the metric resolution is homoge-
nously increased so that the expected number of nodes is the maximum number of nodes. Similarly,
if a minimum limit on the number of nodes is employed, the metric resolution is homogenously

7.6 Interpolation 111

decreased if the metric would yield a mesh with fewer nodes.

For new users, altering the weights should be the primary way to control the size of the adapted
mesh.

7.5.7 Metric advection

Metric advection is a technique that uses the current flow velocity to advect the metric forward in
time over the period until the next mesh adapt. This allows an estimate of the mesh resolution
required at each time–step before the next adapt to be obtained and incorporated into the adapted
mesh [Wilson, 2009]. Each component of the metric is advected as a scalar using a control volume
scheme with the time–step determined by a specified Courant number section 3.2.4.1.

With metric advection, mesh resolution is ‘pushed ahead’ of the flow such that, between mesh adapts,
the dynamics of interest are less likely to propagate out of the region of higher resolution. This
leads to a larger area that requires refinement and, therefore, an increase in the number of nodes.
However, metric advection can allow the frequency of adapt to be reduced whilst maintaining a
good representation of the dynamics

In the lock–exchange example, section 10.3, consider an adapted mesh with high resolution in the
region of the interface between the two fluids. As the simulation proceeds, the gravity current fronts
may propagate out of this high resolution region before the next adapt. This can lead to a more diffuse
interface due to increased numerical diffusion from the advection method at coarser resolutions.
Metric advection would increase the resolution in the adapted mesh not only in the interface, but
also ahead of it, in the region into which the gravity current fronts will propagate.

The options for metric advection can be found under /mesh adaptivity/hr adaptivity/
metric advection, section 8.18.2.3.

7.6 Interpolation

As mentioned previously, the application of adaptive remeshing divides naturally into three sub-
problems. The first is to decide what mesh is desired; the second is to actually generate that mesh.
The third, discussed here, is how to interpolate any necessary data from the previous mesh to the
adapted one.

This problem has received less attention from the adaptive remeshing community, with consistent
interpolation (interpolation by basis function evaluation) almost universally used. Many papers in
the adaptive remeshing literature do not even mention its use.

There are several good reasons for this. The drawbacks of consistent interpolation can be summarised
as having suboptimal interpolation error, its unsuitability for discontinuous fields, and its lack of
conservation. Firstly, for stationary problems, the interpolated solution is only used as an initial guess
for the next solve, so any errors introduced in the interpolation have a minimal effect. Secondly, even
for transient simulations, the interpolation error introduced is often acceptably low, provided the
adapted mesh is suitable for the representation of the data. Thirdly, its unsuitability for discontinuous
solutions and its loss of conservation are unimportant for the majority of applications of adaptive
remeshing.

Nevertheless, there are good reasons to consider the mesh-to-mesh interpolation problem. Firstly,
computing the interpolation with optimal accuracy in the L2 norm is an interesting mathematical
question in its own right. Secondly, consistent interpolation is unsuited to discontinuous Galerkin
methods, which are increasingly popular. For these cases, consistent interpolation is not defined,
and the averaging inherent in the pseudo-interpolation operators is diffusive and cannot exploit

112 Adaptive remeshing

discontinuous functions in the target function space. Thirdly, consistent interpolation is inherently
nonconservative, which is a key requirement for the discretisation of certain problems. Without a
conservative interpolation operator available, adaptive remeshing cannot be applied to these prob-
lems.

The standard method, consistent interpolation, consists of evaluating the previous solution at the lo-
cations of the nodes in the adapted mesh, and taking these values as the coefficients of the associated
shape functions. As basis function evaluation is trivially available for any finite element method,
the only difficulty is the problem of mesh association: the identification of which basis functions to
evaluate for a given node in the adapted mesh, i.e. to identify in which element of the previous mesh
each node of the adapted mesh lies. The relevant element is referred to as the parent element of the
node.

Peraire et al. [1993] discuss interpolation between meshes in the context of non-nested multigrid
methods. The authors observe that Galerkin projection is optimal in the L2 norm, note that its assem-
bly necessitates computing the inner products of the basis functions of both meshes, and comment
that this computation is very difficult because the basis functions are defined on different supports.
No mention of mesh intersection is made; however, the authors demonstrate that if the inner prod-
ucts are approximated with numerical quadrature on the donor mesh, the resulting approximate
projection is still conservative. Despite this conservation property, the use of this procedure to com-
pute the inner products is discouraged as it is very inaccurate.

Löhner [1995] discusses the mesh association problem in detail. The author discusses brute-force
searching, methods of subdividing space, and develops an advancing-front vicinity searching algo-
rithm. The algorithm exploits the connectivity of the target and donor meshes. Since adjacent nodes
in the target will lie in nearby elements in the donor mesh, the algorithm uses the parenthood infor-
mation for nodes which have already been interpolated to provide clues for the search for the parent
of unprocessed nodes.

George and Borouchaki [1998] discuss the necessity of solution interpolation after adaptive remesh-
ing, note the non-conservative character of consistent interpolation, and propose the use of the
Galerkin projection from mesh to mesh by means of mesh intersection. Galerkin projection is the
optimally accurate projection in the L2 norm, and is conservative, but its implementation is very dif-
ficult. The fundamental reason for this difficulty is that the method requires the computation of the
inner products of the basis functions of the two meshes. In order to compute these exactly, the super-
mesh of the two meshes must be constructed, which is quite involved. Although they comment that
in their experience this provides a satisfactory algorithm for solution transfer, they give no examples.
The reader is referred to a technical report by R. Ouachtaoui to be published in 1997 for further dis-
cussion; it appears, however, that this technical report was never published. Geuzaine et al. [1999]
also discuss the Galerkin projection between two-dimensional meshes; however, rather than inte-
grating over the supermesh, the integrals appear to be computed over the target mesh. This is less
accurate than assembling over the supermesh, and therefore should be referred to as an approximate
Galerkin projection. A similar approach is taken by Parent et al. [2008].

Farrell et al. [2009] was the first to present the application of supermeshing to adaptive remeshing,
and the first to describe a bounded variant of the Galerkin projection. The supermeshing algorithm
was drastically improved in Farrell and Maddison [2011], and this paper describes the Galerkin pro-
jection algorithm used in Fluidity.

In summary, the choice should be consistent interpolation, unless any of the following conditions
hold:

• The simulation has a discontinuous prognostic field which must be interpolated.

• Conservation of some field is crucial for the dynamics.

In such cases, Galerkin projection should be applied. If both conservation and boundedness are

7.8 The cost of adaptivity 113

desired, a bounded variant of the Galerkin projection algorithm is available [Farrell et al., 2009], but
this is only implemented for P1 fields.

The default choice is consistent interpolation, as specified by .../consistent interpolation.
If Galerkin projection is to be used, change this to .../galerkin projection. Under
galerkin projection, choose either continuous or discontinuous, depending on whether
the field exists on a continuous or discontinuous mesh respectively. (In the continuous case,
Galerkin projection involves the solution of a linear system involving the target mesh mass ma-
trix, which is why additional options under .../galerkin projection/continuous/solver
are required to configure how this linear system is solved.) If Dirichlet conditions should
be enforced through the Galerkin projection procedure, set the .../galerkin projection/
honour strong boundary conditions option.

If the bounded variant of Galerkin projection is desired, activate the .../galerkin projection/
continuous/bounded::Diffuse option. The algorithm to bound the Galerkin projection
is iterative, and the user must set a limit on the number of iterations it will perform with
boundedness iterations. If the bounds are known a priori, then these may be specified in the
bounds option; otherwise, the bounds are derived from the field values before interpolation.

7.7 Parallel adaptivity

The approach taken to adaptivity in parallel is as follows:

• Each process adapts their local mesh, excluding halo elements.

• The mesh is re-partitioned with high edge-weighting applied to those elements below the ele-
ment quality cutoff.

• Repeat the two steps above up to adapt iterations (default value of 3).

• Finally re-partition without applying edge-weighting to return a load balanced mesh.

Zoltan is a parallel partitioning and data distribution library [Devine et al., 2002]. It is used within
Fluidity to do the mesh re- partitioning during the parallel adaptivity. Zoltan gives access to vari-
ous different partitioning libraries; ParMETIS, PT-Scotch as well as its own graph and hypergraph
partitioners. For the intermediate adapt iterations (when edge-weighting is applied) the partitioner
to be used by default is Zoltan graph and this can be changed using the partitioner option in
Diamond. For the final adapt iteration where load balance is our only concern the default partitioner
is ParMETIS and this can be changed using the final paritioner option.

The high edge-weighting being applied to poor quality elements aims to prevent those elements
being on a partition boundary after the re-partitioning. This is to prevent them being locked for
the next adapt iteration. Zoltan gives priority to producing load balanced partitions so for these
intermediate adapts we loosen the Zoltan parameter, load imbalance tolerance, to allow Zoltan to
produce load imbalanced partitions but take into account the edge-weighting we are applying. The
default load imbalance tolerance is 1.5 but this can be changed in the Zoltan options.

More information on the Zoltan options can be found in section 8.18.2.2

7.8 The cost of adaptivity

The operations involved with adapting the mesh (forming the metric, remeshing, interpolation) have
an associated computational cost. Whilst, in most cases, this overhead will be small, it should be

114 Adaptive remeshing

noted. In general, the cost associated with formation of the absolute, relative and p–metrics is the
same as the time is spent in formation of the Hessian, which is required for all three. Metric–advection
will increase the time spent in metric formation due to the additional solutions of the advection equa-
tion required. The cost will depend on the chosen CFL number. Finally, consistent interpolation is
faster than Galerkin projection (due to the formation of the supermesh). Bounded Galerkin projection
will also require more time than unbounded Galerkin projection due to the bounding procedure.

The percentage of time spent in the adaptivity routines for simulations of the lock–exchange are given
in table 7.1, section 10.3. These values should be taken as a guide rather than a definitive value for all
simulations. For example, the number of iterations used in the linear solve of the bounding procedure
for Galerkin projection (and hence cost) will depend not only on the interpolation step but on how
well bounded the solution is to begin with which in turn depends on the choice of discretisation
method.

Adaptivity options % of total simulation time spent in adaptivity routines
Metric Adapt Interpolation Metric Metric formation Remesh Total

frequency method advection and interpolation
M∞ 10 CI no 4.0 3.5 7.5
M∞ 10 CI yes – 5 25.7 2.2 27.9
M∞ 10 CI yes – 10 18.5 2.6 21.1
M∞ 40 CI yes – 5 29.5 0.7 30.1
M∞ 40 CI yes – 10 17.8 0.9 18.7
M∞ 10 bd GP no 3.5 14.0 17.5
M2 10 CI no 4.1 3.4 7.5

Table 7.1: Percentage of time spent in adaptivity routines for adaptive mesh simulations of the lock–
exchange, section 10.3 [Hiester et al., 2011]. The simulations were run from t = 0 s until t = 25.025 s,
the time the free–slip head nears the end wall. This is equivalent to 1001 time–steps and 100 adapts
when adapting every 10 time–steps and 25 adapts when adapting every 40 time–steps. The adapt
frequency is given in number of time steps. For the interpolation method CI: consistent interpolation
and bd GP: bounded Galerkin projection. For those simulations that use metric advection the number
given is the CFL number used to determine the time step used in the calculation of advection of the
metric components.

Chapter 8

Configuring Fluidity

8.1 Overview

A Fluidity simulation is configured by creating a Fluidity options (or flml) file using Diamond, which
is the Graphical User Interface (GUI). The left-hand pane of Diamond allows users to browse the
options tree, while the right-hand pane provides brief documentation about the option and is where
users enter input data.

This chapter aims to provide a detailed description of all the options in the tree. From section 8.3
onwards, Fluidity options are described in the order in which they appear in Diamond. Prior to this
are some important general notes about the different types of options and, in particular, how to work
with fields in Fluidity.

8.2 Options syntax

Fluidity options files, or flml files, are XML files whose grammar is defined by the fluidity options
schema fluidity_options.rng. XML files have a tree-like structure of elements containing other
elements. This structure is reflected in the left hand pane of Diamond, the GUI which is used to write
flml files.

The flml file can also be edited with a standard editor and the options written in text and in code
using the Spud library on which the Fluidity options system is based. A location in the options tree
can be written as a path, much like the path of a file on disk. So, for example, the option control-
ling the physical dimension of the problem domain is written as /geometry/dimension. This
should be read as the dimension option which is found under geometry which is in turn at the top
level of the options tree. In Diamond, and in the flml file, the absolute top level element is always
fluidity options but this element is always discarded from paths. Figure 8.1 shows a Diamond
screen shot open at the /geometry/dimension option. Further documentation of the Spud system
is available in Ham et al. [2009] and from the Spud website.

8.2.1 Allowed Characters

Only certain characters are recognised by the options dictionary, which contains the flml input once
it is read into fluidity. Therefore only the following letters are allowed in any input field:

/_:[]1234567890qwertyuioplkjhgfdsazxcvbnmMNBVCXZASDFGHJKLPOIUYTREWQ

Comment boxes may contain any characters.

115

http://amcg.ese.ic.ac.uk/spud

116 Configuring Fluidity

Figure 8.1: A Diamond screenshot showing the /geometry/dimension option. Note that the op-
tion path is displayed at the bottom of the diamond window

8.2.2 Named options

Some options in the tree, such as fields and meshes, have name attributes. The name attribute is rep-
resented in the flml file with a double colon so that, for example, the coordinate mesh has options path
/geometry/mesh::CoordinateMesh. Note that this differs from the convention in the Diamond
interface in which name attributes are given in brackets. Figure 8.2

Names of objects (fields, material phases, meshes, etc.) should be camel cased (MyOwnField) and
not contain spaces or underscores. Furthermore, the characters /:[] are prohibited as these have
special meanings in the options dictionary inside Fluidity.

8.3 The options tree

The top level of the options tree contains the following compulsory elements:

• Simulation Name

• Problem Type

• Geometry

• IO

• Timestepping

• Physical Parameters

• Material/Phase

The first six of these are described here.

8.3 The options tree 117

Figure 8.2: A Diamond screenshot showing the /geometry/mesh::Coordinate option. Note that
the name is shown in brackets in the main Diamond window but after double colons in the path in
the bottom bar.

8.3.1 Simulation Name

The simulation name is the base name for all output files. For example if you set the simulation name
to foo then your statistics output file will be called foo.stat

8.3.2 Problem Type

Setting problem type gives fluidity a hint as to what sort of simulation you are conducting and there-
fore what combinations of options are likely to be valid. If you do not know which category applies
to your problem, choose ”fluids”.

8.3.3 Geometry

This element contains all the options required to specify the geometry of the mesh and the accuracy
of the finite element discretisation.

8.3.3.1 Dimension

The dimension of the domain of your problem. This can be 1, 2 or 3. Be careful, once you set the
dimension you can’t change it again! This is necessary to ensure that all vectors and tensors are of
the correct dimension.

8.3.3.2 Meshes

Meshes are the finite element spaces on which your problem is solved. Meshes are either read from
file or are derived from other meshes. Mesh options are described in detail in section 8.4. There is only

118 Configuring Fluidity

one required mesh: the CoordinateMesh. Some settings or fields have specific mesh requirements.
These are discussed under the appropriate options.

8.3.3.3 Quadrature

Fluidity uses numerical quadrature to integrate the equations over each element. There is a per-
formance/accuracy trade off in quadrature: the more quadrature points are employed, the more
accurate the integrals are but the more expensive the assembly operation is. Quadrature rules in Flu-
idity are categorised by the degree of the polynomial which they will integrate exactly. The higher
the degree of the quadrature rule, the more quadrature points will be employed. As a general rule of
thumb, the quadrature degree employed should be at least max(2nu+1, 2np) where nu is the degree
of the elements employed for velocity and np is the degree of the elements employed for pressure.
This means that degree 4 quadrature is sufficient for most of the fluidity configurations currently in
use.

The quadrature degree is specified by setting /geometry/quadrature/degree.

8.3.3.4 Spherical Earth

Enabling /geometry/spherical earth informs Fluidity that your simulation is being carried out
in an Earth like geometry, that is, a three dimensional geometry with gravity pointing towards the
centre of the coordinate system. This has implications for various options and terms such as wind
forcing (see section 8.12.3.10), the calculation of buoyancy and the ‘direction’ of absorptions (see
8.7.3).

If this option is checked, wind forcing and e.g., momentum forcing from bulk formulae (see 8.12.3.4)
will automatically be rotated and applied in the direction tangential to the Earth’s surface. It will also
result in absorption terms set through the options tree being rotated and applied in the longitudinal,
latitudinal and radial directions respectively. Additionally, in many terms such as the buoyancy
density, the direction of gravity is hard coded and calculated at explicitly at Gauss points when this
option is enabled. Thus, if enabling this option, the direction of gravity specified in the options tree
(see 8.3.6.1) must be set via a python function representing the inward normal to the sphere. Note
however that the viscosity and diffusion operators are currently not rotated automatically and thus
the user must carry such rotations out themselves. And example in which the viscosity is rotated is
giving in section 10.11.

Under /geometry/spherical earth the user must select linear mapping or
superparametric mapping. The former results in cords between nodes being approximated
as linear segments whilst the latter gives a better approximation to the Earth’s shape through
approximating cords with a higher order polynomial. The order of the polynomial is given by the
degree of the mesh on which gravity is located.

8.3.3.5 Ocean Boundaries

These options are required if you are running an ocean simulation with a free sur-
face or with various other ocean options which require the code to know where the
ocean surface and bed lie. /geometry/ocean boundaries/top surface ids and
/geometry/ocean boundaries/bottom surface ids are lists of boundary tags from your
input mesh which lie on the ocean surface and bed respectively.

It is not usually necessary to change the settings for either of the scalar fields under this option.

8.3 The options tree 119

8.3.4 IO

These options control the frequency and form of model outputs.

8.3.4.1 Dump format

The file format used to output fields to disk. At this stage, vtu is the only allowed format.

8.3.4.2 Dump period

This is the interval between the state fields being output to disk. You should usually start by setting
this to a rather low value (possibly as short as your timestep) for testing and then increase it for
production runs once you know how your configuration works. The value can be specified as either
a constant or python function.

It is possible to swap /io/dump period for /io/dump period in timesteps to specify that you
wish to have a dump every fixed number of timesteps.

8.3.4.3 Output mesh

All fields will be interpolated onto the same mesh for output. Usually the CoordinateMesh is the
right choice. If you have fields that are of higher order than the selected output mesh you will lose
accuracy. Interpolating all fields to a higher order mesh for output may give very large dump files
however. If any of the fields in the output is discontinuous, the mesh in the output file will be a
discontinuous version of the mesh selected here.

8.3.4.4 Disable dump at start

A dump is normally performed at the start of the simulation. This options disables that.

8.3.4.5 Disable dump at end

A dump is normally performed at the end of the simulation. This options disables that.

8.3.4.6 CPU dump period

This outputs dumps at specified CPU times. Not recommended.

8.3.4.7 Wall time dump period

Outputs at specified walltime (real time) periods. Not recommended.

8.3.4.8 Max dump file count

Limits the number of dumps by overwriting the previous dumps after the number specified here.

120 Configuring Fluidity

8.3.4.9 Convergence

You can check certain fields for convergence during nonlinear iterations. To do this switch on
/timestepping/nonlinear iterations and /timestepping/nonlinear iterations/
tolerance and switch on the convergence option under the fields that you want to check for con-
vergence.

It is possible to enable the creation of a convergence file, giving details of the convergence of each field
over the global nonlinear iteration loop. The .convergence file is in the same format as the .stat file. In
order to do this, switch on /io/convergence and /io/convergence/convergence file. You
still need the options in the above paragraph.

8.3.4.10 Checkpointing

Enables checkpointing, which saves sufficient information (including a new flml options file) to
restart a simulation, i.e., to continue the simulation after it stopped. You must specify how often
to checkpoint in terms of the number of dumps. There are also options to checkpoint at the start of
the simulation and at the end. This latter is useful when running on batch systems that have a time
limit.

Up to five sets of files are created when checkpointing:

1. Mesh files - The from file meshes, in triangle format. Surface IDs and (if present) region IDs are
written to the mesh files, and adaptivity is supported. In parallel a triangle mesh is written for
each process.

2. Halo files (in parallel) - Halo information for each process.

3. Field files - A vtu is written for each mesh with prognostic fields in each state and (in parallel)
for each process.

4. Checkpointed option file - A new FLML file, with the from file mesh set to read the checkpoint
mesh files and the prognostic fields set to initialise from the checkpoint field files.

5. Checkpointed detector files - Two files related to checkpointing of detectors are created.

The first checkpointed detector file has the extension .groups and contains a header with the names
of the groups of detectors in the order they were read in the simulation. It also contains information
about the number of detectors in each group. This is to guarantee that when restarting from a check-
point, the detectors will be read in the same order and consequently will be saved in that same order
into the output detector file for consistency. The second checkpointed detector file has the extension
.positions.dat and contains the last position of the detectors at the time of checkpointing, in binary
format.

No checkpointed detector files will be created if only static detectors are defined in Diamond, since
the position of these detectors remains always the same. This is mainly used when Lagrangian de-
tectors are set that are advected by the flow and hence, their position changes as the simulation
proceeds.

At the same time as creating the two files related to checkpointing of detectors, the detector options in
the options tree or Diamond are updated so that in the new flml file the detectors are set to initialise
from the checkpoint detectors files
(/io/detectors/detector array/from checkpoint file or
/io/detectors/lagrangian detector/from checkpoint file). For simplicity, the static
detectors are also read from the checkpoint file that contains the position of all detectors, static and
Lagrangian (/io/detectors/static detector/from checkpoint file).

8.3 The options tree 121

Checkpoint filenames all end with [dump no.] checkpoint[-[process]].[extension], where the process
number is added to the mesh, halo and field files in parallel. The checkpoint detectors filenames
contain det after [dump no.] checkpoint.

A script is available at scripts/rename_checkpoint.py that can be used to easily rename these
filenames and there contents to continue the naming convention of the original run. For more infor-
mation see section 9.3.3.29.

To restart from a checkpoint, specify the checkpointed FLML file as input.

8.3.4.11 Stat

Contains additional options for handling stat files, for example outputting a stat file at the start
(timestep zero) and outputting stat data before and after an adapt.

There are further options under individual fields, for example to exclude data from the stat file.

8.3.4.12 Detectors

Detectors are set in Diamond with the /io/detectors option. The detectors can be set to be static
detectors, /io/detectors/static detector, Lagrangian detectors
/io/detectors/lagrangian detector or an array of detectors,
/io/detectors/detector array.

When choosing to set detectors using an array, the total number of detectors needs to be specified in /
io/detectors/detector array/number of detectors and the type of detectors is indicated
with the option /io/detectors/detector array/static or
/io/detectors/detector array/lagrangian.

Examples 8.1 and 8.2 illustrate the use of a Python function to set an array of detectors, that can be
static or Lagrangian.

def val(t):
import math

ret=[]
for i in range(100):

ret.append([-2.5,(-0.495 + i * 0.01)])

return ret

Example 8.1: A Python function setting 100 detectors. This example illustrates that it is possible to
use a Python function to set an array of detectors.

If one or more Lagrangian detectors are selected the option /lagrangian timestepping
must be set to define detector movement. The user can define the order of the Runge-
Kutta method to be used by defining the Butcher tableau and timestepping weights under /
explicit runge kutta guided search. For convenience the first- and fourth-order Runge-
Kutta method (/forward euler guided search and /rk4 guided search) are available as
pre-defined options. See section 3.12 for more information on Lagrangian detector advection.

The output of the detectors is an ascii file called name of simulation.detectors where the
name of the simulation has been indicated in /simulation name. If binary output /io/
detectors/ binary output option is enabled then the file containing the detector data is called

122 Configuring Fluidity

def val(t):
import math

ret=[]
for k in range(100,2000,100):

for j in range(7000,25100,100):
for i in range(7000,25100,100):

ret.append([i,j,k])

return ret

Example 8.2: A Python function setting 622459 detectors uniformly distributed at intervals of 100 m
in the three orthogonal directions. They cover 19 z planes, from z=100 to z=1900, with 32761 detectors
in each plane, from x=7000 to x=25000 and y=7000 to y=25000.

name of simulation.detectors.dat and in this case name of simulation.detectors con-
tains only the header with the information about the detectors (name of each detector, in which col-
umn the position of each detector is stored, etc.).

Note that the algorithm used to determine the element containing a detector (of any kind) assumes
that the detector is known to be within the simulation domain. The option /fail outside domain
will cause Fluidity to fail if a detector is found to be outside the domain boundaries. This option
should be the default choice when creating new simulations. If detectors are intended to temporarily
reside outside of the domain the option /write nan outside domain will cause Fluidity to write
”NaN” values to the detector output in this case.

If /move with mesh is selected with any mesh movement algorithm the detectors will move accord-
ing to the mesh displacement. That is to say that a static detector will remain static with reference to
the domain boundaries rather than its true physical coordinates.

8.3.4.13 Log output

Enables additional output to the screen or log file. Usually controlled using the -v option when
running Fluidity. However, a useful option for logging memory diagnostics can be switched on
here.

8.3.5 Timestepping

These options control the start and end time of the simulation as well as options regarding timestep
size.

8.3.5.1 Current time

This is the model time at the start of the simulation. In most cases this is likely to be zero. It can be
non-zero when continuing a simulation from a checkpoint.

Time units

If your simulation contains real data, for example when using ocean forcing, Fluidity must know
how to map simulated time onto real time. This option allows the user to specify the “real-world”
start time of the simulation. The input is a string of the form:

seconds since 1992-10-8 15:15:42.5 -6:00

8.3 The options tree 123

which indicates seconds since October 8th, 1992 at 3 hours, 15 minutes and 42.5 seconds in the after-
noon in the time zone which is six hours to the west of Coordinated Universal Time (i.e. Mountain
Daylight Time). The time zone specification can also be written without a colon using one or two-
digits (indicating hours) or three or four digits (indicating hours and minutes).

8.3.5.2 Timestep

The simulation timestep. If adaptive timestepping is not used this will define the size of the timestep
used throughout the simulation. If adaptive timestepping is used this option defines only the size of
the first timestep.

8.3.5.3 Finish time

The model time at which the simulation should halt. Note that the simulation may overrun slightly
due to roundoff in calculating the current time or if the timestep does not divide the simulation time
exactly.

8.3.5.4 Final timestep

Rather than specify a finish time, the final timestep may be specified. This is the number of timestep
after which the simulation will stop.

8.3.5.5 CPU time limit

This option will stop the simulation after the CPU time reaches this limit. This option is useful when
coupled with /io/checkpointing/checkpoint at end enabled.

8.3.5.6 Wall time limit

This option will stop the simulation after the wall time (real time) reaches this limit. This option is
useful when coupled with /io/checkpointing/checkpoint at end enabled.

8.3.5.7 Nonlinear iterations

Nonlinear quantities in the equations are represented by their last known values. It may be necessary
to solve the equations more than once to produce better approximations to those last known values
for reasons of accuracy or stability. Unless there are reasons for doing this, set this value to 2.

8.3.5.8 Adaptive timestep

This option allows the timestep, ∆T , to vary throughout the run, depending on the Courant-
Friedrichs-Lewy (CFL) number. There are several sub-options here. The .../requested cfl is
the desired upper limit of the CFL. A value of 5-10 is usual here. Fluidity will increase the timestep
if the CFL number is less than this value and decrease it if the CFL is greater than this. The .../
minimum timestep and .../maximim timestep options limit the timestep. The option .../
increase tolerance determines the rate of growth in the timestep. A value of 1.5 indicates the
timestep can grow by at most, 50%. There is no limit on the rate of decrease. Note that if a timestep

124 Configuring Fluidity

fails to meet the CFL limit imposed it is not re-run, but the timestep is decreased for the next iter-
ation. Finally, a desired ∆T can be calculated at the first time iteration by switching on the option:
.../at first timestep

8.3.5.9 Steady state

It is possible to run Fluidity until it converges to a steady state; this is sometimes useful for initialising
a problem. In order to do this, switch on /timestepping/steady state and set a tolerance.

8.3.6 Physical parameters

These options control global physical quantities.

8.3.6.1 Gravity

The importance of buoyancy is discussed in section 2.4.3.1. This requires a gravitational field to be set
and involves both its magnitude (e.g., 9.8 m s−2) and a vector field specifying the direction in which
gravity points. For a 3D simulation in a flat domain with gravity pointing in the negative z direction
you would set value(WholeMesh) for this field to the vector (0.0, 0.0, -1.0). For a gravitational
force with spatially varying direction, e.g. on the Earth considered in Cartesian space with gravity
pointing in the negative radial direction you could use a Python function of the form

def val(X, t):
from math import sqrt
radius=sqrt(X[0]**2+X[1]**2+X[2]**2)
rx=X[0]/radius
ry=X[1]/radius
rz=X[2]/radius
return (-rx, -ry, -rz)

Example 8.3: A Python function returning a vector pointing in the negative radial direction.

8.3.6.2 Coriolis

Fluidity supports the specification of the Coriolis term (section 2.4.1) in a number of different ways.
The following options are available:

1. f plane – a single float is prescribed which corresponds to f0 in (2.38);

2. beta plane – here two floats are prescribed, f0 and β in (2.39);

3. sine of latitude – here the Coriolis parameter from (2.36) is used and Ω, Rearth and
latitude0 are defined as floats with latitude calculated via ϕ = y/Rearth + latitude0;

4. on sphere – here Ω the rotation vector pointing in the inertial frame z direction (2.35) is set,
note this is the direction pointing from the centre of mass to the North Pole on the Earth;

5. python f plane – time dependent python input prescribing a single float which corresponds
to f0 in (2.38) - see example 8.4.

8.4 Meshes 125

Recall that there is a factor 2 relationship between f and Ω (2.37) — make sure you don’t get caught
out by this.

if t < 4000.0:
omega = 3.0

elif t < 6000.0:
omega = 2.5

elif t < 8000.0:
omega = 2.0

elif t < 10000.0:
omega = 1.5

elif t < 12000.0:
omega = 1.0

elif t < 14000.0:
omega = 0.5

else:
omega = 0.0

return 2.0 * omega

Example 8.4: python f plane definition, sweeping through a number of rotation rates. Note the
factor of 2 between f and Ω (see equation (2.37)).

8.4 Meshes

A mesh defines the discrete function space in which the values of one or more fields lie. For example,
the mesh defines what degree of polynomials are employed on each element, whether the field is
continuous or discontinuous between elements, and whether the domain is periodic in any direction.

Meshes are defined in the flml file by /geometry/mesh options. The mesh associated with each
field is referred to by name in the .../mesh option under that field.

8.4.1 Reading meshes from file

There must always be one mesh which is read in from a set of files in triangle format. This is usually
the CoordinateMesh. To specify the triangle files from which the coordinate mesh should be read,
set the file name attribute of /geometry/dimension/mesh::CoordinateMesh/from file
to the basename of the triangle files (that is, the filename without .node, .ele, etc.)

The coordinate mesh read in from file will always have linear elements and the Coordinate field is
always continuous between elements.

Fluidity also has native Gmsh support, which loads in Gmsh files directly into Fluidity, and works
with binary and ASCII Gmsh formats. To enable native support, Fluidity needs to be told to expect a
Gmsh file, which is achieved by setting the /geometry/mesh/from file/format option to gmsh.
Fluidity will now look for a file with the extension .msh when it runs.

For information on generating meshes in gmsh and triangle format, see chapter 6.

126 Configuring Fluidity

8.4.2 Deriving meshes from other meshes

The alternative to reading a mesh from a file is to derive it from another mesh. This is necessary
when for instance we wish to derive a mesh with different continuity or elements than the original
mesh. For example, if we have a CoordinateMesh as our input mesh read from file, it is possi-
ble to derive a VelocityMesh from it by adding /geometry/mesh::VelocityMesh, selecting
from mesh under it and there selecting mesh::CoordinateMesh. If nothing further is specified
under the new mesh, the derived mesh will be exactly the same as the mesh it is derived from.

The more interesting case occurs where we wish to derive a mesh with different continuity or el-
ements from the original mesh. To specify a discontinuous mesh, under .../from mesh enable
mesh continuity and select discontinuous.

Similarly, to specify a mesh with higher polynomial degree elements, enable mesh shape under
.../from mesh and set polynomial degree.

Meshes with any name can be added. Only the name CoordinateMesh is special, as it will be
used to store the coordinates of the mesh. This is also the only required mesh. VelocityMesh and
PressureMesh are only provided as suggested names as quite often the pressure and velocity fields
need to be on a different mesh than the coordinate mesh, e.g. for P1DGP2 . It is however not required
that the velocity is defined on a mesh with the name VelocityMesh, nor does the pressure field
have to be on a mesh with the name PressureMesh. If for instance the mesh needed for pressure is
the same as your CoordinateMesh, e.g. for P1P1 or P0 P1 , the pressure can be defined directly on
the CoordinateMesh and no extra mesh is needed.

8.4.2.1 Shape function

This option is used to specify the degree of polynomial which should be used for the shape functions
on each element of the mesh. If not selected, the shape functions will be the same as those on the
mesh from which this mesh is derived.

8.4.2.2 Continuity

This option can be set to discontinuous to derive a discontinuous mesh from a continuous one. Note
that it is not possible to derive a continuous mesh from a discontinuous mesh.

8.4.2.3 Periodic

To specify a periodic domain in Diamond, add a new mesh under /geometry/mesh. Select
.../from mesh/mesh::CoordinateMesh and then turn on
.../from mesh/periodic boundary conditions for each dimension that is periodic. There
are three fields that need to be completed: the surface IDs of one side, the surface IDs of the opposite
side and a python function (coordinate map) which contains the necessary mapping function.

For example, suppose that the domain is the unit square shown in figure 8.3 which is to be pe-
riodic in the x direction. We designate surface ID 1 as the physical boundary and surface ID 2
as the aliased boundary. We therefore enter 1 in .../physical boundary ids and 2 in .../
aliased boundary ids. The coordinate map function takes a point on the aliased boundary to the
corresponding point on the physical boundary. In this case, the appropriate function is:

def val(X,t):
result = list(X)
result[0]=result[0]-1.0
return result

8.4 Meshes 127

(0, 0)

(0, 1)

(1, 0)

(1, 1)

4

2

3

1

Figure 8.3: Periodic unit square with surface IDs 1-4 shown.

Meshes that are required to be periodic can now be derived from this periodic mesh. Note that the
periodic mesh must be directly derived from the mesh which has been read from file. It is not
possible to derive a periodic mesh from a from mesh mesh.

8.4.2.4 Extruded meshes

It can be advantageous to have a mesh in which all the nodes line up in vertical lines. To achieve this
effect within Fluidity, it is possible to read in a mesh in n − 1 dimensions and extrude it along the
n-th dimension. An extruded mesh is specified using the .../from mesh/extrude option.

Under this option it is necessary to set the regions/bottom depth. This is a scalar value
which gives the depth, a positive value. The extent of the domain in n-th dimension will be
(0,−bottom depth). This value may be set either as a constant or as a Python function. In the lat-
ter case, function will be a function of space and time. Note in this case that the space argument X
will be n − 1-dimensional. See section 8.6.2.2 for a full explanation of the use of Python functions to
prescribe field values. In this case, the depth is essentially a scalar field over the n − 1 dimensional
parent mesh. The time argument which will be passed to the function is the simulation start time
and the function will not be re-evaluated during the simulation.

The second option which must be set is the .../sizing function. This specifies the mesh spacing
along the n-th dimension. It may once again be a constant or a Python function. In the latter case, it
will be a function of all n dimensions which facilitates the mesh spacing varying in depth as well as
in the horizontal. Once again, the function will be evaluated only at simulation start.

It will usually be advantageous to specify the surface ID to be associated with the top and bot-
tom boundaries, so that boundary conditions can be associated with them. This is achieved using
the .../top surface id and .../bottom surface id options. The lateral boundaries of the
extruded mesh will inherit the surface IDs associated with the the boundaries of the parent (non-
extruded) mesh.

It is possible to specify different options for different regions of the mesh by adding mul-
tiple .../extrude/regions options and changing them to the generic rather than the
regions::WholeMesh version. The new regions need to be named and the region IDs to which
they apply specified.

As well as extruding 2D meshes (where only the x and y coordinates are specified in the triangle
file), given a pseudo 2D mesh on a spherical shell, Fluidity can perform and extrusion in the radial
direction. To perform such an extrusion simply enable the options as noted above and additionally
check the /geometry/spherical earth option. With this option enabled Fluidity will then

128 Configuring Fluidity

perform the specified extrusion towards the centre of the sphere.

Extrusions on the sphere can be performed such that the ‘depth’ of the extrusion conforms to
bathymetic data. To extrude according to bathymetry Fluidity must be provided with a netCDF
data file containing three columns of data giving the longitude, latitude and depth of each point
respectively. The name and location of this data file must then be entered under .../extrude/
regions/bottom depth/from map. To avoid the depth at coast dropping to zero the user may
also enter a minimum depth under the .../from map/min depth option. Note however, that if a
minimum depth is specified, this will be applied throughout the domain.

8.4.2.5 Extruded periodic meshes

If an extruded periodic mesh is required then the periodic mesh must first be derived from
the from file mesh. The extruded mesh is then derived from the periodic mesh. All other
meshes are next derived from the extruded mesh. A special case is the CoordinateMesh.
This must be derived from the extruded mesh by specifying periodic boundary conditions/
remove periodicity. At this stage it is necessary to re-specify the physical boundary ids,
aliased boundary ids and coordinate map. Additionally, the inverse coordinate map
must be given. As the name suggests, this function must be the inverse of the original
coordinate map.

8.5 Material/Phase

The final compulsory element in the top level of the options tree is /material phase. A /
material phase element groups all of the fields which pertain to one phase or one material. See
section 8.19 for an explanation of the distinction between a phase and material in this context.

When configuring ocean problems (or single material/single phase fluids problems), only one
/material phase is required. Multi-material and multiphase problems will require one /
material phase for each phase or material in the problem.

Note that you must give each of your material phases a name.

The following sections (8.7 to 8.15) describe the options below the /material phase option.

8.6 Fields

8.6.1 Types of field

A field associates a value with every node in the domain. Examples of fields in a fluids simulation
include the velocity and pressure. Fields in Fluidity are distinguished by the rank of the data on the
field and the way in which that field is calculated.

Scalar fields have a scalar value at each node. Common examples include temperature, pressure
and density.

Vector fields have a vector value, in other words a list of numbers, at each node. The rank of a vector
field is 1 and the length of the vector is given by the dimension of the problem.

Tensor fields have a value given by a square matrix at each node. The side length of the matrix is the
problem dimension and the rank is naturally 2. The diffusivity of a tracer is a typical example
of a tensor-valued field.

8.6 Fields 129

Fields can also be characterised by the manner in which their value is calculated. Fluidity recognises
three such categories:

Prognostic fields are the result of solving a partial differential equation. In a typical fluids simula-
tion, the velocity and pressure are prognostic and are calculated by solving some variant of the
Navier-Stokes equations. Similarly, tracers such as temperature and salinity are usually the re-
sult of solving an advection-diffusion equation. Prognostic fields typically have specified initial
and boundary conditions and it will be necessary to specify spatial and temporal discretisation
options. If an implicit timestepping scheme is in use (and it almost always is in Fluidity), it is
also necessary to specify solver options.

Diagnostic fields are calculated from other fields without solving a partial differential equation. A
typical example is the CFL number which may be calculated from the timestep, the mesh spac-
ing and the velocity field.

Prescribed fields receive their values from sources external to Fluidity. This might be a constant or
varying function specified by the user, or it might be interpolated from some external data set.
Fields such as diffusivity and viscosity are often prescribed as are source and absorption terms.

An additional field type - aliased - is also available. This links the values in one field to those in
another, using no extra computational resources during the simulation (i.e. it is not an indepen-
dent field). This is useful when sharing fields between material phases. For example if two mate-
rial phases share a common velocity field then only one should contain a prognostic field while the
other is aliased to the other material phase.

8.6.2 Setting field values

Field values must be specified by the user in two circumstances: the initial value of most prognostic
fields and the value throughout the simulation of all prescribed fields.

The initial value of prognostic fields is set with the .../prognostic/initial condition option
while the value of prescribed fields is set with the .../prescribed/value option.

8.6.2.1 Constant fields

Fields which are constant in space and (for prescribed fields) time may be specified by simply pro-
viding a constant value in the constant option under .../prognostic/initial condition,
.../prescribed/value. For a scalar field, this is a single floating point (real) value while for a
vector field this is a list of reals of length equal to the field dimension.

For tensor valued fields there are more options. It is possible to specify an isotropic, or rota-
tion invariant, value by choosing .../value/isotropic/constant and specifying a single real
which will be used for all the diagonal entries of the tensor field at all mesh nodes. The off-
diagonal entries of an isotropic tensor field are always zero. A constant anisotropic field may be
specified by choosing .../value/anisotropic asymmetric/constant and providing the en-
tire matrix. Finally, a constant symmetric anisotropic tensor field may be specified by selecting
.../value/anisotropic symmetric/constant. In this case, the user must specify all of the
entries in the upper half of the matrix and those in the lower half will be filled automatically by
symmetry.

130 Configuring Fluidity

8.6.2.2 Setting fields with a Python function

The value of a field which varies in space and (for prescribed fields) in time may be specified
by providing an appropriate function written in Python. The Python function will be evaluated
for each node in the mesh at the start of the simulation to populate the field values. For time-
varying prescribed fields, the function will be evaluated again at the beginning of every timestep
to update the field value. If it is known that the value of the field does not in fact vary in time,
then the re-evaluation of the Python function on each timestep can be inhibited by setting the
.../prescribed/do not recalculate option.

The Python function must be provided as the value of the .../python option which may be chosen
as an alternative to the .../constant function. The option may contain any Python code but it
must define a function val(X,t) where the sequence X is the coordinates of the point at which the
field is being evaluated and t is the current time.

For a scalar field, the function must return a single floating point value. Similarly for a vector field, a
sequence of values of length equal to the field dimension must be returned. For a tensor field, there
are two cases. For an isotropic field specified with .../value/isotropic/python, the function
must return a single float which will be used for all the diagonal entries of the tensor at that point.
The off-diagonal entries will be set to zero. For the anisotropic case, the function must return a two-
dimensional array (a sequence of sequences). It is the user’s responsibility to ensure that the tensor
is symmetric in cases where it should be.

def val(X,t):
return (-X[1],X[0])

Example 8.5: A Python function returning a two-dimensional solid rotating vector field about the
origin.

8.6.2.3 Reading fields from a file (using the from file option)

A field can be populated using saved data from a file. This is intended primarily for picking up pre-
scribed fields from previously run prognostic simulations (checkpointing) and may be specified by
providing the file name in the from file option under .../prognostic/initial condition,
.../prescribed/value.

For prescribed fields the format of the input file containing field data must be vtu, and this will only
work for those prescribed fields directly underneath .../material phase. For prognostic fields it
is possible to select the type of input file, under .../initial condition/from file/format;
the available supported formats for this include vtu and NetCDF-CF 1.x.

The file mesh must match the mesh of this field (except for piecewise constant fields which will be
remapped back from the discontinuous nodal values). In parallel the process number is appended to
the filename, e.g. if the file name attribute is set to input.vtu, process 0 reads from input-0.vtu.

8.6.2.4 Setting an initial condition from a NetCDF file

The initial state of certain fields can be set from external data contained within a NetCDF file. This
functionality can be used by selecting the .../initial condition/from netcdf/format op-
tion. This option will not currently work with multi-layered data files. Supported NetCDF file con-
ventions include the NetCDF-CF 1.x convention.

8.7 Advected quantities: momentum and tracers 131

8.6.2.5 Setting fields from NEMO data

Initial conditions of prognostic fields and the values of prescribed fields can also be set from an ex-
ternal NEMO data file. The external data file is in the NETCDF format and data is currently available
for pressure, temperature, salinity and velocity. To set the initial condition of a prognostic field from
NEMO data, choose the option .../prognostic/initial condition/NEMO data and then un-
der format select the required data format. For scalar fields the formats available are ‘Temperature’,
‘Salinity’ and ‘Free-surface height’, for vector fields ‘Velocity’ is the only available format. Setting
the value of prescribed fields from NEMO data works similarly. Set the option .../prescribed/
value/NEMO data and then proceed as above.

8.6.2.6 Setting an initial free surface height

The free surface height is contained within the Pressure field. To apply an initial condition on free
surface height, choose the .../free surface under the relevant Pressure initial condition option.
With this option, it is possible to set the initial free surface elevation in a tsunami simulation, for ex-
ample. The initial condition can be applied using the approaches outlined above, in this section 8.6.2.
It is recommended that a diagnostic FreeSurface field is included if this option is used.

If set from a NetCDF file using the option .../initial condition/from netcdf, and
the file provides exactly the free surface height, it is important that the child option .../
initial condition/from netcdf/format is set to ‘raw’.

If the no normal stress option is used, to impose boundary condition (2.32) instead of p = patm,
you should add a prognostic FreeSurface (instead of a diagnostic). The initial condition is then also
set for that field.

8.6.3 Region IDs

If the input mesh defines a number of region IDs then these may be employed to specify differ-
ent field values for each region. For a prescribed field, this is achieved by changing the .../
value::WholeMesh element to the unnamed .../value. The user must then specify a new name
for that value element. Next, enable the .../value/region ids option and set it to a list of region
ids to which this value should apply. Any number of .../value elements may be added to allow
different values to be specified in different regions. For prognostic fields, analogous behaviour for
initial conditions may be achieved by switching .../initial condition from WholeMesh to a
user-specified name and specifying the region IDs appropriately.

See section E.1.5 for information on including region IDs in meshes.

8.6.4 Mathematical constraints on initial conditions

For well-posedness, the initial condition of the velocity field must satisfy both continuity (2.52b) and
the boundary conditions imposed on the problem. If the normal component of velocity is imposed
on the entire boundary then the additional compatibility constraint of global mass conservation must
be satisfied: ∫

∂Ω
n · u = 0.

132 Configuring Fluidity

8.7 Advected quantities: momentum and tracers

8.7.1 Spatial discretisations

A number of underlying finite element schemes are available for tracer fields and velocity. In
each case there are restrictions on the mesh continuity which must be employed. In addition, the
conservative advection option is applicable to all discretisation types. See chapter 3 for details.

For each field, the spatial discretisations can be selected using .../prognostic/
spatial discretisation. Once selected a number of other options will open underneath
this option.

8.7.1.1 Continuous Galerkin

Continuous Galerkin (CG) implements the CG scheme detailed in 3.2.1.3. If stabilisation methods are
needed, the user can either select streamline upwind or streamline upwind Petrov-Galerkin. Other
options include integration of advection by part, lumping of the mass matrix, or direct exclusion of
both advection and mass terms.

8.7.1.2 Control Volumes

The control volume options (control volumes) implements the advection scheme described in
section 3.2.4. There are several options to control the face value and how diffusion is implemented.

The face value (face value) can be set to one of:

FirstOrderUpwind - see section 3.2.4.1. Note that first order upwinding does not require nonlinear
advection iterations as the low order pivot solution uses first order upwinding itself. However
in this case it is necessary that the implicitness factor, θ, is the same as the pivot implicitness
factor, θp (see sections 3.4.2 and 8.7.2).

Trapezoidal - see section 3.2.4.1, should be used with the suboptions describing a face value limiter
(see section 3.2.4.1) active

FiniteElement - see section 3.2.4.1, should be used with the suboptions describing a face value lim-
iter (see section 3.2.4.1) active

FirstOrderDownwinding - see section 3.2.4.1, intended for demonstration purposes only, not rec-
ommended for general use (unconditionally unstable)

HyperC - see section 3.2.4.1

UltraC - see section 3.2.4.1

PotentialUltraC - see section 3.2.4.1

None - turns off the advective terms

For the diffusion scheme (diffusion scheme) one can choose either:

ElementGradient - see section 3.2.4.2

BassiRebay - works in two configurations equal order field and diffusivity or, for fields on a linear
parent mesh, with a piecewise constant (element centred) diffusivity (staggered finite volumes),
see section 3.2.4.2

8.7 Advected quantities: momentum and tracers 133

For steady state problems the mass terms may be disabled using .../mass terms/
exclude mass terms. Note that this also requires the suitable setting of the temporal discretisation
options (θ = 1).

8.7.1.3 Coupled CV

The coupled CV options (coupled cv) implement another control volume discretisation with face
value limits enforced in such a way to give boundedness both in the field and across the sums of
fields. Section 3.2.4.1 contains more details on this method.

Options must be selected to describe the face value scheme, which include most of the algorithms
described in section 8.7.1.2. Additionally it is necessary to prescribe the maximum and minimum
bounds on the sum of this and the previous fields. Because the coupled scheme depends on a
priority ordering a priority (outside of the spatial discretisation options at .../scalar field/
prognostic/priority) must also be set with higher values having the highest priority and lower
values the lowest.

Related fields to be used together during coupled limiting are grouped together based on their names
from successive material phases. For example, if a field called MaterialVolumeFraction has cou-
pled cv options then all other fields in all other material phases called MaterialVolumeFraction using
coupled cv options will be advected together in order of their priority. Spatial discretisation options
within coupled cv may vary between the fields but temporal discretisation options must be identical.

8.7.1.4 Discontinuous Galerkin method for the advection-diffusion equation

The Discontinuous Galerkin option implements the advection-diffusion algorithm described in Sec-
tion 3.2.3.1. There are two compulsory options to set, as well as a number of non-compulsory options.

Advection scheme (advection scheme) This compulsory option selects the approximation for the
flux of scalar across a face. Select one from:

• upwind: Use the upwind flux as described in Section 3.2.3.1. This is the recommended flux for
DG advection.

• lax friedrichs: Use the Lax-Friedrichs flux as described in Section 3.2.3.1. This is an at-
tempt to produce a bounded flux when the advecting velocity is discontinuous. This option is
only for testing, if you have a discontinuous advecting velocity it is recommended to use the
upwind flux combined with the option to project the velocity to a continuous space described
below.

• none: This option switches off the advection term completely.

project velocity to continuous
integrate advection by parts
integrate conservation term by parts

Diffusion scheme (diffusion scheme) This compulsory option selects the discretisation method
used for the diffusivity term. This selection is important for performance since various different op-
tions have different stencil sizes, which affects memory signature and hence the number of elements
you can use per processor.

Select one from:

134 Configuring Fluidity

• bassi rebay: The classical scheme of Bassi and Rebay (see section 3.2.3.3). This scheme re-
sults in a large stencil for the diffusion matrix, which can reduce computational speed and
increase memory use. If possible one should use a different option with a smaller stencil.

• compact discontinuous galerkin: The compact discontinuous Galerkin scheme (CDG)
from Peraire and Persson [Peraire and Persson, 2008] (see section 3.2.3.3). This scheme has
the smallest stencil of any diffusion scheme and hence is the most efficient and uses the least
memory resource. Recommended option.

Optionally, it is possible to set the penalty parameter. This optional option adds an extra
term which penalises jumps across faces. You must supply a multiplicative constant which
is scale independent (typical value is 10). This term is required to prove theoretical results
about the CDG scheme, but we experimentally observe that it is not necessary, and hence, it is
recommended not to use this option.

• interior penalty: Symmetric interior penalty (IP) scheme. This scheme simply integrates
the diffusion operator by parts in each element, averages the fluxes and adds a term which pe-
nalises jumps. You must set the penalty parameter which sets the multiplicative constant,
and the edge length parameter. which specifies the scaling with the edge-length h. You
must also select an edge length option which is either use face integral which com-
putes a length scale from the face integral, or use element centres which uses the distance
between centres of the two elements on either side of the face. Both of these options only func-
tion well for nearly isotropic meshes and hence CDG is the recommended diffusion choice since
it is compact and requires no such parameters.

Slope limiter (slope limiter) Need to mention about subcycling.

Mass terms (mass terms)

8.7.1.5 Conservative advection

The momentum equation can be discretised conservatively by setting the BETA factor equal to 1
(corresponding to a divergence form of the equation). If BETA is set to zero, the discretisation is left
non-conservative. An intermediate value can alternatively be selected. Please refer to section 3.5 for
a comprehensive discussion on the influence of this parameter.

8.7.2 Temporal discretisations

Under temporal discretisation, you can set the value of theta, where 0 is explicit, 0.5 is Crank-
Nicolson and 1 is implicit. For scalar fields, the control volumes option may be selected if you are
using control volumes or coupled cv spatial discretisation. It contains options to set up nonlinear
advection iterations, subcycling and the value of the pivot implicitness factor (see section 3.4.2). The
discontinuous Galerkin option can be used if you are using discontinuous galerkin spatial discretisa-
tion to set the maximum courant number per subcycle, or the number of subcyles.

8.7.3 Source and absorption terms

The source and absorption terms allow for external forcing of the tracer and momentum equations.
The source is a rate of change of the tracer which is independent of the system state while the ab-
sorption term is linear in the tracer. The source and absorption terms modify the tracer equation as

8.8 Solving for pressure 135

follows (cf. (2.1)):
∂c

∂t
= F (c, u, t)− σc+ F, (8.1)

where F (c, u, t) represents the advection and diffusion terms, σ is the absorption and F is the source.
The source and absorption are usually prescribed fields supplied by the user but in some cases it may
be necessary to provide a diagnostic field which will be set by a parameterisation somewhere in the
model. If this is the case then this will be specified in the documentation of that parameterisation.

For tracer fields, the source and absorption are specified by the
.../scalar field/prognostic/scalar field::Source and
.../scalar field/prognostic/scalar field::Absorption options respectively. For
velocity, the corresponding fields are naturally vector-valued and are set by options
.../vector field::Velocity/prognostic/vector field::Source and
.../vector field::Velocity/prognostic/vector field::Absorption respectively.

8.7.4 Sponge regions

It is often useful to be able to relax momentum or a field variable to a given state in regions of the
domain, typically in regions close to boundaries. This may be done using a combination of source
and absorption terms. If F is the value of the source at a point and σ is the absorption, then the
value of the scalar field c will tend to relax to a value of F/σ. The absorption, σ, has units 1/time and
controls the time over which the relaxation occurs.

8.8 Solving for pressure

8.8.1 Geostrophic pressure solvers

8.8.2 First guess for poisson pressure equation

Fluidity’s solution procedure for velocity and pressure can use a pressure poisson guess to speed
up the convergence. In order to use a pressure guess, set .../scalar field::Pressure/
prognostic/scheme/poisson pressure solution from never to only first timestep.

8.8.3 Removing the null space of the pressure gradient operator

If the normal component of velocity is imposed on all boundaries then the appropriate boundary
condition for pressure [see Gresho and Sani, 1987] is obtained by taking the normal component of
(2.52a), this yielding a Neumann boundary condition for pressure. This only serves to define the
pressure field up to an arbitrary additive constant.

There are two different and mutually exclusive options which may be used to fix the additive con-
stant in the pressure field. The first is that the pressure at a single point may be set to 0. This
is achieved by setting the .../scalar field::Pressure/prognostic/reference node op-
tion. The value of the option is the number of a node at which the pressure is to be constrained to be
zero. It is an error for the node number specified here to be greater than the number of nodes in the
simulation.

The second method is to instruct the linear solver to remove the null space of the pres-
sure equation as a part of the solution procedure. This is achieved by enabling the
.../scalar field::Pressure/prognostic/solver/remove null space option. This ap-
proach often leads to better convergence rates than setting the reference node.

136 Configuring Fluidity

If however there is a single location on the boundary where the normal component of velocity is
not specified then there is no free constant in the pressure and neither .../reference node nor
.../remove null space should be set. An example may be stress free outflow or the presence of
a free surface.

8.8.4 Continuous Galerkin pressure with control volume tested continuity

As described in section 3.7.1 when using a continuous Galerkin discresti-
sation of pressure the continuity equation can be tested with the corre-
sponding dual control volume mesh. This is achieved by including the
.../scalar field::Pressure/prognostic/spatial discretisation/
continuous galerkin/test continuity with cv dual option. As described in the the-
ory section 3.7.1 this will imply a non symmetric pressure correction matrix which must be
considered when selecting the pressure matrix solver options.

The current limitations of this method are:

1. It can only be used for incompressible flow 3.6.

2. It cannot be used with the free surface model 3.9.

3. It cannot be used with the wetting and drying model 3.10.

4. It cannot be used with the implicit solids model with two way coupling.

5. It can only be used if the pressure has a mesh associated with Lagrangian shape functions.

6. It can only be used with control volume shape functions that are available, of which only P1CV
are considered reliable.

8.9 Solution of linear systems

8.9.1 Iterative Method

As described in Section 3.11, for the solution of large sparse linear systems, the so called itera-
tive methods are usually employed. These methods avoid having to explicitly construct the in-
verse of the matrix, which is generally dense and therefore costly to compute (both in memory
and computer time). FLUIDITY is linked to PETSc: a suite of data structures and routines for
the scalable (parallel) solution of scientific applications modelled by partial differential equations.
It employs the MPI standard for parallelism. FLUIDITY therefore supports any iterative method
provided by the PETSc library (http://www-unix.mcs.anl.gov/petsc/petsc-2/snapshots/petsc-
dev/docs/manualpages/KSP/KSPType.html — available methods may depend on the PETSc li-
brary installed on your system). Examples include Conjugate Gradient (CG), GMRES and FGMRES
(Flexible GMRES). Some options are explicitly listed under solver/iterative method, for exam-
ple CG: solver/iterative method::cg, whereas others can be selected entering the name of the
chosen scheme in solver/iterative method.

8.9.2 Preconditioner

The requirement for a suitable preconditioner is described in Section 3.11.2. In a manner analogous to
the selection of the iterative method, some common preconditioning options are explicitly listed un-
der solver/preconditioner, for example MG: solver/preconditioner::mg, whereas oth-
ers can be selected by entering the name of the chosen scheme in solver/preconditioner.

8.9 Solution of linear systems 137

8.9.2.1 Direct Solve

Note that the option to solve a system exactly is available in FLUIDITY. For this, solver/
iterative method::preonly must be selected (preonly: preconditioner only) and the precon-
ditioner must be set to solver/preconditioner::LU. A full LU decomposition of the system is
then carried out.

8.9.3 Relative Error

The solver finishes if the preconditioned error becomes smaller than the original preconditioned error
times this value.

8.9.4 Absolute Error

The solver finishes if the preconditioned error becomes smaller than this value.

8.9.5 Max Iterations

The maximum number of iterations allowed for the linear solver before quitting.

8.9.6 Start from Zero

Switch on to start a solve with a zero vector and not a guess from a previous solve. Note that some
solves always start at zero in which case this switch will have no effect (to check this, the user should
refer to the log output).

8.9.7 Remove Null Space

As documented in Section 8.8.3, this option removes the null space.

8.9.8 Solver Failures

Three options are available here:

1. Never ignore solver failures: Solver failures are always treated as fatal errors. The model stops
at the end of the time step in order to allow for the latest output to be written.

2. Ignore non-convergence during spin-up: Allow for an initial period in which solver failures
caused by non-convergence in the maximum number of iterations are ignored.

3. Ignore all solver failures: Ignore all solver failures. This is a dangerous option that should only
be used in exceptional cases.

It is recommended that users use the first option: Never ignore solver failures, however, on occasions
(e.g. challenging initial conditions) the second might also be applicable.

138 Configuring Fluidity

8.9.9 Reordering RCM

A bandwidth reduction algorithm — reverse Cuthill-McKee reordering — is used to improve cache
performance.

8.9.10 Solver Diagnostics

This subsection includes a series of extra diagnostic options to help debug solver problems.

8.9.10.1 Print norms

Print out the norm of vectors and matrices before the solve, and that of the solution vector afterwards.
Norms are printed at verbosity level 2, so run Fluidity with -v2 or -v3.

8.9.10.2 Monitors

Options to give extra information for each iteration of the the solve. Note that some of those may
really slow down your computation.

8.10 Equation of State (EoS)

The equation of state is a relation between state variables. For incompressible flows it is used to
derive the density from other variables such as temperature and salinity (cf. section 2.3.3.2). For
compressible flows it can be a more general relation between the state variables including density
and pressure.

The following EOS are available:

.../equation of state/fluids/linear Is a simple linear equation of state, where density is
a function of temperature and salinity.

.../equation of state/fluids/ocean pade approximation Is a complex EOS for ocean
modelling where density is a function of temperature, salinity and pressure.

.../equation of state/compressible/miegrunneisen Is a simple compressible material
EOS.

8.10.0.3 Linear fluid EOS

The density is a linear function of temperature, salinity and any number of generic scalar fields:

ρ = ρ0 (1− α(T − T0) + β(S − S0)− γ(F − F0)) , (8.2)

where ρ0, α, T0, β, S0, γ and F0 are set by the following options:

.../linear/reference density sets ρ0

.../linear/temperature dependency/thermal expansion coefficient sets α

.../linear/temperature dependency/reference temperature sets T0

8.11 Sub-grid Scale Parameterisations 139

.../linear/salinity dependency/salinity contraction coefficient sets β

.../linear/salinity dependency/reference salinity sets S0

.../linear/generic scalar field dependency/expansion coefficient sets γ

.../linear/generic scalar field dependency/reference value sets T0

Note that for Boussinesq the reference density does not influence any of the terms in the momentum
equation (see (2.52)). It may influence the outcome of diagnostic fields depending on density.

The option subtract out hydrostatic level only changes the buoyancy term. For LinearMo-
mentum it changes to g(ρ− ρ0) and does not affect the density in the Du/Dt term. For Boussinesq it
changes to gρ′ = g(ρ− ρ0)/ρ0 (again see (2.52)), and this option should always be used. In both cases
the diagnostic “Density” field and all other diagnostic fields depending on density still represent the
full density.

8.10.0.4 Pade ocean EOS

This EOS is described in section 2.3.3.3. This option uses mean hydrostatic pressure based on depth
to calculate the pressure (hence why you need to provide the value of z on the top surface). For
this option, the temp field represents potential temperature not in situ temperature - so beware (see
McDougall et al. [2003] for a formula for converting from in-situ to potential). The units are de-
grees Centigrade for potential temperature, PSU for salt, kg m−2 for density. The reference density is
1000 kg m−2 and the momentum equation is Boussinesq using this reference density.

8.10.0.5 Compressible EOS

.../equation of state/compressible/miegrunneisen defines a simple compressible
equation of state that can be used to describe gases, liquids and solids, known as the stiffened gas
EOS.

.../miegrunneisen/reference density Specifies the reference density of the material in SI
units.

.../miegrunneisen/ratio specific heats Specifies the ratio of specific heats of the gas mi-
nus 1 (cp/cV − 1) in the perfect gas EOS and the Gruneisen parameter in the stiffened gas
equation of state. Not activating this option simplifies the compressible EOS to that of a com-
pressible liquid.

.../miegrunneisen/bulk sound speed squared Specifies the bulk sound speed squared for
the material c2

B . Not activating this option simplifies the compressible EOS to that of a perfect
gas.

8.11 Sub-grid Scale Parameterisations

Fluidity contains a number of sub-grid scale parameterisations which model physical process below
the resolution of the mesh.

140 Configuring Fluidity

8.11.1 GLS

This option enables the model described in section 4.1.1.1. There are a few different sub-options to
configure. First, you must choose which GLS method to use from k−ε, k−kl, k−ω and gen. Next, the
stability functions can be chosen. CanutoA or CanutoB are recommended. If you are running a 3D
model, then switching on .../calculate boundaries is recommended in order for the boundary
conditions to be set correctly. Finally, you can enable a number of optional diagnostic fields.

The user can also choose to relax the diffusivity and viscosity calculated by switching on the
.../relax diffusivity. The value specified must be between 0 and 1.0. A value of 0 indicates no
relaxation, 1.0 would indicate no changes to be made. If this option is activated, the diagnostic fields
GLSTurbulentVerticalDiffusivity and GLSTurbulentVerticalViscosity must also be
activated. In addition, if adaptivity is enabled, these two fields must have an interpolation method
set, e.g. .../GLSVerticalViscosity/diagnostic/consistent interpolation.

For each field that will be effected by the subgrid scale parameterisations, you must enable the correct
diffusivity. This is done by specifying .../subgridscale parameterisation in the field to GLS.
Normally, this would be the temperature, salinity and any biology fields active.

Finally, fields that are altered by the GLS model, such as the Viscosity, need to be switched to a
diagnostic/algorithm::Internal. The list of fields to switch is:

1. GLSTurbulentKineticEnergy/Diffusivity

2. GLSTurbulentKineticEnergy/Source

3. GLSTurbulentKineticEnergy/Absorption

4. GLSGenericSecondQuantity/Diffusivity

5. GLSGenericSecondQuantity/Source

6. GLSGenericSecondQuantity/Absorption

7. Velocity/Viscosity

If these fields are not set correctly, a user error will occur.

8.11.2 k-ε Turbulence Model

../subgridscale parameterisations/k-epsilon enables the turbulence model described in
4.1.1.2. It must not be confused with the k − ε option in the GLS model (see 4.1.1.1) which is only for
oceans like problems.

In Fluidity the k field is called TurbulentKineticEnergy and the ε field is called
TurbulentDissipation. The model works well with the following spatial discretisation options
for k and ε:

• .../control volumes/face value::FiniteElement/limit face value/
limiter::Sweby

• /control volumes/diffusion scheme::ElementGradient.

• significant speeded up is achieved by selecting

– /project upwind value from point/

– store upwind elements store upwind quadrature.

8.11 Sub-grid Scale Parameterisations 141

Under temporal discretisation option:

• Fully implicit or Crank-Nicholson temporal discretisation is recommended.

• control volume discretisation option should be selected

• number advection iterations = 3.

The following fields are altered by the k-epsilon model and need to be switched on and set to
diagnostic/algorithm::Internal:

1. Velocity/Viscosity

2. TurbulentKineticEnergy/Diffusivity

3. TurbulentKineticEnergy/Source

4. TurbulentKineticEnergy/Absorption

5. TurbulentDissipation/Diffusivity

6. TurbulentDissipation/Source

7. TurbulentDissipation/Absorption

Although it is possible to set some of these fields to prescribed or off altogether for the purposes
of debugging results and/or the code itself. If these fields are not set correctly, a user error will occur
and/or warnings will be displayed.

Boundary conditions for the k and ε fields should be set to type k epsilon. Read section 4.1.1.2 for
information about how to choose the correct settings for boundary conditions.

The molecular (or laminar) viscosity must be prescribed under .../k-epsilon/
tensor field::BackgroundViscosity. This must be set to prescribed/
value::WholeMesh/anisotropic symmetric/constant with all values set to the isotropic
viscosity.

If using additional scalar fields such as temperature, salinity etc, an option is available under .../
subgridscale parameterisation::k-epsilon to use the eddy diffusivity scaled by a user-
specified Prandtl number. A background diffusivity is required and this can either be set under .../
k-epsilon/tensor field::BackgroundDiffusivity or within the additional scalar field un-
der .../subgridscale parameterisation::k-epsilon/background diffusivity, with
the latter taking priority. Buoyancy effects can also be accounted for by setting .../
subgridscale parameterisation::k-epsilon/buoyancy effects within scalar fields.

There are options available to allow the treatment of each of the source terms in the k − ε model as
either source or absorption terms within Fluidity. Choosing implicit calculation causes the terms to
be calculated semi-implicitly as absorption terms. Choosing explicit calculation calculates the term
completely explicitly as a source term.

In calculation of the source terms it is required to invert a mass matrix. For P1 discretisations
this can be done using mass lumping. For other discretisations it is necessary to solve a sys-
tem of equations. When using non P1 discretisations for the k and ε fields the option .../
k-epsilon/mass lumping in diagnostics/solve using mass matrix should be selected,
along with suitable solver settings.

Within .../k-epsilon/debugging options there are a number of options for debugging the
model. It is possible to output each term in the k and ε equations separately, provide prescribed
sources for the k and ε equations, and also to disable specific terms in the equations.

142 Configuring Fluidity

When using the Low Reynolds number model, which is enabled whenever a k epsilon/lowRe
boundary condition is specified, a DistanceToWall field must be specified. For simple geometries
the simplest method of providing this information is to use a python function. For complex geome-
tries where this is not possible precursor Eikonal equation or Poisson equation simulations must be
run to determine the values for this field. These can be carried out quite easily using Fluidity. De-
tails of this process can be found in Tucker, P 2011: ”Hybrid Hamilton/Jacobi/Poisson wall distance
function model” and Elias et al 2007: ”Simple finite element-based computation of distance functions
in unstructured grids”

8.11.3 Large Eddy Simulation Models

LES models are available as options under .../Velocity/prognostic/
spatial discretisation/continuous galerkin/les model. See 4.1.2 for de-
tails of the various LES models available. These models require a prescribed viscosity
(. . . /Velocity/prognostic/tensor field::Viscosity/prescribed), to which an eddy viscosity is added
to account for subgrid-scale turbulence. The LES models are currently restricted to use in incom-
pressible flow cases, where the discrete velocity is divergence-free and the eddy viscosity tensor is
traceless.

8.11.3.1 Second-Order Smagorinsky

The modified second-order Smagorinsky model of Bentham [2003] is available under
.../les model/second order. The Smagorinsky coefficient (.../second order/
smagorinsky coefficient) must be set; its value should be that suggested by the litera-
ture for a particular flow type. A reasonable all-round figure is 0.1. The eddy viscosity is available
as an optional diagnostic field (.../second order/tensor field::EddyViscosity).

8.11.3.2 Fourth-Order Smagorinsky

The fourth-order Smagorinsky model of Bentham [2003] is available under .../
les model/fourth order. The Smagorinsky coefficient (.../second order/
smagorinsky coefficient) must be set; 0.1 is recommended. A fine mesh is required to
get good results from this model.

8.11.3.3 WALE

The wall-adapted local eddy viscosity (WALE) model is available under .../les model/wale.
The Smagorinsky coefficient (.../second order/smagorinsky coefficient) must be set; 0.1
is recommended.

8.11.3.4 Dynamic LES

The Germano dynamic LES model is available under .../les model/dynamic les. The fol-
lowing options have to be set: first, the filter width ratio α (.../dynamic les/alpha); 2 is rec-
ommended. Second, the solver options (.../dynamic les/solver) are for solving the inverse
Helmholtz equation for the test-filtered velocity; cg/SOR is recommended.

Optional options:

8.12 Boundary conditions 143

• .../dynamic les/enable lilly: use the Lilly modification to the Germano model. It is
recommended.

• .../dynamic les/enable backscatter: allows negative eddy viscosity, which may re-
sult in more realistic turbulent flow if the mesh resolution is fine enough.

Several diagnostic fields are available if desired:

• .../dynamic les/vector field::FilteredVelocity: the velocity field filtered with
the test filter.

• .../dynamic les/tensor field::FilterWidth: the mesh size tensor

• .../dynamic les/tensor field::StrainRate: the strain rate Sij .

• .../dynamic les/tensor field::FilteredStrainRate: the filtered strain rate S̃ij .

• .../dynamic les/tensor field::EddyViscosity: the eddy viscosity νT .

8.12 Boundary conditions

The simulated system requires suitable boundary conditions for full closure. An example could be
the amount of sunlight at the ocean surface, a specified value of temperature heating material from
below, or a momentum stress in the form of wind for velocity. It is also possible to leave boundary
conditions undefined, in which case ”stress-free” conditions are applied. See section 2.2.2 for further
details.

8.12.1 Adding a boundary condition

Boundary conditions are set for each field contained in state under .../boundary conditions.
Multiple boundary conditions can be set for each field, such that the sides, surface and bottom can
have different conditions. A boundary conditions is added by clicking the ”+” symbol in the appro-
priate field

8.12.2 Selecting surfaces

To each boundary condition a set of domain surfaces is assigned on which it is applied to. The
surfaces are identified by a surface ID specified during the mesh generation procedure (see section
E.1.4). For example if the top and bottom of your mesh is defined as surface 1, then simply add a
1 to .../boundary conditions/surface ids. Multiple surfaces can be added, separated by a
space.

8.12.3 Boundary condition types

Fluidity supports a wide range of boundary conditions which will be introduced in the next sections.

8.12.3.1 Dirichlet

A Dirichlet condition sets the value of the field (c) at each location over the surface ∂Ω:

c(x) = f(x) on ∂Ω.

144 Configuring Fluidity

Dirichlet boundary conditions can also be applied weakly by selecting the .../apply weakly op-
tion. Unlike the strong form of the Dirichlet conditions, weak Dirichlet conditions do not force the
solution on the boundary to be pointwise equal to the boundary condition.

8.12.3.2 Neumann

A Neumann boundary condition sets a flux term q to the normal (n) of the surface ∂Ω:∫
∂Ω
ϕ(κ∇c) · n dΓ,

where ϕ is a test function (see section 3). The Neumann condition is specified by assigning a value to
the q, where

q = (κ∇c) · n, on ∂Ω.

8.12.3.3 Robin

A Robin boundary condition sets the diffusive flux term n · κ · ∇c in weak form as:

−
∫
∂Ω
ϕ n · κ · ∇c =

∫
∂Ω
ϕ h(c− ca),

where ϕ is a test function (see section 3). The Robin condition is specified by assigning a value to the
order zero C0 and order one C1 coefficient fields, where

C0 = hca, (8.3)
C1 = h. (8.4)

Currently, the Robin boundary condition is only available for Continuous Galerkin and Control Vol-
ume spatial discretisations of a scalar field.

8.12.3.4 Bulk formulae

These boundary conditions can be used on:

• Salinity

• Temperature

• Velocity

• PhotosyntheticRadiation

They use meteorological data and convert it into a Neumann or Dirichlet boundary condition as
appropriate for the fields above. You do not need to have all the above fields; only velocity and
temperature are required. More information can be found in section 8.12.5.1.

8.12.3.5 Zero flux

For control volume discretisations only, this option prevents the field fluxing from the boundary.

8.12 Boundary conditions 145

8.12.3.6 Flux

For control volume discretisations only, this option allows a given flux h of field c through the bound-
ary. In other words, we have

∂c

∂t
= h

8.12.3.7 Free surface

The .../free surface option allows the upper surface height to vary according to the pressure
and velocity fields. This boundary condition is available on the velocity field only. When using a free
surface, it is recommended that you active a diagnostic free surface (though this is optional). This
option is also available at .../scalar field::FreeSurface.

Note that the default free surface treatment implements the physical boundary condition p=0 (this is
full pressure without subtracting the hydrostatic component). For viscous fluids, the correct bound-
ary condition is a no normal stress condition, (2.32), which includes a viscosity term. When using
this option a prognostic free surface field is also required. This option is also available at .../
scalar field::FreeSurface.

By default, the mesh geometry is not influenced by the free-surface calculation, however Fluid-
ity can deform the mesh according to the free-surface elevation. This option is available at /
mesh adaptivity/mesh movement/free surface.

8.12.3.8 Wetting and drying

In order to use wetting and drying, first switch on the mesh deformation as described in 8.12.3.7.

Secondly, if the mesh is extruded within fluidity, the extrusion parameters have to be changed such
that areas above sea level are included. For example if a bathymetry map file is used for the extru-
sion, the option /geometry/mesh/from mesh/extrude/regions/bottom depth/from map/
surface height can be used to shift down the domain such that the whole bathymetry is below
zero. A non-zero initial pressure together with the relationship between pressure and free-surface
elevation p = ρη can be used to shift the initial free-surface down accordingly as well.

Finally, wetting and drying is activated under /mesh adaptivity/mesh movement/
free surface/wetting and drying. The only required parameter is the wetting and dry-
ing threshold value d0, which specifies the minimum layer-thickness that is retained in dry areas.
Following equation can be used to determine the threshold value:

d0 =
l∆x

r
,

where ∆x and l are the maximum horizontal element size and number of mesh layers in the dry areas,
respectively and r is the maximum aspect ratio. A typical value for latter is between 500− 1000.

8.12.3.9 Drag

This option applies a quadratic or linear drag to the Velocity field. Both the value and the type of
drag need to be set. A Manning-Strickler drag can be used by activating .../quadratic drag/
manning strickler

146 Configuring Fluidity

8.12.3.10 Wind forcing

A wind forcing can be applied to the Velocity field as either a stress or velocity. For stress values, the
physical units should match those of the simulation, so for example, if you use the non-dimensional
value of ρ as 1.0, your stresses (in kgm−1s−2) should be divided by the reference density. If using
wind velocity (at 10m height) the density of the air needs to be specified in the same units, i.e. ρair =
1.3× 10−3.

Alternatively .../Velocity/boundary conditions/wind forcing/wind stress sets the
value of wind forcing from a NETCDF file. The NETCDF file must contain East-West and North-
South components, along with times locations (latitude/longitude) for the values. In addition,
one must set /timestepping/current time/time units in order for the simulated time to be
matched to the NETCDF data.

8.12.3.11 No normal flow

When using .../control volumes under Pressure .../spatial discretisation or when
using .../integrate continuity by parts with CG Pressure and Velocity this boundary con-
dition type imposes a weak no normal flow boundary condition on the surfaces specified.

8.12.3.12 Near-wall treatment

This option implements a penalty function for the near wall region, negating the need to use fine
meshes near walls [Bazilevs et al., 2007]. This option should be used in conjunction with a .../
no normal flow boundary on the same surface.

8.12.3.13 Log-law of wall

This option sets the velocity to proportional to the logarithm of the distance from the boundary. A
surface roughness needs to be specified which is the thickness of laminar sublayer.

8.12.4 Special input date for boundary conditions

When running free surface simulations the surface elevation at the boundary is specified by applying
a pressure Dirichlet condition. Since the free surface elevation is often measured data, there are some
special possibilities to specify a pressure Dirichlet condition:

.../from file allows the specification of a single file containing something useful. This option is
available on the Pressure (Free Surface) field. Tidal boundary conditions can be applied by setting
this option and referencing a relevant NetCDF file containing appropriate amplitude and phase data
for the desired tidal constituent(s). The file is referenced under:

• .../tidal/file name,

with the amplitude and phase names (as specified in the NetCDF file) set under:

• .../tidal/variable name amplitude,

• .../tidal/variable name phase

respectively. Finally, the constituent should be selected from the list under:

8.12 Boundary conditions 147

• .../tidal/name.

A separate tidal boundary condition needs to be set for each constituent.

.../NEMO data will set the field according to a specified NEMO input file. This option is available
for the Pressure (Free Surface) field. In order to use this option a prescribed field containing NEMO
pressure field data must first be created. See section 8.6.2.5 for information on setting prescribed
fields from NEMO data. Then, under .../NEMO data/field name, set the string to that of the
prescribed field containing the NEMO pressure data to enable this option.

.../synthetic eddy method Available for velocity. This generates statistically realistic turbulent
flow at an inflow using a statistical method (for a full explanation see Jarrin et al. [2006]. The user
specifies a mean velocity (e.g. python profile), turbulence lengthscale, Reynolds stress profile and
number of samples. This is useful for high-Reynolds-number industrial CFD flow, and/or if using
an LES model.

8.12.5 Special cases

There are a few special cases of boundary conditions that are not applied using the methods described
above. These include ocean surface forcing and the boundary conditions on the General Length Scale
(GLS) turbulence model.

8.12.5.1 Ocean surface forcing

Ocean surface forcing takes parameters from ERA40 datasets, passes them through bulk formulae
and gives a boundary condition for the salinity, temperature, photosynthetic radiation and velocity
fields. The settings for these options are in /ocean forcing/bulk formulae. However, you must
also set up /timestepping/current time/time units.

Under /ocean forcing/bulk formulae an input file must be defined. The fields on which bulk
formulae are to be imposed should have their upper surface set to the correct boundary condition
type (bulk formulae). The input file must contain the following ERA40 parameters for the dura-
tion of the simulated time:

• 10 metre U wind component (m s−1)

• 10 metre V wind component (m s−1)

• 2 m temperature (K)

• Surface solar radiation downward (Wm−2s)

• Surface thermal radiation downward (Wm−2s)

• Total precipitation (ms)

• Run off (ms)

• 2 m dew point temperature (K)

• Mean sea-level pressure (Pa)

These variables are surface variables as defined by data files from the ERA40 website. Note that some
parameters are accumulated values and as such are required to be divided by the ERA40 temporal
resolution - Fluidity assumes 6 hour temporal resolution. These parameters are used as input to
the default bulk forcing formulae of Large and Yeager [2004] included in Fluidity. Other formulae

148 Configuring Fluidity

are available: COARE 3.0 [Fairall et al., 2003] and those of Kara et al. [2005] which are based on the
COARE data.

Other options under ocean surface forcing include specifying a latitude and longitude, and using a
single position for the forcing data. These options are only really useful when simulating pseudo-
1D columns (see the gls-StationPapa test for an example of a pseudo-1D column). Enabling the
position option allows the user to specify a latitude and longitude as two real numbers (e.g. 50.0
-145.0 for 50◦ N and 145◦ W). These co-ordinates are translated into cartesian co-ordinates, which are
then added to the positions of the surface of the mesh. This allows the use of simple mesh geome-
tries and co-ordinates, whilst still specifying where the forcing data should originate. Moreover, the
single location option forces all surface nodes to receive the same forcing.

Finally, it is possible to output the fluxes that are imposed on the ocean surface, by enabling the
output fluxes diagnostic option. Here, the user can enable diagnostic fields for momentum,
heat, salinity and photosynthetic radiation downwards. The fluxes will then be included in the out-
put as normal scalars or vectors, but with values confined to the upper surface.

8.12.5.2 GLS sub-grid scale parameterisation

The GLS model (see section 4.1.1.1) requires that Neumann boundary conditions are set for
stability, however, the boundary conditions on the Generic Second Quantity (Ψ) depend on
other modelled variables. In order for the boundary conditions to be set correctly, enable the
.../subgridscale parameterisations/GLS/calculate boundaries option.

8.12.5.3 k-epsilon sub-grid scale parameterisation

The k-epsilon turbulence model (see section 4.1.1.2) should apply zero Dirichlet boundary con-
ditions to the TurbulentKineticEnergy (k) field. The TurbulentDissipation (ε) field should
use the special type of Dirichlet condition called k epsilon which is calculated in the k-
epsilon module. To enable calculation of the boundary conditions on both fields, set the
.../subgridscale parameterisations/k-epsilon/calculate boundaries option.

8.13 Astronomical tidal forcing

Astronomical tidal forcing can be switched on for 11 different constituents under:

• /ocean forcing/tidal forcing,

(see Wells, 2008 for descriptions of the different constituents). These can be switched either individ-
ually or in combination. In addition, a body tide correction can be stipulated under:

• .../tidal forcing/love number,

for which the suggested value is 0.3 (assuming Love numbers of k=0.3 and h=0.61; see section 2.4.4.3).

Note that for many cases, specifically those involving open boundaries, it is often desirable to com-
bine astronomical tidal forcing with a co-oscillating boundary tide condition (see section 8.12.4).

8.16 Large scale low aspect ratio ocean simulations 149

8.14 Ocean biology

Enabling this turns on the ocean biology model. In addition you also need to add several scalar fields
in the first material phase:

• Phytoplankton

• Zooplankton

• Nutrient

• Detritus

• Primary production

There are several items that need configuring before biology can be used. First a relationship be-
tween sources and sinks needs encoding. This is best done by importing fluidity.ocean biology into
/ocean biology/pznd/source and sink algorithm and calling the models from there. An
example is given below.

import fluidity.ocean_biology as biology

day=1./(3600*24)

p={}
p["alpha"]=0.015*day
p["beta"]=0.75
p["gamma"]=0.5
p["g"]=1*day
p["k_N"]=0.5
p["k"]=0.5
p["mu_P"]=0.1*day
p["mu_Z"]=0.2*day
p["mu_D"]=0.05*day
p["p_P"]=0.75
p["v"]=1.5*day

biology.pznd(state, p)

Example 8.6: A Python function that imports the biology module and sets the algorithm to use.

The final thing to change is to add absorption coefficients in the photosynthetic radiation field for
water and plankton concentration.

8.15 Sediment model

Fluidity contains a sediment model in which sediment is treated as a tracer with a settling velocity. It
is possible to specify multiple sediment fields to represent a distrbution of sediment characteristics.
Sediment that falls out of the domain due to settling can be recorded using a Bedload field

Note: To use sediment, a linear equation of state must also be enabled .../equation of state/
fluids/linear

150 Configuring Fluidity

8.16 Large scale low aspect ratio ocean simulations

This section contains advice for running a large scale ocean simulation with a large aspect ratio. This
section is split into options that must be used and options that are recommended.

8.16.1 Options that must be switched on

These options are almost always recommended for large scale ocean problems.

8.16.1.1 Meshes

The mesh that you use must be a two plus one mesh which is unstructured in the horizontal and
structured in the vertical. It can either be constructed in gmsh and read into fluidity, or a two-
dimensional mesh can be made in gmsh and extruded within fluidity (see 6.4). In addition, these
mesh settings are recommended:

• The Velocity mesh must be discontinuous gelerkin polynomial order one, so set
.../geometry/mesh(VelocityMesh)/from mesh/mesh shape/mesh continuity to
discontinuous.

• The Pressure mesh must be of polynomial order two, so set
.../geometry/mesh(PressureMesh)/from mesh/mesh shape/polynomial degree
to 2.

• The temperature and salinity are solved on a continuous galerkin, polynomial order one mesh
(no special mesh options).

• Also under geometry, the .../geometry/ocean boundaries option mush be switched on,
with the surface id’s specified.

8.16.1.2 Time stepping

• .../timestepping/nonlinear iterations option must be more than 1, normally 2 is a
good choice.

• .../material phase/equation of state/subtract out hydrostatic level must
be on.

8.16.1.3 Velocity options

The velocity is discontinuous galerkin. The required options are listed below.

• .../equation must be set to Boussinesq

• .../spatial discretisation must be discontinuous galerkin

• .../spatial discretisation/advection is upwind

• .../spatial discretisation/advestion/integrate advection by parts is twice

8.16 Large scale low aspect ratio ocean simulations 151

8.16.1.4 Advected scalar fields (temperature, salinity etc)

The temperature and salinity are continuous galerkin.

• .../spatial discretisation must be Continuous Galerkin

8.16.1.5 Pressure options

This is continuous Galerkin discretisation, with a mesh of polynomial order two (already specified
above).

• .../spatial discretisation must be Continuous Galerkin

• .../solver/vertical lumping must be on

8.16.2 Recommended or optional settings

These settings may be recommended, but this section is not intended to be a list of instructions.

8.16.2.1 Meshes

The quadrature degree is usually four in these cases.

8.16.2.2 Velocity options

• .../spatial discretisation/discontinuous galerkin/lump mass matrix is off

• .../spatial discretisation/viscosity scheme can be Bassi Rebay or compact dis-
continuous galerkin

• .../spatial discretisation/advection/conservative advection is set to 0.0

• .../temporal discretisation/theta is 0.5 (Crank-Nicolson), or 1 if the advection term
is switched off (e.g. during spinning up)

• .../temporal discretisation/conservative advection is set to 0.0

• .../solvers normally gmres - or cg if the advection term is switched off (e.g. during spin-
ning up)

• .../solvers/preconditioner eisenstat - or try mg if using compact discontinuous
Galerkin vorticity

You might want to create a Viscosity field under Velocity and set it to the required value.

An Absorption field may need to be added under Velocity to allow larger time steps to be taken,
otherwise your time steps will be limited by the scale of the baroclinic waves. This term should
have a vertical component equal to 1

ρ0
θ∆tg ∂ρ∂z and the other components are zero. ρ0 is the reference

density, θ is the value set under
.../Velocity/temporal discretisation/theta, ∆t is the timestep, g is the acceleration due
to gravity and ∂ρ

∂z is the background density stratification. The absorption term can be a constant if
the background stratification is constant. Otherwise, set it with a python function. Also turn on the
.../Absorption/include pressure correction option.

152 Configuring Fluidity

8.16.2.3 Free Surface Field

This can be added if required. You should also select a free surface boundary condition under Ve-
locity. For the default free surface algorithm, that enforces a p = 0 boundary condition, this field is
an optional diagnostic and simply takes the pressure values at the free surface, to compute the free
surface elevation. If the no normal stress option is used, the field is required and needs to be
prognostic. This is because the solved for free surface values, are treated as independent variables in
this case.

8.16.2.4 Pressure options

• .../spatial discretisation/remove stabilitation term is switched on

• .../spatial discretisation/integrate continuity by parts is switched on

• .../scheme/poisson pressure solution is only first time step

• .../scheme/use projection method is on

• .../solver is normally cg or gmres

• .../solver/preconditioner is normally mg

8.17 Geophysical fluid dynamics problems

This section contains advice for running Geophysical Fluid Dynamics (GFD) problems, such as
laboratory-scale flows e.g. the lock-exchange and the annulus or smaller-scale ocean problems e.g. a
gravity current on an incline. This section is arranged by options for the different levels of the options
tree. Both continuous-Galerkin (P1-P1) and discontinuous-Galerkin (P1DG-P2) discretisations may
be used, chapter 3, and different options choices are distinguished where necessary.

8.17.1 Problem type

The .../problem type option should be set to fluids or ocean.

8.17.2 Geometry

For both P1-P1 and P1DG-P2 .../geometry/mesh::CoordinateMesh is required. For
P1-P1 this can then be used for both the velocity and pressure fields so .../geometry/
mesh::VelocityMesh and .../geometry/mesh::PressureMesh do not need to be set.

For P1DG-P2 the velocity mesh requires discontinuous Galerkin to be selected for continuity and the
pressure mesh must have polynomial order two. To do this set:

• .../geometry/mesh::VelocityMesh/from mesh/mesh::CoordinateMesh

• .../geometry/mesh::VelocityMesh/from mesh/mesh continuity to
discontinuous

• .../geometry/mesh::PressureMesh/from mesh/mesh::CoordinateMesh

• .../geometry/mesh::PressureMesh/from mesh/mesh shape/polynomial degree
to 2

8.17 Geophysical fluid dynamics problems 153

If .../scalar field::GeostrophicPressure is to be included, cf. 8.8.1, 8.17.4.5, then a further
mesh needs to be added. This must have polynomial degree one order greater than the mesh used
for the velocity field. To demonstrate let us call this mesh ‘GeostrophicPressureMesh’, derive this
mesh from the CoordinateMesh and assume the mesh used for the velocity field has polynomial
order 1, then to include this option:

• select a new .../geometry/mesh and set the name attribute as
GeostrophicPressureMesh

• select .../from mesh::CoordinateMesh

• set .../from mesh::CoordinateMesh/mesh shape/polynomial degree to 2

8.17.3 Timestepping

2 non-linear iterations are recommended and can be specified by setting .../timestepping/
nonlinear iterations to 2.

8.17.4 Material/phase

8.17.4.1 Equation of state

For most problems the linear equation of state is appropriate, cf. 2.3.3. This is selected with .../
equation of state/fluids/linear and other values such as the thermal contraction coefficient
can be set in the options that appear below.

It is generally recommended to subtract out the hydrostatic pressure level from the
equation of state by setting the option .../equation of state/fluids/linear/
subtract out hydrostatic level. This will allow increased accuracy for lower-order ele-
ment pairs, cf. 3.8.

8.17.4.2 Pressure

The specified mesh should be CoordinateMesh for P1-P1 and PressureMesh for P1DG-P2.

• .../spatial discretisation/continuous galerkin is recommended for the spatial
discretisation.

• .../scheme/poisson pressure solution can be chosen as either never or
only first timestep, cf. 8.8.2.

Note, if the normal component of the velocity is imposed on all boundaries, then either .../
prognostic/reference node or .../solver/remove null space need to be set, cf. 8.8.3.

8.17.4.3 Velocity

The specified mesh should be CoordinateMesh for P1-P1 and PressureMesh for P1DG-P2.

The equation used to solve for Velocity is set under .../equation, cf. 3.5. For GFD problems that
require the Boussinesq approximation selecting .../equation::Boussinesqwill ensure that this
correct formulation used, cf, 2.4.3, 2.4.3.3, 3.5.

154 Configuring Fluidity

A Crank-Nicolson temporal discretisation with a non-linear relaxation is recommended for the tem-
poral discretisation cf. 3.3, 3.4. This is selected by setting:

• .../temporal discretisation/theta to 0.5

• .../temporal discretisation/relaxation to 0.5

If using P1-P1, the following are recommended for the spatial discretisation:

• .../spatial discretisation/continuous galerkin/stabilisation/
no stabilisation, cf. 3.2.1.3

• .../spatial discretisation/continuous galerkin/mass terms/
lump mass matrix, cf. 3.6.1.1

• .../spatial discretisation/conservative advection set to 0 (non-conservative),
8.7.1

If using P1DG-P2, the following are recommended for the spatial discretisation:

• .../spatial discretisation/discontinuous galerkin/viscosity scheme/
compact discontinuous galerkin, cf. 3.2.3.3

• .../spatial discretisation/discontinuous galerkin/advection scheme/
upwind, cf. 3.2.3.1

• .../spatial discretisation/discontinuous galerkin/advection scheme/
integrate advection by parts/twice, cf. 3.2.3.1

• .../spatial discretisation/conservative advection set to 0 (non-conservative),
8.7.1

8.17.4.4 Advected scalar fields

The recommended options for scalar fields are considered for P1-P1 and P1DG-P2 separately.

P1P1

The mesh used should be the CoordinateMesh and the equation type AdvectionDiffusion, cf.
3.2.

For the spatial discretisation a control-volumes discretisation with a finite-element face value dis-
cretisation and Sweby limiter are recommended which are selected with the options, cf. 8.7.1.2:

• .../spatial discretisation/control volumes/face value::FiniteElement

• .../prognostic/spatial discretisation/control volumes/
face value::FiniteElement/limit face value/limiter::Sweby

To help increase speed it is possible to store upwind elements so they do not have to be recalculated
every time step (only after adapts). To do this activate the option:

• .../prognostic/spatial discretisation/control volumes/
face value::FiniteElement/limit face value/limiter::Sweby/
project upwind value from point/store upwind elements

8.18 Mesh adaptivity 155

An Element Gradient diffusion scheme is also generally recommended, selected under .../
spatial discretisation/control volumes/diffusion scheme::ElementGradient

For the temporal discretisation a Crank-Nicolson scheme is recommended, with the control volume
options of 3 advection iterations and limit theta, cf. 8.7.1.2. These are set with the options:

• .../temporal discretisation/theta set to 0.5

• .../temporal discretisation/control volumes/number advection iterations

• .../prognostic/temporal discretisation/control volumes/limit theta

P1DGP2

The mesh used should be the VelocityMesh and the equation type AdvectionDiffusion, cf. 3.2.

For the spatial discretisation a discontinuous-Galerkin discretisation is recommended with a Lax-
Friedrichs advection scheme, velocity projected to continuous space, advection integrated by parts
once and a compact-discontinuous-Galerkin diffusion scheme with a vertex-based slope limiter.
These options are selected with:

• .../spatial discretisation/discontinuous galerkin/advection scheme/
lax friedrichs, cf. 3.2.3.1

• .../spatial discretisation/discontinuous galerkin/advection scheme/
project velocity to continuous/mesh::CoordinateMesh

• .../spatial discretisation/discontinuous galerkin/advection scheme/
integrate advection by parts/once, cf. 3.2.3.1

• .../spatial discretisation/discontinuous galerkin/diffusion scheme/
compact discontinuous galerkin, cf. 3.2.3.3

• .../spatial discretisation/discontinuous galerkin/
slope limiter::Vertex Based, cf. 3.2.3.2.

For the temporal discretisation a Crank-Nicolson scheme with subcycling is recommended. This can
be set with:

• .../temporal discretisation/theta set to 0.5

• .../temporal discretisation/discontinuous galerkin/
maximum courant number per subcycle set to an appropriate value.

8.17.4.5 Geostrophic Pressure

If enabled a ‘geopressure’ solver is used, 8.8.1.

• The specified mesh should be the GeostrophicPressureMesh, cf. 8.17.2.

• The terms included in the right-hand side of the geopressure solver are selected under:
.../spatial discretisation/geostrophic pressure option.

• A reference node must be set as geopressure uses Neumann boundary conditions on all bound-
aries (cf. 8.8.3), for example: .../reference node::node 1

156 Configuring Fluidity

8.18 Mesh adaptivity

The configuration on mesh adaptivity occurs in two places: under mesh adaptivity where the
overall adaptive settings are configured, and on a per-field basis where both the interpolation method
is set and if that field should be considered when creating the error metric. See chapter 7 for the
background to adaptivity and more detailled information.

8.18.1 Field settings

For each field present in the simulation there are up to two options that should be set. The first is
the interpolation method that should be used to transfer the values of a field from the old to the new
mesh, section 7.6. Second, in order to form the error metric by which the mesh is adapted, section
7.5.1, the user must set which fields should form the error metric and how the error for that field
should be calculated.

8.18.1.1 Interpolation method

For each prognostic field in the current state, an interpolation type, section 7.6, must be set.
These can be set by selecting an option .../prognostic/<interpolation type> where
<interpolation type> is one of:

• Consistent interpolation - the default and quick interpolation method, but is non-conservative
and dissipative.

• Pseudo-consistent interpolation - not recommended at present.

• Galerkin interpolation - Conservative and non-dissipative, but requires the construction of a
supermesh [Farrell et al., 2009, Farrell and Maddison, 2010]

• Grandy interpolation - Conservative, but highly diffusive. See Grandy [1999].

For some fields, such as Pressure and Velocity other interpolation methods are available.

For diagnostic and prescribed fields an interpolation method is not required. However, if an output
dump occurs immediately following a mesh adapt, diagnostic fields may not have correct values
depending on the method by which they are calculated. In these instances, it is worth setting an
interpolation type for these fields which will ensure that the values are set correctly before an output
dump occurs.

The Galerkin projection also requires some further settings depending on the mesh type. For dis-
continuous meshes there are no other required settings. For continuous meshes a solver is required
in order to perform the supermesh projection. The solver settings are configured as with any other
solver, see section 8.9 for more details.

With piecewise linear continuous fields additional options are available to bound the result following
a Galerkin projection:
.../galerkin projection/continuous/bounded::Diffuse
and
.../galerkin projection/continuous/bounded::Algencan
The latter uses the algencan optimisation library to bound the field and requires Fluidity to be con-
figured with --enable-algencan. The Diffuse bounding algorithm is internal to Fluidity and
the most frequently used.

To use the Diffuse bounding algorithm [Farrell et al., 2009] the number of iterations the algorithm
is allowed to take must be specified. Additionally an optional tolerance can be specified to terminate

8.18 Mesh adaptivity 157

this iteration loop early. Furthermore if the bounds on the field are known in advance then these can
be specified through:
.../bounded::Diffuse/bounds/upper bound
and
.../bounded::Diffuse/bounds/lower bound.
If the diffusion bounding algorithm fails to locally redistribute the unboundedness then a conserva-
tive but non-local redistribution can be activated using:
.../bounded::Diffuse/repair deviations
again with an optional tolerance:
.../bounded::Diffuse/repair deviations/tolerance.

8.18.1.2 Creating an error metric

The second step for configuring adaptivity is to set up the fields that are to form the error
metric used to adapt the mesh. For each field that should be considered when forming the
metric the option .../adaptivity options needs to be enabled. The type or error norm
on which the metric is based (absolute or relative) is set with .../adaptivity options/
absolute measure or .../adaptivity options/relative measure. For a p–norm .../
adaptivity options/absolute measure should be selected and the value of p set with the op-
tion .../adaptivity options/absolute measure/p norm (p = 2 is recommended).

The InterpolationErrorBound field must be set and as with any other prescribed field can take a
constant value or vary in space and time (by prescribing a python function for example). The error
bound is set as separate fields within state, so for Temperature, for example, the acceptable error is
stored an a field called TemperatureInterpolationErrorBound. This field is output as any other field
too.

For relative interpolation error bounds a tolerance value also has to be set under
.../adaptivity options/relative measure/tolerance. This value prevents division by
zero and should be set to a small enough number that the field can effectively be considered zero at
this value.

For discussion of the different metrics and error norms see section 7.5.1.

8.18.2 General adaptivity options

These are found under mesh adaptivity. Here the user can specify whether to use mesh move-
ment methods, prescribed adaptivity (serial only) or hr adaptivity. hr adaptivity is the normal
method for most applications.

Under /mesh adaptivity/hr adaptivity there are a number of mandatory options, which are:

• period - how often should the mesh be adapted. This can be set in number of simulation sec-
onds, or in number of timesteps. It is recommended that adapt happen every 10-20 timesteps.

• maximum number of nodes - sets the maximum possible number of nodes in the domain. In
parallel this is the global maximum number, but can be altered to be the number per process.
If the maximum number of nodes is reached the mesh is coarsened everywhere until this is
acheived.

• enable gradation - is on by default and set to a value of 1.5. This constrains the jump in
desired edge lengths along an edge and therefore controls how fast the mesh size may change.

• tensor field::MinimumEdgeLengths - a tensor specifying the minimum edge length of
an element.

158 Configuring Fluidity

• tensor field::MaximumEdgeLengths - a tensor specifying the maximum edge length of
an element.

In addition to these mandatory settings, there are a number of other configuration options.

• cpu period - sets the time interval for the mesh adapt in cpu time.

• minimum number of nodes - sets the minimum possible number of nodes in the domain. In
parallel this is the global minimum number. The mesh is refined until this is acheived.

• adaptive timestep at adapt - used in conjuction with adaptive timestep (see sec-
tion 8.3.5.8), this option resets the timestep back to the minumum value under .../
adaptive timestep/minimum timestep immediately following a mesh adapt.

• maximum node increase - the maximum ratio by which the number of nodes is allowed to
increase. A value of 1.1 indicates the number of nodes can increase by at most 10%.

• node locking - allows the locking of nodes via a python function that cannot be moved by
adaptivity.

• functional tolerance - specifies the minimum element functional value for which ele-
ments are considered for adaptivity, section 7.4. Default value is 0.15.

• geometric constraints - this applies geometric constraints to the metric formation which
aims to prevent the metric demanding edge length that are inappropriately large in comparison
to the resolution required to preserve the geometric accuracy of the boundaries. If you get ‘knife
elements’ near the boundaries try turning this option on. This only works in 3D.

• bounding box factor - this option bounds the edge lengths requested by the metric by
bounding box of the domain, multiplied by the specified factor. The default value is 2.

• reference mesh - supply a reference mesh which supplies the minimum or maximum edge
length to the metric.

• aspect ratio bound - maximum aspect ration of elements in the adapted mesh.

• adapt at first timestep - perform mesh adaptivity before the first timestep occurs. This can occur
a specified number of times.

• preserve mesh regions - ensures that regions in your mesh, specified by region IDs, are
preserved through adaptivity. is adapted, then the mesh is extruded using the adaptivity metric
in the 3rd dimension. You must use an extruded mesh with this option, section 6.4.

• adaptivity library - choose which adaptivity library to use. In 2D you are restricted to
libmba2d. In 3D you can choose either libmba3D or libadaptivity (default).

• adapt iterations - this options controls the number of intermediate adapt iteration during
parallel adaptive simulations, section 7.7. The default value is 3. Higher values may give you
better meshes, especially when the number of elements per process is low.

• debug - options for output that is useful for debugging adaptivity.

8.18.2.1 Vertically structured and 2+1D adaptivity

For some problems it can be advantageous to apply adaptivity in the horizontal and vertical as sep-
arate steps. This means a horizontal (surface) mesh is adapted first after which a column of nodes
is created under each surface node. The resolution in the vertical columns is either specified under

8.18 Mesh adaptivity 159

the extrusion options, or determined via a vertical adaptivity step. This functionality is switched
on using the vertically structured adaptivity option. An extruded initial mesh is required
for this option (see section 6.4, and section 8.4.2.4 for its configuration). The horizontal adaptivity
stage is then applied to the horizontal input mesh, and the bottom depth and sizing function
extrusion options are reapplied for the creation of the vertical columns. If an extruded initial mesh
is provided without vertically structured adaptivity, the extruded mesh is simply adapted
in all directions, resulting in a fully unstructured mesh and the extrusion options are no longer ap-
plicable. Further options under vertically structured adaptivity are:

• inhomogenous vertical resolution - This option switches on vertical adaptivity. This
means it will no longer create layers based on the sizing function option. Instead, the
distance between the nodes in the vertical columns is based on the vertical component of
the error metric. The vertical resolution will therefore vary over the depth and in each col-
umn independently. With the combination of vertically structured adaptivity and
inhomogenous vertical resolution, adaptivity can thus focus resolution in both hori-
zontal and vertical, while maintaining a columnar nodal structure. This combination is refered
to as 2+1D adaptivity.

– adapt in vertical only - With this option vertical adaptivity is applied, but the hori-
zontal mesh is kept fixed.

• split gradation - Instead of applying gradation to the full metric before splitting into a
horizontal and vertical metric, with this option the gradation is applied after the split. Thus in
particular when specifying anisotropic gradation, the gradation in the horizontal and vertical
is applied completely independently.

• vertically align metric or use full metric - The metric applied in the horizontal
adaptivity stage is assembled by merging the 3D metric in each column and then projecting
to the horizontal plane. Typically the 3D metric for large aspect ratio problems already decom-
poses in an (almost) vertical eigenvector and 2 horizontal ones. However, even the slightest
tilt causes vertical error bounds to be “leaked” into the merged horizontal metric, leading to
unexpected small horizontal edge lengths. Therefore for large aspect ratio problems the option
vertically align metric, which decomposes the metric before merging in the horizontal,
is recommended.

• include bottom metric - When constructing the horizontal metric incorporate the compo-
nents of the full metric tangential to the bottom boundary. For example, this is useful when
horizontal contours of a field intersect the bathymetry and this information is not automati-
cally incorporated into the horizontal metric leading to the contact point being underresolved.

8.18.2.2 Zoltan options

There are a number of options available for controlling Zoltan’s behaviour when re-partitioning the
mesh during and after adaptivity, which can be found under mesh adaptivity/zoltan options.
The options are:

• partitioner - this is the partitioner used in the intermediate adapt iterations. It can be one of
Scotch, ParMetis, Zoltan, or Zoltan Hypergraph. Default is Zoltan.

• final partitioner - the partitioner used for the final adapt iteration where load balancing is im-
portant. Same choices as above. Default is ParMetis.

• element quality cutoff - at what value of element quality is an element deemed “bad”. Default
is 0.6.

160 Configuring Fluidity

• load imbalance tolerance - a value of 1 means each processor will have exactly the same numebr
of elements. However, smaller numbers here mean that the intermediate adapts may not be
able to move the mesh sufficiently to get a good quality mesh from adaptivity.

• additional adapt iterations - increases the number of intermediate adapt iterations during par-
allel adaptive simulations.

• zoltan debug - debugging options.

For more information on the approach to parallel adaptivity adopted in Fluidity see section 7.7.

8.18.2.3 Metric advection

Metric advection advects the metric along with the flow, ensuring the resolution can be pushed ahead
of any flow, rather than lagging behind, section 7.5.7. The advection equation is discretised with a
control volume method, section 3.2.4.1. For spatial discretisation a first order upwind scheme for
calculation the face values (the default) and non–conservative form are generally recommended.
These are selected with options

• /mesh adaptivity/hr adaptivity/metric advection/spatial discretisation/
control volumes/face value::FirstOrderUpwind

• /mesh adaptivity/hr adaptivity/metric advection/spatial discretisation/
conservative advection = 0.0

For temporal discretisation a semi–implicit discretisation in time is recommended, section 3.4, with
option

• /mesh adaptivity/hr adaptivity/metric advection/temporal discretisation/
theta = 0.5

The time step is controlled by the choice of CFL number, specified in /
mesh adaptivity/hr adaptivity/metric advection/temporal discretisation/
maximum courant number per subcycle. The metric is advected over the time period between
the current and the next adapt. This time period can be scaled with the option /mesh adaptivity/
hr adaptivity/metric advection/temporal discretisation/scale advection time
which has a default value of 1.1.

8.19 Multiple material/phase models

This section contains advice on setting up simulations with multiple material phase options. This en-
ables related fields to be grouped together into related materials or phases. For example a prognostic
scalar field in one material phase will be advected using the Velocity field from that material phase,
while a prognostic scalar field in another material phase will be advected according to the Velocity
field in its material phase.

We refer to two typical scenarios: a multiple material model and a multiple phase model. A multiple
phase model is one in which the Velocity field in each material phase is in some way independent of
the velocities in the other material phases. This means that scalar fields (for example phase volume
fractions) in each material phase are advected independently. A multiple material model is one in
which the Velocity field is shared between all material phases so that all scalar fields are advected
similarly.

8.19 Multiple material/phase models 161

8.19.1 Multiple material models

Models with a single prognostic velocity field that is shared between material phases (using the
aliased field type) are referred to as multiple material models. These are generally used to describe
systems of nearly immiscible materials with different material properties contained within the same
domain. This section focusses on this type of multiple material phase simulation.

In a multiple material simulation each material phase requires:

• an equation of state, and

• a MaterialVolumeFraction scalar field.

The equation of state provides the density properties of the material described in the current mate-
rial phase. For incompressible simulations a linear equation of state is used, which only requires a
reference density:
.../equation of state/fluids/linear/reference density
to be set. For Boussinesq multimaterial simulations, where a material’s density depends on tem-
perature and/or salinity, then the same dependencies exist between the equation of state and these
fields as in single material simulations. For example a Temperature field must be present in the
material phase where it is needed (although it may be aliased between material phases). If the
subtract out hydrostatic level option is selected, it must only be select in a single mate-
rial phase. Fully compressible multimaterial simulations are not supported.

The MaterialVolumeFraction field describes the location of the material, varying from 1 in regions
where the cells are entirely the current material to 0 where none of this material is present. As the
materials are generally treated as being nearly immiscible, the prognostic MaterialVolumeFraction
field should be discretised using a control volume spatial discretisation with one of the face value
schemes designed for advecting step functions:

• .../spatial discretisation/control volumes/face value::HyperC

• .../spatial discretisation/control volumes/face value::UltraC

• .../spatial discretisation/control volumes/face value::PotentialUltraC

as described in sections 3.2.4.1–3.2.4.1. These schemes are only guaranteed to be bounded for explicit
advection so the implicitness factor, θ:
.../temporal discretisation/theta
and the pivot implicitness factor, θp:
.../temporal discretisation/control volumes/pivot theta
should be set to zero and, for high Courant number flows, advection subcycling should be used:
.../temporal discretisation/control volumes/maximum courant number per subcycle
or
.../temporal discretisation/control volumes/number advection subcycles.

For an N material problem, N material phases are required and hence N MaterialVolumeFractions,
ci, i = 1, . . . , N , and N equations of state. However, only N −1 of the MaterialVolumeFraction fields,
ci, i = 1, . . . , N − 1, need be prognostic. The final volume fraction field, cN , should always be set to
diagnostic, as it can be recovered using the internal algorithm:

cN = 1−
N−1∑
i=1

ci. (8.5)

So, for example, in the case when N = 2 there need only be a single prognostic MaterialVolumeFrac-
tion field and a single diagnostic MaterialVolumeFraction field. In this case it makes no difference

162 Configuring Fluidity

which material phase contains the prognostic volume fraction and which contains the diagnostic
field. In more complicated scenarios with N > 2 a coupled control volume discretisation (see section
3.2.4.1) becomes necessary to ensure that not only each of the N − 1 prognostic MaterialVolumeFrac-
tions remain bounded but also that their sum,

∑N−1
i=1 ci, is bounded. This ensures, through equation

8.5, that the final diagnostic MaterialVolumeFraction is also bounded. As discussed in section 3.2.4.1
this process requires a priority ordering for the fields, which must be specified at:
.../scalar field::MaterialVolumeFraction/prognostic/priority.
The diagnostic field is always treated as the lowest priority volume fraction so in this case the choice
of priority ordering and diagnostic field may affect the results if the interfaces between the materials
are in the vicinity of one another. Priority ordering and coupled limiting do not affect the advection
process if the material interfaces are separated from each other.

If adaptive remeshing is being used then the bounded and minimally dissipative behaviour of the
above advection must be preserved through the interpolation between successive meshes. As dis-
cussed in section 8.18 several interpolation algorithms are available. We discuss them again here in
terms of their suitability for multiple material modelling. Consistent interpolation on piecewise lin-
ear parent meshes guarantees boundedness of the interpolated volume fraction field and of the sum
of the volume fractions. However it tends to introduce excessive amounts of numerical diffusion and
it is not conservative. Galerkin projection guarantees conservation of the field and is not excessively
dissipative. However it does not guarantee boundedness.

To ensure minimal dissipation, conservation and boundedness it is necessary to use a bounding al-
gorithm following the Galerkin projection. The Diffuse bounding algorithm (see section 8.18.1.1) is
generally used. This redistributes unbounded values in the field locally, guaranteeing boundedness
of each volume fraction individually. It does not however guarantee boundedness of the sum of the
volume fractions and this must be enforced by coupling each MaterialVolumeFraction field together
through the interpolation with the option:
.../bounded::Diffuse/bounds/upper bound/coupled
under all N −1 prognostic MaterialVolumeFractions. As with coupled control volume advection this
uses the priority numbering of the fields to determine the order in which they are bounded. The
local bounds enforced on successive fields are then modified to ensure boundedness of their sum.
This redistribution of materials during the bounding procedure introduces some relative movement
between materials, which, by equation 8.5, is filled in by the diagnostic MaterialVolumeFraction. De-
spite this problem bounded Galerkin projection is recommended to transfer field data during mesh
adaptivity.

The advected (and interpolated) volume fractions describe volume averaged the locations of the
materials. In combination with the equation of state they can therefore be used to define global bulk
values for the density using:

ρ =

N∑
i=1

ρici (8.6)

where ρ is the bulk density and ρi are the individual material densities, given by their respective
equations of state. This bulk density can be seen in the diagnostic Density field in whichever mate-
rial phase has the prognostic Velocity field in it.

In addition to the density the volume fractions may be used to specify a bulk Viscosity that varies
between the materials according to:

µ =

N∑
i=1

µ
i
ci (8.7)

where µ is the bulk viscosity and µi is the individual material’s viscosity. To use this it is necessary to
activate a MaterialViscosity field in every material phase with a nonzero viscosity. Additionally the
Viscosity field underneath the prognostic Velocity must be activated and set to the bulk viscosity
diagnostic algorithm.

8.19 Multiple material/phase models 163

8.19.2 Multiple phase models

Models with one prognostic velocity field per material phase are referred to as multiple phase
models. The use of these multiple velocity fields permits the inter-penetration and interaction be-
tween different phases.

8.19.2.1 Simulation requirements

In a multiphase simulation, each material phase requires:

• an equation of state, and

• a PhaseVolumeFraction scalar field.

As per multi-material simulations, the equation of state provides the density properties of the phase
described in the current material phase. For incompressible simulations a linear equation of state
is used, which only requires a reference density:
.../equation of state/fluids/linear/reference density
to be set.

For an N phase problem, N material phases are required and hence N PhaseVolumeFractions,
αi, i = 1, . . . , N , and N equations of state. Just as in multi-material simulations, only N − 1 of the
PhaseVolumeFraction fields, αi, i = 1, . . . , N −1, need be prognostic. The final PhaseVolumeFraction
field, αN , should always be set to diagnostic, as it can be recovered using the internal algorithm:

αN = 1−
N−1∑
i=1

αi. (8.8)

8.19.2.2 Inter-phase momentum interaction

Currently, Fluidity only supports fluid-particle drag between the continuous phase and dis-
persed phase(s). This can be enabled by switching on the /multiphase interaction/
fluid particle drag option in Diamond and specifying the drag correlation: Stokes, Wen and
Yu [1966] or Ergun [1952].

The drag force using the Stokes drag correlation is given by:

FD =
3 αp CD αf ρf |uf − up| (uf − up)

4 d
, (8.9)

where f and p denote the fluid (i.e. continuous) and particle (i.e. dispersed) phases respectively, and
d is the diameter of a single particle in the dispersed phase. The drag coefficient CD is defined as:

CD =
24

Re
, (8.10)

with

Re =
αf ρf d |uf − up|

µf
. (8.11)

Note that µf denotes the isotropic viscosity of the fluid (i.e. continuous) phase.

With the drag correlation by Wen and Yu [1966], FD and CD become:

FD =
3 αp CD αf ρf |uf − up| (uf − up)

4 dα2.7
f

, (8.12)

164 Configuring Fluidity

CD =
24

Re

(
1.0 + 0.15Re0.687

)
. (8.13)

In contrast to the Stokes drag correlation, the Wen and Yu [1966] drag correlation is more suitable for
larger particle Reynolds number flows.

For dense multiphase flows with αp > 0.2, the drag correlation by Ergun [1952] is often the most
appropriate:

FD =

(
150

α2
pµf

αfd2
p

+ 1.75
αpρf |uf − up|

dp

)
(uf − up) . (8.14)

Note that within each dispersed phase, a value for d must be specified in ../
multiphase properties/particle diameter regardless of which drag correlation is used.

8.19.2.3 Inter-phase energy interaction

This subsection considers compressible multiphase flow simulations where each phase has its own
InternalEnergy field. Users can choose to include the inter-phase heat transfer term by Gunn [1978],
denoted Q in Section 2.4.6, on the RHS of each internal energy equation:

Q =
6kαpNup

d2
p

(
ef
Cf
− ep
Cp

)
, (8.15)

where

Nup =
(
7− 10αf + 5α2

f

) (
1 + 0.7Re0.2

p Pr
1
3

)
+
(
1.33− 2.4αf + 1.2α2

f

)
Re0.7

p Pr
1
3 , (8.16)

Pr =
Cfγµf
k

, (8.17)

and

Re =
ρfdp|uf − up|

µf
, (8.18)

are the Nusselt, Prandtl and Reynolds number respectively. Ci denotes the specific heat
of phase i at constant volume, and k denotes the effective conductivity of the fluid phase;
these must be specified in ../multiphase properties/effective conductivity and ../
multiphase properties/specific heat. Note that we have written the above in terms of in-
ternal energy (rather than temperature) by dividing ei by the specific heat at constant volume.

To include this term, switch on the /multiphase interaction/heat transfer option in Dia-
mond.

8.19.2.4 Current limitations

• Boussinesq multiphase simulations are not yet supported.

• The momentum equation for each material phase can only be discretised in non-
conservative form.

• bassi rebay and compact discontinuous galerkin are currently the only DG viscosity
schemes available for multiphase flow simulations.

• Discontinuous PhaseVolumeFraction fields are not yet supported.

• For compressible multiphase flow simulations, the Pressure field only supports a
continuous galerkin discretisation.

8.21 Porous Media Darcy Flow 165

• Prescribed velocity fields cannot yet be used in multiphase simulations.

• Fluid-particle drag can currently only support one continuous (i.e. fluid) phase.

8.20 Compressible fluid model

Enabling .../material phase/equation of state/compressible allows the compressible
equations described in sections 2.3.2.1 and 2.3.2.2 to be solved. At the moment there is one available
option for the required compressible equation of state: Mie-Grunneisen (see section 8.10.0.5). Com-
pressible functionality is not yet fully supported and this is intended as a stub upon which further
developments will be described.

This section contains advice for running a compressible simulation, by describing the necessary op-
tions to set up the problem. The options required for prognostic fields are:

8.20.1 Pressure options

• The value for the atmospheric pressure can be added by switching on .../
atmospheric pressure, otherwise a default of zero is used.

• A Poisson pressure equation should not be used to calculate a first guess, therefore
.../scheme/poisson pressure solution should be set to never.

• .../scheme/use compressible projection method should be selected, so the calcu-
lated pressure satisfies the continuity equation and the EOS.

8.20.2 Density options

.../prognostic/equation and .../prognostic/solver do not need to be enabled. If the
equation type is not turned on, the density will make use of the pressure solve, so no solver options
are needed either. By having an equation type turned on, the density is not only incorporated into
the pressure solve but also an Advection-Diffusion equation is solved (and solver options need to be
specified).

8.20.3 Velocity options

• for continuous velocities .../spatial discretisation/.../lump mass matrix should
be turned on.

• in the presence of viscosity .../spatial discretisation/continuous galerkin/
stress terms/stress form is required and all components of the anisotropic symmetric
Viscosity tensor should be filled out. This functionality is only available with continuous
Galerkin velocities.

8.20.4 Restrictions: discretisation options and element pairs

Either continuous Galerkin or control volumes can be used as discretisation options for pressure and
density (both fields need to have the same option). When using control volumes pressure and density
have to be on the same order of parent mesh.

166 Configuring Fluidity

8.21 Porous Media Darcy Flow

8.21.1 Single Phase

This section describes how to configure Fluidity to simulate single phase incompressible Darcy flow.

First, the Porosity and Permeability fields found under the option element /porous media
require configuring. Both fields can be either prescribed or diagnostic. The Permeability
field can be either a scalar field or a vector field. The Porosity field will only be used in
the transport of scalar fields and the metric tensor. The Permeability field will only be used in
forming the absorption coefficient in the Darcy velocity equation. The use of these two fields should
be considered when selecting their associated mesh. If Porosity is to be included in the transport
of scalar fields (and the metric tensor) that are discretised using control volumes, due to the way this
method is coded, the mesh associated with the Porosity must be either element wise (meaning
discontinuous order zero) or the same order as field to be transported. It is therefore recommended
that the Porosity field always be associated with a mesh that is discontinuous order zero. It is
recommended that the Permeability field also be associated with a mesh that is discontinuous
order zero, due to the recommended Darcy velocity - pressure element pair (being p0p1cv or p0p1
with the continuity tested with the p1 control volume dual space)

Second, the prognostic Velocity vector field of the (only) phase is now taken to be the Darcy veloc-
ity 2.4.7. There is no option to select Darcy flow but this can be achieved via a careful selection of the
Velocity field options tree given by:

• the momentum equation must be set to .../equation::Boussinesq,

• the time term must be removed via including the option .../mass terms/
exclude mass terms,

• the momentum advection term must be removed via including the option .../
discontinuous galerkin/advection scheme/none or the option .../
continuous galerkin/advection terms/exclude advection terms,

• the option .../spatial discretisation/conservative advection is not used and
can be set to 0.0,

• the temporal options .../temporal discretisation/theta and .../
temporal discretisation/relaxation are not used and can be set to 1.0,

• the solver options require setting up to solve the resulting symmetric mass matrix that includes
the absorption term (which for a discontinuous discretisation is element wise block diagonal),

• the initial condition is only used as the initial guess into the solver as there is no time depen-
dence,

• the absorption term is included via the option .../vector field::Velocity/
prognostic/vector field::Absorption,

• the absorption term must be included in the pressure correction via the option .../
vector field::Absorption/include pressure correction,

• the absorption field can be set as prescribed if known or set to be diagnostic and
formed using the python diagnostics via .../vector field::Absorption/diagnostic/
algorithm::vector python diagnostic,

• the mesh associated with the absorption field is recommended to be discontinuous order zero,

8.21 Porous Media Darcy Flow 167

• the tensor field .../vector field::Velocity/prognostic/
tensor field::Viscosity must NOT be included as this will automatically include
stress terms.

To finish the configure of the Darcy velocity field the absorption coefficient (σ in equation (2.67)) has
to be input as defined by equation (2.69). This can be easily achieved using the python diagnostics
where it is recommended that a generic field in the associated material phase is used to represent
viscosity.

Third, the pressure options require setting where:

• it is recommended to use the option .../scalar field::Pressure/prognostic/
scheme/use projection method,

• it is recommended to use the option .../scalar field::Pressure/
prognostic/spatial discretisation/control volumes or .../
scalar field::Pressure/prognostic/spatial discretisation/
continuous galerkin/test continuity with cv dual,

• the option .../scalar field::Pressure/prognostic/scheme/
update discretised equation must be included if the absorption term is non linear.

Fourth, to transport a scalar field (for example Tracer) through the porous media using the Darcy
velocity requires:

• the Tracer field to include the porosity via the option .../scalar field::Tracer/
prognostic/porosity,

• the metric advection to include porosity via the option /mesh adaptivity/
hr adaptivity/metric advection/porosity,

• if a diffusivity, absorption or source term is included in the Tracer equation then the
Porosity must be included manually using the python diagnostics,

• for CV or DG subcycling a Courant number field based on the interstitial velocity should be
chosen,

• for CV face value schemes and limiters a Courant number field based on the interstitial velocity
should be chosen,

• for adaptive time stepping a Courant number field based on the interstitial velocity should be
chosen.

Finally, the inclusion of porosity defaults to use the scalar field named Porosity and a theta value
of 0.0. These can be changed via the options

• .../porosity/porosity field name,

• .../porosity/porosity temporal theta.

168 Configuring Fluidity

Chapter 9

Visualisation and Diagnostics

9.1 Visualisation

Output files containing simulation data are managed using the Visualization Toolkit (VTK - please
refer to the website http://www.vtk.org/). VTK tools adopts the .vtu file format for unstructured
grids: for each N dump times, the simulationname N.vtu file is created, containing the output
data of the simulation. This file contains a snapshot of the run at the timestep immediately proceed-
ing the dump time. For example, if the timestep is set to three seconds, and the dump period to 10
seconds, the first dump will occur at 12 seconds.

When running a simulation in parallel, the data are stored both in both .vtu and .pvtu files. The
.vtu files contain each the output data for each partition of the parallelised mesh, with the filename
simulationName P N.vtu where P is the processor number and N is the dump number. The .pvtu
files contain the general output data for the whole mesh, with numbering is still ordered by dump
number.

Visualisation of the .vtu and .pvtu files can be done using paraview (http://www.paraview.org/
paraviewindex.html) and/or mayavi (http://mayavi.sourceforge.net/). See the AMCG
website for more information.

9.2 Online diagnostics

9.2.1 Fields

9.2.1.1 Internal diagnostic fields

Fluidity has a set of predefined diagnostic fields called internal diagnostic fields. These diagnostic
fields can be scalar, vector and tensor fields. Common used internal diagnostic field are the CFLNum-
ber or the Gradient of a specified scalar field.

Each internal diagnostic field has a unique identifier and are classified by their field type:
scalar field, vector field or tensor field. To configure a internal diagnostic field, add
a new field of the appropriate type and select the identifier. A description of the available diagnostic
fields is given below. For example, to add the CFLNumber (which is a scalar field), one would
add a new scalar field and select scalar field (CFLNumber).

Some internal diagnostics contain a .../diagnostic/field name attribute defining the field
used to compute the diagnostic (for example the field used to compute a gradient). The internal
diagnostics do not have a dependency resolution, that is if this source field is itself a diagnostic field

169

http://www.vtk.org/
http://www.paraview.org/paraviewindex.html
http://www.paraview.org/paraviewindex.html
http://mayavi.sourceforge.net/
http://amcg-www.ese.ic.ac.uk/
http://amcg-www.ese.ic.ac.uk/

170 Visualisation and Diagnostics

it may happen that the source field is not computed yet. In such a case, one should try and use
diagnostic algorithms instead, see next section.

In the following, a description of the internal diagnostics available in Fluidity is given.

Internal scalar field diagnostics:

AbsoluteDifference: Absolute Difference between two scalar fields. Both fields and this diagnostic
scalar field must be in the same material phase. It also assumes both fields are on the
same mesh as the AbsoluteDifference field.

BackgroundPotentialEnergyDensity: Background potential energy density: PEb = ρzstar where
ρ is the density, zstar is the isopycnal coordinate (which is calculated in the diagnostic
scalar field::IsopycnalCoordinate.
Limitations:

• Requires a constant gravity direction.

• The Density and GravitationalPotentialEnergyDensity fields must be on the same mesh.

Limitations: Requires the diagnostic scalar field::IsopycnalCoordinate and (there-
fore) is not parallelised.

BulkMaterialPressure: Calculates the bulk material pressure based on the MaterialDensity and Ma-
terialVolumeFraction (and MaterialInternalEnergy if appropriate) for the equation of state of
all materials.

CFLNumber: CFLNumber as defined on the co-ordinate mesh. It is calculated as4tuJ−1 where4t
is the timestep, u the velocity and J the Jacobian.

CompressibleContinuityResidual: Computes the residual of the compressible multiphase continu-
ity equation. Used only in compressible multiphase flow simulations.

ControlVolumeCFLNumber: CFL Number as defined on a control volume mesh. It is calculated as
4t 1

V

∫
cvface

u where 4t is the timestep and u the velocity. The integral is taken over the faces
of the control volume and V is the volume of the control volume.

ControlVolumeDivergence: Divergence of the velocity field where the divergence operator is de-
fined using the control volume CT matrix. This assumes that the test space is discontinuous
control volumes.

CVMaterialDensityCFLNumber: Courant Number as defined on a control volume mesh and incor-
porating the MaterialDensity. Requires a MaterialDensity field!

DG CourantNumber: CFLNumber as defined on a DG mesh. It is calculated as 4t 1
V

∫
element u

where 4t is the timestep and u the velocity. The integral is taken over the faces of the ele-
ment V is the volume of the element.

InterstitialVelocityCGCourantNumber: CFLNumber as defined on the CG mesh using the intersti-
tial velocity for porous media flow. It is calculated as 4tuϕJϕ where 4t is the timestep, uϕ the
velocity with embedded porosity that was solved for, J the Jacobian and ϕ is the porosity.

InterstitialVelocityCVCourantNumber: CFL Number as defined on a control volume mesh using
the interstitial velocity for porous media flow. It is calculated as 4t 1

V

∫
cvface

uϕ
ϕ where 4t is

the timestep, uϕ the velocity with embedded porosity that was solved for and ϕ is the porosity.
The integral is taken over the faces of the control volume and V is the volume of the control
volume.

9.2 Online diagnostics 171

InterstitialVelocityDGCourantNumber: CFLNumber as defined on a DG mesh using the interstitial
velocity for porous media flow. It is calculated as4t 1

V

∫
element

uϕ
ϕ where4t is the timestep, uϕ

the velocity with embedded porosity that was solved for and ϕ is the porosity. The integral is
taken over the faces of the element V is the volume of the element.

DiffusiveDissipation: The rate at which internal energy is converted to potential energy: −g ∂ρ∂y ,

where ρ is the Density. Note the actual diffusive dissipation is −2gκ∂ρ∂y (2 subject to definition)

where ∂ρ
∂t + u · ∇ρ = κ∇2ρ. This should be taken into account when post-processing. It also

assumes kappa is isotropic and constant, cf. Winters et al. [1995].

DiscontinuityDetector: This field detects the discontinuities in a discontinuous Galerkin field, the
larger the discontinuity, the larger the value it takes. The discontinuity field is used by the
HWENO slope limiter, 3.2.3.2.

FiniteElementDivergence: Divergence of the velocity field where the divergence operator is defined
using the finite element CT matrix.

FreeSurface: Computes the free surface. Note: the diagnostic FreeSurface field only works in com-
bination with the free surface boundary condition applied to the Velocity field. It gives you a
3D field (constant over the vertical) of the free surface elevation.

FreeSurfaceHistory: The free surface history diagnostics saves snapshots of the free surface field.
The regularity and amount of snapshots can be specified in diamond. The main usage of this
diagnostic is for harmonic analysis, see 9.2.1.2

FunctionalBegin: Add a field to be used by Explicit ALE to visualise functional values before itera-
tions start.

FunctionalIter: Add a field to be used by Explicit ALE to visualise functional values at each iteration.

GalerkinProjection: Galerkin projection of one field onto another mesh. The field must be in the
same material phase as this diagnostic scalar field.

GravitationalPotentialEnergyDensity: Gravitational potential energy density: ρ(g · (r − r0)) where
ρ is the density (taken from scalar field::Density), and r0 is the potential energy zero
point.
Limitations:

• Requires a constant gravity direction.
• The Density and GravitationalPotentialEnergyDensity fields must be on the same mesh.

GridPecletNumber: The GridPecletNumber: Pe = U∆x/κ, where κ is the diffusivity. It is calculated
as κ−1

uJ where κ is the diffusivity tensor, u the velocity and J the Jacobian.

GridReynoldsNumber: Grid Reynolds number: Re = U∆x/ν, where ν is the viscosity. It is calcu-
lated as ν−1

uJ where ν is the viscosity tensor, u the velocity and J the Jacobian. Including the
density field ρ changes the Grid Reynolds number to Re = ρU∆x/µ, where µ is assumed the
dynamic viscosity. This requires a Density scalar field in the same material phase.

HorizontalStreamFunction: Calculate the horizontal stream function psi where: ∂ψ∂ = −v and ∂ψ
∂y =

u where u and v are the velocity components perpendicular to the gravity direction. A strong
Dirichlet boundary condition of 0 is applied on all boundaries.

HorizontalVelocityDivergence: Horizontal velocity divergence: divHu. The horizontal plane is de-
termined from the gravity field direction.

IsopycnalCoordinate: Isopycnal coordinate zstar(x,t) = 1
A

∫
V ′ H(ρ(x′, t) − ρ(x, t))dV ′ where ρ is the

density, A is the width/area of the domain.
Limitations:

172 Visualisation and Diagnostics

• You need to specify a (fine) mesh to redistribute the Density onto.

• Requires a constant gravity direction.

• The Density and GravitationalPotentialEnergyDensity fields must be on the same mesh.

• Not parallelised

KineticEnergyDensity: Kinetic energy density: 1
2ρ|u|

2 where ρ is the density taken from the
scalar field::Density.
Limitations: The Density, KineticEnergyDensity and Velocity fields must be on the same mesh.

MaterialDensity: The density of the material in multimaterial simulations. Required in compress-
ible multimaterial simulations. Can be diagnostic if using a linear equation of state, or
prognostic if a compressible simulation. (Note that if you set a multimaterial equation of
state and this field is prognostic then its initial condition will be overwritten by the density that
satisfies the initial pressure and the equation of state).

MaterialEOSDensity: Calculates the material density based on the bulk Pressure (and MaterialIn-
ternalEnergy if appropriate) for the equation of state of this material.

MaterialMass: Add a MaterialMass scalar field to calculate the spatially varying mass of a material.

MaterialPressure: Calculates the material pressure based on the MaterialDensity (and MaterialIn-
ternalEnergy if appropriate) for the equation of state of this material.

MaterialVolume: Add a MaterialVolume scalar field to calculate the spatially varying volume of a
material.

MaterialVolumeFraction: Volume fraction cN of material N in multimaterial simulations. Required
in compressible multimaterial simulations. If diagnostic, this computes cN = 1−

∑N−1
i=1 ci.

MaxEdgeWeightOnNodes: An estimate of the edge weights whilst adapting using Zoltan.

MultiplyConnectedStreamFunction: Calculate the stream function of 2D incompressible flow for
multiply connected domains. Note that this only makes sense for proper 2D (not pseudo-2D)
simulations. Requires a continuous mesh.

NodeOwner: Output the processors which own the nodes of the mesh on which this field is based.

PhytoplanktonGrazing: Grazing rate of Phytoplankton by Zooplankton. This is calculated by the
ocean biology module and will not be calculated unless ocean biology is being simulated. See
section 5.1 for more details.

PerturbationDensity: Calculates the perturbation of the density from the reference density.

PhaseVolumeFraction: Volume fraction αN of phase N in multimaterial simulations. Required in
multiphase simulations. If diagnostic, this computes αN = 1−

∑N−1
i=1 αi.

PotentialVorticity: Ertel potential vorticity: (f + ∇ × u) · ∇ρ′ where f is the magnitude of
the Coriolis force, u the velocity and ρ′ the perturbation density as calculated in .../
scalar field::PertubationDensity. Limitations: Requires a geometry dimension of 3.

PrimaryProduction: Primary production rate of Phytoplankton. This is calculated by the ocean bi-
ology module and will not be calculated unless ocean biology is being simulated. See section
5.1 for more details.

RelativePotentialVorticity: Relative potential vorticity: ∇ × u · ∇ρ′, where u is the velocity and ρ′

the perturbation density as calculated in .../scalar field::PertubationDensity

9.2 Online diagnostics 173

RichardsonNumber: Returns the Richardson number: N2

(∂u
∂z

)2+(∂v
∂z

)2
whereN2 = g

ρ0

∂ρ
∂z is the buoyancy

frequency, z is the vertical direction, g is the magnitude of gravity (u, v) is the horizontal ve-
locity, ρ0 is the reference density and ρ′ the perturbation density. (In 2D z → y and ∂v

∂z is not
included).

ScalarAbsoluteDifference: Absolute Difference between two scalar fields. Both fields and this diag-
nostic scalar field must be in the same material phase. Assumes both fields are on the
same mesh as the AbsoluteDifference field.

Speed: Speed: |u| Limitations: The Speed and Velocity fields must be on the same mesh.

StreamFunction: Calculate the stream function of 2D incompressible flow. Note that this only makes
sense for proper 2D (not pseudo-2D) simulations. Requires a continuous mesh.

SumMaterialVolumeFractions: Sums up the prognostic MaterialVolumeFraction fields (i.e. com-
putes

∑N−1
i=1 ci, whereN is the current material and ci is the MaterialVolumeFraction of material

i)

SumVelocityDivergence: Sums up the divergence of each phase’s apparent velocity, i.e.∑N
i=1∇ · (αiui). Used in multiphase simulations.

UniversalNumber: Output the universal numbering of the mesh on which this field is based.

VelocityDivergence: Velocity divergence: div u

ViscousDissipation: ∇u : ∇u =
∑

ij
∂ui
∂xj

∂ui
∂xj

. The actual viscous dissipation for a Boussinesq fluid
with isotropic viscosity, ν, is νρ0(∇u) : (∇u) where ρ0 is the reference density in the equation
of state. This should be taken into account when post-processing, cf. Winters et al. [1995].
Limitations: Only coded for 2D.

CopyofDensity: This scalar field is meant to replace DENTRAF. Basically, if you use new options,
DENTRAF is no longer needed. No repointing is done from this field to DENTRAF.

ParticleScalar: Add a field to be used by Solid configuration to map the solid Concentration from
particle mesh to the fluid mesh.

SolidConcentration: The volume fraction of the solid phase in FEMDEM.

SolidPhase: Zero everywhere except for the boundary of the solid phase in FEMDEM.

VisualizeSolid: Add a field to be used by Solid configuration to visualise the solid Concentration

VisualizeSolidFluid: Add a field to be used by Solid configuration to visualise the solids and Mate-
rialVolumeFraction together.

WettingDryingAlpha: Wetting and drying alpha coefficient. Alpha is 1 in dry and 0 in wet regions.
Note: the diagnostic WettingDryingAlpha only works in combination with the free surface
boundary condition applied to the Velocity field. It gives you a 3D field (constant over the
vertical) of the wetting and drying alpha coefficient.

The available internal vector field diagnostics are:

AbsoluteDifference: Absolute Difference between two vector fields. Both fields and
vector field::AbsoluteDifference must be in the same material phase. As-
sumes both fields are on the same mesh as vector field::AbsoluteDifference.

AbsoluteVorticity: Absolute vorticity: fk + ∇ × u, where f is the magnitude of the Coriolis force
and u the velocity. Limitations: Requires a geometry dimension of 3.

174 Visualisation and Diagnostics

Buoyancy: Computes the buoyancy term b = −ρg.

BedShearStress: Returns the (vector) bed shear stress, bss = ρCD|u|u, with ρ the density, CD the
drag coefficient and u the velocity. The density and drag coefficients have to be given and are
assumed to be constant. The field is only calculated over surface elements/nodes and interior
nodes will have zero value.

ControlVolumeDivergenceTransposed: Gradient of a scalar field evaluated using the transpose
of the CT matrix constructed using control volumes. The related field must be in the same
material phase as vector field::ControlVolumeDivergenceTransposed

Coriolis: Projects the Coriolis term onto the mesh of this diagnostic field. lump mass matrix?

DiagnosticCoordinate: Coordinate field remapped to the specified mesh.

DgMappedVelocity: The continuous solution mapped to a discontinuous mesh. Limitations: Re-
quires a geometry dimension of 3. Requires inner element active for momentum.

DgMappedVorticity: Vorticity of the DG mapped Velocity. Note vorticity is actually calculated over
a DG field. Limitations: Requires a geometry dimension of 3. Requires inner element active for
momentum.

ElectricalConductivity: A spontaneous potentials diagnostic to compute electrical conductivity.

FiniteElementDivergenceTransposed: Gradient of a scalar field evaluated using the transpose of
the CT divergence matrix constructed using finite elements. The field must be in the same
material phase as vector field::FiniteElementDivergenceTransposed.

FiniteElementGradient: Gradient of a scalar field evaluated using the C gradient matrix con-
structed using finite elements. The field must be in the same material phase as
vector field::FiniteElementGradient.

FunctionalGradient: Same as vector field::SolidVelocity but it is on the Particle mesh. It
is used to map the velocities coming from an external program like FEMDEM or DEM to the
fluid mesh.

GalerkinProjection: Galerkin projection of one field onto another mesh. The field must be in the
same material phase as vector field::GalerkinProjection

InnerElementFullVelocity: Full velocity in an inner element SGS treatment of momentum. Limita-
tions: Requires a geometry dimension of 3. Requires inner element active for momentum.

InnerElementFullVorticity: Vorticity of the full velocity in an inner element SGS treatment of mo-
mentum. Limitations: Requires a geometry dimension of 3. Requires inner element active for
momentum.

InnerElementVorticity: Vorticity of the SGS velocity in an inner element SGS treatment of momen-
tum Limitations: Requires a geometry dimension of 3. Requires inner element active for mo-
mentum.

LinearMomentum: LinearMomentum field: p = ρu (where p is the linear momentum, ρ the density
and u the velocity)

MaxBedShearStress: Max Bed Shear Stress. Note that you need
vector field::BedShearStress turned on for this to work.

ParticleForce: Same as Solid Velocity field but it is on the Particle mesh. It is used to map the veloci-
ties coming from an external program like FEMDEM or DEM to the fluid mesh.

9.2 Online diagnostics 175

ParticleVector: Same as Solid Velocity field but it is on the Particle mesh. It is used to map the
velocities coming from an external program like FEMDEM or DEM to the fluid mesh.

PlanetaryVorticity: Planetary vorticity Limitations: Requires geometry dimension of 3.

SolidForce: Same as Solid Velocity field but it is on the Particle mesh. It is used to map the velocities
coming from an external program like FEMDEM or DEM to the fluid mesh.

SolidVelocity: Solid Velocity field. Used to generate the momentum source

TemperatureGradient: Temperature gradient

VectorAbsoluteDifference: Absolute Difference between two vector fields. Assumes both fields
are on the same mesh as vector field::AbsoluteDifference. Both fields and
vector field::AbsoluteDifference must be in the same material phase.

VelocityPlotForSolids: Implicit solids related field for the velocity of the solid phase.

Vorticity: (Relative vorticity field) - (curl of the velocity field)

9.2.1.2 Diagnostic algorithms

The name of each field for each material / phase in the options tree must be unique. Hence there
can only be one field named “Gradient” in a single material /phase. The concept of a diagnostic
algorithm is designed to solve this issue - multiple fields, each with their own name, can share the
same algorithm. This, for example, allows the gradient of multiple fields to be calculated for a single
material / phase.

To configure a diagnostic field using a diagnostic algorithm, select the .../diagnostic option for
a generic scalar field, vector field or tensor field. This contains a .../diagnostic/
algorithm choice element from which you can select the diagnostic algorithm.

Some diagnostic algorithms contain a .../diagnostic/algorithm/source field attribute
defining the field used to compute the diagnostic (for example the field used to compute a gradient).
If this source field is itself a diagnostic field defined in terms of a diagnostic algorithm then the source
field is computed first (dependency resolution). In the majority of cases, a scalar source field,
vector source field, tensor source field or component source field attribute is de-
fined. This identifies the expected type of input field. component source field denotes scalar
field input, but for which vector or tensor field components of the form field name%comp can be
used. The attribute .../diagnostic/algorithm/material phase support, which may take
the value “single” or “multiple”, defines if the diagnostic algorithm may access fields in other ma-
terial / phases. For multiple material phase support diagnostic fields, a source field in another
material / phase may be defined by a :: delimited “state name :field name” string.

The available internal diagnostics are:

temporalmin: Writes the (nodewise) minimum scalar value over all previous timesteps.

temporalmax: Writes the (nodewise) maximum scalar value over all previous timesteps.

l2norm: Calculates nodewise l2norm of a vector field source.

time averaged scalar: Calculates the time average of a scalar field over the duration of a simulation.

period averaged scalar: Calculates the time average of a scalar field over a defined period, e.g. daily.

time averaged scalar squared: Calculates the time average of squared scalar fields.

free surface history: Records the history of a free surface field.

176 Visualisation and Diagnostics

Figure 9.1: Configuration of a diagnostic field using a diagnostic algorithm in Diamond. Here a
pressure gradient diagnostic is defined.

tidal harmonics: Calculates the (tidal) harmonics of the FreeSurface field. Note that ”ocean bound-
aries” (see 8.3.3.5) have to be set and the FreeSurface and FreeSurfaceHistory diagnostic field
have to be switched on (see 9.2.1.1).

div: Computes the divergence of a vector field.

grad: Computes the gradient of a scalar field.

finite element divergence: Computes the divergence of a field, where the divergence operator is
defined using the finite element CT matrix.

curl 2d: [curl (source field)] z. Valid in 2D only.

scalar advection: Computes u · ∇(s), where s is the source field.

scalar laplacian: Computes ∇2(s), where s is the source field. Applies natural boundary conditions
on all boundaries.

tensor second invariant: Algorithm for the second invariant of a tensor field.

scalar potential: Computes the scalar potential ϕ where: F = ∇ϕ + ∇A + H with a Neumann
boundary condition of∇ϕ · n = F · n on all boundaries.

projection scalar potential: Computes the scalar potential ϕ where: F = ∇ϕ + ∇A + H using a
pressure projection method.

node halo: Parallel diagnostic for the nodal halos.

universal numbering: Writes the nodal universal numbering.

element halo: Paints the element halo. Requires a degree 0 mesh.

element ownership: Writes the element halo ownership. Requires a degree 0 mesh.

9.3 Offline diagnostics 177

element universal numbering: Writes the element halo universal numbering. Requires a degree 0
mesh.

scalar sum: Computes the sum of two scalar fields.

scalar difference: Computes the difference between two scalar fields (i.e. field1 - field2)

scalar edge lengths: Computes the edge lengths of the Coordinate mesh.

grad normal: Computes
∫

(∇s)dn. The output is P0 on the surface. Errors will occur at domain
edges - this is a limitation of current output formats.

column ids: Convert the column ids to a field. The mesh must be directly extruded.

universal column ids: Convert the universal column ids to a field. The mesh must be directly ex-
truded.

scalar copy: Copies the scalar field. This is intended for testing purposes only.

scalar galerkin projection: Galerkin projects the scalar field.

helmholtz smoothed scalar: Smooth a scalar field by inverting a Helmholtz operator.

helmholtz anisotropic smoothed scalar: Smooth a scalar field by inverting a Helmholtz operator.

lumped mass smoothed scalar: Smooth a scalar field by inverting the lumped mass: ML
S smooth=M S.

particle reynolds number: Diagnostic algorithm used in multiphase flow simulations. Calculates
the particle Reynolds number, (αfρf |uf − up|d)/µf , where the subscripts f and p denote the
fluid (i.e. continuous) and particle (i.e. dispersed) phases respectively, and d is the particle
diameter.

apparent density: Diagnostic algorithm used in multiphase flow simulations. Calculates the appar-
ent density of the material phase, i.e. Density multiplied by the PhaseVolumeFraction field.

control volume mass matrix: Computes the control volume mass matrix on the mesh of the diag-
nostic field.

finite element lumped mass matrix: Computes the lumped finite element mass matrix on the mesh
of the diagnostic field.

9.2.1.3 Python diagnostic algorithms

A python diagnostic algorithm, chosen via .../diagnostic/
algorithm::scalar python diagnostic (or similar equivalents for vector and tensor fields)
allows direct access to the internal Fluidity data structures in the computation of a diagnostic field.
The python code entered at .../diagnostic/algorithm::scalar python diagnostic can
access three variables: the simulation timestep dt, the diagnostic field field, and the simulation
state state. field and state are python representations of the internal Fluidity data structures -
see appendix B for more complete documentation of the Python state interface.

9.2.1.4 Other diagnostic algorithms

scalar field diagnostic algorithms:

extract scalar component: Extracts a Cartesian component of a named vector field (see attributes).
Element component sets which Cartesian component is extracted.

178 Visualisation and Diagnostics

deltaT = 4.0

t = state.scalar_fields["Temperature"]
assert(t.node_count == field.node_count)

for i in range(field.node_count):
tMinusT0 = t.node_val(i) * deltaT
diagVisc = 1.620e-2 * (1.0 - 2.79e-2 * tMinusT0 + 6.73e-4 \

* tMinusT0 * tMinusT0)
visc = numpy.zeros((3, 3))
for j in range(3):

visc[j][j] = diagVisc
field.set(i, visc)

Example 9.1: A tensor python diagnostic algorithm defining a temperature varying viscosity used in
a baroclinic annulus simulation, configured as in Hignett et al. [1985] table 1 (main comparison).

9.3 Offline diagnostics

There are three main types of offline diagnostics:

• fltools, section 9.3.3: programs written in Fortran that are compiled by running make fltools
on the command line in the top directory of the Fluidity source tree. The binaries are built in
bin. The F90 source files can be found in tools

• python scripts, section 9.3.3: run make fltools in the top directory of the Fluidity source tree
and these will be found in the bin. The source code can be found in tools.

• python modules: modules that can be imported e.g. for use in a test case. They are found in
python/fluidity/diagnostics and are imported with
import python.fluidity.diagnostics.modulename

9.3.1 vtktools

vtktools.py is a set of python tools that allows you to analyse data from a vtu or pvtu. The tools
are based on python vtk and the module can be found in python/ directory of the Fluidity trunk.
To extract the pressure and velocity fields from a vtu, for example, use

import sys
sys.path.append(’fluidity_source_path/python/’)

import vtktools
data = vtktools.vtu(’example.vtu’)
p = data.GetScalarField(’Pressure’)
uvw = data.GetVectorField(’Velocity’)
u = uvw[:,0]

This performs the following steps

• imports the python sys module and then appends the directory which vtktools.py is in to the
system path;

• imports the vtktools module;

9.3 Offline diagnostics 179

• makes an object called data which contains the information about the vtu example.vtu (if
running in parallel this would be example.pvtu);

• the pressure field is then extracted using GetScalarField which returns an array;

• similarly the full velocity field is extracted using GetVectorField which returns an array;

• finally the horizontal velocity field is obtained by picking the relevant values from the full
velocity field.

A full list of the available tools is given in table 9.1. A summary can also be obtained by typing
help(vtktools) in an ipython session. Further examples of use can be found in the online at
Cook Book in the python scripts used for postprocessing of the examples and in the test cases.

http://amcg.ese.ic.ac.uk/index.php?title=Cook_Book

180
V

isualisation
and

D
iagnostics

method arguments use
AddField name, array Adds the values in array (the entries of which may have an arbitrary num-

ber of components) as a field called name
AddFieldtoField fieldname, array,

newFieldName=None
Adds the values in array to the field fieldname. If newFieldName is
specified then a new field with that name is created with the new values,
otherwise the original field is replaced.

AddScalarField name, array Adds a scalar field called name using the values in array
AddVectorField name, array Adds a vector field called name using the values in array

ApplyCoordinateTransformation f Applys the coordinate transformation specified in the function f to the grid
coordinates. It will overwrite the exisiting coordinate values. An example
for f def f(X,t=0): return [X[0]*t,X[1],X[2]]

ApplyEarthProjection assumes the input geometry is Cartesian and projects to longitude, latitude
and depth. It will overwrite the exisiting coordinate values.

ApplyProjection projection_x,
projection_y,
projection_z

Applys a projection to the grid coordinates. It will overwrite the existing
values. projection_x, projection_y and projection_z should all
be strings that contain the projection to be evaluated, with x, y and z for the
x, y and z coordinates respectively. For example, projection_x=’x2’+
will translate all the values of x by 2.

CellDataToPointData transforms all cell–wise fields to point–wise fields. All existing fields will
remain,

Crop min_x, max_x,
min_y, max_y,
min_z, max_z

Crops the edges defined by the bounding box given by the arguments

CrossFieldWithField fieldName, array,
newFieldName=None,
postMultiply=True

Calculates the cross product, a × b, where a is the field fieldName and b
is array. If postMultiply\neqTrue then b × a will be calculated. If
newFieldName is specified then a new field with that name is created that
takes the values of the cross product, otherwise the original field is replaced.

DotFieldWithField fieldName, array,
newFieldName

Calculates the dot product of the field called fieldName and array. If
newFieldName is specified then a new field with that name is created that
takes the values of the dot product, otherwise the original field is replaced.

GetCellPoints id Returns an array with the node numbers of the cell (mesh element) number
id.

GetCellVolume id Returns the volume of the cell (mesh element) with number id

9.3
O

ffline
diagnostics

181

GetDerivative name Returns the derivative of the field called name. Each component
of the returned array has form ∂T

∂x ,
∂T
∂y ,

∂T
∂z for a scalar field and

∂u
∂x ,

∂v
∂x ,

∂w
∂x ,

∂u
∂y ,

∂v
∂y ,

∂w
∂y ,

∂u
∂z ,

∂v
∂z ,

∂w
∂z for a vector field where T is a scalar field,

(u, v, w) a vector field and (x, y, z) the spatial coordinate vector field. The
field name has to be point–wise data. The returned array gives a cell–wise
derivative. (To obtain the point–wise derivative add the field to the vtu
object and use CellDataToPointData.)

GetDistance x,y Returns the distance in physical space between x and y
GetField name Returns an array with the values of the field called name.

GetFieldIntegral name Returns the integral over the domain of the field called name.
GetFieldNames Returns the name of the available fields.
GetFieldRank name Returns the rank of the field called name.
GetFieldRms name Returns the root mean square (RMS) of the supplies scalar or vector field

called name.
GetLocations Returns an array with the locations of the nodes.
GetPointCells id Returns an array with the elements which contain the node id.
GetPointPoints id Returns the nodes that connect to the node id.
GetScalarField name Returns an array with the values of the scalar field called name.
GetScalarRange name Returns the range (min, max) of the scalar field called name.
GetVectorField name Returns an array with the values of the vector field called name.
GetVectorNorm name Returns an array with the norm of the vector field called name.
GetVorticity name Returns the vorticity of the vector field called name. The vector field name

has to be point–wise data. The returned array gives a cell–wise derivative.
(To obtain the point–wise derivative use CellDataToPointData.)

IntegrateField field Returns the integral of the field called field assuming a linear representa-
tion on a tetrahedral mesh.

ManipulateField fieldName, manipFunc,
newFieldName=None

Generic field manipulation method. Applies the supplied ma-
nipulation function, manipFunc, to the field called fieldName.
manipFunc must have form def manipFunc(field, index): . . .
return fieldValAtIndex. If newFieldName is specified then a new
field with that name is created that takes the calculated values, otherwise
the original field is replaced.

182
V

isualisation
and

D
iagnostics

MatMulFieldWithField fieldName, array,
newFieldName=None,
postMultiply=True.

Multiplies two matrices ¯̄A ¯̄B where ¯̄A is the field fieldName, and ¯̄B
is array. If postMultiply6=True then ¯̄A ¯̄B will be calculated. If
newFieldName is specified then a new field with that name is created that
takes the values of the product, otherwise the original field is replaced.

ProbeData coordinates, name Returns an array of values of the field called name at the positions given
in coordinates. The values are calculated by interpolation of the field to
the positions given. coordinates can be created using vtktools.arr()
e.g. coordinates=vtktools.arr([[1,1,1],[1,1,2]]).

RemoveField name Removes the field called name.
StructuredPointProbe nx, ny, nz,

bounding_box=None
Returns a vtk structured object. nx, ny, nz are the number of points
in the x, y, z directions respectively. If bounding_box is not specified
the bounding box of the domain is calculated automatically. If specified
bounding_box = [xmin, xmax, ymin, ymax, zmin, zmax].

SubFieldFromField fieldName, array,
newFieldName=None

Subtracts array from the field called fieldName. If newFieldName is
specified then a new field with that name is created that takes the values of
the product, otherwise the original field is replaced.

Write filename = [] Writes the data to a vtu file. If filename is not specified the name of the
file originally read in will be used and therefore the input file will be over-
written.

functions arguments use
VtuDiff vtu1, vtu2,

filename=None
Generates a vtu with fields that are the difference between the field values in
the two supplied vtus, vtu1 and vtu2. Fields that are not common between
the two vtus are neglected. If the cell points of the vtus do not match then
the fields of vtu2 are projected onto the cell points of vtu1.

VtuMatchLocations vtu1, vtu2, tolerance=
9.9999999999999995e-07

Checks that the locations in the supplied vtus, vtu1 and vtu2 match to
within the value of tolerance. The locations must be in the same order.

VtuMatchLocationsArbitrary vtu1, vtu2, tolerance=
9.9999999999999995e-07

Checks that the locations in the supplied vtus, vtu1 and vtu2 match to
within the value of tolerance. The locations may be in a different order.

arr object, dtype=None,
copy=True, order=None,
subok=False, ndim=True

Creates an array from object, where object must be an array, any object
exposing the array interface, an object whose _array_ method returns an
array, or any (nested) sequence.

9.3
O

ffline
diagnostics

183

dtype: data–type, optional. The desired data–type for the array. If not given (the default), then the type
will be determined as the minimum type required to hold the objects in the sequence. This argument can
only be used to ‘upcast’ the array. For downcasting use the .astype(t) method.
copy: bool, optional. If True (default), then the object is copied. Otherwise, a copy will only be made if
array returns a copy, if object is a nested sequence, or if a copy is needed to satisfy any of the other
requirements.
order: {‘C’, ‘F’, ‘A’}, optional. Specify the order of the array. If order is ‘C’ (default), then the array will
be in ‘C’–contiguous order (last–index varies the fastest). If order is ‘F’ then the returned array will be in
Fortran–contiguous order (first–index varies the fastest). If order is ‘A’, then the returned array may be in
any order (either C–, Fortrain–contiguous, or even discontiguous).
subok: bool, optional. If True, then sub–classes will be passed–through, otherwise the returned array
will be forced to be a base–class array (default).
ndim: int, optional. Specifies the minimum number of dimensions that the resulting array should have.
Ones will be pre–prended to the shape as needed to meet this requirement.
For examples see the module help information.

Table 9.1: Table of tools available in vtktools for
extraction and analysis of data in vtu and pvtu
files. The tools which are methods can be ap-
plied to an object created from a vtu or pvtu with
data = vtktools.vtu(’example.vtu’). The meth-
ods can then be used with data.method(arguments).
Note only the Write method can change the original vtu
pr pvtu. The functions are used as usual python functions.
See section 9.3.1, the Cook Book the postprocessing python
scripts in the examples, the test cases and the source code
for the python tools in tools for further examples of use.
The list can also be obtained in a ipython session with the
command help(vtktools).

http://amcg.ese.ic.ac.uk/index.php?title=Cook_Book

184 Visualisation and Diagnostics

9.3.2 Diagnostic output

9.3.3 fltools

An extended set of Fluidity tools exist that supplement the main Fluidity program. Table 9.2 lists
them and descriptions can be found by referring to the relevant section. The tools can be built by
running make fltools in the top directory of the Fluidity trunk. The programs generated can then
be found in the bin/ directory.

9.3.3.1 checkmesh

checkmesh can be used to form a number of verification tests on a mesh in triangle mesh format. It
is run from the command line:

checkmesh input_basename

where input_basename is the base name of an input triangle file. checkmesh tests for:

• Degenerate volume elements

• Inverted tetrahedra

• Degenerate surface elements

• Mesh tangling

checkmesh is parallelised. If running in parallel, it should be launched on a number of pro-
cesses equal to that in the mesh decomposition. In parallel checkmesh output is written to
checkmesh.log-[process] and checkmesh.err-[process] log files.

Checking volume elements for tangling ...
In intersection_finder
In advancing_front_intersection_finder
Exiting advancing_front_intersection_finder
Exiting intersection_finder
Tangled volume element found:
Element: 1
Coordinates:
0.10000000000000000E+001 0.00000000000000000E+000
0.11666666666700001E+001 0.00000000000000000E+000
0.83867056794499995E+000 0.54463903501499999E+000

Numbering:
1

14
2

Example 9.2: checkmesh reporting a mesh tangling error.

9.3.3.2 clean mayavi mesh

This program cleans up vector eps mesh images output by Mayavi2. The program removes pointy
line joins which are unsightly on very anisotropic meshes and calculates an accurate bounding box,
replacing the incorrect one produced by Mayavi2.

9.3 Offline diagnostics 185

Program Section
checkmesh 9.3.3.1
clean mayavi mesh 9.3.3.2
create aligned mesh 9.3.3.3
create climatology atlas 9.3.3.4
create param sweep 9.3.3.5
differentiate vtu 9.3.3.6
edge length distribution 9.3.3.7
encode 9.3.3.8
fladapt 9.3.3.9
fldecomp 9.3.3.10
fldiagnostics 9.3.3.11
flredecomp 9.3.3.12
genpvtu 9.3.3.13
gen square meshes 9.3.3.14
gmsh2triangle 9.3.3.15
gmsh mesh transform 9.3.3.16
interval 9.3.3.17
linear interpolation 9.3.3.18
mean flow 9.3.3.19
mms tracer error 9.3.3.20
nodecount 9.3.3.21
periodise 9.3.3.22
petsc readnsolve 9.3.3.23
probe vtu 9.3.3.24
project to continuous 9.3.3.25
project vtu 9.3.3.26
pvtu2vtu 9.3.3.27
radial scale 9.3.3.28
rename checkpoint 9.3.3.29
runut 9.3.3.30
stat2csv 9.3.3.31
statplot 9.3.3.32
streamfunction 2d 9.3.3.33
supermesh difference 9.3.3.34
transform mesh 9.3.3.35
triangle2vtu 9.3.3.36
unifiedmesh 9.3.3.37
update options 9.3.3.38
vertical integration 9.3.3.39
visualise elements 9.3.3.40
vtkdiagnostic 9.3.3.41
vtk projection 9.3.3.42
vtudecomp 9.3.3.43
vtudiff 9.3.3.44
vtu bins 9.3.3.45

Table 9.2: Table of fltools. On running make fltools they can be found in the bin/ directory of
the Fluidity trunk.

186 Visualisation and Diagnostics

The input file should be an eps file output by the “save scene as” “Vector PS/EPS/PDF/TeX” option
in Mayavi2.

clean_mayavi_mesh [--margin=n] <input_filename> <output_filename>

If present, --margin sets the margin between the figure and the bounding box.

9.3.3.3 create aligned mesh

Creates the triangle files for a mesh that lines up in all directions, so that it can be made it into a
singly, doubly or triply periodic mesh. It is run from the command line:

create_aligned_mesh newmesh Lx Ly Lz Nx Ny Nz [Ox Oy Oz]

This creates a box that is Lx × Ly × Lz with Nx, Ny, Nz layers in the x, y, z directions respectively.
The optional arguments Ox, Oy, Oz specify the position of the origin. Information can be found by
running create_aligned_mesh --help on the command line. Note the mesh will always be 3d.

9.3.3.4 create climatology atlas

This creates a climatology atlas, for use with ICOM, using ”High resolution (1/4◦) Temperature and
Salinity Analyses of the World’s Oceans. Version 2”

The 1/4◦ grid climatological mean fields of in situ temperature (degrees Celsius) and salinity (practi-
cal salinity scale) for the annual, seasonal, and monthly time periods were calculated by Boyer et al.
[2005] using objective analysis techniques. The data and associated metadata was obtained from
the NODC, http://www.nodc.noaa.gov/OC5/WOA01/qd_ts01.html. All the data files are
gzipped ASCII 1/4 gridded data files (’Girdded Fields’) and contain the DOS end-of-line character
(M). There are 12 monthly averages of temperature and 12 monthly averages of salinity. In addition,
there 4 seasonal averages of temperature and 4 seasonal averages of salinity corresponding to winter
(defined as January, February and March), spring summer and autumn. Further information can be
found online at the above address.

For use with ICOM (relaxing to climatology at the boundaries), a NetCDF data was created con-
taining the monthly means, and the additional 9 standard levels from the seasonal means in order
to provide information below the 1500m level. In addition, Killworth correction (Killworth 1995) is
applied to the data in order to facilitate accurate time interpolation.

To use this just execute it in the directory which contains all the files listed above gunzipped.

9.3.3.5 create param sweep

It is sometimes useful to vary certain parameters of your simulation to assess the effect of that pa-
rameter on some part of the output. This can be a tedious thing to set up, especially if you wish to
cover a number of parameters and their interacting effects. A script (create_param_sweep) allows
this to be done very easily.

Usage

Take a directory which contains everything you need for a simulation; mesh files, flml, any input
files, python scripts, etc. Next generate a parameter file in the following format:

NAME; spud_path; colon:seperated:parameter:values
NAME2; spud_path2; colon:seperated:parameter:values

http://www.nodc.noaa.gov/OC5/WOA01/qd_ts01.html

9.3 Offline diagnostics 187

The values should be in ”Python” format, e.g. a tensor is [[0,0,1],[3,5,23],[34,6,2]]. The
spud path can be copied from diamond (i.e. click on the parameter you wish to vary and click ”copy
path”). The name is a human readable name that will be used in the output files.

You can then run the script:

create_param_sweep template/ sens_test/ param_file.txt

where template is your set up directory, sens_test is where you want all the files to be created
(doesn’t need to exist already) and param_file.txt is your parameter space file. When complete
you will have the following directory structure:

output_dir/
template (copied in if not already here)
runs/

1/
run.flml
other files

2
3
directory_listing.csv

directory_listing.csv will contain the directory numbers and which parameter set they con-
tain. Each run is contained in a separate, numbered, directory.

9.3.3.6 differentiate vtu

differentiate vtu takes the gradient of every scalar field and vector field component within an vtu. It
is primarily intended for cases where the derivatives of large numbers of fields are required. differ-
entiate vtu is built as part of the fltools build target (see section 9.3.3), and is used via:

differentiate_vtu [-v] input_filename output_filename [input_fieldname]

where input_filename is the input vtu and output_filename is the output vtu. If
input_fieldname is supplied then only that field is differentiated. The -v flag enables verbose
output.

9.3.3.7 edge length distribution

edge length distribution is a python script that creates histograms of the edge lengths of the elements
in the mesh at each time step. It also produces line graphs of the maximum and minimum edge
lengths as a function of time. This is useful for analysing adaptive runs to see how the edge lengths
compare to a fixed run of the same process. It is run from the command line:

edge_length_distribution [options] vtu_filename

where vtu_filename is the input vtu file. The options available are:

-s START_VTU The first dump id of files to be included, default = 0
-e END_VTU The last dump id of files to be included, if not used

all vtus with id >= start_vtu will be included
-b NO_BINS Number of bins for the histogram plots, default = 10
-m Plots the maximum and minimum edge lengths over time
-c Plots a histogram of the cumulative total of edge

lengths for all vtus
-p Will allow plots to be made from the data in the log

188 Visualisation and Diagnostics

files ’time.log’ and ’edge_lengths.log’ rather than
extracting the information from the vtus as this can
take a while. Note: you must have run the script once
WITHOUT this option otherwise the log files will not
exist

--pvtu Uses pvtus instead of vtus

9.3.3.8 encode

Script to encode .avi movies playable on Windows machines. Requires arguments:

1st image file type (e.g. jpg,png,etc...)
2nd path to folder containing images, and for movie output.
3rd name of movie output file (without the file extension).
4th OPTIONAL - enter characters here to limit the image files used

as frames (e.g. ’image1’ would only select images
which satisfy ’image1*.jpg’).

For example, encode.sh jpg /data/movie files my movie image002 will encode a movie
called my movie using all jpg files from the directory /data/movie files/ starting with the characters
’image002’.

9.3.3.9 fladapt

fladapt performs a single mesh adapt based on the input options file (which may be a checkpoint)
and outputs the resulting mesh. It is run from the command line:

fladapt [options] INPUT OUTPUT

where INPUT is the name of the input options file and OUPUT is the name of the generated mesh. The
flag -v flag enables verbose output and the flag -h flag displays the help message.

9.3.3.10 fldecomp

fldecomp will be removed in a future release of Fluidity.

flredecomp (section 9.3.3.12) is the recommended mesh decomposition tool but it cannot process
Terreno meshes. fldecomp is used to decompose a Terreno mesh (section 6.7.1) into multiple regions,
one per process. In order to run fldecomp, if your Terreno mesh files have the base name foo and
you want to decompose the mesh into four parts, type:

fldecomp -n 4 -t mesh_file

Where:

mesh_file is the base name of your mesh files. For example, foo for foo.face/node/ele
in the triangle format generated by Terreno.

9.3.3.11 fldiagnostics

fldiagnostics is an offline diagnostic tool. It is run from the command line:

fldiagnostics ACTION [OPTIONS] INPUT OUTPUT [FIRST] [LAST]

9.3 Offline diagnostics 189

If FIRST is supplied, treats INPUT and OUTPUT as project names, and processes the specified range
of project files. The options are:

add[-diag] Add a diagnostics field. Options:
-m NAME Field from which to extract a mesh to use with the

diagnostic field (default "Velocity")
-o NAME Diagnostic field name
-r RANK Specify the rank of the diagnostic field (will try all

ranks if not supplied, but will also suppress useful
error messages)

-s STATE Name of the state from which to read options in the
options file (defaults to the first state)

-x FLML Model options file (not always required)

and the -h flag displays the help message. To add the diagnostic field GridReynoldsNumber to a set
of vtus run:

fldiagnostics add -o GridReynoldsNumber -r 0 ...
... lock_exchange.vtu lock_exchange_out 5 8

9.3.3.12 flredecomp

flredecomp is a parallel tool that performs a decomposition of an initial mesh, or a re-decomposition
of a Fluidity checkpoint. It is invoked as follows:

mpiexec -n [maximum of input and target number of processors] flredecomp \
-i [input number of processors] \
-o [target number of processors] [input flml] [output flml]

For example, to decompose the serial file foo.flml into four parts, type:

mpiexec -n 4 flredecomp \
-i 1 -o 4 foo foo_flredecomp

The output of running flredecomp is a series of mesh and vtu files as well as the new flml; in this case
foo_flredecomp.flml. Note that flredecomp must be run on a number of processors equal to the
larger number of processors between input and output.

9.3.3.13 genpvtu

genpvtu creates a set of pvtus from a base set of vtus. It is run from the command line:

genpvtu basename

with basename that of the vtu set e.g. {example 0 0.vtu, example 0 1.vtu, example 0 2.vtu; exam-
ple 1 0.vtu, example 1 1.vtu, example 1 2.vtu} has basename ’example’. It will produce pvtus with
names example 0.pvtu, example 1.pvtu.

9.3.3.14 gen square meshes

gen square meshes will generate triangle files for 2D square meshes. It is run with python from the
command line:

gen_square_meshes [OPTIONS] NODES MESHES

190 Visualisation and Diagnostics

NODES is the number of nodes in the mesh and MESHES is the number of meshes to be created.
[OPTIONS] are -h for help and -v for Verbose mode.

9.3.3.15 gmsh2triangle

gmsh2triangle converts ASCII Gmsh mesh files into triangle format. Whilst Fluidity can read in
Gmsh files directly as noted in section 6.1, this tool should be used in cases where native Gmsh
support does not work. It is run from the command line:

gmsh2triangle [--2d | --shell] input

where input is the input .msh file. The --2d flag can be used to instruct gmsh2triangle to process
a 2D input .msh file. The --shell flag should be used when the input is a 2D manifold in 3D space,
such as when a spherical shell is provided. Otherwise, 3D input is assumed.

9.3.3.16 gmsh mesh transform

gmsh mesh transform applies a coordinate transformation to a region of a given mesh. It is run from
the command line:

gmsh_mesh_transform [constants] region transformation mesh

where constants is an optional list of constant associations separated by commas, for use in region
and transformation, region is a python expression which evaluates to true over the region to be
transformed (use ’True’ for whole domain), transformation is a python expression giving the
coordinate transformation and mesh is the name of the gmsh mesh file. Note: This script creates a
backup of the original mesh file with a ’.bak’ extension. Examples:

To rescale the z-dimension by a factor of 1000:

gmsh_mesh_transform ’(x,y,1000*z)’ mesh.msh

To project all points that lie within a circle of centre (xcentre,ycentre) in z by a distance
zprojection:

gmsh_mesh_transform ’xcentre=50, ycentre=50, radius=20, zprojection=50’
’(x-xcentre)**2 + (y-ycentre)**2 < radius**2’ ’(x, y, z+zprojection)’ mesh.msh

To project all points that lie within a circle of centre (xcentre,ycentre) in z in the shape of a cone,
by a distance zprojection at the centre:

gmsh_mesh_transform ’xcentre=50, ycentre=50, radius=20, zprojection=50’
’(x-xcentre)**2 + (y-ycentre)**2 < radius**2’ ’(x, y, z + zprojection *
(1 - sqrt((x-xcentre)**2 + (y-ycentre)**2) / radius))’ mesh.msh

To add an ice shelf to a meshed box for x in [0,shelflength] and z in
[0,shelfslopeheight+minoceandepth]. Note this applies to both 2d and 3d domains
and the ocean domain can extend further:

gmsh_mesh_transform ’shelflength = 550, shelfslopeheight = 800,
minoceandepth = 100’ ’x < shelflength’ ’(x, y, (z/(shelfslopeheight
+ minoceandepth)) * ((x/shelflength) * shelfslopeheight + minoceandepth))’
mesh.msh

9.3 Offline diagnostics 191

9.3.3.17 interval

This is a one-dimensional mesh generator. It is run from the command line:

interval [options] left right name

where left and right define the range of the line. It has a number of user defined input options:

--dx constant interval spacing
--variable_dx interval spacing defined with a python function
--region_ids python function defining the region ID at each point
--reverse reverse order of mesh

9.3.3.18 linear interpolation

linear interpolation linearly interpolates all the fields of a set of vtus on to the mesh of a target vtu.
It is run with python from the command line:

linear_interpolation TARGET VTU1 VTU2 VTU3

TARGET is the name of the mesh that the fields will be interpolated on to. VTU1, VTU2, VTU3 are
the vtus from which the fields will be interpolated (the number of vtus can be 1 or more, 3 are used
here for illustration). An output vtu called interpolation_output.vtu will be generated that
will contain all the interpolated fields from all the vtus.

9.3.3.19 mean flow

mean flow calculates the mean of the fields in a set of vtus. It is run with python from the command
line:

mean_flow [options] vtu_basename first_id last_id

where the range of vtu files is defined by vtu_basename first_id last_id . The options in-
clude specification of an area of the domain to sample and the number of sampling planes in each
direction:

-b, --bbox xmin/xmax/ymin/ymax/zmin/zmax
bounding box of sampling window

-i, --intervals i/j/k
number of sampling planes in each direction

-v, --verbose
verbose output

The option -h provides further information on how to use these.

9.3.3.20 mms tracer error

mms tracer error evaluates the error between two fields using either an L2 or L∞ control-volume
norm. It is called from a python script e.g.:

import mms_tracer_error as error
l2_error = error.l2("MMS.vtu", "field1", "field2")
inf_error = error.inf("MMS.vtu", "field1", "field2")

where MMS.vtu is the name of the vtu and field1, field2 are two scalar fields in the vtu to be
compared.

192 Visualisation and Diagnostics

9.3.3.21 nodecount

nodecount will return the number of nodes in a list of vtus. It is run from the command line:

nodecount [vtulist]

If vtulist is not supplied it will run on any vtu in the working directory.

9.3.3.22 periodise

periodise is used to create a periodic mesh. The input to periodise is your flml (in this case
foo.flml). This flml file should already contain the mapping for the periodic boundary as de-
scribed in section 8.4.2.3. Periodise is run with the command:

<<fluidity source path>>/bin/periodise foo.flml

The output is a new flml called foo_periodised.flml and the periodic meshes. Next run flrede-
comp (section 6.6.4.1) to decompose the mesh for the number of processors required. The flml output
by flredecomp is then used to execute the actual simulation:

mpiexec -n [number of processors] \
<<fluidity source path>>/bin/fluidity [options] \
foo_periodised_flredecomp.flml

9.3.3.23 petsc readnsolve

Whenever in Fluidity a linear solve has not completed successfully the equation is dumped out in a
file called matrixdump. This file can be used to analyse the behaviour of this solve without having to
rerun the model with petsc readnsolve. It reads in the matrixdump and tries to solve it with PETSc
options set in the flml file. It is advisable to first reproduce the failing solve with the same options as
it happened in Fluidity. After that the solver options in the flml file can be changed to see if that fixes
the problem. The options under .../solver/diagnostics are particularly useful to diagnose the
problem. petsc readnsolve is run from the command line:

petsc_readnsolve FILENAME FIELDNAME [OPTIONS]

where FILENAME is the relevant flml file and FIELDNAME is the field for which the solve was failing.
The OPTIONS available are:

-l Write the information that is normally
printed in the terminal to a log file
called petsc_readnsolve.log-0.

-prns_verbosity N Determines the amount of information
that is printed to the terminal. By default
petsc_readnsolve uses the maximum verbosity
(3), this can be lowered with this option.

-prns_filename file reads from the specified file instead of
’matrixdump’

-prns_zero_init_guess no initial guess is read from matrixdump
instead the initial guess is zeroed

-prns_write_solution file writes solution vector to specified file
so that it can be used for comparison in
next runs of petsc_readnsolve (provided
we are sufficiently confident in the
accuracy of the obtained solution).

9.3 Offline diagnostics 193

-prns_read_solution file reads solution vector from the specified file,
so that exact errors can be calculated. For
small matrices a good approximation of the
exact solution can be found using a direct
method: select iterative_method "preonly"
and preconditioner "lu" in the .flml. Note
however that for ill-conditioned matrices
direct methods are very sensitive to round
off errors

-prns_scipy writes out several files that can be read in scipy.
-prns_random_rhs Instead of the rhs in the matrixdump, use a

random rhs vector.

Additionally all options that are available from the PETSc library may be added to the command
line. Options specified in the flml file always take precedence however. Some PETSc useful options:

-ksp_view Information on all the solver settings.
-mat_view_info Information on matrix size
-mat_view_draw Draw the matrix nonzero structure
-help Gives an overview of all PETSc options that can be given for

the selected solver/preconditioner combination.

Parallel

When a solve fails in a parallel run, a single matrixdump file is written. petsc readnsolve can be run
in serial on this matrixdump but owing to the usual large size of a parallel run and that the behaviour
of a solver in parallel is often different than in serial, it is generally better to run petsc readnsolve in
parallel as well. This is done by prepending mpirun -np N on the command line (where N is the
number of processes).

petsc readnsolve in parallel requires the mesh files of the same mesh as the one used by Fluidity
during the failing solve. Therefore, for adaptive runs, a checkpoint at the point of the failing solve is
required and then the checkpoint flml is used for petsc readnsolve. In most cases the mesh files are
not needed for serial runs of petsc readnsolve, even if the Fluidity run was parallel.

9.3.3.24 probe vtu

Returns the value of a field at a specified coordinate in a vtu file. probe vtu is built as part of the
fltools build target (see section 9.3.3), and is used via:

probe_vtu [-v] input_filename field_name x [y z]

where input_filename is the input vtu and field_name is the field to be probed. x, y and z are
the coordinates at which the field is to be evaluated. The -v flag enables verbose output.

9.3.3.25 project to continuous

project to continuous, given a vtu file containing fields on a discontinuous mesh and triangle files for
the corresponding continuous mesh, will produce a vtu with its fields projected onto the continuous
mesh. It is run from the command line:

project_to_continuous [OPTIONS] vtufile trianglename

where vtufile is the name of the discontinuous vtu and trianglename is the base name of the
triangle files. The flag -h prints out the help message and the flag -v enables verbose output.

194 Visualisation and Diagnostics

9.3.3.26 project vtu

project vtu performs a Galerkin projection on a given vtu file from a specified donor mesh to a target
mesh. It is run from the command line:

project_vtu [OPTIONS] input donor_basename target_basename output

where input is the name of the vtu file to be projected and donor_basename is the base name of
the triangle files defining the mesh that corresponds to the input vtu file. target_basename is the
base name of the triangle files defining the output mesh and output is the name of the output vtu
file. The flag -h prints out the help message and the flag -v enables verbose output.

9.3.3.27 pvtu2vtu

pvtu2vtu combines pvtus into vtus. It is run from the command line:

pvtu2vtu [OPTIONS] PROJECT FIRSTID [LASTID]

with PROJECT the basename of the pvtus and FIRSTID and LASTID the first and last id numbers
respectively of the pvtus to be included. LASTID is optional and defaults to FIRSTID. Running with
the option -h will give further information on the other options available. Note, this may not always
work with vtus from adaptive runs.

9.3.3.28 radial scale

radial scale takes in a list of vtu files and scales them in the radial direction. The script works given
the input vtu(s) have the ’DistanceToTop’ field (activated in diamond using the ocean boundaries
option under geometry) and are on the surface of the sphere.

It is run from the command line with:

usage: radial_scale.py [-h] [-p OUTPUT_PREFIX] [-s SCALE_FACTOR]
input_vtu [input_vtu ...]

positional arguments:
input_vtu The .vtu file(s) to be scaled.

optional arguments:
-h, --help show this help message and exit
-o OUTPUT_PREFIX The prefix of the output vtu (default behaviour replaces

the input vtu)
-s SCALE_FACTOR The scale factor (default: 10)

9.3.3.29 rename checkpoint

rename checkpoint takes a list of vtu files in the working directory produced from a serial
checkpointed flml file with names base filename checkpoint i.vtu for all i and renames them as
base filename index+i.vtu. Additionally it may take a list of vtu and pvtu files in the current di-
rectory produced from a checkpointed parallel flml file with names base filename checkpoint i j.vtu
and base filename checkpoint i.pvtu for all i (index) and j (processor number) and renames them as
base filename index+i j.vtu and base filename index+i.pvtu. It is run from the command line with:

rename_checkpoint [options] base_filename index

9.3 Offline diagnostics 195

9.3.3.30 runut

Run a specified unit test with:

runut UNIT_TEST_NAME

where UNIT_TEST_NAME is the name of the unit test.

9.3.3.31 stat2csv

stat2csv converts a Fluidity stat file into a csv file. It is run from the command line:

stat2csv [OPTIONS] PROJECT

with PROJECT the base name of the stat file. The default output is to PROJECT.csv. Running with
the option -h will provide further information on the output file name, type and format.

9.3.3.32 statplot

statplot is a graphical program for previewing files in the .stat file format. statplot can be launched
via:

statplot filename [filename2 filename3 ...]

This generates a graphical user interface displaying a plot of one statistic in the .stat file against an-
other. The ordinate and abscissa statistics can be selected via combo boxes immediately beneath the
plot. The plot itself can be navigated using the pylab navigation toolbar - see http://matplotlib.
sourceforge.net/users/navigation_toolbar.html for more complete documentation.

If multiple .stat files are supplied, the data are combined. This is useful for visualising output for
simulations that are checkpointed and resumed.

Additional keyboard commands:

Key Function
s Switch to scatter plot mode
l Switch to line plot mode
r Re-load the input file
R Re-load the input file without changing the plot bounds
q Quit
x Toggle x-axis linear / log
y Toggle y-axis linear / log

9.3.3.33 streamfunction 2d

streamfunction 2d solves the Poisson equation for the 2D streamfunction Ψ:

∇2Ψ =
∂uy
∂x
− ∂ux

∂y
, (9.1)

using a continuous Galerkin formulation. It applies the strong Dirichlet boundary condition of:

Ψ = 0 on ∂Ω, (9.2)

http://matplotlib.sourceforge.net/users/navigation_toolbar.html
http://matplotlib.sourceforge.net/users/navigation_toolbar.html

196 Visualisation and Diagnostics

Figure 9.2: Visualisation of a heat flux diagnostic in a 2D cavity convection simulation using statplot.

for all surfaces, and hence is only suitable for problems with a no normal flow boundary condition
on all surfaces.

streamfunction 2d is built as part of the fltools build target (see section 9.3.3), and is used via:

streamfunction_2d [-v] input output

where input is a vtu file containing a continuous vector field “Velocity”, and output is an output
vtu filename. The -v flag enables verbose output.

streamfunction 2d can only be used in serial.

9.3.3.34 supermesh difference

The supermesh difference tool computes the difference between two vtu files using supermesh con-
struction. supermesh difference is built as part of the fltools build target (see section 9.3.3), and is
used via:

supermesh_difference vtu_1 vtu_2 output_vtu

The output vtu (with filename output_vtu) is equal to the first vtu (with filename vtu_1) minus
the second vtu (with filename vtu_2). The -v flag enables verbose output.

Be aware that supermesh difference can generate extremely large output files, particularly in three
dimensions. supermesh difference can only be used in serial.

9.3.3.35 transform mesh

transform mesh applies a given coordinate transformation to the given mesh in triangle format. It is
run from the command line:

transform_mesh transformation mesh

9.3 Offline diagnostics 197

with mesh the base name of the triangle mesh files. A mesh.node, mesh.face and mesh.ele file are re-
quired. transformation is a python expression giving the coordinate transformation. For example
to rescale the z-dimension by a factor of 1000 run:

transform_mesh ’(x,y,1000*z)’ mesh

It can be used for 2D or 3D meshes. Note that a similar script exists to work with gmsh files (sec-
tion 9.3.3.16).

9.3.3.36 triangle2vtu

This converts triangle format files into vtu format. It is run from the command line:

triangle2vtu input

where input is the triangle file base name.

9.3.3.37 unifiedmesh

unifiedmesh dumps the supermesh constructed from two input meshes (see Farrell et al. [2009],
Farrell and Maddison [2010]) to discontinuous triangle mesh files and a vtu file. It is run from the
command line:

unifiedmesh <triangle-file-1> <triangle-file-2> <output-file-name>

No file names should have extenstions and both the triangle mesh files and the vtu file will have the
name output-file-name

9.3.3.38 update options

update options is a developer tool that bulk updates flml, bml, swml and adml files after schema
changes. It is run from the command line:

update_options [OPTIONS] [FILES]

where FILES is a list of files to be updated. If this argument is not provided all files in tests/*/.,
tests/*/*/., longtests/*/., longtests/*/*/. and examples/*/. will be updated. The flag -h prints out
the help message and the flag -v enables verbose output.

9.3.3.39 vertical integration

The vertical integration tool computes the Galerkin projection of the vertical integral of some field
onto a specified target surface mesh, via supermeshing (see Farrell et al. [2009], Farrell and Maddison
[2010]) of the source mesh with a vertical extrusion of the target mesh. This can be used to compute
vertically integrated quantities for arbitrary unstructured meshes (with no columnar vertical struc-
ture).

vertical integration is built as part of the fltools build target (see section 9.3.3), and is used via:

vertical_integration -b bottom -t top -s sizing [-d -p degree -v]
target source output

where target is the target surface mesh triangle base name, source is the source vtu, and output
is an output vtu filename.

198 Visualisation and Diagnostics

The compulsory flags -b bottom and -t top define the lower and upper bounds of the vertical
integral to be bottom and top respectively, and -s sizing sets the thickness of layers used in the
computation of the vertical integral (the thickness of the layers in the vertical extrusion of the target
mesh through the source mesh). The optional flag -p degree sets the polynomial degree of the
output integral. If -d is supplied, the integral is output on a discontinuous mesh. Otherwise, it is
output on a continuous mesh for non-zero polynomial degree, and a discontinuous mesh for a P0

output mesh. By default the output field is P1 (continuous). The -v flag enables verbose output.

vertical integration can only be used in serial.

9.3.3.40 visualise elements

visualise elements produces VTK output which approximates the shape functions of higher order
two dimensional elements which cannot be visualised directly by outputting vtu files. This is not
useful for simulation output but is very useful for producing images of shape functions for presenta-
tions and publications.

visualise elements uses Spud for options handling and is therefore driven by an xml input file rather
like that used for Fluidity. This uses its own schema so the file is edited using:

diamond -s <<fluidity source path>>/schemas/visualise_elements.rng \
<<myfile>>.xml

The program is then invoked with:

visualise_elements <<myfile>>.xml

There are two modes of operation for visualise elements. The first produces an illustra-
tion of all the basis functions for a given function space on a single element. Figure 9.3
illustrates this mode of usage. The input file used to create this figure is available at
<<fluidity source path>>/tools/data/visualise_quadratic.xml. Table 9.3 shows
the options which are relevant to this mode of operation.

Figure 9.3: Visualisation of the six basis functions of the quadratic triangle generated by visu-
alise elements.

9.3 Offline diagnostics 199

Option Meaning
/project name Base name for output files.
/geometry/element vertices 3 for triangles, 4 for quads.
/geometry/element degree Degree of elements to visualise.
/geometry/quadrature/degree Set to at least /geometry/element degree.
/geometry/visualisation degree Higher values produce smoother visualisations.
/geometry/mesh Do not enable.
/material phase Do not enable.

Table 9.3: Options relevant to the use of visualise elements to visualise the basis functions of a given
function space.

In the second mode of operation, a CoordinateMesh and a TracerMesh are speci-
fied. The /materal phase option is enabled and a prescribed tracer field is set up.
In this mode, the output is a higher order visualisation of the specified tracer field.
<<fluidity source path>>/tools/data/visualise_sin.xml is an input file for this
mode of operation which visualises a sin function using quadratic elements. In this mode of op-
eration, the /geometry/element vertices, /geometry/element degree and /geometry/
element family options are ignored in favour of the values found in the meshes. /geometry/
visualisation degree is still employed as the degree of the elements used to construct the visu-
alisation.

The output of visualise elements is two .vtu files. The one whose name commences with the project
name from the input file contains the actual rendered elements using a large number of visualisation
elements per input element. The second, with the name commencing “outline”, contains no fields
but has the original elements. The most effective visualisation mechanism is to load both files into
paraview. Set the representation of the outline field to “Wireframe” and apply the “Warp By Scalar”
filter to the visualisation field.

9.3.3.41 vtkdiagnostic

vtkdiagnostic runs diagnostics on a given vtu file. It is run from the command line:

vtkdiagnostic -i example.vtu [OPTIONS]

The OPTIONS are:
General options:

-i, --input=FILENAME
VTU file to use as input

-p, --node-positions
Print out node XYZ positions

-b, --buff-body-volume
Volume of buff body

-c, --clip <scalar name>/<scalar value>/<orientation>

-e, --element-volumes
Print out element volumes

--vtk-arrays=array1[,array2,...,arrayN]
Print out contents of specified VTK arrays
e.g. --vtk-arrays=Velocity,Temperature

-g, --debug
Print debugging information

-o, --offset <scalar name>/<offset value>

200 Visualisation and Diagnostics

-r, --radial-scaling=scale_factor
Assume spherical Earth geometry and scale the radius

-h, --help
Print this usage information

Vorticity integral diagnostic options:

-v, --vorticity-integral
Perform vorticity integral diagnostic

-2, --2d
Force treatment as a 2d problem

-d, --dump-vtu=FILENAME
Dumps a VTU file containing velocity and vorticity to FILENAME

-w, --debug-vorticity
Imposes artificial (sinusoidal) velocity field
and dumps debugging mesh to vorticityDebugMesh.vtu

9.3.3.42 vtk projection

vtk projection projects the co-ordinates of an input vtu to a specified type of output co-ordinates. It
is run from the command line:

vtk_projection[OPTIONS] -I <in-coordinates> -O <out-coordinates> infile.vtu

The OPTIONS are:

-h, --help
Print this usage information

-I, --incoords
Coordinates of input file. Valid types are:
type | description

cart | Cartesian (meters)e
spherical | Longitude/Latitude
stereo | Stereographic Projection

-O, --outcoords
Coordinates of output file. Valid types are:
type | description

cart | Cartesian (meters)
spherical | Longitude/Latitude
stereo | Stereographic Projection

-o, --output=FILENAME.vtu
File that the result is outputed to.

The default is to overwrite the input file

-v, --verbose
Be verbose

9.4 The stat file 201

9.3.3.43 vtudecomp

vtudecomp decomposes a vtu given a decomposed triangle mesh. It is run from the command line:

vtudecomp [OPTIONS] MESH VTU

with MESH the base name of the decomposed triangle mesh and VTU the name of the vtu file to be
decomposed. Running with the option -h provides further information on the other options. Note,
genpvtu, section 9.3.3.13 can be used to create a pvtu from the decomposed vtus.

9.3.3.44 vtudiff

vtudiff generates vtus with fields equal to the difference between the corresponding fields in two
input vtus (INPUT1 - INPUT2). The fields of INPUT2 are projected onto the cell points of INPUT1. It
is run from the command line:

vtudiff [OPTIONS] INPUT1 INPUT2 OUTPUT [FIRST] [LAST]

with OUTPUT the name of the output vtu. If FIRST is supplied, treats INPUT1 and INPUT2 as
project names, and generates a different vtu for the specified range of output files FIRST - LAST. If
not supplied LAST defaults to FIRST. The option -s if supplied together with FIRST and LAST,
only INPUT1 is treated as a project name. This allows a range of vtus to be diffed against a single
vtu.

9.3.3.45 vtu bins

vtu bins returns the fraction of the domain contained within given values for a given scalar field in a
vtu. vtu bins is built as part of the fltools build target (see section 9.3.3), and is used via:

vtu_bins [-v] input_filename input_fieldname BOUND1 [BOUND2 BOUND3]

where input_filename is a vtu file containing a scalar field input_fieldname, and BOUND1,
BOUND2, ... are the boundary values. The output is sent to standard output. The -v flag enables
verbose output.

If negative boundary values are required, add two “-”s before the boundary values on the command
line:

vtu_bins [-v] input_filename input_fieldname -- BOUND1 [BOUND2 BOUND3]

vtu bins requires a linear simplex mesh for the field input_fieldname.

$ vtu_bins annulus_1564.vtu Temperature 0.0 1.0
-inf - 0.00000000000000000E+000 :

0.23071069007104538E-004
0.00000000000000000E+000 - 0.10000000000000000E+001 :

0.99951353813554100E+000
0.10000000000000000E+001 - inf :

0.46339079545184387E-003

Example 9.3: Using vtu bins to compute the volume of under- and over-shoot errors in a DG annulus
simulation.

202 Visualisation and Diagnostics

9.4 The stat file

The stat file contains information about the simulation, collected at run time. These diagnostics can
be extracted from it using the stat parser, section 9.3.2 and it can be quickly and easily visualised
with statplot, section 9.3.3.32. Note, for parallel runs, unless otherwise stated the values have been
calculated in a ‘parallel-safe’ manner.

The diagnostics that are recorded in the stat file for each field are selected by the user. What is
included should be considered carefully as including a lot of information can make a notable increase
in the simulation run time. To configure the stat file locate the .../stat element for a generic
scalar field, vector field or tensor field, e.g. Figure 9.4. This contains further elements
that will allow the configuration of the stat file as outlined in table 9.4. Diagnostics that are more
involved and require a longer description are listed in table 9.4 and documented in section 9.4.3.

Figure 9.4: Example configuration of the stat file for .../vector field(Velocity).

The diagnostics will be output at every time step, from the end of the first time step onwards and,
where relevant, are output before the mesh is adapted. The following options, regarding when the
diagnostics are output, may also be chosen by activating the following elements in the Diamond file
(the names are self-explanatory):

• /io/stat/output at start

• /io/stat/output before adapts

• /io/stat/output after adapts

It is also possible to include the values from the previous time step and nonlinear iterations for a
vector field by picking the choice elements:

• .../stat/previous time step/include in stat

• .../stat/nonlinear field/include in stat

and for a scalar field by activating the elements:

9.4 The stat file 203

• .../stat/include nonlinear field

• .../stat/include previous time step

9.4.1 File format

There are two file formats used for storing data in .stat files: a plain text format and a binary format.

9.4.1.1 Plain text .stat file format

A plain text .stat file consists of two sections: an XML header section and a data section. The header
section appears at the start of the .stat file within <header> . . . </header> tags, and defines all
meta data concerning all statistics contained in the data section. The data section contains a number
of lines, with each line containing a single data point for each of the statistics defined in the header
section.

The header element contains <constant> and <field> child elements. The <constant> elements
contain data relevant to the entire simulation, such as the Fluidity version and simulation start date:

<constant name = "field_name"
type = "field_type" value = "field_value"/>

where the type attribute defines the data type (one of ”string”, ”integer” or ”float”). A plain text
.stat file defines one additional constant element:

<constant name="format" type="string" value="plain_text"/>

The <field> elements contain meta-data for statistics contained in the data section:

<field name = "field_name"
statistic = "statistic_name" column = "field_column"
[material_phase = "material_phase_name"]
[components = "field_components"]/>

For statistics of scalar, vector or tensor fields, statistic defines the statistic name for a field
name in material / phase material_phase. For other objects (such as mesh statistics) the
material_phase attribute may not be supplied. The column attribute is an integer defining the in-
dex of the first component of the field data in each line of the data section. The optional component
attribute defines the number of field components (and defaults to one if not supplied).

9.4.1.2 Binary .stat file format

The binary .stat file format contains an XML header section stored in a plain text file, and a data
section stored in binary in a separate file. The file name of the binary data file is equal to the header
file name plus an additional .dat file extension. The XML header section is identical to the plain text
XML header, except that the format constant element is replaced with:

<constant name="format" type="string" value="binary"/>

The binary .stat file format also defines two additional constant elements:

<constant name="real_size" type="integer" value="real_byte_size"/>
<constant name="integer_size" type="integer" value="integer_byte_size"/>

defining the size (in bytes) of a real and an integer in the data section.

At present the data section of binary .stat files contains only floating point data.

204 Visualisation and Diagnostics

<header>
<constant name="FluidityVersion" type="string" value="11780M" />
<constant name="CompileTime" type="string" value="Nov 25 2009 09:38:20" />
<constant name="StartTime" type="string" value="20091125 095448.326+0000" />
<constant name="HostName" type="string" value="Unknown" />
<constant name="format" type="string" value="plain_text" />
<field column="1" name="ElapsedTime" statistic="value"/>
<field column="2" name="dt" statistic="value"/>
<field column="3" name="ElapsedWallTime" statistic="value"/>
<field column="4" name="CoordinateMesh" statistic="nodes"/>
<field column="5" name="CoordinateMesh" statistic="elements"/>
<field column="6" name="CoordinateMesh" statistic="surface_elements"/>
<field column="7" name="Tracer" statistic="min" material_phase="Fluid"/>
<field column="8" name="Tracer" statistic="max" material_phase="Fluid"/>
<field column="9" name="Tracer" statistic="l2norm" material_phase="Fluid"/>
<field column="10" name="Tracer" statistic="integral" material_phase="Fluid"/>
</header>
1.0 1.0 0.108 41 40 2 0.0 0.0 0.0 0.0
2.0 1.0 0.146 41 40 2 0.0 0.0 0.0 0.0

Example 9.4: A simple plain text .stat file

9.4.2 Reading .stat files in python

A .stat file can be read into a dictionary object using the fluidity_tools python module via:

import fluidity_tools
stat = fluidity_tools.stat_parser(filename)

fluidity_tools.stat_parser reads both plain text and binary .stat file formats. For .stat files
using the binary format, filename should correspond to the XML header file.

You can find out which fields are contained in a state Fluid via:

stat["Fluid"].keys()

The “max” statistics of a field “Velocity%magnitude” in this state can be plotted via:

from matplotlib import pylab
time = stat["ElapsedTime"]["value"]
max_speed = stat["Fluid"]["Velocity%magnitude"]["max"]
pylab.plot(time, max_speed)
pylab.xlabel("Time")
pylab.ylabel("Max Speed")
pylab.show()

9.4.3 Stat file diagnostics

9.4
The

statfile
205

Name Statistic Material
phase
name

Diamond information Notes

File format information
format binary or

plain text
always included the .stat file will be in plain

text unless /io/detectors/
binary output is switched on

real size real size /io/detectors/binary output size of real
integer size integer size /io/detectors/binary output size of an integer
Mesh diagnostics e.g. /geometry/mesh::CoordinateMesh/from file
CoordinateMesh nodes .../stat/include in stat number of nodes in the mesh
CoordinateMesh elements .../stat/include in stat number of elements in the mesh
CoordinateMesh surface elements .../stat/include in stat number of surface elements in the

mesh
Machine statistics
FluidityVersion Fluidity version always included Fluidity version
CompileTime date and time always included compile date and time
StartTime date and time always included simulation start date and time
HostName hostname always included name of host machine, default

”Unknown”
Memory diagnostics - these are only included if Fluidity is configured with either - -enable-debugging or - -enable-memory-
stats. For parallel runs they are over all processors/
memory type current Memory n/a current memory usage
memory type min Memory n/a minimum memory usage during

the last time step
memory type max Memory n/a maximum memory usage during

the last time step
Time diagnostics
Elapsed time value always included current simulation time
dt value always included time step used for the previous

time step
Elapsed wall time value always included how long, in real, wall clock time

the simulation has been running
Scalar field diagnostics e.g. for /material phase::fluid/scalar field::Temperature/prognostic

206
V

isualisation
and

D
iagnostics

Temperature min fluid .../stat/include in stat minimum of the scalar field
Temperature max fluid .../stat/include in stat maximum of the scalar field
Temperature l2norm fluid .../stat/include in stat L2 norm of the scalar field over the

mesh the scalar field is on
Temperature integral fluid .../stat/include in stat integral of the field over the mesh

over the mesh the scalar field is on
Temperature cv l2norm fluid .../stat/include cv stats L2 norm of the scalar field over the

control volume dual mesh to the
mesh the scalar field is on

Temperature cv integral fluid .../stat/include cv stats integral of the field over the control
volume dual mesh to the mesh the
scalar field is on

Temperature surface integral%
name

fluid .../stat/surface integral[0] section 9.4.3.1

Temperature mixing bins fluid .../stat/
include mixing stats[0]

section 9.4.3.2

Vector field diagnostics e.g. for /material phase::fluid/vector field::Velocity/prognostic. The values of
component will range from 1 to number of dimensions. The force, pressure force and viscous force statistics have not been
rigorously tested in parallel
Velocity%magnitude min fluid .../stat/include in stat minimum of the magnitude of the

vector field
Velocity%magnitude max fluid .../stat/include in stat maximum of the magnitude of the

vector field
Velocity%magnitude l2norm fluid .../stat/include in stat L2 norm of the magnitude of the

vector field
Velocity%component min fluid .../stat/include in stat minimum of component 1 of the

vector field
Velocity%component max fluid .../stat/include in stat maximum of component 1 of the

vector field
Velocity%component l2norm fluid .../stat/include in stat L2 norm of component 1 of the vec-

tor field
Velocity%component integral fluid .../stat/include in stat integral of component 1 of the vec-

tor field over the mesh
Velocity surface integral%

name
fluid .../stat/surface integral[0] section 9.4.3.1

9.4
The

statfile
207

Velocity force fluid .../stat/
compute body forces on surfaces

this requires a list of surface ids
overwhich the total force is calcu-
lated???

Velocity pressure force fluid .../stat/
compute body forces on surfaces/
output terms

pressure force over the sur-
faces with ids given in the
attribute for .../stat/
compute body forces on surfaces
???

Velocity viscous force fluid .../stat/
compute body forces on surfaces/
output terms

outputs the viscous force over
the surfaces with ids given in
the attribute for .../stat/
compute body forces on surfaces
???

Table 9.4: Stat file diagnostics
This table contains the ‘Name’ of the diagnostic, ‘Statistic’
and ‘Material phase name’ as they will appear in the stat file,
section 9.3.2. ‘Diamond information’ contains the spud path
to locate where the option is in Diamond. Finally ‘Notes’
offers information about the diagnostic.

208 Visualisation and Diagnostics

9.4.3.1 Surface integrals

The surface integral diagnostics allow the calculation of surface integrated quantities for arbitrary
scalar or vector fields. The options can be found for any scalar or vector field at .../stat/
surface integral. All surface integral diagnostics are parallelised.

Scalar fields

There are two types of surface integrals for scalar fields, value and gradient normal. These are
selected in the type attribute of .../stat/surface integral.

The surface integral type value calculates the surface integral of the scalar field c:

∫
∂Ω
c, (9.3)

and the surface integral type gradient normal calculates surface integral of the dot product of the
gradient of the field with the surface normal:

∫
∂Ω
∇c · n. (9.4)

The gradient normal surface integral is calculated using the volume element shape function
derivatives, via:

∑
i,j

∫
∂Ω
ci
∂ϕi
∂xj

nj . (9.5)

Vector fields

There is one type of surface integral for vector fields, value. This calculates the surface integral of
the dot product of the field with the surface normal:

∫
∂Ω
v · n. (9.6)

Surface integral options

The name attribute must be set for all diagnostic surface integrals. In addition to this, surface IDs
(see section E.1.4) may be specified at .../stat/surface integral/surface ids. If specified,
the surface integral is computed over just these surfaces. If it is disabled the integral is computed
over the whole surface of the mesh. If the element .../stat/surface integral/normalise is
activated the integral is normalised by dividing by the surface area.

9.4.3.2 Mixing stats

Mixing stats calculates the volume fraction of the scalar field in a set of ‘bins’ the bounds of which
are specified by the user.

The mixing stats can be calculated using the control-volume mesh or for P1P1 using the mesh
that the scalar field is on. This is specified by setting the choice element under .../stat/
include mixing stats[0] to either continuous galerkin or control volumes. The
bin bounds must also be specified. The element .../stat/include mixing stats[0]/
mixing bin bounds requires a list of floats that are the values of the bin bounds e.g. if the list
reads 0.0 1.0 2.0 3.0 4.0 then 5 bins will be returned with (c: the scalar field):

9.4 The stat file 209

• size bin 1 = volume fraction of domain with 0.0 6 c < 1.0

• size bin 2 = volume fraction of domain with 1.0 6 c < 2.0

• . . .

• size bin 5 = volume fraction of domain with 3.0 6 c

The volume fractions can be normalised by the total volume of the domain by activating the
element .../stat/include mixing stats[0]/control volumes/normalise. The ‘toler-
ance’ beneath the bin bounds for which the scalar field should be included can be specified by
activating the element .../stat/include mixing stats[0]/control volumes/tolerance
(i.e. 1.0 − tolerance 6 c < 2.0 − tolerance). If not selected it defaults to machine tolerance
epsilon(0.0). For an example of using the mixing stats see the test case in the Fluidity trunk
.../tests/lock_exchange_2d_cg or .../tests/cv_mixing_bin_test_serial/.

9.4.4 Detectors

The detectors file contains information about the positions of the detectors which is the same for all
time steps in the case of static detectors and change at each time step for the Lagrangian detectors as
they are advected by the flow. It also contains information about the values of different flow variables
at the positions of the detectors. Both, position and variables information are collected at run time.

The user selects which field variables should be included in the detectors file by setting the cor-
responding option in Diamond. For example, if interested in the value of Temperature at the dif-
ferent detectors positions and at each time step, the option .../scalar field/prognostic/
detectors /include in detectors should be set. Only the fields of interest should be included
since extra information will make the detectors file very large and more difficult to handle. If many
detectors are present and/or information from many flow variables is required, it is recommended to
set the /io/detectors/binary output in Diamond, since an ascii file will quickly become very
large.

The information of the detectors can be extracted with stat parser and it can be visualised with stat-
plot.

The position of the detectors and value of the selected variables at those positions is saved into the
output file at every time step, starting from the end of the first time step and it is done before the
mesh is adapted.

9.4.4.1 File format

Similarly to the .stat file, the detectors file formats are ascii or plain text format and binary format.

In plain text format, the .detectors file contains first an XML header followed by a section with the
data. The header is contained within <header> . . . </header> tags and describes the content of
each column in the data section. An example of the header is presented in 9.5.

when having the /io/detectors/binary output option set in Diamond, the header is stored
in a plain text file with the .detectors extension and the data is stored in binary in another file with
.detectors.dat extension.

In order to read the .detectors files in python, the fluidity_tools python module described in
9.4.2 should be used.

import fluidity_tools
detectors = fluidity_tools.stat_parser(filename)

210 Visualisation and Diagnostics

<header>
<field column="1" name="ElapsedTime" statistic="value"/>
<field column="2" name="dt" statistic="value"/>
<field column="3" name="LAGRANGIAN_DET_000001" statistic="position"

components="3"/>
<field column="6" name="LAGRANGIAN_DET_000002" statistic="position"

components="3"/>
<field column="9" name="LAGRANGIAN_DET_000003" statistic="position"

components="3"/>
...
<field column="819348" name="Temperature"

statistic="LAGRANGIAN_DET_000001" material_phase="BoussinesqFluid"/>
<field column="819349" name="Temperature"

statistic="LAGRANGIAN_DET_000002" material_phase="BoussinesqFluid"/>
<field column="819350" name="Temperature"

statistic="LAGRANGIAN_DET_000003" material_phase="BoussinesqFluid"/>
...
<field column="983217" name="Velocity" statistic="LAGRANGIAN_DET_000001"

material_phase="BoussinesqFluid" components="3"/>
<field column="983220" name="Velocity" statistic="LAGRANGIAN_DET_000002"

material_phase="BoussinesqFluid" components="3"/>
<field column="983223" name="Velocity" statistic="LAGRANGIAN_DET_000003"

material_phase="BoussinesqFluid" components="3"/>

Example 9.5: An example of the header in .detectors file

As indicated earlier, this python module reads both plain text and binary file formats. For .detectors
files using the binary format, filename should also correspond to the XML header file.

It is possible to find out which fields are contained in a state Water with:

stat["Water"].keys()

The Temperature versus time for a particular detector can be plotted with the following python lines:

from matplotlib import pylab
time = detectors["ElapsedTime"]["value"]
Temp = detectors["Water"]["Temperature"]["LAGRANGIAN_DET_000001"]
pylab.plot(time, Temp)
pylab.xlabel("Time")
pylab.ylabel("Temperature")
pylab.show()

Chapter 10

Examples

10.1 Introduction

This chapter describes several example problems that cover the various aspects of the functionality
of Fluidity. The input files for these examples can be found in separate directories under
<<fluidity source path>>/examples/. Each directory contains a Makefile, that imple-
ments the following commands. Unless otherwise specified, the examples are run by giving these 3
commands in order.

make preprocess
Runs any preprocessing steps that are needed for this example, e.g. mesh generation and
parallel decomposition.

make run
Runs the actual example. Some examples run a series with different mesh resolution
(driven cavity, rotating channel) or Reynold’s number (flow past sphere).

make postprocess
Runs any postprocessing step that may need to be done after running fluidity. For example,
in some examples plots are created and put in the directory.

For an overview of the estimated run time - using the recommended number of pro-
cessors - for each example, see table 10.1 Some examples (backward facing step 3d,
restratification after oodc, flow past sphereRe100, flow past sphereRe1000, and
tides in the Mediterranean Sea) are set up to run in parallel. These can also be run with a
different number of processes by changing NPROCS, e.g. to run with 8 processors:

make run NPROCS=8

or run in serial with:

make run NPROCS=1

If NPROCS is not supplied an error will occur.

10.2 One dimensional advection

10.2.1 Overview

In this test example a very simple one-dimensional problem is studied: the advection of an inital
“top hat” distribution of a tracer (see figure 10.2.1). Since this test runs in a short time, it allows users

211

212 Examples

Example section Example directory n Run time
10.2 One dimensional advection top hat/ 1 2 min.
10.3 The lock-exchange lock exchange/ 1 10 min.
10.4 Lid-driven cavity driven cavity/ 1 7 hr.
10.5 2D Backward facing step (reference) backward facing step 2d/ 1 25 min.
10.5 2D Backward facing step (k-ε) backward facing step 2d/ 1 6 hr.
10.6 3D Backward facing step backward facing step 3d/ 8 5hr.
10.7 Flow past a sphere flow past a sphereRe*/ 8 9 hr.
10.8 Rotating periodic channel rotating channel/ 1 10 min.
10.9 Water column collapse water collapse/ 1 2 hr.
10.10 The restratification after OODC restratification after oodc/ 32 20 hr.
10.11 Tides in the Mediterranean Sea tides in the Mediterranean Sea/ 64 5 hr.
10.12 Hokkaido-Nansei-Oki tsunami hokkaido-nansei-oki tsunami/ 4 1.5 hr.
10.13 Tephra settling tephra settling/ 1 1 hr.
10.14 Stokes square convection stokes square convection/ 1 15 min.

Table 10.1: Estimated run times (wall time) for the examples. For parallel examples this is using the
indicated, default number of processes, n. The times are rough estimates and may vary between
different systems.

to play around with various settings, e.g. spatial discretisation options, adaptivity and interpolation
settings, etc., and quickly see the results of their changes. The challenge in this example is get an
accurate answer while keeping the solution conservative and bounded.

10.2.2 Configuration

The domain is the one-dimensional interval [0, 3]. The initial mesh with ∆x = 0.025 m is created
using the “interval” script. The initial “top hat” distribution (figure 10.2.1) is prescribed by a python
function. The advective velocity is prescribed as a constant of u = 0.01 ms−1. Output is created in
the form of a .vtu-file every second of simulation time and a .stat file. The total simulation time is
500 s. The “top-hat” does not reach the boundary in this time, so that boundary conditions play no
role in this example.

10.2.2.1 Spatial discretisation

This example provides three basic configurations, corresponding to the three main discretisation
types of the advection-diffusion equation available in fluidity:

• Continuous Galerkin (CG), section 3.2.1 This is the most basic finite-element discretisation that
is simple and fairly efficient. It is however not very good for advection problems of tracers with
sharp discontinuities. In the example configuration SUPG stabilisation is applied to improve
the results.

• Discontinuous Galerkin (DG), section 3.2.3 This is a popular method for advection problems,
in particular for non-smooth tracer solutions. To prevent under and overshoots slope limiters
may still be necessary near discontinuities, and are therefore used in this example.

• Control Volume (CV) This is a simple and efficient method, that however in some cases can be
fairly diffusive. Its accuracy is determined by the choice of interpolation at the control volume
faces - a “FiniteElement” interpolation is used here in combination with a “Sweby” slope limiter
to keep the solution bounded.

10.2 One dimensional advection 213

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ac

er

Top Hat Tracer (initial condition)

(a) Initial condition of the top hat tracer.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ac

er

Top Hat Continuous Galerkin (100s)

(b) Numerical solution using Continuous Galerkin.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ac

er

Top Hat Discontinuous Galerkin (100s)

(c) Numerical solution using Discontinuous Galerkin.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ac

er

Top Hat Control Volumes (100s)

(d) Numerical solution using Control Volumes.

Figure 10.1: Initial condition and numerical solutions after 100 s, for the 1D top hat tracer advection
problem.

214 Examples

10.2.2.2 Adaptivity and interpolation options

The mesh adaptivity procedure is guided by the metric that is based on the (interpolation) error
bounds set for the tracer field. Since at the front and back of the top hat solution the derivatives
become very large, this would lead to nearly infinite resolution at these discontinuties. A “Mini-
mumEdgeLength” therefore needs to be set, to prevent such very small elements which would pro-
duce very high CFL numbers.

This example uses “adapt at first timestep”, so that a suitably adapted mesh is used from the first
time step. The initial condition will be directly prescribed on this first adapted mesh and not inter-
polated from the user provided initial mesh.

Since we want to exactly conserve the amount of tracer in this example a Galerkin projection based
interpolation scheme is used to interpolate between subsequently adapted meshes. To keep the so-
lution bounded the “minimally dissipative” bounding procedure is used (only available for CG and
DG).

10.2.2.3 Time stepping

Although this example uses a stable implicit time integration scheme (Crank-Nicolson), it is generally
desirable for advection problems to control the CFL number. This is done via the adaptive time
stepping scheme which dynamically changes the time step based on a desired CFL number - set to
0.5 in the example configurations. Because the example uses a constant velocity, the time step is only
determined by the smallest element size which may vary due to the adaptivity process, although it
is here limited by the chosen “MinimumEdgeLength”. Since we use an adapted mesh from the first
timestep we need the option at first timestep to use a corresponding adaptive initial timestep.

10.2.3 Results

To view the results of this example in paraview, the following steps must be taken:

• Open up the series of vtus in the normal way.

• Add the Warp (scalar) filter. Choose a normal direction of 0, 1, 0 and click apply.

• To visualise the grid points: add the Glyph filter; Choose Glyph Type Sphere, select the
Edit checkbox next to Set Scale Factor and choose a value of 0.02; Click apply.

Alternatively the results can be plotted using python. An example python script using pylab and
the vtktools python module, is provided with this example. The vtktools module is located in
<<fluidity source path>>/python/; this path needs to be added to the PYTHONPATH en-
vironment variable.

As can be seen in the numerical result using the CG method leads, to over and undershoots in the
solution. The DG result seems to incur no noticeable bounds violation. The Control Volumes solution
is perfectly bounded, but rather diffusive. Note that in each of these cases the initial mesh resolution
has changed and is still focussed near the jumps in the solution.

A more precise analysis of the boundedness and conservation properties of the numerical solution,
can be derived from the data in the .stat file, which can be visualised using the statplot program (sec-
tion 9.3.3.32). As can be seen in figure 10.2.3 the tracer concentration in the CG case is not completely
conserved. The CG and CV solutions show perfect conservation (to machine precision). The min-
imum and maximum (figure 10.2.3) tracer concentration of the DG solution show the occurence of
overshoots with the same frequency as the adapts. This is caused by the fact that the Galerkin projec-
tion used to interpolate during the mesh adaptation stage is not bounded. The slope limiting applied

10.3 The lock-exchange 215

0 20 40 60 80 100 120
ElapsedTime

0.00002

0.00004

0.00006

0.00008

0.00010

Fl
ui

d%
Tr

ac
er

%
in

te
gr

al
+2.4874e 1

(a) Tracer conservation in the Continuous Galerkin solution.

0 20 40 60 80 100 120
ElapsedTime

0.99

1.00

1.01

1.02

1.03

1.04

1.05

Fl
ui

d%
Tr

ac
er

%
m

ax

(b) Maximum tracer bound in the Discontinuous Galerkin
solution.

Figure 10.2: Conservation and bounds checking using statplot.

in the DG advection algorithm however filters these overshoots out again. The Galerkin projection
used for CG and CV is combined with a bounding procedure, so that interpolation doesn’t add ad-
ditional bounds violations. In the case of CG however the numerical scheme itself is not bounded.

10.2.4 Exercises

• For the Continuous Galerkin example see what the effect is of the SUPG stabilisa-
tion by changing the option .../spatial discretisation/continuous galerkin/
stabilisation/ streamline upwind petrov galerkin to no stabilisation

• Change the resolution of the adapted meshes by changing
adaptivity options/absolute measure/scalar field::InterpolationErrorBound
under .../scalar field::Tracer/prognostic/ and see what the effect of the option
/mesh adaptivity/hr adaptivity/enable gradation is.

• A conservative and bounded CV advection scheme that is less diffusive can be achieved by
changing the following options:

– Change .../scalar field::Tracer/prognostic/spatial discretisation/
control volumes/face value::FiniteElement to face value::HyperC.

– Under .../temporal discretisation, change theta to 0.0.

– Under .../temporal discretisation/control volumes remove
number advection iterations and limit theta, and add pivot theta with a
value of 0.0.

10.3 The lock-exchange

10.3.1 Overview

The lock–exchange is a classic laboratory-scale fluid dynamics problem, [Fannelop, 1994, Huppert,
2006, Simpson, 1987]. A flat–bottomed tank is separated into two portions by a vertical barrier. One
portion, the ‘lock’, is filled with the source fluid. This is of different density to the ambient fluid
which fills the other portion. As the barrier is removed, the denser fluid collapses under the lighter.
Two gravity currents form and propagate in opposite directions, one above the other, along the tank.
After an initial acceleration, the gravity current fronts travel at a constant speed until the end walls

216 Examples

exert an influence or viscous forces begin to dominate, [Cantero et al., 2007, Härtel et al., 1999, Hup-
pert and Simpson, 1980]. At the current front a bulbous head may develop and become taller than
the trailing fluid. A shear instability can manifest at the density–interface (hereafter interface) be-
tween the two fluids, [Turner, 1973], and this leads to the formation of Kelvin–Helmholtz billows
that enhance mixing.

The lock-exchange has been the subject of many theoretical, experimental and numerical studies,
and the front speed (or Froude number) is commonly calculated, making it an excellent diagnostic
for verification of Fluidity [Benjamin, 1968, Kelmp et al., 1994, Härtel et al., 2000, e.g.]. Furthermore
the same physical processes that are encountered in gravity currents over a range of scales are incor-
porated. The lock–exchange, therefore, presents a tractable means of studying the processes involved
and contributes to our understanding of real–world flows, such as sediment–laden density currents
and oceanic overflows, and their impact.

In this example, Fluidity is used to simulate a lock–exchange and the following functionality is
demonstrated:

• 2D flow

• Non–hydrostatic flow

• Incompressible flow

• Boussinesq flow

• Mesh adaptivity

10.3.2 Configuration

The domain and physical parameters are set up after Fringer et al. [2006] and Härtel et al. [2000],
table 10.2. The domain is a 2D rectangular box, 0 6 x 6 0.8 m, 0 6 z 6 0.1 m. Initially, dense, cold
water of T = −0.5 ◦C fills one half of the domain, x < 0.4 m, and light, warm water of T = 0.5 ◦C fills
the other half, x > 0.4 m, figure 10.3. At t = 0 s, u = 0 everywhere. A no-slip boundary condition is
applied along the bottom of the domain, u = 0 at z = 0, and a free-slip boundary condition is applied
to the top of the domain and the side walls, u · n = 0 at z = 0.1 m and x = 0.0, 0.8 m.

The basic choices for the numerical set–up are outlined in table 10.3. They comprise a set of standard
options for a buoyancy–driven flow such as the lock-exchange. The mesh is adapted to both the
velocity and the temperature fields.

gravitational acceleration (ms−2) g 10
kinematic viscosity (m2s−1) ν 10−6

thermal diffusivity (m2s−1) κ 0
thermal expansion coefficient (◦C−1) α 10−3

domain height (m) H = 2h 0.1

reduced gravity (ms−2) g′ = g ρ1−ρ2

ρ0
= −gα(T1 − T2) 10−2

buoyancy velocity ub =
√
g′H

√
10−3

Grashof number Gr =
(
h
√
g′h
ν

)2
1.25× 106

Table 10.2: Physical parameters for the lock-exchange set-up.

10.3.3 Results

Note, the example is set up for a quick start. Many of these results require the simulation to be run
for a longer time.

10.3 The lock-exchange 217

Numerical component Configuration Section
Geometry from triangle file, via gmsh E.2, 6.7.2
Time step 0.025 s
Time loop 2 non-linear Picard iterations 3.3
Equation of state linear 2.3.3
Momentum and Pressure spatial discretisation P1P1 3.5, 3.6, 8.7.1.1, 8.8
Momentum temporal discretisation θ = 0.5 (Crank-Nicolson) 3.3.3, 8.7.2

non-linear relaxation term = 0.5 3.3.2
Temperature advection advection-diffusion equation 2.2

control volumes 8.7.1.2
Temperature temporal discretisation θ = 0.5 (Crank-Nicolson) 3.3.3, 8.7.2

3 advection iterations, limit theta 3.4.2

Table 10.3: Numerical configuration for the lock-exchange

The expected dynamics of a lock-exchange flow are observed, figure 10.3: two gravity currents propa-
gate in opposite directions with the foremost point of the no-slip front raised above the lower bound-
ary. Kelvin–Helmholtz billows form at the interface enhancing the mixing of the two fluids which
would not be observed with a hydrostatic formulation. The mesh adapts well, increasing the resolu-
tion around the interface and Kelvin–Helmholtz billows with anisotropic elements. Similar images
can be generated by visualising the vtu files using Paraview, see the Cook Book for more information.

Both the gravity current front speeds and the mixing are considered. First the Froude number,
Fr = U/ub, which is the ratio of front speed, U , to the buoyancy velocity, ub, table 10.2 is calcu-
lated. The speed with which the no–slip and free–slip fronts propagate along the domain, Uns and
Ufs, are calculated from the model output and are used to give the corresponding no-slip and free-
slip Froude numbers, Frns and Frfs, figure 10.4. For the basic set up given in the example the
values are comparable to but generally smaller than previously published values. Spatially varying
the horizontal velocity adaptivity settings, as suggested in the exercises, section 10.3.4, can increase
the Froude number, showing good agreement between the Fluidity values and previously published
values [Hiester et al., 2011]. Changing the metric, as suggested in the exercises, can also increase the
Froude number.

The second diagnostic is the background potential energy, which can be used to assess the mixing.
The background potential energy is the potential energy of the system reference state [Winters et al.,
1995, Winters and D’Asaro, 1996]. The reference state is obtained by adiabatically redistributing the
fluid elements into the minimum energy state and is described spatially by an isopycnal coordinate,
z∗. The background potential energy, Eb, is then calculated from

Eb =

∫
ρ(z∗)gz∗ dz∗ , (10.1)

where g is gravity and ρ the density. Most crucially, for a closed system, the background potential
energy can only be altered by diapycnal mixing and increases in the background potential energy
correspond to mixing in the system. The reference state is calculated using the method of Tseng and
Ferziger [2001] which uses a probability density function to calculate the value of z∗ associated with a
given ρ (or here temperature). Here the probability density function is obtained from a set of ‘mixing
bins’. Each mixing bin contains the fraction of fluid in the domain that has temperature within a
given range or ‘class’. A set of mixing bins, the reference state and background potential energy are
presented in figure 10.5. As the simulation progresses, the mixing and the amount of mixed fluid
increases, more rapidly at first as Kelvin–Helmholtz billows form and just after the fronts hit the end
walls. Later, as the dynamics become less turbulent and the fluid oscillates back and forth in the
tank the mixing is less vigorous. The increase in mixed fluid is compensated for by a decrease in
non–mixed fluid.

http://amcg.ese.ic.ac.uk/index.php?title=Cook_Book

218 Examples

(a) t = 0 s (b) t = 0 s

(c) t = 12.475 s (d) t = 12.475 s

(e) t = 37.475 s (f) t = 37.475 s

Figure 10.3: Lock-exchange temperature distribution (colour) with meshes, over time (t)

0 5 10 15 20 25 30 35 40 45
t (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

X
 (m

)

no-slip

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
X/H

0.0

0.1

0.2

0.3

0.4

0.5

F
r

Hartel 2000

Simpson 1979

Average Fr = 0.38
vertical lines indicate the range
over which the average is taken

no-slip

0 5 10 15 20 25 30 35 40 45
t (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

X
 (m

)

free-slip

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
X/H

0.0

0.1

0.2

0.3

0.4

0.5

F
r

Hartel 2000

Average Fr = 0.46
vertical lines indicate the range
over which the average is taken

free-slip

Front speed

Figure 10.4: Distance along the domain (X) and Froude number (Fr) for the no-slip and free-slip
fronts in the lock-exchange. The values of Härtel et al. [2000] and Simpson and Britter [1979] are
included for reference.

10.3.4 Exercises

The example settings are designed to provide a quick start for running the simulation. To explore
the diagnostics and functionality of Fluidity, the following variations on this example would be con-
structive exercises:

• Run the simulation for a longer time period by increasing the finish time to 30.0 s to look at the

10.3 The lock-exchange 219

0 50 100 150 200
t (s)

0.0

0.1

0.2

0.3

0.4

0.5
V
/
|�

|
Volume fraction

T<�0.25

�0.25<T<0.0

0.0<T<0.25

0.25<T

0 50 100 150 200
t (s)

0.00

0.02

0.04

0.06

0.08

0.10

z

�

 (m
)

From bottom to top contours correspond to values
 T=�0.5, �0.25, 0.0, 0.25, 0.5
where the values for T=�0.5 and 0.5 take the values
z �=0.0 and 0.1 respectively

Reference state

�0.4 �0.2 0.0 0.2 0.4
T (� C)

0.00

0.02

0.04

0.06

0.08

0.10

z

�

 (m
)

Reference state at t=200.0 s

0 50 100 150 200
t (s)

0.0e+00

2.0e-07

4.0e-07

6.0e-07

8.0e-07

1.0e-06

1.2e-06

1.4e-06

1.6e-06

�

E
b

Background potential energy

Mixing

Figure 10.5: Mixing diagnostics for the lock–exchange. As time progresses mixing takes place leading
to an increase in the volume fraction of mixed fluid, a spreading of the z∗ contours and an increase in
the background potential energy. From top left to bottom right: volume fraction of the domain with
fluid in the given temperature classes. The classes with ranges −0.25 < T < 0.0 and 0.0 < T < 0.25
are considered representative of the mixed fluid; evolution of contours of z∗ for different values of
temperature; snapshot of the reference state at t = 200 s; the change in the background potential
energy, ∆Eb over time.

Froude number and calculate an average value;

• Run the simulation from the checkpoint for a longer time period (until t = 200.0 s) to look at
the mixing later in the simulation, section 8.3.4.10. When running from the checkpoint don’t
forget to rename the vtus with rename checkpoint.py, table 9.2;

• In the adaptivity settings for the horizontal velocity field try using a spatially varying interpo-
lation error and compare Froude numbers (python can be found in the comment section for the
velocity adaptivity settings), section 8.18.1.2;

• In the adaptivity settings for both the velocity field and temperature field use a p–
norm with p = 2, section 8.18.1.2. Suggested values for the interpolation error are
0.00005, 0.00005 and 0.0005 for the horizontal velocity, vertical velocity and temperature fields
respectively.

• Change the frequency of the adapt, section 8.18.2;

• Turn on metric advection, sections 7.5.7 and 8.18.2.3;

220 Examples

• Change the diffusivity and viscosity values;

• Run with a fixed mesh (note this will require making a new input mesh), sections E.2, 6.7.2;

• Try adding some detectors to visualise the particle trajectories, section 9.4.4

Note to compare Froude numbers and mixing between different runs the remember to copy the
images and stat files otherwise they will be overwritten.

10.4 Lid-driven cavity

10.4.1 Overview

The lid-driven cavity is a problem that is often used as part of the verification procedure for CFD
codes. The geometry and boundary conditions are simple to prescribe and in two dimensions
there are a number of highly accurate numerical benchmark solutions available for a wide range
of Reynolds numbers [Botella and Peyret, 1998, Erturk et al., 2005, Bruneau and Saad, 2006]. Here
the two-dimensional problem at a Reynolds number of 1000 is given as an example.

10.4.2 Configuration

The problem domain is (x, y) ∈ [0, 1]2 and this is represented by an unstructured triangular mesh
of approximately uniform resolution. To enable convergence analysis a sequence of meshes are con-
sidered with spacing of h = 1/2n, n = 4, 5, 6, 7. The two-dimensional incompressible Navier-Stokes
equations are considered with unit density.

No-slip velocity boundary conditions are imposed on the boundaries x = 0, 1 and y = 0, and the
prescribed velocity u = 1, v = 0 are set on the boundary y = 1 (the ‘lid’).

Here the problem is initialised with a zero velocity field and the solution allowed to converge to
steady state via time-stepping. The steady state convergence criterion is that in the infinity norm the
velocity varies by less that 10−6 between time levels.

The time step is constant between all runs, ∆t = 0.05, and data is dumped to disk every 1.0 time
units (20 time steps). The Crank-Nicolson (θ = 0.5) discretisation is used in time. A P1P1 Galerkin
method is used for the discretisation of velocity and pressure, with no stabilisation of velocity. Based
on a domain size of L = 1.0 and a velocity scale taken from the lid (U = 1.0), to achieve a Reynolds
number of 1000 viscosity is taken to be isotropic with a value of ν = 0.001.

10.4.3 Results

Plots of the streamfunction and vorticity from the h = 1/128 simulation are shown in figure 10.6.
Observe the good qualitative agreement with [Botella and Peyret, 1998, Erturk et al., 2005, Bruneau
and Saad, 2006]. For a quantitative comparison we take advantage of the tabulated benchmark data
available in these papers. Only a subset of these are computed: the u velocity at a series of points
along the line x = 0.5 and the v velocity at a series of points along the line y = 0.5 from [Erturk
et al., 2005], the same quantities at different points along the same lines as well as the pressure along
both the x = 0.5 and y = 0.5 lines from [Botella and Peyret, 1998], and the kinetic energy and the
minimum streamfunction value from [Bruneau and Saad, 2006]. The RMS difference in the case of
the first six sets of benchmark data are taken with values extracted from the numerical solution,
and the absolute difference taken in the final two. These eight error values are defined as error1,
. . . error8 respectively and and plotted for the four mesh resolutions in figure 10.7. Second order

10.5 2D Backward facing step 221

Figure 10.6: Diagnostic fields from the lid-driven cavity problem at steady state at 1/128 resolution.
Left: the streamfunction. Right: the vorticity. The contour levels are taken from those given by Botella
and Peyret [1998] in their tables 7 and 8.

spatial convergence can clearly be seen. Note that when reproducing these results, subtle changes
to the mesh usually result in slight variations to the calculated errors and hence a different plot
to that of figure 10.7 will result. The order of convergence, however, should be the same. Adaptive
refinement is not particularly advantageous for the problem at this reasonably low Reynolds number,
but yields significant improvements in efficiency at higher Reynolds number where boundary layers
and recirculating eddies are more dynamic, anisotropic and smaller in size compared to the entire
domain.

10.4.4 Exercises

1. Examine the way that the u = 1 lid condition is applied in the flml file. Why has it not been set
as simply a constant? Try changing it to a constant and see what happens to the errors that you
achieve. [Hint: some people consider the ”regularised” lid-driven cavity problem. Try finding
some papers that discuss this, and update the boundary condition so it matches the regularised
problem. Compare to benchmark data if you can find it].

2. The references given above include data from other Reynolds numbers. Try updating the prob-
lem set-up and the post-processing script which computes the errors for a higher Reynolds
number.

3. Try switching on mesh adaptivity, see section 7.5 (you will need to ensure that you have con-
figured your Fluidity executable with --enable-2d-adaptivity). Test adapting based on
different metrics, e.g. try weighting u, v and p differently and see what meshes you get. Try
varying these weights as well as the maximum and minimum allowed element sizes to see how
they affect each other and the mesh that results. Can you get a metric that results in a lower er-
ror for the same number of nodes compared to the fixed mesh (hint: it may be easier to achieve
this at higher Reynolds numbers)?.

4. This example runs the lid-driven cavity problem with four different resolutions. On a 2.4GHz
Intel machine, the runtime for the coarse resolution setup is below 15min, the next higher res-
olution takes about 30min, then 90min and finally about 350min for the highest resolution. To
decrease the runtime for the high resolution case, try to run the it on 4 processors and check
how much the runtime decreases.

222 Examples

Figure 10.7: Convergence of the eight error metrics computed for the lid-driven cavity problem with
mesh spacing. The eight metrics are described in the text.

10.5 2D Backward facing step

10.5.1 Overview

The backward-facing step is a classical CFD example and one of the most frequently selected prob-
lems for simulating the separation and reattachment of turbulent flows. It is also often used as a test
problem for validating and benchmarking numerical codes. At high Reynolds numbers and in three
spatial dimensions the problem has substantial computing requirements, making it an ideal HPC
benchmark problem for use here. In the context of ocean modelling flow separation is important in
large scale western boundary currents such as the Gulf Stream.

The problem has several important flow characteristics, in particular the downstream length at which
the flow reattaches with the bottom of the domain. The reattachment length is considered a sensitive
measure of the quality of the numerical method. It is used here to examine the impact of the k-epsilon
turbulence model.

Results from Fluidity simulations at Reynolds number 132,000 are presented here. Numerical results
using RANS from Ilinca and Pelletier [1997] and experimental results from Kim Ilinca and Pelletier
[1997] are used for comparison.

To run the example, use the commands make preprocess TYPE=type, make run TYPE=type
and make postprocess TYPE=type, where type is one of reference or kepsilon.
reference is on a fixed mesh with no turbulence model or stabilisation. kepsilon uses the high-
Re k-epsilon turbulence model (see 4.1.1.2) on the same fixed mesh.

10.5.2 Geometry

A schematic of the domain is shown in figure 10.8. The expansion ratio is 3:2, consistent with Ilinca
and Pelletier [1997].

10.6 3D Backward facing step 223

X

0.00 5.83 11.7 17.5 23.3 29.2 35.0

3.00

2.50

2.00

1.50

1.00

0.500

0.00

Figure 10.8: Schematic of the domain for the two-dimensional flow past a backward facing step.

10.5.3 Initial and boundary conditions

The inlet velocity profile is a log profile extending reflected in the midpoint of the inlet. Below a small
distance z0 = 0.1 from the top and bottom of the inlet, the velocity is 0.

u(z) =

0.0 if z 6 1 + z0

log
(
z−1
z0

)
if 1 + z0 < z 6 2.0

log
(

3.0−z
z0

)
if 2.0 < z 6 (3.0− z0)

0.0 if 3.0− z0 < z

The log law of the wall is applied weakly on the upper and lower boundaries. This approach has
been found useful in high-Reynolds number flow, allowing coarser near-wall mesh resolution.

10.5.4 Results

Three snapshots of the velocity magnitude from the k-epsilon run atRe = 132000 are shown in figure
10.9 at 3 times during the flow’s evolution to steady-state.

Vertical profiles ofu at several points downstream of the step are shown in figure 10.10. The evolution
of the flow to the converged solution can be seen. The evolution of the reattachment length is shown
in figure 10.11.

The reattachment length was defined here to be the length (normalised by step height h = 1) from the
step at which the zero-contour of the x-component of u intersects with the bottom boundary. This
quantity was computed from u using the VTK library. For the simulation described, the reattachment
length converged to approximately 9.1 times the step height, whereas the RANS simulation of Ilinca
and Pelletier [1997] reattaches at 6.2 and Kim’s experiment at 7.0. The discrepancy may be due to the
difference in discretisation or solution procedure from Ilinca.

The solution for the k-epsilon run also contains information on the turbulent kinetic energy, turbulent
dissipation and eddy viscosity, which can be plotted in Mayavi or Paraview.

10.6 3D Backward facing step

10.6.1 Configuration

Please note, this 3D example is intended to be run in parallel (see 6.6.4), because it requires relatively
fine mesh to resolve the eddies behind the step. More information on running Fluidity in parallel is
found in 1.4.2.

The example is run in a very similar way to the other examples. To run in serial, the example is
run in exactly the same way to the other examples, using the commands make preprocess, make
run and make postprocess. To run in parallel with your chosen number of processors (np), using

224 Examples

Figure 10.9: Snapshots of the velocity magnitude from the 2D run at times 5, 10 and 50 time units
(top to bottom) from the k-epsilon run. The evolution of the dynamics to steady state can be seen, in
particular the downstream movement of the streamline reattachment point (where zero-magnitude
contour touches bottom).

0.40.20.00.20.40.60.81.00.0

0.5

1.0

1.5

2.0

2.5

3.0

z/
h

(a) x/h=1.33
9.3 secs
18.2 secs
27.2 secs
36.2 secs
45.1 secs
54.1 secs
Kim expt.
Ilinca sim.

0.40.20.00.20.40.60.81.0
Normalised U-velocity (U/Umax)

(b) x/h=2.66

0.40.20.00.20.40.60.81.0

(c) x/h=5.33

0.40.20.00.20.40.60.81.0

(d) x/h=8.0

0.40.20.00.20.40.60.81.0

(e) x/h=16.0
Evolution of U-velocity: Re=132000, kepsilon

Figure 10.10: Streamwise velocity profiles from the 2D run at x/h = 1.33, 2.66, 5.33, 8.0 and 16.0
downstream of the step, where h = 1 is the step height. The converged solution is in blue. Ilinca’s
numerical and Kim’s experimental data [Ilinca and Pelletier, 1997] are in red and black respectively.
The recirculation region is indicated by negative velocities.

10.6 3D Backward facing step 225

0 10 20 30 40 50 60 70
Time (s)

1

2

3

4

5

6

7

8

9

10

Re
at

ta
ch

m
en

t L
en

gt
h

(L
/h

)

Time series of reattachment length: Re=132000, kepsilon

Fluidity
Kim expt.
Ilinca sim.

Figure 10.11: Evolution of reattachment length in k-epsilon simulation.

the command make preprocess NPROCS=np creates a mesh and decomposes it into (np) parts,
and the command make run NPROCS=np runs Fluidity as (np) processes on (np) processors. The
command make postprocess NPROCS=np runs the parallel-specific data processing script.

The Reynolds number of this example is set deliberately low (Re=155) in order to allow convergence
to a steady state, and demonstrate the reduction in runtime obtained by running in parallel.

10.6.2 Geometry

A schematic of the domain is shown in figure 10.12. A logarithmic velocity profile is imposed at the
left hand boundary (inflow). The region directly downstream of the step is of interest in this problem.

Following Le et al. [1997] the dimensions are: Lx = 30, Li = 10, Ly = 4, h = 1, Lz = 6, so that
Lz − h = 5 and the expansion ratio is Lz/(Lz − h) = 1.2. The base of the domain is located at z = 0,
the inflow plane is given by x = −10 with the step at x = 0, and the back of the domain in the
spanwise direction is given by y = 0.

10.6.3 Initial and boundary conditions

The inflow boundary condition at x = −10 is a log profile given by

u(z) =

{
0.0 if z − h 6 z0

uτ
κ log

(
z−h
z0

)
if z0 < z − h

with parameters uτ = 0.1, z0 = 0.01 and κ = 0.41.

No-normal flow, free-stress boundary conditions are applied at the upper and lateral (spanwise)

226 Examples

U(z)
h

Lx

Ly

Lz

Lz-h

Li

Figure 10.12: Schematic of the domain for the three-dimensional flow past a backward facing step
problem.

boundaries:

w = 0,
∂u

∂z
=
∂v

∂z
= 0 — upper boundary,

v = 0,
∂u

∂z
=
∂w

∂z
= 0 — lateral boundaries.

Free-stress boundary conditions are applied at the outflow boundary boundary:

∂u

∂x
=
∂v

∂x
=
∂w

∂x
= 0.

No-slip boundary conditions are applied at the bottom of the domain and at the step down:

u = v = w = 0.

10.6.4 Results

Three snapshots of the velocity vectors are shown in figure 10.13 at times 5, 10 and 50 seconds.
Vertical profiles of u at several points downstream of the step are shown in figure 10.14, in which
the velocity data has been averaged across the span of the domain to obtain quasi-2D data. The
reattachment point is clearly between x/h = 6 and x/h = 10. In fact the flow reattaches at x/h ≈.

The postprocessing script plots graphs of the reattachment length and velocity profiles, which are
compared against the DNS data from Le et al. [1997].

A more rigorous analysis would involve repeating the experiment for a range of Reynolds num-
bers and comparing the reattachment length of multiple model runs. The Reynolds number in this
example is considerably lower than the DNS, in order to reduce simulation run time and suppress
turbulent eddies, which results in the differences seen. To get closer to the DNS, try reducing the
viscosity from 1.0e− 2 (Re=155) to 3.04e− 4 (Re=5100).

10.7 Flow past a sphere: drag calculation 227

Figure 10.13: From top to bottom: vertical plane cuts through the 3D domain showing the velocity
magnitude at times 5, 25 and 50 time units. The evolution of the dynamics to steady state can be seen,
in particular the downstream movement of the streamline reattachment point (indicated by contours
of U = 0).

0.20.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

2.5

3.0

y/
h

(a) x/h=4.0
Fluidity
Le&Moin DNS
Jovic&Driver expt

0.20.0 0.2 0.4 0.6 0.8 1.0
Normalised mean U-velocity (U/Umax)

(a) x/h=6.0

0.20.0 0.2 0.4 0.6 0.8 1.0

(a) x/h=10.0

0.20.0 0.2 0.4 0.6 0.8 1.0

(a) x/h=19.0
Evolution of U-velocity

Figure 10.14: Streamwise velocity profiles from the 3d run at x/h = 4, 6, 10 and 19 downstream of the
step, where h = 1 is the step height, at t = 5 seconds.

228 Examples

10.7 Flow past a sphere: drag calculation

10.7.1 Overview

In this validation test uniform flow past an isolated sphere is simulated and the drag on the sphere
is calculated and compared to a curve optimised to fit a large amount of experimental data.

10.7.2 Configuration

The sphere is of unit diameter centred at the origin. The entire domain is the cuboid defined by
−10 6 x 6 20, −10 6 y 6 10, −10 6 z 6 10. GiD is used to mesh the initial geometry.

The unsteady momentum equations with nonlinear advection and viscous terms along with the in-
compressibility constraint are solved. Free slip velocity boundary conditions are applied at the four
lateral boundaries, u = 1, v = w = 0 is applied at the inflow boundary x = −10, and a free stress
boundary condition applied to the outflow at x = 20.

A series of Reynolds numbers in the range Re ∈ [1, 1000] are considered. The problem is run for a
long enough period that the low Reynolds number simulations reach steady state, and the higher
Reynolds number runs long enough that a wake develops behind the sphere and boundary layers
on the sphere are formed. This is deemed sufficient for the purposes of this test; the example is
to demonstrate how such a problem would be set up, not conduct an in-depth investigation of the
physics of this problem.

Here an unstructured tetrahedral mesh is used along with mesh adaptivity. Figure 10.16 shows a
snapshot of the mesh and velocity vectors taken from a Reynolds number 1000 simulation. The
mesh can be seen to be resolving the wake and the boundary layers on the sphere with enhanced
anisotropic resolution. At higher Reynolds numbers the dynamics become more complex and if a
full numerical study was being conducted here more care would be taken in the choice of mesh
optimisation parameters and the use of averaged values from simulations allowed to run for longer
periods. The drag coefficient is calculated from

CD =
Fx

1
2ρu

2
0A
, Fx =

∫
S

(nxp− niτix) dS, (10.2)

where ρ is the density, taken here to be unity; u0 is the inflow velocity, here unity; and A is the
cross-sectional area of the sphere, here π2/4. Fx is the force exerted on the sphere in the free stream
direction; S signifies the surface of the sphere; n is the unit outward pointing normal to the sphere
(nx is the x-component and ni the ith component, here summation over repeated indices is assumed);
p is the pressure and τ is the stress tensor; see Panton [2006].

10.7.3 Results

Figure 10.15 shows streamlines close to the sphere and the surface mesh. The mesh can be seen to
be much finer on the sphere compared to the far wall seen in the background. This is emphasised
in figure 10.16 where a more detailed plot of the mesh (with half of the domain removed) over the
whole domain and close to the sphere, and the velocity vectors close to the sphere are shown.

Figure 10.17 shows a comparison between the computed drag coefficient with a correlation (to a large
amount of laboratory data) taken from Brown and Lawler [2003]:

CD =
24

Re

(
1 + 0.15Re0.681

)
+

0.407

1 + 8710
Re

. (10.3)

Excellent agreement can be seen at the range of Reynolds numbers tested in this exercise.

10.7 Flow past a sphere: drag calculation 229

Figure 10.15: Streamlines and surface mesh in the flow past the sphere example. Top-left to bottom-
right show results from Reynolds numbers Re = 1, 10, 100, 1000.

Figure 10.16: Details of the mesh and flow at Re = 1000.

230 Examples

10
0

10
2

10
4

10
−1

10
0

10
1

10
2

Reynolds number

C
D

Figure 10.17: Comparison between the numerically calculated drag coefficients (CD, circles) and the
correlation (10.3) (solid line) for Re = 1, 10, 100, 1000.

10.7.4 Exercises

1. We actually compute the (vector) force on the sphere and output this to the stat file. This
can then be converted to the drag coefficient via (10.2). Write a Python function to do this
conversion and the error from the correlation (10.3).

2. Try varying some of the discretisation and adaptivity parameters to see what the impact on the
accuracy of the calculated drag is.

3. Try changing the shape of the object, e.g. benchmark data is also available for flow past a
cylinder [Schäfer et al., 1996].

10.8 Rotating periodic channel

10.8.1 Overview

This problem provides a convergence test for the P1DGP2 element pair. Utilising almost all the terms
of the incompressible Navier-Stokes equations in two dimensions.

The domain is a unit square which is periodic in the zonal direction. The North and South boundaries
are zero slip (i.e. u = 0). The remaining parameters are as follows:

Coriolis parameter f 1
Viscosity ν 1

The flow is driven by a velocity source term:

F =

[
y3

0

]
(10.4)

So the whole system of equations becomes:

∂u

∂t
+ u

∂u

∂x
− v = −∇p+∇2u+ y3 (10.5)

∂v

∂t
+ v

∂v

∂y
+ u = −∇p+∇2v (10.6)

∇ · u = 0 (10.7)

10.8 Rotating periodic channel 231

This system has a steady solution at:

u =

[
1
20(y − y5)

0

]
(10.8)

p =
1

120
y6 − 1

40
y2 + C (10.9)

Where C is an arbitrary constant resulting from the use of Dirichlet boundary conditions on both the
domain boundaries.

10.8.2 Results

Since the maximum velocity in the domain is approximately 0.025, the Reynolds number for this
solution is much smaller than 1 so the flow is safely within the laminar regime and will remain
steady. Figure 10.18 shows the forcing term for velocity and the analytic solutions for velocity and
pressure.

0.6

u source u solution p solution
00

0
0

0.4

0.5

0.6

0.8

1

1

y

-0.01-0.020.01 0.02 0.03

Figure 10.18: Velocity forcing term and analytic solutions for velocity and pressure for the rotating
periodic channel test case. Note that each of these quantities is constant in the x direction.

The convergence test is conducted by repeating this simulation on unstructured meshes with typical
resolution 1/4, 1/8, 1/16, 1/32, 1/64. The results are then compared to the analytic solution. In the
case of pressure, the answer is translated to account for the arbitrary constant. Figure 10.19 shows
the L2 error for velocity and pressure. It is apparent that both quantities converge at second order.

10.8.2.1 Exercises

This example can be used to understand the use of analytic forcing functions in Fluidity. Try mod-
ifying the function channel_tools.forcing. The forcing function and the analytic velocity and
pressure results can be visualised by running the plot_theory script.

232 Examples

u error

p error

O(dx2)

dx
1

10−1

10−1

10−2

10−2

10−3

10−4

10−5

10−6

Figure 10.19: Error in the pressure and velocity solutions for the rotating channel as a function of
resolution.

Examine the rest of the channel_tools Python module to see how the analytic
solution is automatically calculated from the forcing function. Next, examine the
AnalyticUVelocitySolutionError and AnalyticPressureSolutionError to see how
this is used to calculate the error in the model solution. The documentation of the Python state
interface in appendix B may be useful.

10.9 Water column collapse

10.9.1 Overview

A commonly used validation experiment for multi-material models is that of a collapsing column of
liquid, normally water, within an atmosphere or vacuum [Lakehal et al., 2002], also known as the
dam break problem. In the experimental set-up a reservoir of water is held behind an impermeable
barrier separating it from the rest of the tank. The barrier is then quickly removed, allowing the water
column to collapse and flood the remaining sections of the tank. In the numerical analogue the initial
condition is generally taken as the trapped water column, still behind the dam. At the start of the
simulation the barrier is imagined to have been removed instantaneously and switching on gravity,
|g| = 9.81, causes the column to collapse. Several experimental set-ups have been published and used
as comparison and validation tools for numerical models [Martin and Moyce, 1952, Greaves, 2006].
Those with water depth gauges distributed throughout the tank are particularly useful, allowing
the direct comparison of data. Furthermore, pressure gauges located on the tank walls or on any
obstacles within the tank provide another useful validation tool.

In this example, Fluidity is used to simulate a simple dam break experiment [Zhou et al., 1999]. The
example demonstrates the following functionality:

• 2D flow

10.9 Water column collapse 233

• Multi-material flow

• Incompressible flow

• Inviscid flow

• Mesh adaptivity

• Static detectors

The simulation illustrated here took∼2 hours to run in serial on a Intel Xeon X5355 2.66 GHz proces-
sor.

10.9.2 Problem specification

The experiment on which this example is based was a simple dam break problem in a 3.22× 2× 1m
(length× height× depth) tank [Zhou et al., 1999]. A reservoir of water 1.2×0.6×1m (length× height
× depth) was held behind a barrier at one end of the tank. Water depth gauges were placed at two
points, marked H1 and H2 in Figure 10.20(a), at x1 = 2.725m and 2.228m respectively. Additionally,
a pressure gauge was located at the point marked P2 in Figure 10.20(a), at x2 = 0.16m on the wall
facing the initial water column.

As no variations were introduced in the third dimension, the experiment is reproduced here numer-
ically in two dimensions within the domain Ω: x1 ∈ [0, 3.22], x2 ∈ [0, 2] [Lee et al., 2002, Colagrossi
and Landrini, 2003, Park et al., 2009]. The two materials (water and air) are distinguished by scalar
fields αk representing their volume fraction, where the volume fraction of air α2 = 1 − α1 and α1 is
the volume fraction of water. The initial condition of the water volume fraction is shown in Figure
10.20(a). The presence of water is indicated as a blue region and the interface to air is delineated by
contours at volume fraction values of 0.025, 0.5 and 0.975. The densities of the water and air are taken
as 1, 000kgm−2 and 1kgm−2 respectively. Both fluids are treated inviscidly. As the simulation is in-
viscid, free slip boundary conditions are imposed on the tank bottom, x2 = 0, and sides, x1 = 0, 3.22.
The top of the tank, x2 = 2, is left open.

The water volume fraction, α1, is solved for using an advection equation (section 2.2). It is advected
using HyperC on a control volume mesh (section 3.2.4.1), while the velocity and pressure are discre-
tised using the P0P1CV element pair (section 3.7) with θ = 1/2 and θi = 1/2 (section 3.3.3).

This example employs an adaptive mesh (chapter 7). The minimum edge length in the mesh is con-
strained to 3.33mm. The upper bound on the edge lengths was specified as half the domain length
and height in each dimension. The water volume fraction was directly adapted to using an interpola-
tion error bound, ε̂, of 0.075. Given the range of this field seen in the fixed mesh runs this corresponds
to a desired error of less than 5%. The volume fraction is transferred between successive meshes using
a minimally diffusive bounded projection algorithm. The velocity is transferred using a straightfor-
ward projection while the pressure is consistently interpolated using the linear basis functions from
its parent mesh. For details of the remaining adaptivity settings we refer to the documented flml file.
The initial mesh using these settings is shown in Figure 10.20(b).

The timestep is selected to achieve a Courant number of 2.5 while the advection equation uses ap-
proximately 10 subcycles (section 3.4.2) so the volume fraction is advected at a Courant number of
0.25.

10.9.3 Results

Several timesteps of the example simulation can be seen in Figure 10.21 where the interface is repre-
sented by contours of the water volume fraction, α1, at 0.025, 0.5 and 0.975. Similar images can be

234 Examples

(a)

Air

x2

p = 0

2.228m 2.725m
H2 H1

x1

0.16m
P2

3.22m

2.0m

1.2m

0.6m

Water

uini = 0

u
in

i
=

0 u
i n

i
=

0

(b)

Figure 10.20: (a) Initial set-up of the water volume fraction, α1, and the velocity and pressure bound-
ary conditions for the two-dimensional water column collapse validation problem [Zhou et al., 1999].
The presence of water is indicated as a blue region and the interface to air is delineated by contours
of the volume fraction at 0.025, 0.5 and 0.975. The locations of the pressure (P2) and water depth
gauges (H1, H2) are also indicated. (b) The adapted mesh used to represent the initial conditions.

10.10 The restratification following open ocean deep convection 235

generated by visualising the vtu files using Paraview or Mayavi2, see the AMCG website for more
information.

The images show the column collapse (Figure 10.21(a)), run-up against the opposing wall (Figure
10.21(b, c)) and the subsequent overturning wave (Figure 10.21(d)) and entrainment of air bubbles
(Figure 10.21(e–h)). The evolution of the adaptive mesh over the same timesteps is shown in Figure
10.22.

For validation purposes, the post-processing script provided for this example extracts information
from the detector file (pressure) and from the water volume fraction field stored in the vtu files (water
depth) and plots these data in comparison with the experimental results. The water depth gauge data
is displayed in Figure 10.23 alongside the experimental data. The numerical results show the total
thickness of water at the points H1 and H2, discounting any air bubbles that cross the gauges. The
simulation results show a close similarity to the experimental results with the exception of a small
lip of water when the initial water head passes the gauge. It is unclear what causes this structure,
though it may be related to the initial withdrawal of the barrier in the experiment or drag effects
from the bottom of the tank. All previous published attempts to model the experiment also fail to
reproduce this initial lip [Zhou et al., 1999, Lee et al., 2002, Colagrossi and Landrini, 2003, Park et al.,
2009].

After t = 1.5s the overturning wave starts to pass the water gauges and the match between the
experimental results and the numerical simulation deteriorates. As would be expected from such
complex behaviour, all previous published attempts have also failed to reproduce the experimental
depth gauge data after this point. However, the broad pattern and average depth observed in the
simulation after t = 1.5s can be seen in Figure 10.23 to match the experiment reasonably well.

Experimental pressure gauge data are also available at the point P2, (3.22, 0.16)m, on the right wall
of the tank. This is compared to the numerical pressure results in Figure 10.24. After the initial noise
in the experimental data, a sudden step in pressure is seen as the water run-up reaches the pressure
gauge at about t = 0.6s. This is also seen in the numerical simulations however it is slightly delayed,
occurring at t = 0.7s. As upwinding is being used in the discretisation of the velocity field, the delay
may be due to numerical viscosity slowing the advancing water front. However, as the delay was not
as extreme at the depth gauges H1 and H2 other factors may also play a role. For instance, if the lip
seen in the experimental water gauge data is a head on the water front, that has not been reproduced
numerically, it may reach the height of the pressure gauge faster than a front with no head.

Once the pressure jump occurs the experimental and numerical data are in broad agreement until the
overturning wave impacts with the water layer at approximately t = 1.5s (Figure 10.21(d)). At the
point of contact a pressure pulse is transmitted to the pressure gauge resulting in a modest pressure
spike in the experimental data. This is matched by slightly delayed pressure pulses in all the numer-
ical simulation. However, the pulses seen in the numerical data are of a much larger magnitude than
the experimental data. This discrepancy may be due to the fact that in the experiment the pressure
gauge measures the pressure over a broader area than in the simulation.

10.9.4 Exercises

To explore the functionality of Fluidity, the following variations on this example would be construc-
tive learning exercises:

• Disable the adaptivity option to run on a fixed mesh

• Alter the water/air viscosity/density

• Modify the tank geometry

http://amcg-www.ese.ic.ac.uk/

236 Examples

(a) t = 0.5 (b) t = 1.0

(c) t = 1.25 (d) t = 1.5

(e) t = 1.75 (f) t = 2.0

(g) t = 2.25 (h) t = 2.5

Figure 10.21: The evolution of the water volume fraction, α1, over several timesteps. The presence of
water, α1 = 1, is indicated as a blue region and the interface to air, α1 = 0, is delineated by contours
at α1 = 0.025, 0.5 and 0.975.

10.10 The restratification following open ocean deep convection 237

(a) t = 0.5 (b) t = 1.0

(c) t = 1.25 (d) t = 1.5

(e) t = 1.75 (f) t = 2.0

(g) t = 2.25 (h) t = 2.5

Figure 10.22: The evolution of the adaptive mesh over the same timesteps displayed in Figure 10.21.
The mesh can be seen to closely follow the interface between the water and air.

238 Examples

(i) H1 (ii) H2

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

W
at

er
 D

ep
th

 (m
)

H1 water gauge at 2.725m

Experiment
Fluidity

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

W
at

er
 D

ep
th

 (m
)

H2 water gauge at 2.228m

Experiment
Fluidity

Figure 10.23: Comparison between the experimental (circles) and numerical water gauge data at H1
(i) and H2 (ii), x1 = 2.725m and 2.228m respectively. Experimental data taken from Zhou et al. [1999]
through Park et al. [2009].

10.10 The restratification following open ocean deep convection

10.10.1 Overview

During Open Ocean Deep Convection (OODC), cold water is mixed up to the surface via vigorous
convection, forming a column of dense water tens of kilometres across known as a convection chim-
ney. This happens in particular sites of the ocean, including the Labrador Sea, the Mediterranean
Sea and the Weddell Sea. In the North Atlantic, the convection typically happens in winter and is
triggered by intense cooling at the surface. The convection is important to the formation of North
Atlantic Deep Water, which joins the southward part of the Atlantic Meridional Overturning Circu-
lation (AMOC).

It is thought that OODC could be affected by future climate change. If ice caps melt or the hydrolog-
ical cycle intensifies due to climate change then there would be an influx of fresh water at the surface
of the ocean in the North Atlantic convection sites. This could lead to less NADW forming and a
slowing of the AMOC.

This example is an idealised model of the restratification phase of OODC. During restratification the
water column formed during OODC mixes back with the surroundings, forming baroclinic eddies
due to the coriolis force. The setup is taken from Rousset et al. [2009].

10.10.2 Configuration

The domain is a cylinder of diameter L = 500km and height H = 1km. The aspect ratio is given by
R = L/H = 500, which is relatively high. The initial temperature field is shown in figure 10.25. The
temperature is linearly stratified except inside the cylinder in the middle with radius 70km, which is
cooler than the surroundings.

The mesh used is a layered mesh, which is created within Fluidity from the two dimensional input
mesh, circle.geo. The unstructured triangular mesh is extruded in the vertical, forming triangular
prisms which are then divided into unstructured tetrahedra. The columnar arrangement of the nodes
is important because the problem has a large aspect ratio, and the elements themselves are wider
than they are tall. A fully unstructured mesh would create errors in the pressure, which would then
cause errors in the velocity. The layered mesh may be considered to be a special case of the two plus
one mesh, in which the nodes are still vertically aligned, but there are different mesh resolutions in

10.11 Tides in the Mediterranean Sea 239

0.0 0.5 1.0 1.5 2.0 2.5
Time (s)

2000

0

2000

4000

6000

8000

10000

12000

Pr
es

su
re

 (P
a)

P2 pressure gauge

Experiment
Fluidity

Figure 10.24: Comparison between the experimental (circles) and numerical pressure gauge data at
P2, x1 = 3.22m, x2 = 0.16m. Experimental data taken from Zhou et al. [1999] through Park et al.
[2009].

different areas of the domain. The resolution is 5 km in the horizontal and 83 m in the vertical.

A P1DGP2 element pair is used. This means that the discretisation is P1DG for velocity and P2 con-
tinuous for pressure. In this case, the temperature is P1 continuous. The benefits of P1DGP2 are
discussed in 3.7. To make it more stable, subcycling is switched on under velocity with a maximum
Courant number per subcycle of 0.1. There is a diagnostic free surface field, which requires a free
surface boundary condition under the Velocity options.

The timestep is 7200 s and there are two non-linear iterations. The timestep is constrained by the
Courant condition, but is allowed to be bigger than would otherwise be expected because an ab-
sorption field is added under the Velocity options. If this field were not added, the time steps
would be limited by the scale of the baroclinic waves. This term has a vertical component equal to
1/ρ0θ∆tg

∂ρ
∂z and the other components are zero. ρ0 is the reference density, θ is the value set under

.../Velocity/temporal discretisation/theta, ∆t is the timestep, g is the acceleration due
to gravity and ∂ρ

∂z is the background density stratification. In this case the absorption term is 0.025
in the vertical and 0.0 in the horizontal. The .../Absorption/include pressure correction
option is turned on.

10.10.3 Results

Figure 10.26 shows the temperature field for a cross section at 40 m depth at days 10, 20, 30 and 40.
As the column mixes with the surroundings, eddies form at the perimeter of the cylinder. These
eddies play a role in the mixing. If this is run with a different resolution, then a different number
of eddies may form. The mixing stats diagnostic allows us to quantify the amount of mixing that
takes place. It calculates the volume of fluid that has a value of temperature (or other tracer) within
certain user-specified bounds as a function of time, and saves this information in the stat file. Figure
10.27 shows the output from this diagnostic, plotted using the python file provided in the examples
directory. The temperature is in units from 0 to 0.72. The 0.7–0.8 bin decreases in volume during the
course of the simulation because the cold cylinder is mixing with the surrounding stratified fluid.

240 Examples

Figure 10.25: A vertical slice throught the domain showing the initial temperature stratification. The
domain is a cylinder of radius 250 km and height 1 km.

(a) 10 days (b) 20 days

(c) 30 days (d) 40 days

Figure 10.26: The temperature cross-section at a depth of 40m.

10.11 Tides in the Mediterranean Sea

10.11.1 Overview

Tidal modelling is a widely used method for validating free surface implementations [Shum et al.,
1997]. The Mediterranean Sea is a good example as it requires both astronomical and co-oscillating
boundary tide forcing to obtain an accurate solution [Tsimplis et al., 1995, Wells, 2008]. An abundance
of available tide gauge data recording the harmonic constants for both the amplitude and phase of
a wide variety of different tidal constituents facilitates comparisons between ICOM and real-world
data.

10.11 Tides in the Mediterranean Sea 241

Figure 10.27: Results of the mixing stats diagnostic, showing how the temperature is mixed during
the simulation. There is initially most water with a temperature of 0.7-0.8. This mixes during the
course of the simulation.

10.11.2 Configuration

The domain extends from 8◦W to 40◦E and from 28◦N to 48◦N with an open boundary adjacent to the
Atlantic Ocean in the west. The fixed mesh was generated using gmsh with shoreline data taken from
the intermediate resolution gshhs dataset (see http://www.ngdc.noaa.gov/mgg/shorelines/
gshhs.html). The single-element deep tetrahedal elements were then extruded in the vertical to fit
a 3 arc-minute resolution bathymetric profile subsampled from the 1 arc-minute GEBCO dataset (see
http://www.gebco.net/). A minimum depth of 3 m is set to prevent wetting-and-drying related
numerical instabilities.

The model is is driven by both astronomical and co-oscillating boundary tide forcing (see sections
2.4.4.3 and 2.4.4.2) for the four main tidal constituents; M2, S2, K1 and O1 (see Schwiderski, 1980,
Wells, 2008). Boundary tide data is sourced from the highly accurate FES2004 model [Lyard et al.,
2006] which is read in from a NetCDF file (see section8.12.4). Frictional drag is applied as a surface-
integral boundary condition to the bottom and sides and is based on a quadratic friction law of the
form−CD|u|u, whereCD is the drag coefficient, u is the velocity vector (ms-1) and |u| is the magnitude
of the velocity vector (|u| =

√
u2
c + v2

c + w2
c where uc is the x component of velocity (ms-1), vc is the

y component of velocity (ms-1) and wc is the z component of velocity (ms-1) respectively). The CD is
set 0.0025, a value considered suitable for the majority of numerical ocean tidal models [Wells, 2008].

The model outputs the harmonic constants for the amplitude and phase of each constituent as cal-
culated from a time series using the least-squares method. The timestep is 200 entries in length with
data recorded every 5 timesteps after an initial spin up period of 20 hours (simulated time). The
timestep itself is 5 minutes. The total runtime is 200 hours (simulated time).

10.11.3 Results

The harmonic amplitudes are presented as plotted scalar fields and compared with a high-resolution
2D model of Tsimplis et al. [1995] in Figure 10.28. The model results are similar to those of Tsimplis

http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html
http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html
http://www.gebco.net/

242 Examples

et al. [1995] and generally predict the correct patterns. The semidiurnal constituents give very similar
results due to their similar frequencies (Figure 10.28A - D). The amphidromic systems are correctly
located in the Sicilian Channel between Sicily and Libya and in the northern Adriatic. The degener-
ate amphidromes are also accurately positioned near the Balearic Islands and in between Crete and
Libya. The model also captures the amplification of the tidal amplitudes in both the Gulf of gables
and the northern Adriatic, a phenomena primarily due to resonance of the wave in these regions.

The amplitudes for the diurnal constituents show a similarly good match with the results of Tsimplis
et al. [1995] (Figure 10.28E - H). The lowest amplitudes occur in the eastern part of the basin and
there is pronounced amplification in the Adriatic Sea caused by this region acting as a quarter-wave
oscillator with the diurnal frequency [Wells, 2008]. The degenerate amphidrome along the Libyan
coast (around the Gulf of Sirte) is correctly predicted.

The phases as predicted by ICOM and by Tsimplis et al. [1995] are presented in Figure 10.29. These
show a general agreement with the amphidromic systems shown to be rotating in an anti-clockwise
direction; a feature brought about by Coriolis force deflecting the tidal wave to the right in the North-
ern Hemisphere. ICOM appears to slightly overpredict the wave speed in all cases; a result that could
be attributed to any number of eatures including the bathymetric/mesh resolution and/or an insuf-
ficiently low drag coefficient. Another possible source of error is that the phase of the boundary tide
and the natural mode of oscillation of the basin might not be synchronised; something that Tsimplis
et al. [1995] adjusted repeatedly until they achieved their best results.

The harmonic amplitudes are compared with data from 62 tide gauges (Figure 10.30; Tsimplis et al.,
1995, Wells, 2008). The RMS differences for ICOM are typically 2-3 times those of Tsimplis et al. [1995]
with the largest errors being for the diurnal constituents (Table 10.4). Despite these discrepancies, the
magnitudes of the RMS differences indicate a good match with the tide gauges, even in a strongly
microtidal environment such as the Mediterranean Sea.

Tidal Constituent RMS Differences
Tsimplis et al. [1995] ICOM

M2 1.37 3.2
S2 0.68 1.9
K1 0.82 1.7
O1 0.34 1.2

Table 10.4: RMS differences between modelled harmonic amplitudes and real-world data from 62
tide gauges. Data is presented from Tsimplis et al. [1995] and ICOM.

The quality of the match is further highlighted in scatter diagrams plotting the harmonic amplitudes
from ICOM at each gauge location against the tide gauge data (Figure 10.31). These reveal how
although ICOM tends to marginally overpredict the amplitude there is a strong positive correlation
closely delineating y = x.

10.12 Hokkaido-Nansei-Oki tsunami

10.12.1 Overview

This example demonstrates the capabilities of simulating wetting and drying processes in Fluidity.
The event of interest is the Okushiri tsunami in 1993 caused by the Hokkaido Nansei-Oki earthquake
offshore of southwestern Hokkaido Island, Japan. This earthquake reached a magnitude of 7.8 (Mw)
and the resulting tsunami hit a sparsely populated part of the Okushiri island, Japan with a runup
height of up to 30m.

To investigate the danger of such events, the Research Institute for Electric Power Industry (CRIEPI)
in Abiko, Japan constructed a 1/400 laboratory model of the area around the island Liu [2008]. The

10.12 Hokkaido-Nansei-Oki tsunami 243

35°

40°

N

N

N

10°E0° 20°E 30°E

30°N

35°N 35

40°N

45°N 45

30

10.0

7.55.0

5.0

5.0

5.0

5.0
5.0

7.5

7.5

7.5

7.5
7.5

7.5

2.5

2.5

2.5

2.5

2.5

10.0

20.0

30.0

20.0

10.0

15.0

30.0

50.0

2.5

10.0

0° 10°E 20°E 30°E

Tsimplis et al. (1995)

N

10°E0° 20°E 30°E

30°N

35°N 35

40°N 40

45°N 45

30

2.0
1.02.0

1.0

3.0
2.0

2.0
2.0

4.0

6.0

2.0

8.010.0
15.0

18.0

4.0

4.0

4.0

3.0

0° 10°E 20°E 30°E

Tsimplis et al. (1995)

N

10°E0° 20°E 30°E

30°N

35°N 35

40°N 40

45°N 45

30

2.0

2.5 2.0

1.5

1.5

1.0

1.0

1.0

6.0

4.0
3.0

2.0
1.5

0.5

1.0
1.5

0° 10°E 20°E 30°E

Tsimplis et al. (1995)

M2 Harmonic Amplitude (cm)
0.0 6.0 12.0 18.0 24.0 30.0

S2 Harmonic Amplitude (cm)
0.0 6.0 12.0 18.0 24.0 30.0

M2 Harmonic Amplitude (cm)

S2 Harmonic Amplitude (cm)

N

10°E0° 20°E 30°E

30°N

35

40

45°N 45

30

15.0

10.0 2.5

5.0

5.0

2.5

2.5

2.5

2.5

7.5

5.0

5.0

10.0

20.0

35.0
2.5

5.0

5.0

7.5

0° 10°E 20°E 30°E

Tsimplis et al. (1995)

K1 Harmonic Amplitude (cm)

O1 Harmonic Amplitude (cm)

0.0 3.0 6.0 9.0 12.0 15.0
K1 Harmonic Amplitude (cm)

0.0 2.0 4.0 6.0 8.0 10.0
O1 Harmonic Amplitude (cm)

A

C

G

E

B

D

F

H

5.0

5.0

7.5

2.5

7.5

12.5

2.5

10.0

10.0

15.0

5.0

12.5

10.0

2.5

2.5

2.5

2.5

5.0

5.0
5.0

5.0

7.5
2.5

1.0

2.0 3.0

2.0

4.0

4.0

4.0

0.5

0.5 1.0 1.5 2.0

2.5 2.0

1.5

Figure 10.28: Plots of the tidal harmonic amplitudes in the Mediterranean Sea from ICOM and the
high resolution model of Tsimplis et al. [1995].

following configuration simulates this laboratory setup and uses the experimental measurements to
benchmark Fluidity.

Fluidity features used in this example:

244 Examples

35°N

45°N

30°N

N

10°E0° 20°E 30°E

35°N

40°N

45°N

30°N

0

210

180
90

60

90
60

30

30 0
270 240

60 0

60

60

90240

0

0

270

240

90

0° 10°E 20°E 30°E

Tsimplis et al. (1995)

35°N

40°N

45°N

30°N

N

10°E0° 20°E 30°E

35°N

40°N

45°N

30°N

30 0

270

240
0

60

60

6090

30

270

600

270

240

240

180

90

0

240

120

0° 10°E 20°E 30°E

Tsimplis et al. (1995)

35°N

40°N

45°N

30°N

N

10°E0° 20°E 30°E

35°N

40°N

45°N

30°N

180

180

180

180

90

30

60

30

30

0300

270

60

60

0

330

330

300

270

0° 10°E 20°E 30°E

Tsimplis et al. (1995)

35°N

40°N

45°N

30°N

N

10°E0° 20°E 30°E

35°N

40°N

45°N

30°N

270300

300
0

60

30

30

90

60

90

120

120

0° 10°E 20°E 30°E

Tsimplis et al. (1995)

M2 Phase
0.0 60.0 120.0 180.0 240.0 300.0 360.0

S2 Phase
0.0 60.0 120.0 180.0 240.0 300.0 360.0

S2 Phase

K1 Phase
0.0 60.0 120.0 180.0 240.0 300.0 360.0

K1 Phase

O1 Phase
0.0 60.0 120.0 180.0 240.0 300.0 360.0

O1 Phase

3300
120

300

270

120

90

90

300
300

90 270
120

90

330

150

30

120

120
270

240

300

270

60

90

120

A B

C D

E F

G H

M2 Phase

Figure 10.29: Plots of the tidal harmonic phases in the Mediterranean Sea from ICOM and the high
resolution model of Tsimplis et al. [1995].

• Free surface with wetting and drying, see 8.12.3.7.

• Detectors, see 8.3.4.12.

10.12.2 Configuration

The simulation configuration resembles the experimental setup as closely as possible. The considered
domain is a basin with walls on each side except the left where the water level is enforced. The basin
measures 5.448m× 3.402m and the bathymetry and coastal topography correspond to measurement
data, see Figure 10.32. Three surface elevation gauge stations were deployed in the experiment.
Detectors extract the surface elevation information at every timestep.

10.12 Hokkaido-Nansei-Oki tsunami 245

N

10°E

10°E

0°

0°

20°E

20°E

30°E

30°E

30°N

35°N 35°N

40°N 40°N

45°N 45°N

30°N

1.
2.

3.

4.

5.
6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

51.

52.

53.

54.

55.

30.

31.

32.

33.

34.

35.

36.

37. 38.

39.
40.

41.

42.

43.

44.

45.

46.

47. 48.

49.

50.

56.

57.
58.

59. 60.

61.

62.

21. Venice
22. Lambedusa
23. Mazzara del Vallo
24. SG (linosa)
25. Tripoli
26. Palermo
27. Ancona
28 .P. Empedocle
29. Trieste
30. Ischia

1. Gibraltar
2. Malaga
3. B. Hoceima
4. Almeria
5. Alicante
6. Palma
7. Banyuls
8. Marseille
9. Skikda
10. Porto Maurizio

41. Split
42. Taranto
43. Brindisi
44. Otranto
45. Bar
46. Lefkas
47. Katakolo
48. Kalamata
49. Thessaloniki
50. Tobruch

LEGEND
11. Carloforte
12. Genova
13. Cagliari
14. La Spezia
15. Gabes
16. Livorno
17. Sfax
18. Zarzis
19. Civitavecchia
20. Pantelleria

31. Napoli
32. Ortona
33. Malta
34. Bakar
35. Lipari
36. Capo Passero
37. Milazzo
38. Reggio Calabria
39. Santadrea Island
40. Vieste

51. Souda
52. Syros
53. Iraklion
54. Alexandroupolis
55. Portobardia
56. Chios
57. Leros
58. Rodos
59. Alexandria
60. Port Said

61. Kyrenia
62. Famagusta

Figure 10.30: Locations of 62 tide gauges in the Mediterranean Sea. Modified from Wells [2008] with
data originally taken from Tsimplis et al. [1995].

246 Examples

Figure 10.31: Scatter diagrams plotting harmonic amplitudes from ICOM at each gauge location
against tide gauge data.

The mesh used for the simulation is a single layer horizontally unstructured mesh consisting of
19, 506 tetrahedral elements with increased resolution near the inundation areas. The equations are
solved with the P1 − P1 finite element pair, a backward Euler time discretisation with a time-step
of 0.1s. The wetting and drying algorithm in Fluidity requires the user to set a minimal water level
thickness, which is here set to d0 = 0.5mm. If the water surface reaches that level at a point, this point
is defined to be dry. The isotropic kinematic viscosity and gravity magnitude are set to 0.01m2s−1

and 9.81ms−2, respectively. On the left boundary the tsunami wave shown in 10.32 is prescribed and
no-normal flow boundary conditions are applied at the other sides of the domain and the bottom
to resemble the solid boundaries in the experiment. In addition, a Manning-Strickler drag is used
at the bottom with n = 0.002sm−

1
3 . To prevent wave breaking in the simulation, this coefficient is

increased to 0.2sm−
1
3 in a rectangular area with a side length of 0.5m centred at (3.4m, 1.7m) (which

is the centre of the island in the domain) and a fourth order stabilization is applied to prevent wave
breaking.

10.12.3 Results

The result of this example is shown in Figure 10.33. The plot shows the surface elevation measure-
ments at the three gauge stations of the laboratory experiment compared to the values from the
simulation.

10.12 Hokkaido-Nansei-Oki tsunami 247

Figure 10.32: The bathymetry and the three gauge stations used for the Hokkaido-Nansei-Oki
tsunami example.

Figure 10.33: The input wave elevation of the Okushiri tsunami test case (a) and the numerical and
experimental results at “Gauge 1” (top), “Gauge 2” (middle) and “Gauge 3” (bottom) (b).

248 Examples

10.12.4 Exercises

1. Add more detectors to the simulation.

2. Increase the wetting and drying threshold parameter. Which effects does it have to the result?

3. Change the viscosity parameter. Does it make a difference to the inundation of the tsunami
event?

10.13 Tephra settling

10.13.1 Overview

In this example, Fluidity is used to replicate a laboratory experiment of tephra (fine volcanic ash
particles) settling through a tank of water [Carey, 1997]. The Carey [1997] experiments introduced
tephra particles into a 0.3 × 0.3 × 0.7 m tank, filled with water, from above using a delivery system
and a particle disperser. The particles settled through the air in the tank at an approximately constant
rate until they landed in the water and began to settle through the water at a much reduced velocity.
While the particles in the water were sufficiently dispersed their settling velocity was that predicted
by Stokes’ flow (a few mm/s). However, the build-up of particles caused by the air-water interface
eventually created a layer of particles and water with a bulk density so great, relative to the density
of the particle-poor water beneath, as to be gravitationally unstable and promote the formation of a
vertical gravity current (plumes). The settling velocity of these plumes of particles and water was
observed to be an order of magnitude greater than the Stokes settling velocity of the individual
particles.

In the Fluidity simulations, rather than represent each tephra particle individually using a multi-
material approach (which would be prohibitively expensive), a “dispersed multiphase” approach is
adopted (see 2.4.6), in which one phase represents the water in the tank and the other phase rep-
resents all the particles dispersed within the water. Similar to the water column collapse example
(10.9), a volume fraction field is used to distinguish between the continuous phase (water) and the
dispersed phase (particles). In an element the volume fraction of particles represents the fraction of
the element volume that is occupied by particles, which is typically very small. In contrast to the
multimaterial approach, however, the multiphase approach assigns each phase a separate velocity,
allowing the dispersed phase (particles) to move through the continuous phase (water). In this exam-
ple, the dispersed phase is more dense than the continuous phase and so sinks under the influence
of gravity.

The simulation replicates one of the Carey [1997] experiments (with a characteristic particle size of
48 µm) by considering a constant influx of the particle phase into a 2D tank of water. The simulation
results can be compared to the experiment in terms of the conditions under which plumes of tephra
particles form as well as the settling velocities of the individual particles and plumes. The example
demonstrates the following functionality:

• 2D flow

• Multi-phase flow

• Incompressible flow

• Adaptive timestepping

The simulation illustrated here took ∼1 hour to run in serial on an Intel Xeon E5430 2.66 GHz pro-
cessor.

10.13 Tephra settling 249

10.13.2 Problem specification

The simulation uses a 0.3 x 0.7 metre domain, replicating the cross-section of the water tank used in
the experiments, with an initial characteristic element size of 0.01 metres. No normal flow boundary
conditions are weakly imposed along with a zero velocity initial condition. The parameters for den-
sity, viscosity, particle diameter and gravity are ρp = 2340 kgm−3, ρl = 1000 kgm−3, µl = 0.001 Pa · s,
d = 48 × 10−6 m, and g = 9.8 ms−2 respectively (with the subscripts p and l denoting the properties
of the particle/tephra and liquid phase).

The influx of particles from the air above is simulated using a flux boundary condition at the top of
the domain. This allows tephra to flux in at a rate of 0.472 gm−2s−1. The results of the experiments
showed that tephra particles initially settled individually at a Stokes velocity of 0.17 cms−1. When
the concentration was high enough, plumes formed and descended to the bottom of the tank with
velocities more than ten times greater than those of individual particles.

10.13.3 Results

Several timesteps of the example simulation can be seen in Figure 10.34. These images can be gener-
ated by visualising the vtu files using Paraview. Better resolved plumes can be produced by using a
smaller characteristic element size (e.g. ∆x = 0.0025 m, shown in Figure 10.35).

Figure 10.34: Tephra (particle) phase volume fraction at time t = 10, 30, 50, 80, 110 seconds. These im-
ages are from a lower-resolution version of the tephra settling example problem, with a characteristic
element size of ∆x = 0.01 m.

250 Examples

Figure 10.35: Tephra (particle) phase volume fraction at time t = 10, 30, 50, 80, 110 seconds. The onset
of plumes is between 10 and 30 seconds. Note that these images are from a high-resolution version
of the tephra settling example problem, with a characteristic element size of ∆x = 0.0025 m.

Figure 10.36 (reproducible by typing make postprocess at the command line) illustrates how the tephra
particles initially settle at approximately 0.17 cms−1, as predicted by Stokes’ law. As more tephra
fluxes in, the layer becomes unstable and plumes begin to form, resulting in settling velocities over
10 times greater than that of an individual particle.

0 50 100 150 200 250
Time (s)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

M
ax

im
um

 te
ph

ra
 v

el
oc

ity
 (m

/s
)

Numerical results

Figure 10.36: Maximum velocity of the tephra phase against time.

10.14 Stokes Square Convection 251

10.13.4 Exercises

To explore the multiphase functionality of Fluidity, the following variations on this example would
be constructive learning exercises:

• Decrease the characteristic element size to better resolve the plume behaviour

• Alter the particle size to observe its affect on plume formation

• Add a second dispersed phase (with a different particle size).

10.14 Stokes Square Convection

10.14.1 Overview

In this example we compare the numerical predictions of Fluidity with a well–established two–
dimensional cartesian geometry benchmark result for Stokes flow [Blankenbach et al., 1989]. Flu-
idity’s results from this, and similar cases, are published in Davies et al. [2011], where solution strate-
gies employed for solving the Stokes system are also discussed.

10.14.2 Problem Specification

The specific example considered is steady–state isoviscous convection at a Rayleigh number (Ra) of
105, in a two–dimensional square domain of unit dimensions. Boundary conditions for temperature
are T = 0 at the surface, T = 1 at the base, with insulating (homogeneous Neumann) side–walls. For
velocity, free–slip and no normal flow boundary conditions are specified at all boundaries.

The example incorporates two cases, on uniform, structured meshes, where the domain is subdivided
into 24×24 and 48×48 elements, respectively (excluding mesh resolution, each case is identical). For
direct comparison with the benchmark solutions, we calculate the Nusselt Number (Nu) and RMS
velocity (VRMS), once a steady–state has been achieved (the variation in the infinity–norm of the
velocity and temperature fields is< 5×10−5, between consecutive time–steps). The Nusselt Number
is defined as:

Nu = −zmax

∫
z=zmax

∑
i ni∂iT∫

z=0 T
, (10.10)

where T is temperature, zmax is the maximum z coordinate of the domain,
∫
z=zmax

denotes the integral
over the top surface of the domain and

∫
z=0 denotes the integral over the bottom surface of the

domain. The RMS velocity is given by:

VRMS =

√
1

V

∫ ∑
i

u2
i . (10.11)

Here, ui is the velocity vector, whilst V denotes the domain volume.

252 Examples

Figure 10.37: Steady–state temperature field from an isoviscous Stokes simulation at Ra = 1 × 105,
on a uniform structured mesh of 48× 48 elements. Contours are spaced at intervals of 0.1.

10.14.3 Results

Results are presented in Figures 10.37 and 10.38. The final steady–state solution consists of one con-
vective cell, with hot upwelling flow confined to the left hand side of the domain and cold down-
welling flow on the right hand side. Note that, excluding the location of upwelling flow at x = 0
or x = 1, results are insensitive to the initial condition. Quantitatively, results show excellent agree-
ment with the benchmark predictions of Blankenbach et al. [1989], with solution accuracy improving
with increased resolution, as expected. A higher resolution case (at a resolution of 96× 96 elements),
achieves results that are almost identical to the benchmark solution.

10.14.4 Exercises

To explore the Stokes functionality of Fluidity, the following variations on this example would be
constructive learning exercises:

• Verify that results do indeed converge towards the benchmark values at higher resolution.

• Alter the initial condition for temperature to verify that, excluding the location of upwelling
flow at x = 0 or x = 1, results are insensitive to this initial condition.

• Change the Rayleigh number to Ra = 1 × 104 and compare your results to Case 1b from
Blankenbach et al. [1989].

10.14 Stokes Square Convection 253

Figure 10.38: Results from 2-D, isoviscous Stokes square convection benchmark cases: (a) Nusselt
number vs. number of triangle vertices, at Ra = 1 × 105 [case 1b: Blankenbach et al., 1989], for
a series of uniform, structured meshes. Filled circles reporesent the example cases at a resolution
of 24 × 24 and 48 × 48 elements respectively. The open circle represents the result from a case at
96 × 96 elements, to illustrate that as mesh resolution is increased, solutions converge towards the
benchmark values; (b) RMS velocity vs. number of triangle vertices, at Ra = 1 × 105. Benchmark
values are denoted by horizontal dashed lines. Note that the highest resolution case is not included
in the example.

254 Examples

Bibliography

M. T. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Element Analysis. Wiley, New
York, 2000. ISBN 978-0-471-29411-5. URL http://eu.wiley.com/WileyCDA/WileyTitle/
productCd-047129411X.html. 103

F. Alauzet, P. L. George, B. Mohammadi, P. J. Frey, and H. Borouchaki. Transient fixed point-based
unstructured mesh adaptation. International Journal for Numerical Methods in Fluids, 43(6-7):729–745,
2003. doi: 10.1002/fld.548. 110

F. Alauzet, A. Loseille, A. Dervieux, and P. Frey. Multi-dimensional continuous metric for mesh
adaptation. In P. P. Pébay, editor, Proceedings of the 15th International Meshing Roundtable, pages
191–214, Birmingham, Alabama, 2006. Springer. doi: 10.1007/978-3-540-34958-7 12. 106

F. Alauzet, S. Borel-Sandou, L. Daumas, A. Dervieux, Q. Dinh, S. Kleinveld, A. Loseille, Y. Mesri, and
G. Rogé. Multi-model and multi-scale optimization strategies. Application to sonic boom reduc-
tion. European Journal of Computational Mechanics, 17(1-2):191–214, 2008. doi: 10.3166/remn.17.245-
269. 106, 109

D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini. Unified analysis of discontinuous Galerkin
methods for elliptic problems. SIAM J. Numer. Anal., 39(5):1749–1779, 2002. 43, 45

I. Babuška and W. C. Rheinboldt. Error estimates for adaptive finite element computations. SIAM
Journal on Numerical Analysis, 15(4):736–754, 1978a. doi: 10.1137/0715049. 103

I. Babuška and W. C. Rheinboldt. A-posteriori error estimates for the finite element method.
International Journal for Numerical Methods in Engineering, 12(10):1597–1615, 1978b. doi:
10.1002/nme.1620121010. 103

I. Babuška and M. Suri. The p and h-p versions of the Finite Element method, basic principles and
properties. SIAM Review, 36(4):578, 1994. doi: 10.1137/1036141. 103

W. Bangerth and R. Rannacher. Adaptive finite element techniques for the acoustic wave equation.
Journal of Computational Acoustics, 9(2):575–591, 2001. doi: 10.1142/S0218396X01000668. 110

W. Bangerth and R. Rannacher. Adaptive finite element methods for differential equations. ETH Zürich
Lectures in Mathematics. Birkhäuser, 2003. ISBN 3764370092. 103

J Bardina, J Ferziger, and W Reynolds. Improved subgrid scale models for Large Eddy Simulations.
AIAA paper 80-1357, 1980. 83

F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for the numerical
solution of the compressible navier-stokes equations. J. Comput. Phys., 131:267–279, 1997. 45, 55

G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 1967. 13, 16, 18, 21,
23

Z. P. Bažant. Spurious reflection of elastic waves in nonuniform finite element grids. Computer Meth-
ods in Applied Mechanics and Engineering, 16(1):91–100, 1978. doi: 10.1016/0045-7825(78)90035-X.
110

255

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-047129411X.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-047129411X.html
http://dx.doi.org/10.1002/fld.548
http://dx.doi.org/10.1007/978-3-540-34958-7_12
http://dx.doi.org/10.3166/remn.17.245-269
http://dx.doi.org/10.3166/remn.17.245-269
http://dx.doi.org/10.1137/0715049
http://dx.doi.org/10.1002/nme.1620121010
http://dx.doi.org/10.1137/1036141
http://dx.doi.org/10.1142/S0218396X01000668
http://dx.doi.org/10.1016/0045-7825(78)90035-X

256 Bibliography

Y. Bazilevs, C. Michler, V.M. Calo, and T.J.R. Hughes. Weak Dirichlet boundary condi-
tions for wall-bounded turbulent flows. Computer Methods in Applied Mechanics and En-
gineering, 196(49-52):4853 – 4862, 2007. ISSN 0045-7825. doi: 10.1016/j.cma.2007.06.026.
URL http://www.sciencedirect.com/science/article/B6V29-4PCPFD2-1/2/
aeb31fb110ba0801dae355107802d59a. 146

R. Becker and R. Rannacher. An optimal control approach to a posteriori error estimation in finite
element methods. Acta Numerica, 10:1–102, 2001. doi: 10.1017/S0962492901000010. 103

T. Brooke Benjamin. Gravity currents and related phenomena. Journal of Fluid Mechanics, 31(2):209–
248, 1968. 216

J. H. T. Bentham. Microscale Modelling of Air Flow and Pollutant Dispersion in the Urban Environment.
PhD thesis, Imperial College London, 2003. 82, 84, 142

M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. Journal of
Computational Physics, 82(1):64–84, 1989. doi: 10.1016/0021-9991(89)90035-1. 103

B. Blankenbach, F. Busse, U. Christensen, L. Cserepes, D. Gunkel, U. Hansen, H. Harder, G. Jarvis,
M. Koch, G. Marquart, D. Moore, P. Olson, H. Schmeling, and T. Schnaubelt. A benchmark com-
parison for mantle convection codes. Geophysical Journal International, 98(1):23–38, 1989. doi:
10.1111/j.1365-246X.1989.tb05511.x. xviii, 251, 252, 253

Alan F. Blumberg, Boris Galperin, and Donald J. O’Connor. Modeling vertical structure of open-
channel flows. Journal of Hydraulic Engineering, 118(8):1119–1134, 1992. doi: 10.1061/(ASCE)0733-
9429(1992)118:8(1119). 75

H. Borouchaki, F. Hecht, and P. J. Frey. Mesh gradation control. International Jour-
nal for Numerical Methods in Engineering, 43(6):1143–1165, 1998. doi: 10.1002/(SICI)1097-
0207(19981130)43:6¡1143::AID-NME470¿3.0.CO;2-I. 110

O. Botella and R. Peyret. Benchmark spectral results on the lid-driven cavity flow. Computers & Fluids,
27(4):421–433, 1998. xvii, 220, 221

T. Boyer, S. Levitus, H. Garcia, R.A. Locarnini, C. Stephens, and J. Antonov. Objective analyses
of annual, seasonal, and monthly temperature and salinity for the world ocean on a 0.25◦ grid.
International Journal of Climatology, 25(7):931–945, 2005. doi: 10.1002/joc.1173. 186

A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection
dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Com-
put. Methods Appl. Mech. Eng., 32:199–259, 1982. 34, 35, 36

P. P. Brown and D. F. Lawler. Sphere drag and settling velocity revisited. Journal of Environmental
Engineering, 129(3):222–231, 2003. 228

C. H. Bruneau and M. Saad. The 2D lid-driven cavity problem revisited. Computers and Fluids, 35(3):
326–348, 2006. 220

C. J. Budd, W. Huang, and R. D. Russell. Adaptivity with moving grids. Acta Numerica, 18:111–241,
2009. doi: 10.1017/S0962492906400015. 103

H. Burchard, K. Bolding, and M. R. Villarreal. GOTM – a general ocean turbulence model. theory,
applications and test cases. Technical Report EUR 18745, European Commission Rep, 1999. 76

Hans Burchard. On the q2l equation by mellor and yamada (1982). Journal of Physical Oceanography,
31(5):1377–1387, 2001. 75

Hans Burchard, Ole Petersen, and Tom P. Rippeth. Comparing the performance of the mellor-yamada
and the k-ε two-equation turbulence models. J. Geophys. Res., 103(C5):10543–10554, 1998. ISSN
0148-0227. doi: 10.1029/98JC00261. 75

http://dx.doi.org/10.1016/j.cma.2007.06.026
http://www.sciencedirect.com/science/article/B6V29-4PCPFD2-1/2/aeb31fb110ba0801dae355107802d59a
http://www.sciencedirect.com/science/article/B6V29-4PCPFD2-1/2/aeb31fb110ba0801dae355107802d59a
http://dx.doi.org/10.1017/S0962492901000010
http://dx.doi.org/10.1016/0021-9991(89)90035-1
http://dx.doi.org/10.1111/j.1365-246X.1989.tb05511.x
http://dx.doi.org/10.1061/(ASCE)0733-9429(1992)118:8(1119)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1992)118:8(1119)
http://dx.doi.org/10.1002/(SICI)1097-0207(19981130)43:6<1143::AID-NME470>3.0.CO;2-I
http://dx.doi.org/10.1002/(SICI)1097-0207(19981130)43:6<1143::AID-NME470>3.0.CO;2-I
http://dx.doi.org/10.1002/joc.1173
http://dx.doi.org/10.1017/S0962492906400015
http://dx.doi.org/10.1029/98JC00261

257

A.S. Candy. Subgrid Scale Modelling of Transport Processes. PhD thesis, Imperial College London, 2008.
82

M. I. Cantero, J. R. Lee, S. Balachandar, and M. H. Garcia. On the front velocity of gravity currents.
jfm, 586:1–39, 2007. doi: 10.1017/S0022112007005769. 216

V Canuto and Y Cheng. Determination of the smagorinski-lilly constant cs. Physics of Fluids, 9(5):
1368–1378, 1997. 82

V. M. Canuto, A. Howard, Y. Cheng, and M. S. Dubovikov. Ocean turbulence. part i: One-point
closure model – momentum and heat vertical diffusivities. Journal of Physical Oceanography, 31(6):
1413–1426, 2001. 75

S. Carey. Influence of convective sedimentation on the formation of widespread tephra fall layers in
the deep sea. Geology, 25(9):839–842, 1997. 248

M. J. Castro-Dı́az, F. Hecht, B. Mohammadi, and O. Pironneau. Anisotropic unstructured mesh adap-
tation for flow simulations. International Journal for Numerical Methods in Fluids, 25(4):475–491, 1997.
doi: 10.1002/(SICI)1097-0363(19970830)25:4¡475::AID-FLD575¿3.0.CO;2-6. 109

Long Chen, Pengtao Sun, and Jinchao Xu. Optimal anisotropic meshes for minimizing interpolation
errors in Lp–norm. Mathematics of Computation, 76:179–204, 2007. doi: 10.1090/S0025-5718-06-
01896-5. 109

P. G. Ciarlet and J. L. Lions. Handbook of Numerical Analysis Volume 7. Elsevier, 2000. 55

B. Cockburn and C.-W. Shu. The local discontinuous Galerkin method for time-dependent
convection-diffusion systems. SIAM J. Numer. Anal., 35:2440–2463, 1998. 44

B. Cockburn and C-W. Shu. Runge-Kutta Discontinuous Galerkin Methods for Convection-
Dominated Problems. Journal of Scientific Computing, 16(3):173–261, 2001. 41, 42

A. Colagrossi and M. Landrini. Numerical simulation of interfacial flows by smoothed par-
ticle hydrodynamics. Journal of Computational Physics, 191(2):448–475, 2003. ISSN 0021-
9991. doi: 10.1016/S0021-9991(03)00324-3. URL http://www.sciencedirect.com/science/
article/B6WHY-49CMJ22-1/2/9d25ed6668fde488a2f4429e97411815. 233, 235

G. Compère, J. F. Remacle, J. Jansson, and J. Hoffman. A mesh adaptation framework for dealing with
large deforming meshes. International Journal for Numerical Methods in Engineering, 82(7):843–867,
2010. doi: 10.1002/nme.2788. 107

G. Coppola, S. J. Sherwin, and J.Peiro. Nonlinear particle tracking for high-order elements. Journal of
Computational Physics, 172:356–386, 2001. doi: doi:10.1006/jcph.2001.6829. 70

C. J. Cotter, D. A. Ham, and C. C. Pain. A mixed discontinuous/continuous finite element pair for
shallow-water ocean modelling. Ocean Modelling, 26:86–90, 2009. 62, 64

F. Courty, D. Leservoisier, P.-L. George, and A. Dervieux. Continuous metrics and mesh adaptation.
Applied Numerical Mathematics, 56(2):117–145, 2006. doi: 10.1016/j.apnum.2005.03.001. 106

C.T. Crowe, M. Sommerfeld, and Y. Tsuji. Multiphase Flows with Droplets and Particles. CRC Press,
1998. 27

B. Cushman-Roisin. Introduction to Geophysical Fluid Dynamics. Prentice Hall, New Jersey, USA, 1994.
13, 21, 22

D. R. Davies, C. R. Wilson, and S. C. Kramer. Fluidity: A fully unstructured anisotropic adap-
tive mesh computational modelling framework for geodynamics. Geochem. Geophys. Geosyst., 12:
Q06001, 2011. doi: 10.1029/2011GC003551. 251

http://dx.doi.org/10.1017/S0022112007005769
http://dx.doi.org/10.1002/(SICI)1097-0363(19970830)25:4<475::AID-FLD575>3.0.CO;2-6
http://dx.doi.org/10.1090/S0025-5718-06-01896-5
http://dx.doi.org/10.1090/S0025-5718-06-01896-5
http://dx.doi.org/10.1016/S0021-9991(03)00324-3
http://www.sciencedirect.com/science/article/B6WHY-49CMJ22-1/2/9d25ed6668fde488a2f4429e97411815
http://www.sciencedirect.com/science/article/B6WHY-49CMJ22-1/2/9d25ed6668fde488a2f4429e97411815
http://dx.doi.org/10.1002/nme.2788
http://dx.doi.org/doi:10.1006/jcph.2001.6829
http://dx.doi.org/10.1016/j.apnum.2005.03.001
http://dx.doi.org/10.1029/2011GC003551

258 Bibliography

James Deardorff. A numerical study of three-dimesional turbulent channel flow at large Reynolds
numbers. J. Fluid Mech., 41:453–480, 1970. 81

James Deardorff. On the magnitude of the subgrid scale eddy coefficient. J. Comp. Phys., 7:120–133,
1971. 82

B. Després and F. Lagoutière. Contact discontinuity capturing schemes for linear advection and
compressible gas dynamics. Journal of Scientific Computing, 16(4):479–524, December 2001. doi:
10.1023/A:1013298408777. URL http://dx.doi.org/10.1023/A:1013298408777. 51

Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson, and Courtenay Vaughan. Zoltan
data management services for parallel dynamic applications. Computing in Science and Engineering,
4(2):90–97, 2002. 113

J. Donea and A. Huerta. Finite Element Methods for Flow Problems. John Wiley & Sons, 2003. 34, 35, 36

H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast iterative solvers: with applications
in incompressible fluid dynamics. Oxford University Press, USA, 2005. 31, 32

S. Ergun. Fluid flow through packed columns. Chemical Engineering Progress, 48(2):89–94, 1952. 163,
164

E. Erturk, T. C. Corke, and C. Gokcol. Numerical solutions of 2-d steady incompressible driven cavity
ow at high Reynolds numbers. International Journal for Numerical Methods in Fluids, 48(7):747–774,
2005. 220

C. W. Fairall, E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson. Bulk parameterization of airsea
fluxes: Updates and verification for the coare algorithm. Journal of Climate, 16(4):571–591, 2003. doi:
10.1175/1520-0442(2003)016¡0571:BPOASF¿2.0.CO;2. 25, 148

T. K. Fannelop. Fluid Mechanics for Industrial Safety and Environmental Protection. Elsevier Science Ltd,
1994. 215

P. E. Farrell. Galerkin projection of discrete fields via supermesh construction. PhD thesis, Imperial College
London, 2009. 106

P. E. Farrell and J. R. Maddison. Conservative interpolation between volume meshes by lo-
cal Galerkin projection. Computer Methods in Applied Mechanics and Engineering, 2010. doi:
10.1016/j.cma.2010.07.015. 156, 197

P. E. Farrell and J. R. Maddison. Conservative interpolation between volume meshes by local Galerkin
projection. Computer Methods in Applied Mechanics and Engineering, 200(1-4):89–100, 2011. doi:
10.1016/j.cma.2010.07.015. 112

P. E. Farrell, M. D. Piggott, C. C. Pain, G. J Gorman, and C. R. Wilson. Conservative interpolation
between unstructured meshes via supermesh construction. Computer Methods in Applied Mechanics
and Engineering, 198(33-36):2632–2642, 2009. doi: 10.1016/j.cma.2009.03.004. 112, 113, 156, 197

P. J. Frey. Generation and adaptation of computational surface meshes from discrete anatomical data.
International Journal for Numerical Methods in Engineering, 60(6):1049–1074, 2004. 110

O. B. Fringer, M. Gerritsen, and R. L. Street. An unstructured-grid, finite-volume, nonhy-
drostatic, parallel coastal ocean simulator. Ocean Modelling, 14(3-4):139–173, 2006. doi:
10.1016/j.ocemod.2006.03.006. 216

S.W. Funke, C.C. Pain, S.C. Kramer, and M.D. Piggott. A wetting and drying algorithm with a com-
bined pressure/free-surface formulation for non-hydrostatic models. Advances in Water Resources,
2011. ISSN 0309-1708. doi: 10.1016/j.advwatres.2011.08.007. 20

http://dx.doi.org/10.1023/A:1013298408777
http://dx.doi.org/10.1023/A:1013298408777
http://dx.doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2
http://dx.doi.org/10.1016/j.cma.2010.07.015
http://dx.doi.org/10.1016/j.cma.2010.07.015
http://dx.doi.org/10.1016/j.cma.2009.03.004
http://dx.doi.org/10.1016/j.ocemod.2006.03.006
http://dx.doi.org/10.1016/j.advwatres.2011.08.007

259

P. L. George and H. Borouchaki. Delaunay Triangulation and Meshing: Application to Finite Elements.
Hermes, 1998. 106, 112

Massimo Germano. Turbulence: the filtering approach. J. Fluid Mech., 238:325–336, 1992. 81, 84

Massimo Germano, Ugo Piomelli, Parviz Moin, and William H. Cabot. A dynamic subgrid-scale
eddy viscosity model. Physics of Fluids, 3(7):1760–1765, 1991. ISSN 08998213. doi: 10.1063/1.857955.
82, 83, 84

C. Geuzaine, B. Meys, F. Henrotte, P. Dular, and W. Legros. A Galerkin projection method for mixed
finite elements. IEEE Transactions on Magnetics, 35(3):1438–1441, 1999. doi: 10.1109/20.767236. 112

M. M. Gibson and B. E. Launder. Ground effects on pressure fluctuations in the atmo-
spheric boundary layer. Journal of Fluid Mechanics Digital Archive, 86(03):491–511, 1978. doi:
10.1017/S0022112078001251. 75

A.E. Gill. Atmosphere-ocean dynamics. Academic press, 1982. 21

Jeffrey Grandy. Conservative remapping and region overlays by intersecting arbitrary polyhe-
dra. Journal of Computational Physics, 148(2):433 – 466, 1999. ISSN 0021-9991. doi: DOI:
10.1006/jcph.1998.6125. 156

Donald D. Gray. The validity of the boussinesq approximation for liquids and gases. International
Journal of Heat and Mass Transfer, 19(5):545 – 551, 1976. doi: doi:10.1016/0017-9310(76)90168-X. 25

D. M. Greaves. Simulation of viscous water column collapse using adapting hierarchical grids. In-
ternational Journal for Numerical Methods in Fluids, 50(6):693–711, 2006. doi: 10.1002/fld.1073. URL
http://dx.doi.org/10.1002/fld.1073. 232

P. M. Gresho and S. T. Chan. Solving the incompressible navier-stokes equations using consistent
mass and a pressure poisson equation. ASME Symposium on recent development in CFD, Chicago 95,
pages 51 – 73, 1988. 31, 61, 63

P. M. Gresho and R. Sani. On pressure boundary conditions for the incompressible Navier-Stokes
equations. Int. J. Numer. Methods Fluids, 7:1111–1145, 1987. 135

D. J. Gunn. Transfer of heat or mass to particles in fixed and fluidised beds. International Journal of
Heat and Mass Transfer, 21(4):467–476, 1978. 164

D. A. Ham, P. E. Farrell, G. J. Gorman, J. R. Maddison, C. R. Wilson, S. C. Kramer, J. Shipton, G. S.
Collins, C. J. Cotter, and M. D. Piggott. Spud 1.0: generalising and automating the user interfaces
of scientific computer models. Geoscientific Model Development, 2(1):33–42, 2009. doi: 10.5194/gmd-
2-33-2009. 115

C. Härtel, E. Meiburg, and F. Necker. Vorticity dynamics during the start-up phase of gravity currents.
Societá Italiana di Fisica, 22(6):823–833, 1999. 216

C. Härtel, E. Meiburg, and F.r Necker. Analysis and direct numerical simulation of the flow at a
gravity-current head. part 1. flow topology and front speed for slip and no-slip boundaries. Journal
of Fluid Mechanics, 418:189–212, 2000. xvii, 216, 218

O. Hassan, E. J. Probert, and K. Morgan. Unstructured mesh procedures for the simulation of
three-dimensional transient compressible inviscid flows with moving boundary components. In-
ternational Journal for Numerical Methods in Fluids, 27(1-4):41–55, 1998. doi: 10.1002/(SICI)1097-
0363(199801)27:1/4¡41::AID-FLD649¿3.0.CO;2-5. 106

H. R. Hiester, M. D. Piggott, and P. A. Allison. The impact of mesh adaptivity on the gravity cur-
rent front speed in a two–dimensional lock–exchange. Ocean Modelling, 38(1–2):1–21, 2011. doi:
10.1016/j.ocemod.2011.01.003. 114, 217

http://dx.doi.org/10.1063/1.857955
http://dx.doi.org/10.1109/20.767236
http://dx.doi.org/10.1017/S0022112078001251
http://dx.doi.org/DOI: 10.1006/jcph.1998.6125
http://dx.doi.org/DOI: 10.1006/jcph.1998.6125
http://dx.doi.org/doi:10.1016/0017-9310(76)90168-X
http://dx.doi.org/10.1002/fld.1073
http://dx.doi.org/10.1002/fld.1073
http://dx.doi.org/10.5194/gmd-2-33-2009
http://dx.doi.org/10.5194/gmd-2-33-2009
http://dx.doi.org/10.1002/(SICI)1097-0363(199801)27:1/4<41::AID-FLD649>3.0.CO;2-5
http://dx.doi.org/10.1002/(SICI)1097-0363(199801)27:1/4<41::AID-FLD649>3.0.CO;2-5
http://dx.doi.org/10.1016/j.ocemod.2011.01.003

260 Bibliography

B. P. Hignett, A. A. White, R. D. Carter, W. D. N. Jackson, and R. M. Small. A comparison of labo-
ratory measurements and numerical simulations of baroclinic wave flows in a rotating cylindrical
annulus. Quarterly Journal of the Royal Meteorological Society, 111(463), 1985. 178

P. Houston and E. Süli. hp-Adaptive discontinuous Galerkin finite element methods for first-
order hyperbolic problems. SIAM Journal on Scientific Computing, 23(4):1226–1252, 2001. doi:
10.1137/S1064827500378799. 103

T. J. R. Hughes. Recent progress in the development and understanding of SUPG methods with
special reference to the compressible Euler and Navier-Stokes equations. International Journal for
Numerical Methods in Fluids, 7(11):1261–1275, 1987. 34, 35

H. E. Huppert. Gravity currents: a personal perspective. Journal of Fluid Mechanics, 554:299–322, 2006.
215

H. E. Huppert and J. E. Simpson. The slumping of gravity currents. Journal of Fluid Mechanics, 99(4):
785–799, 1980. 216

F. Ilinca and D. Pelletier. An adaptive finite element method for a two- equation turbulence model in
wall-bounded flows. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 24:
101–120, 1997. xvii, 222, 223, 224

The femtools manual. Imperial College London, 2009. 105

M. Ishii. Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, 1975. 27

N. Jarrin, S. Benhamadouche, D. Laurence, and R. Prosser. A synthetic-eddy-method for generating
inflow conditions for large-eddy simulations. International Journal of Heat and Fluid Flow, 27:585–
593, 2006. 147

A. Jenkins and A. Bombosch. Modeling the effects of frazil ice crystals on the dynamics and thermo-
dynamics of ice shelf water plumes. J. Geophys. Res, 100:6967–6981, 1995. 85

L. H. Kantha and C. A. Clayson. Numerical Models of Oceans and Oceanic Processes. Academic Press,
International Geophysics Series, San Diego, 2000. 26

Lakshmi H. Kantha and Carol Anne Clayson. An improved mixed layer model for geophysical
applications. Journal of Geophysical Research, 99(C12):25235–25266, 1994. doi: 10.1029/94JC02257.
75

A. Birol Kara, Harley E. Hurlburt, and Alan J. Wallcraft. Stability-dependent exchange coeffi-
cients for airsea fluxes*. Journal of Atmospheric and Oceanic Technology, 22(7):1080–1094, 2005. doi:
10.1175/JTECH1747.1. 25, 148

J. B. Kelmp, R. Rotunno, and W. C. Skamarock. On the dynamics of gravity currents in a channel.
Journal of Fluid Mechanics Digital Archive, 269:169–198, 1994. doi: 10.1017/S0022112094001527.
URL http://journals.cambridge.org/action/displayAbstract?fromPage=
online&aid=352578&fulltextType=RA&fileId=S0022112094001527. 216

P. M. Knupp. Algebraic mesh quality metrics for unstructured initial meshes. Finite Elements in
Analysis and Design, 39(3):207–216, 2003. 106

Stephan C. Kramer, Colin J. Cotter, and Christopher C. Pain. Solving the poisson equation on
small aspect ratio domains using unstructured meshes. Ocean Modelling, 35(3):253–263, 2010. doi:
10.1016/j.pepi.2012.01.001. 69

Stephan C. Kramer, Cian R. Wilson, and D. Rhodri Davies. An implicit free surface algorithm
for geodynamical simulations. Physics of the Earth and Planetary Interiors, 194:25–37, 2012. doi:
10.1016/j.ocemod.2010.08.001. 66

http://dx.doi.org/10.1137/S1064827500378799
http://dx.doi.org/10.1029/94JC02257
http://dx.doi.org/10.1175/JTECH1747.1
http://dx.doi.org/10.1017/S0022112094001527
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=352578&fulltextType=RA&fileId=S0022112094001527
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=352578&fulltextType=RA&fileId=S0022112094001527
http://dx.doi.org/10.1016/j.pepi.2012.01.001
http://dx.doi.org/10.1016/j.ocemod.2010.08.001

261

D. Kuzmin. A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin meth-
ods. J. Comp. and App. Math., 233(12):3077–3085, 2010. 41

D. Lakehal, M. Meier, and M. Fulgosi. Interface tracking towards the direct simulation of heat and mass
transfer in multiphase flows, volume 23. Elsevier Science Inc, 2002. 232

LD Landau and EM Lifshitz. Fluid mechanics. Volume 6 of Course of Theoretical Physics. Transl. from the
Russian by JB Sykes and WH Reid. Oxford, 1987. 13

W. Large and S. Yeager. Diurnal to decadal global forcing for ocean and seaice models: the data sets
and climatologies. Technical report, NCAR Technical Report TN-460+ST, 2004. 25, 147

P. Laug and H. Borouchaki. Molecular surface modeling and meshing. Engineering with Computers,
18(3):199–210, 2002. 110

H. Le, P. Moin, and J. Kim. Direct numerical simulation of turbulent flow over a backward-facing
step. J. Fluid Mech., 330:349–374, 1997. 225, 226

P. D. Ledger, K. Morgan, J. Peraire, O. Hassan, and N. P. Weatherill. The development of an hp-
adaptive finite element procedure for electromagnetic scattering problems. Finite Elements in Anal-
ysis and Design, 39(8):751–764, 2003. doi: 10.1016/S0168-874X(03)00057-X. 14th Robert J. Melosh
Competition. 103

C. K. Lee. Automatic metric 3D surface mesh generation using subdivision surface geometrical
model. Part II: Mesh generation algorithm and examples. International Journal for Numerical Methods
in Engineering, 56:1615–1646, 2003. 110

T.-H. Lee, Z. Zhou, and Y. Cao. Numerical simulations of hydraulic jumps in water sloshing and
water impacting. Journal of Fluids Engineering, 124(1):215–226, 2002. doi: 10.1115/1.1436097. URL
http://link.aip.org/link/?JFG/124/215/1. 233, 235

B. P. Leonard. The ULTIMATE conservative difference scheme applied to unsteady one-dimensional
advection. Computer Methods in Applied Mechanics and Engineering, 88(1):17–74, June 1991. ISSN
0045-7825. doi: 10.1016/0045-7825(91)90232-U. URL http://www.sciencedirect.com/
science/article/B6V29-48050F8-X/2/7bd4f5a59bfe567b5bdb9b36bd1898a1. 50, 51

R. J. LeVeque. Finite-volume methods for hyperbolic problems. Cambridge University Press, Cambridge,
2002. 49, 58

X. Li, M. S. Shephard, and M. W. Beall. 3D anisotropic mesh adaptation by mesh modifi-
cation. Computer Methods in Applied Mechanics and Engineering, 194:4915–4950, 2005. doi:
10.1016/j.cma.2004.11.019. 107

D. K. Lilly. A proposed modification of the germano subgrid-scale closure method. Physics of Fluids
A, 4(3):633–635, 1992. ISSN 08998213. doi: 10.1063/1.858280. 84

P.L.F. Liu. Advanced numerical models for simulating tsunami waves and runup, volume 10. World Scien-
tific Pub Co Inc, 2008. 242

R. Löhner. Robust, vectorized search algorithms for interpolation on unstructured grids. Journal of
Computational Physics, 118(2):380–387, 1995. doi: 10.1006/jcph.1995.1107. 112

R. Löhner. Extensions and improvements of the advancing front grid generation technique. Com-
munications in Numerical Methods in Engineering, 12(10):683–702, 1996. doi: 10.1002/(SICI)1099-
0887(199610)12:10¡683::AID-CNM983¿3.0.CO;2-1. 110

Adrien Loseille and Frédéric Alauzet. Continuous Mesh Framework Part I: Well–Posed Con-
tinuous Interpolation Error. SIAM Journal on Numerical Analysis, 49(1):38–60, 2011a. doi:
10.1137/090754078. 106

http://dx.doi.org/10.1016/S0168-874X(03)00057-X
http://dx.doi.org/10.1115/1.1436097
http://link.aip.org/link/?JFG/124/215/1
http://dx.doi.org/10.1016/0045-7825(91)90232-U
http://www.sciencedirect.com/science/article/B6V29-48050F8-X/2/7bd4f5a59bfe567b5bdb9b36bd1898a1
http://www.sciencedirect.com/science/article/B6V29-48050F8-X/2/7bd4f5a59bfe567b5bdb9b36bd1898a1
http://dx.doi.org/10.1016/j.cma.2004.11.019
http://dx.doi.org/10.1063/1.858280
http://dx.doi.org/10.1006/jcph.1995.1107
http://dx.doi.org/10.1002/(SICI)1099-0887(199610)12:10<683::AID-CNM983>3.0.CO;2-1
http://dx.doi.org/10.1002/(SICI)1099-0887(199610)12:10<683::AID-CNM983>3.0.CO;2-1
http://dx.doi.org/10.1137/090754078

262 Bibliography

Adrien Loseille and Frédéric Alauzet. Continuous Mesh Framework Part II:Validations and Appli-
cations. SIAM Journal on Numerical Analysis, 49(1):61–86, 2011b. doi: 10.1137/10078654X. 106,
109

A. E. H. Love. The yielding of the Earth to disturbing forces. Proceedings of the Royal Society of London.
Series A, Containing Papers of a Mathematical and Physical Character, 82(551):73–88, 1909. 26

F. Lyard, F. Lefevre, T. Letellier, and O. Francis. Modelling the global ocean tides: Modern insights
from FES2004. Ocean Dynamics, 56:394–415, 2006. 241

J. C. Martin and W. J. Moyce. Part IV. an experimental study of the collapse of liquid columns on a
rigid horizontal plane. Philosophical Transactions of the Royal Society of London. Series A, Mathematical
and Physical Sciences, 244(882):312–324, 1952. ISSN 00804614. URL http://www.jstor.org/
stable/91519. 232

Trevor J. McDougall, David R. Jackett, Daniel G. Wright, and Rainer Feistel. Accurate and compu-
tationally efficient algorithms for potential temperature and density of seawater. Journal of Atmo-
spheric and Oceanic Technology, 20(5):730–741, 2003. 19, 139

M.G. McPhee. Air-Ice-Ocean Interaction. Springer, 2008. 85

G. L. Mellor. Introduction to Physical Oceanography. Springer-Verlag, New York, 1996. 26

George L. Mellor and Tetsuji Yamada. Development of a turbulence closure model for geo-
physical fluid problems. Reviews of Geophysics, 20(4):851–875, 1982. ISSN 8755-1209. doi:
10.1029/RG020i004p00851. 74

S. Micheletti and S. Perotto. Reliability and efficiency of an anisotropic Zienkiewicz–Zhu error esti-
mator. Computer Methods in Applied Mechanics and Engineering, 195(9-12):799–835, 2006. 106

F Nicoud and F. Durcos. Subgrid-scale stress modelling based on the square of the velocity gradient
tensor. Flow, Turbulence and Combustion, 3:183–200, 1999. 82, 83

S. J. Owen and S. Saigal. Surface mesh sizing control. International Journal for Numerical Meth-
ods in Engineering, 47(497):511, 2000. doi: 10.1002/(SICI)1097-0207(20000110/30)47:1/3¡497::AID-
NME781¿3.0.CO;2-H. 110

C. C. Pain, A. P. Umpleby, C. R. E. de Oliveira, and A. J. H. Goddard. Tetrahedral mesh optimisation
and adaptivity for steady-state and transient finite element calculations. Computer Methods in Ap-
plied Mechanics and Engineering, 190(29-30):3771–3796, 2001. doi: 10.1016/S0045-7825(00)00294-2.
82, 106, 107

R.L. Panton. Incompressible flow. Wiley India Pvt. Ltd., 2006. 18, 228

G. Parent, P. Dular, J. P. Ducreux, and F. Piriou. Using a Galerkin projection method for coupled
problems. IEEE Transactions on Magnetics, 44(6):830–833, 2008. doi: 10.1109/TMAG.2008.915798.
112

I. R. Park, K. S. Kim, J. Kim, and S. H. Van. A volume-of-fluid method for incompressible free surface
flows. International Journal for Numerical Methods in Fluids, 2009. doi: 10.1002/fld.2000. URL http:
//dx.doi.org/10.1002/fld.2000. xviii, 233, 235, 238, 239

J. Peraire and P. O. Persson. The Compact Discontinuous Galerkin (CDG) Method For Elliptic Prob-
lems. Siam J. Sci. Comput., 30(4):1806–1824, 2008. doi: 10.1137/070685518. 45, 134

J. Peraire, M. Vahdati, K. Morgan, and O.C Zienkiewicz. Adaptive remeshing for compressible
flow computations. Journal of Computational Physics, 72(2):449–466, 1987. doi: 10.1016/0021-
9991(87)90093-3. 106

http://dx.doi.org/10.1137/10078654X
http://www.jstor.org/stable/91519
http://www.jstor.org/stable/91519
http://dx.doi.org/10.1029/RG020i004p00851
http://dx.doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<497::AID-NME781>3.0.CO;2-H
http://dx.doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<497::AID-NME781>3.0.CO;2-H
http://dx.doi.org/10.1016/S0045-7825(00)00294-2
http://dx.doi.org/10.1109/TMAG.2008.915798
http://dx.doi.org/10.1002/fld.2000
http://dx.doi.org/10.1002/fld.2000
http://dx.doi.org/10.1002/fld.2000
http://dx.doi.org/10.1137/070685518
http://dx.doi.org/10.1016/0021-9991(87)90093-3
http://dx.doi.org/10.1016/0021-9991(87)90093-3

263

J. Peraire, J. Peiró, and K. Morgan. Finite element multigrid solution of Euler flows past installed
aero-engines. Computational Mechanics, 11(5):433–451, 1993. doi: 10.1007/BF00350098. 112

P.-O. Persson. Mesh size functions for implicit geometries and PDE-based gradient limiting. Engi-
neering with Computers, 22(2):95–109, 2006. doi: 10.1007/s00366-006-0014-1. 110

M. D. Piggott, P. E. Farrell, C. R. Wilson, G. J. Gorman, and C. C. Pain. Anisotropic mesh adaptivity for
multi-scale ocean modelling. Philosophical Transactions of the Royal Society A, 367(1907):4591–4611,
2009. doi: 10.1098/rsta.2009.0155. 107

Ugo Piomelli, Thomas Zang, Speziale Charles, and Yousuff Hussaini. On the large-eddy simulation
of transitiona wall-bounded flows. Physics of Fluids A, 2:257–265, 1990. 83

Stephen B. Pope. Turbulent Flows. Cambridge University Press, 2000. 81, 83, 84

E. E. Popova, A. C. Coward, G. A. Nurser, B. de Cuevas, M. J. R. Fasham, and T. R. Anderson. Mech-
anisms controlling primary and new production in a global ecosystem model – part i: Validation
of the biological simulation. Ocean Science, 2(2):249–266, 2006. doi: 10.5194/os-2-249-2006. 89

A. Prosperetti and G. Tryggvason. Computational Methods for Multiphase Flow. Cambridge University
Press, 2007. 27

D. T. Pugh. Tides, Surges and Mean Sea-Level: A Handbook for Engineers and Scientists. Wiley, Chichester,
1987. 26

W. H. Raymond and A. Garder. Selective damping in a Galerkin method for solving wave problems
with variable grids. Monthly weather review, 104(12):1583–1590, 1976. 35

W. Rodi. Turbulence Models and Their Application in Hydraulics: A state-of-the-art review. A.A. Balkema,
1993. 76

C. Rousset, M.-N. Houssais, and E. P. Chassignet. A multi-model study of the restratifi-
cation phase in an idealized convection basin. Ocean Modelling, 26:115–133, 2009. doi:
10.1016/j.ocemod.2008.08.005. 238

Yousef Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput., 14(2):
461–469, 1993. ISSN 1064-8275. doi: http://dx.doi.org/10.1137/0914028. 68

Pierre Sagaut. Large Eddy Simulation for Incompressible Flows. Springer, 1998. ISBN 3-540-43753-3. 81

M. Schäfer, S. Turek, F. Durst, E. Krause, and R. Rannacher. Benchmark computations of laminar
flow around a cylinder. In E. H. Hirschel et al., editor, Flow Simulation with High-Performance Com-
puters, II: DFG Priority Research Program Results 1993–1995, volume 52 of Notes on Numerical Fluid
Mechanics, pages 547–566. Friedrich Vieweg & Sohn Verlagsgesellschaft mbH, 1996. 230

E. W. Schwiderski. On charting global ocean tides. Rev. Geophys. Space Phys., 18:243–268, 1980. 241

S.J. Sherwin, R.M. Kirby, J. Peirò, R.L. Taylor, and O.C. Zienkiewicz. On 2D elliptic discontinuous
Galerkin methods. Int. J. Num. Meth. Eng., 65(5):752–784, 2006. 44

J. R. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain.
http://www.cs.cmu.edu/˜quake-papers/painless-conjugate-gradient.pdf, 1994. 68

C. K. Shum, P. L. Woodworth, O. B. Andersen, G. D. Egbert, O. Francis, C. King, S. M. Klosko, C. Le
Provost, X. Li, J-M. Molines, M. E. Parke, R. D. Ray, M. G. Schalx, D. Stammer, C. C. Tierney,
P. Vincent, and C. I. Wunsch. Accuracy assessment of recent ocean tide models. J. Geophys. Res.,
102(C11):25,173–25,19, 1997. 240

J. E. Simpson. Gravity Currents in the Environment and the Laboratory. Ellis Horwood Ltd, 1987. 215

http://dx.doi.org/10.1007/BF00350098
http://dx.doi.org/10.1007/s00366-006-0014-1
http://dx.doi.org/10.1098/rsta.2009.0155
http://dx.doi.org/10.5194/os-2-249-2006
http://dx.doi.org/10.1016/j.ocemod.2008.08.005
http://dx.doi.org/http://dx.doi.org/10.1137/0914028

264 Bibliography

J.E. Simpson and R. E. Britter. The dynamics of the head of a gravity current advancing over a
horizontal surface. jfm, 94(3):477–495, 1979. xvii, 218

R. B. Simpson. Anisotropic mesh transformations and optimal error control. Applied Numerical Math-
ematics, 14(1-3):183–198, 1994. doi: 10.1016/0168-9274(94)90025-6. 105

J. Smagorinsky. General circulation experiments with the primitive equations. Monthly weather review,
91(3):99–164, 1963. 81

Klaus Stüben. A review of algebraic multigrid. J. Comput. Appl. Math., 128:281, 2001. 69

P. K. Sweby. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM
Journal on Numerical Analysis, 21(5):995–1011, October 1984. ISSN 00361429. doi: 10.2307/2156939.
URL http://www.jstor.org/stable/2156939. 50

Ulrich Trottenberg, Cornelis Oosterlee, and Anton Schüller. Multigrid. Elsevier Academic Press, 2001.
69

Yu-Heng Tseng and Joel H. Ferziger. Mixing and available potential energy in stratified flows. Physics
of Fluids, 13(5):1281–1293, 2001. doi: 10.1063/1.1358307. 217

M. N. Tsimplis, R. Proctor, and R. A. Flather. A two-dimensional tidal model for the Mediterranean
Sea. J. Geophys. Res., 100(C8):16,223–16,239, 1995. xviii, 240, 241, 242, 243, 244, 245

P.G. Tucker. Hybrid hamilton/jacobi/poisson wall distance function model. Computers and Fluids, 44
(1):130 – 142, 2011. doi: 10.1016/j.compfluid.2010.12.021. 78

J. S. Turner. Buoyancy effects in fluids. Cambridge University Press, 1973. 216

L. Umlauf and H. Burchard. A generic length-scale equation for geophysical turbulence models.
Journal of Marine Research, 61:235–265(31), 2003. doi: 10.1357/002224003322005087. 73, 74

L Umlauf and H Burchard. Second-order turbulence closure models for geophysical bound-
ary layers. A review of recent work. Continental Shelf Research, 25(7-8):795–827, 2005. doi:
10.1016/j.csr.2004.08.004. 75

S. M. Uppala, P. W. Kllberg, A. J. Simmons, U. Andrae, V. Da Costa Bechtold, M. Fiorino, J. K. Gib-
son, J. Haseler, A. Hernandez, G. A. Kelly, X. Li, K. Onogi, S. Saarinen, N. Sokka, R. P. Allan,
E. Andersson, K. Arpe, M. A. Balmaseda, A. C. M. Beljaars, L. Van De Berg, J. Bidlot, N. Bormann,
S. Caires, F. Chevallier, A. Dethof, M. Dragosavac, M. Fisher, M. Fuentes, S. Hagemann, E. Hlm,
B. J. Hoskins, L. Isaksen, P. A. E. M. Janssen, R. Jenne, A. P. Mcnally, J.-F. Mahfouf, J.-J. Morcrette,
N. A. Rayner, R. W. Saunders, P. Simon, A. Sterl, K. E. Trenberth, A. Untch, D. Vasiljevic, P. Viterbo,
and J. Woollen. The era-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131(612):
2961–3012, 2005. doi: 10.1256/qj.04.176. 25

M.-G. Vallet. Génération de maillages anisotropes adaptés – application à la capture de couches
limites. Technical Report RR-1360, INRIA Rocquencourt, Rocquencourt, Le Chesnay, France, 1990.
URL http://www.inria.fr/RRRT/RR-1360.html. 105

P. Vanek, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation for second and
fourth order elliptic problems. Computing, 56:179–196, 1996. 69

Y. Vasilevskii and K. Lipnikov. An adaptive algorithm for quasioptimal mesh generation. Computa-
tional Mathematics and Mathematical Physics, 39(9):1468–1486, 1999. 106, 107

R. Verfürth. A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. John Wiley and
Sons Ltd., 1996. ISBN 0-471-96795-5. 103

http://dx.doi.org/10.1016/0168-9274(94)90025-6
http://dx.doi.org/10.2307/2156939
http://www.jstor.org/stable/2156939
http://dx.doi.org/10.1063/1.1358307͔
http://dx.doi.org/10.1016/j.compfluid.2010.12.021
http://dx.doi.org/10.1357/002224003322005087
http://dx.doi.org/{10.1016/j.csr.2004.08.004}
http://dx.doi.org/10.1256/qj.04.176
http://www.inria.fr/RRRT/RR-1360.html

265

N.P. Waterson and H. Deconinck. Design principles for bounded higher-order convection schemes
- a unified approach. Journal of Computational Physics, 224(1):182–207, May 2007. ISSN 0021-9991.
doi: 10.1016/j.jcp.2007.01.021. URL http://www.sciencedirect.com/science/article/
B6WHY-4MYMG2M-5/2/fc1a18cfa833cd1434f4dc8bf2bdced4. 49, 50

M. R. Wells. Tidal modelling of modern and ancient seas and oceans. PhD thesis, Imperial College London,
2008. xviii, 25, 26, 148, 240, 241, 242, 245

M. R. Wells, P. A. Allison, M. D. Piggott, G. J. Gorman, G. J. Hampson, C. C. Pain, and F. Fang.
Numerical modelling of tides in the Pennsylvanian Midcontinent Seaway of North America with
implications for hydrography and sedimentation. Journal of Sedimentary Research, 77:843–865, 2007.
26

C. Y. Wen and Y. H. Yu. Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser., 62(100), 1966. 163, 164

D.C. Wilcox. Turbulence modeling for CFD. DCW industries La Canada, CA, 1998. 76, 78

C. R. Wilson. Modelling multiple-material flows on adaptive, unstructured meshes. PhD thesis, Imperial
College London, 2009. 49, 50, 51, 53, 55, 111

Kraig B. Winters and Eric A. D’Asaro. Diascalar flux and the rate of fluid mixing. Journal of Fluid
Mechanics, 317(1):179–193, 1996. doi: 10.1017/S0022112096000717. 217

Kraig B. Winters, Peter N. Lombard, James J. Riley, and Eric A. D’Asaro. Available potential
energy and mixing in density-stratified fluids. Journal of Fluid Mechanics, 289(-1):115–128, 1995.
doi: 10.1017/S002211209500125X. URL http://journals.cambridge.org/action/
displayAbstract?fromPage=online&aid=354020&fulltextType=RA&fileId=
S002211209500125X. 171, 173, 217

Z. Q. Zhou, J. O. De Kat, and B. Buchner. A nonlinear 3-D approach to simulate green water dynamics
on deck. In Report No. 82000-NSH, volume 7, Nantes, France, 1999. xvii, xviii, 232, 233, 234, 235,
238, 239

http://dx.doi.org/10.1016/j.jcp.2007.01.021
http://www.sciencedirect.com/science/article/B6WHY-4MYMG2M-5/2/fc1a18cfa833cd1434f4dc8bf2bdced4
http://www.sciencedirect.com/science/article/B6WHY-4MYMG2M-5/2/fc1a18cfa833cd1434f4dc8bf2bdced4
http://dx.doi.org/10.1017/S0022112096000717
http://dx.doi.org/10.1017/S002211209500125X
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=354020&fulltextType=RA&fileId=S002211209500125X
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=354020&fulltextType=RA&fileId=S002211209500125X
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=354020&fulltextType=RA&fileId=S002211209500125X

266 Bibliography

Appendix A

About this manual

A.1 Introduction

This document attempts to give an introduction to the use of the Fluidity/ICOM code for CFD and
ocean modelling applications. The layout of this manual is briefly covered in the overview at the
beginning of this document.

Although this document may of course be printed, viewing it on screen may be wise as it allows
colour images to be viewed, and links between sections and parameters should work. Also, where
possible figures are ‘vectorised’ so that if viewed electronically it is possible to zoom right in to see
the structure of meshes for example.

This manual is very much a work in progress. Therefore spelling, grammar, and accuracy can not
be guaranteed. Users with commit access to the Fluidity source tree are encouraged to make con-
tributions directly. Other users are invited to email comments, corrections and contributions to
m.d.piggott@imperial.ac.uk

A further source of material may be found at http://amcg.ese.ic.ac.uk/ This points to a col-
lection of wiki web pages that all users are able to update and add to.

A.2 Audience and Scope

The manual is primarily designed to enable Fluidity users to run Fluidity effectively. As such, this is
the appropriate place for documentation concerning the available configuration options of the model
and the correct method of employing them. It is also the correct place to document the mathematical
formulation of the model and the equations which it solves. Other matters which should be covered
include input and output formats, checkpointing and visualisation.

This is not generally the appropriate forum for low-level documentation directed at model develop-
ers. Information concerning the finite element method and its implementation in Fluidity should be
placed in the Femtools manual while other implementation details could be placed on the AMCG
wiki.

267

http://amcg.ese.ic.ac.uk/

268 About this manual

A.3 Style guide

A.3.1 Headings

Headings should be typeset with sentence capitalisation. That is to say, only those words which
would be capitalised if the heading were an ordinary sentence are capitalised.

A.3.2 Language

The manual is written in British English. This, among many distinctions from our cousins across the
Pond means:

• centre not center.

• visualise not visualize.

• licence for the noun, license for the verb.

A.3.3 Labelling

Sections, tables, figures and equations should be labelled consistenly.

Sections should be labelled as \label{sec:unique_section_name}, tables should labelled
as \label{tab:unique_table_name}, figures as \label{fig:unique_figure_name}, and
equations as \label{eq:unique_equation_name}.

Note that all label names should be unique across the manual.

A.3.4 Images

The manual is designed to be compilable to both PDF and html. This creates particular challenges
when incorporating images. One approach which is particularly appropriate for diagrams and other
images annotated with text or equations is to generate or annotate the figures using xfig. Xfig files
may be automatically converted to Postscript for the PDF document and png for the html version. If
the “special” attribute is set on text in the xfig document, then that text will be rendered in LATEX. This
in particular enables equations to be included in figures in a manner consistent with the equations in
the text.

A.3.4.1 Including xfig images

This manual defines the command \xfig{basename} which will import basename.pdftex_t
for pdf output and basename.png for web output. Authors should ensure that their xfig
file has the name basename.fig and that basename is added to the XFIG_IMAGES vari-
able in the Makefile. This will cause the commands make fluidity_manual.pdf and
make fluidity_manual.html to also generate the pdf and png versions of the figure respec-
tively.

It will be observed that the \xfig command does not take any arguments for figure size. This is
a deliberate decision designed to ensure that the font size matches between the figure and the text.
Figures should instead be appropriately sized in xfig.

A.3 Style guide 269

A.3.4.2 Including other figures

For other figures, the command \fig[options]{basename} is provided. In this case, it is
the author’s responsibility to provide both basename.pdf and basename.png files. Please add
basename to the IMAGES variable in the Makefile. This will cause the image files to become de-
pendencies of the compiled manual.

If no basename.png is available, then the \pdffig[options]{basename} should be used in-
stead.

The options provided to \fig are passed straight to \includegraphics and may therefore in-
clude any options which are legal in that context including resizing options.

A.3.5 flml options

The \option command is provided to format Fluidity option paths. Options should be formatted
according to normal Spud conventions however it will frequently be desirable to show partial op-
tion paths not starting from the root. In this circumstance, an ellipsis should be used to show an
unknown path component. For example, the mesh element of some prescribed field would be .../
prescribed/mesh which can be input in LATEX as \option{\ldots/prescribed/mesh}

A.3.6 Generating pdf and html output

The manual may be compiled to both pdf and html. For the former, type:

make fluidity_manual.pdf

and for the latter type:

make fluidity_manual.html

It may sometimes be necessary to introduce content which should only be rendered in one or other
output format. For example, long option paths frequently defeat LATEX’s line breaking algorithm so it
may be necessary to force line breaks in the pdf document. Since the browser is responsible for line
breaks in html, it would be inappropriate to force a linebreak in the html output. For this purpose, the
manual provides the commands \ifhtml{content for html}{content for pdf} as well as
the commands \onlyhtml and \onlypdf. The latter two commands take a single argument which
is only rendered for the applicable output.

A.3.7 Representing source code

Source code and commands entered in the shell can be typeset using the lstlisting environ-
ment. The environment typesets its argument literally so unlike normal LATEX, spaces and car-
riage returns are replicated in the output. The environment takes optional configuration param-
eters of which the most important is language which is used to select the programming lan-
guage. LATEXwill highlight the syntax of the chosen language. Inline commands can be typeset using
\lstinline[language=TeX]+command+ substituting any applicable language.

A.3.7.1 Shell commands

For shell commands, language should be set to bash. For example:

270 About this manual

\begin{lstlisting}[language=bash]
dham@popper traffic > ls
box.ele fluidity.err-0 Makefile traffic_1.vtu traffic.xml
box.face fluidity.log-0 src traffic.flml vaf.bin
box.node gmon.out traffic_0.vtu traffic.stat vaf.dat
\end{lstlisting}

will be rendered:

dham@popper traffic > ls
box.ele fluidity.err-0 Makefile traffic_1.vtu traffic.xml
box.face fluidity.log-0 src traffic.flml vaf.bin
box.node gmon.out traffic_0.vtu traffic.stat vaf.dat

A.3.7.2 Other languages

The other languages which are currently enabled are TeX, for LATEX, Python, Make and XML. Many
other languages are supported by the listings package.

A.3.8 Bibliography

Citations from the literature should be included whenever relevant. When formatting entries in the
bibliography database, bibliography.bib, the preferred key is the first author’s surname in lower
case followed by the full year of publication. For example ham2009. The bibliography database
should be sorted alphabetically by key.

The manual uses an author-date citation style which means that it is important to use the correct
combination of \cite, \citep and \citet. See the LATEX natbib package documentation for
more details.

A.3.9 Mathematical notation conventions

A.3.9.1 Continuous Vectors and tensors

There are two conceptually different forms of vector and tensor which occur in the finite element
method. The first is for quantities, such as velocity, which are vector-valued in the continuum. These
should be typeset in italic bold: u. The \vec command has been redefined for this purpose so a
vector quantity named b would be typed \vec{b}. However, a large number of frequently-used
vector quantities have convenience functions pre-defined in notation.tex. These have the name
\bmn where n is the symbol to be typeset. Examples include \bmu (u) and \bmphi (ϕ).

Continuous tensors are represented using a double overbar: τ . The \tensor command is provided
for this purpose. Once again, convenience functions are provided for common tensors, this time with
the form \ntens for example \tautens (τ) and \ktens (k).

A.3.9.2 Discrete vectors and matrices

Vectors composed of the value of a field at each node and matrices mapping between discrete spaces
should be typeset differently from continuous vectors and tensors. Discrete vectors should be typeset
with an underline using the \dvec command. Note that the convention in Fluidity is that vector

A.3 Style guide 271

fields are represented as scalar sums over vector valued basis functions so the correct representation
of the discrete velocity vector is \dvec{\bmu} (u).

Matrices should be typeset as upright upper case letters. The \mat command is available for this
purpose. For example \mat{M} produces M.

A.3.9.3 Derivatives

The full derivative and the material derivative should be typeset using an upright d and D respec-
tively. The \d and \D commands are provided for this purpose. There are also a number of functions
provided for typesetting derivatives. Each of these functions has one compulsory and one optional
argument. The compulsory argument is the function of which the derivative is being taken, the op-
tional argument is the variable with respect to which the derivative is being taken. So, for example
\ppt[q]{y} gives:

∂y

∂q
.

While simple \ppt{} gives:

∂

∂t
.

Table A.1 shows the derivative functions available.

command example

\ddx[]{}
d

dx

\ddxx[]{}
d2

dx2

\ddt[]{}
d

dt

\ddtt[]{}
d2

dt2

\ppx[]{}
∂

∂x

\ppxx[]{}
∂2

∂x2

\ppt[]{}
∂

∂t

\pptt[]{}
∂2

∂t2

\DDx[]{}
D

Dx

\DDxx[]{}
D2

Dx2

\DDt[]{}
D

Dt

\DDtt[]{}
D2

Dt2

Table A.1: Functions for correctly typesetting derivatives.

272 About this manual

A.3.9.4 Integrals

Integrals in any number of dimensions should be typeset with an integral sign and no measure (i.e.,
no dx or dV). The domain over which the integral is taken should be expressed as a subscript to the
integral sign itself. The integral of ψ over the whole domain will therefore be written as:∫

Ω
ψ.

A.3.9.5 Units

Units should be typeset in upright font. The LATEX package units does this for you automagically.
The correct syntax is \unit[value]{unit}. For example \unit[5]{m} produces 5 m. There are
a number of convenience functions defined for the manual to make this job easier. These are shown
in table A.2. Providing the value as an argument to the unit ensures that the spacing between the
value and the unit is correct and will not break over lines. The value is an optional argument so if
there is no value, just leave it out. units does the right thing in both text and math modes. Other
convenience functions can easily be added to notation.tex.

command example
\m[length] 1 m
\km[length] 1 km
\s[time] 1 s
\ms[speed] 1 m s−1

\mss[accel] 1 m s−2

\K[temp] 1 K
\PSU[salin] 1 PSU
\Pa[press] 1 Pa
\kg[mass] 1 kg
\rads[ang_vel] 1 rad s−1

\kgmm[density] 1 kg m−2

Table A.2: Convenience functions for physical units

A.3.9.6 Abbreviations in formulae

Abbreviations in formulae should be typeset in upright maths mode using \mathrm. For example
F_{\mathrm{wall}} (Fwall).

Appendix B

The Fluidity Python state interface

Fluidity incorporates the Python interpreted programming language as a mechanism for users to
customise the model without editing the main Fortran source of the model. There are, in fact, two
distinct Python interfaces presented by Fluidity. The first allows users to specify prescribed fields
and the initial conditions of prognostic fields by providing a Python function of space and time. This
interface is documented in section 8.6.2.2. The present chapter documents the much more compre-
hensive Python state interface which gives the user access to the complete current system state. This
may be used to specify diagnostic fields as a function of the values of other fields. In particular, this
is used by embedded models such as the biology model to specify the coupling between different
model variables.

B.1 System requirements

The Fluidity Python interface requires Python to be installed as well as NumPy, the fundamental
Python numerical package. To check that Fluidity has been build with Python, run:

fluidity -h

and check for the lines:

Python support yes
Numpy support yes

Python will be installed on any modern Unix machine but NumPy may need to be specially installed.
Ubuntu and Debian users can do so with the python-numpy package.

Fluidity also requires access to its own Python modules which are stored in the python directory in
the Fluidity source tree. To ensure that these are visible to Fluidity at runtime, users should add this
directory to the PYTHONPATH environment variable. For example:

export PYTHONPATH=<my_fluidity>/python/:$PYTHONPATH

where <my_fluidity> is the location of the Fluidity source tree.

B.2 Data types

The data classes of most importance to users are State and Field. Between them, these present all
of the field data in Fluidity in a readily accessible way.

273

274 The Fluidity Python state interface

node shape ScalarField values VectorField values TensorField values
scalar scalar (dim) (dim, dim)
sequence (len(node)) (len(node), dim) (len(node), dim, dim)

Table B.1: The shapes of the return value of node_val and the val argument to set and addto.
dim is the data dimension of the field.

B.2.1 Field objects

The Field class defines data types for Fluidity fields. The fields are implemented as wrappers
around the internal data structures in Fluidity so the field values are always current and changes
to field values are seen by the whole model. Field objects are actually of an appropriate subclass:
ScalarField, VectorField or TensorField, however, these classes differ only in the shape of
arguments to their data routines.

Field objects support the following methods and attributes:

node count The number of nodes in the field.

element count The number of elements in the field.

dimension The data dimension (not for ScalarField objects).

node val(node) Return the value of the field at node(s). If node is a scalar then the result is the value
of the field at that one node. If node is a sequence then the result is the value of the field at each
of those nodes. The shape of the result is given for each case below.

set(node, val) Set the value(s) of the field at the node(s) specified. If node is a scalar then the value
of the field at that one node is set. If node is a sequence then the value of the field at each of
those nodes is set. The shape of val must be as given below.

addto(node, val) Add value(s) to the field at the node(s) specified. If node is a scalar then the value
of the field at that one node is modified. If node is a sequence then the value of the field at each
of those nodes is modified. The shape of val must be as given below.

ele loc(ele number) Return the number of nodes in element ele_number.

ele nodes(ele number) Return the indices of the nodes in element ele_number.

ele val(ele number) Return the value of the field at the nodes in element ele_number. This is
equivalent to calling field.node_val(field.ele_nodes(ele_number)).

ele region id(ele number) Return the region id of element ele_number. This can be used to spec-
ify diagnostics which only apply over some portion of the domain.

B.2.2 State objects

A State is a container for all of the fields in a single material phase. The fields in the material phase
are accessed by the names given in the Fluidity options file. State objects contain the following
data. In each case it is assumed that s is an object of class State.

scalar fields This is a dictionary of all the scalar fields in the material phase. For example, if the state
contains a field named “Temperature” then it can be accessed with
s.scalar_fields[’Temperature’].

B.6 Debugging with an interactive Python session 275

vector fields This is a dictionary of all the vector fields in the state. For example, the coordinate field
can be accessed using s.vector_fields[’Coordinate’].

tensor fields This is a dictionary of all the tensor fields in the state. For example, if there is a field
called “Viscosity”, it can be accessed as s.tensor_fields[’Viscosity’].

A useful debugging facility is that a State can be printed from within python (print ‘s‘) which
results in a list of the fields and meshes in that state.

B.3 Predefined data

There will always be a variable named state of type states which will contain all of the fields in
the material phase of diagnostic field currently being calculated.

There will also always be a dictionary called states which will contain at least the current material
phase. If the interface is being used to specify a diagnostic field and the
.../diagnostic/material phase support attribute is set to “multiple”, then all of the mate-
rial phases will be present in the states dictionary. For example, if there are two material phases,
“Air” and “Water”, then the air velocity will be present as the field
states[’Air’].vector_fields[’Velocity’].

In addition to these states, the variable field is preset to the current diagnostic to be set (this does
not apply in situations such as the biology model in which multiple fields are to be set in a single
Python calculation).

The variables time and dt are pre-set to the current simulation time and the timestep respectively.

B.4 Importing modules and accessing external data

The Python interpreter run by Fluidity is exactly the same as that used by the Python command
line. Therefore essentially anything which is legal in Python is legal in the Fluidity Python interface.
In particular, standard and user-defined modules can be imported including modules for reading
external data sources. The current directory is automatically added to the Python search path when
Fluidity is run so user defined modules placed in the directory from which Fluidity is launched will
be found.

B.5 The persistent dictionary

All of the data in the Fluidity interpreter is wiped after every field calculation. Usually this is desir-
able as it prevents the code for different diagnostics interfering. If it is necessary to store data in the
Python interpreter after flow passes back to the main model, these data items can be stored in the
dictionary named persistent under any key the user chooses.

It is not safe to store fields extracted from the states in the persistent dictionary.

B.6 Debugging with an interactive Python session

It is possible to launch an interactive Python session at runtime from within Fluidity. This depends
on iPython being installed on the system and is achieved by placing the following code in the flml
file at the point within Python at which you wish to stop:

276 The Fluidity Python state interface

import fluidity_tools
fluidity_tools.shell()()

Note the double brackets ()() after fluidity_tools.shell! From within this Python session,
you can examine or set any variables which are currently visible. As well as using this to debug
straightforward syntax errors, you can trap much more complex errors by placing the commands
inside an if statement or a try. . .except clause. As soon as you leave the Python shell, Fluidity
execution will continue.

It is also possible to launch an interactive Python session from within the simple Python interface for
prescribed fields, however resuming execution afterwards currently causes a crash.

B.7 Limitations

The Python state interface is essentially driven at fields which are pointwise functions of other fields.
This is only straightforward in the situation where all the fields concerned are on the same mesh.
Where this is not the case, there are two different work-arounds which can be used.

If the field to be calculated is discontinuous or periodic and it is desired to use continuous and/or
non-periodic data in the calculation (for example because the field is a function of position), this can
be achieved by looping over the elements and setting the value at each node of each element rather
than directly looping over all the nodes in the field. This is possible because the element numbering
and the local numbering of nodes within elements is common between meshes of different continuity.

In other cases, such as the case in which a diagnostic field is a function of a field of different poly-
nomial order, it may be necessary to introduce an additional diagnostic field which is the Galerkin
projection of the second field onto the same mesh as the diagnostic field.

Appendix C

External libraries

C.1 Introduction

This appendix gives an overview of the external libraries that are required to build and run Fluidity.

Fluidity’s development strategy has taken a conscious decision to employ external libraries wherever
it is possible and beneficial to do so. This industry-standard approach both short-cuts the develop-
ment process by making use of the work and expertise of external projects, and in most cases provides
a better solution than could be implemented by the Fluidity development team.

C.2 List of external libraries and software

Fluidity requires the following libraries and supporting software to build and run:

• Fortran 90 and C++ compiler (tested gfortran 4.5-4.7, Intel 11.1 for versions above 11.1.073)

• BLAS (tested netlib, ATLAS, MKL)

• LAPACK (tested netlib, ATLAS, MKL)

• XML2 (tested version 2.6)

• MPI2 implementation (tested OpenMPI version 1.4.3)

• PETSc (tested versions 3.0 and 3.1)

• ParMetis (tested version 3.2)

• ARPACK (tested version 96)

• Python (tested version 2.7)

• NumPy (tested version 1.6.1)

• SciPy (tested version 0.9.0)

• Trang (tested version 20030619, any recent version should work)

• VTK (tested version 5.6)

• Zoltan (tested version 3.501)

277

278 External libraries

Fluidity recommends also making available the following:

• CGNS (tested version 2.5)

• NetCDF (tested version 4.0)

• UDUnits (tested version 2.1.23)

• Bazaar (tested version 2.4.0)

C.3 Installing required libraries on Debian or Ubuntu

By far the easiest way to obtain all the supporting libraries and other software required to build
and run Fluidity is to make use of the Fluidity packages available from the Launchpad fluidity-core
PPA. These are available for as many Ubuntu versions as Fluidity currently supports; at the time of
writing, 10.10 (Maverick) and newer, though support for 10.10 will end as of April 2012 when central
Ubuntu support ends.

BE AWARE: AMCG packages are provided for use at your own risk and without warranty. You
should ensure that any packages installed from external repositories are not going to adversely affect
your system before installing them!

To access the repository containing the Fluidity support packages, you will need to run:

sudo apt-add-repository -y ppa:fluidity-core/ppa

You will then need to update your system and install the fluidity-dev package, which depends on all
the other software required for building Fluidity:

sudo apt-get update
sudo apt-get install fluidity-dev

To benefit from the environment modules supplied from AMCG you may want to add the following
lines to your /etc/bash.bashrc file:

if [-f /usr/share/Modules/init/bash]; then
. /usr/share/Modules/init/bash

fi

New bash shells should automatically inherit the modules environment now, and you should be able
to type:

module load petsc-gcc4

to enable use of PETSc, required for building Fluidity.

C.4 Manual install of external libraries and software

Competent systems administrators should find it relatively straightforward to install the supporting
software and external libraries required by Fluidity on most modern UNIX systems and compute
clusters. The following instructions are intended to help with this process, offering hints and tips to
speed up the deployment process.

In most cases, modern Linux systems will supply some if not most of the required packages without
needing to resort to compiling them from source.

C.4 Manual install of external libraries and software 279

C.4.1 Supported compilers

Before starting to build the supporting libraries for Fluidity it is strongly recommended that you
ensure that your builds will use a compiler that is also able to build Fluidity. If you do not, you
may encounter problems when you try to interface Fluidity with the libraries. At present, Fluidity is
tested with gcc/g++/gfortran versions 4.5-4.7 and the Intel compiler with version 11.1.073 and later
versions of 11.1. Versions of 11.1 earlier than 11.1.073 contain bugs that prevent building Fluidity, as
do all other major and minor versions of the Intel compiler.

C.4.2 Build environment

The following compile instructions assume that you have set up a basic bash environment containing
a few key environment variables. Set WORKING to be the root of your working area which the
subsequent variables will refer to:

export WORKING="/path/to/my/data"

export PATH="$WORKING/fluidity/bin:$PATH"
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$WORKING/fluidity/lib"
export CFLAGS="-L$WORKING/fluidity/lib"
export FFLAGS="-L$WORKING/fluidity/lib"
export CPPFLAGS="-I$WORKING/fluidity/include"
export LDFLAGS="-L$WORKING/fluidity/lib"

csh users will want to alter all export commands to the corresponding setenv syntax throughout this
appendix.

Throughout this section where standard configure, make, and install is referred to it is assumed to
mean running the following commands:

./configure --prefix=$WORKING/fluidity
make
make install

Where the source directory for a package is referred to it is assumed to mean the root directory
created when the package is uncompressed.

C.4.3 Compilers

The Fluidity build process requires working Fortran 90 and C++ compilers.

Fluidity has been tested with gfortran > 4.4 and Intel 11.1 for versions > 11.1.073. It is not supported
for gfortran 6 4.3 or Intel 6 11.1.073, and if using gfortran some features are not available except
for gfortran > 4.5. Current testing is with gfortran 4.6, so whilst it is expected that 4.4 and 4.5 will
function correctly, this is not guaranteed.

Unsupported compilers generally have incorrect Fortran 90 implementations for which bug reports
have been submitted and implemented in later versions where applicable. Bug reports have been
submitted for Portland group compilers but not yet implemented. Fluidity is not yet tested against
Intel 12.x compilers.

Fluidity has been tested with both GNU and Intel C++ compilers at corresponding versions to the
tested and known-good Fortran 90 compilers.

If you do not already have compilers suitable for building Fluidity, GCC is freely available and is
possible to build from source with sufficient disk space and time.

280 External libraries

C.4.3.1 GMP, MPFR, and MPC

GMP (tested for Fluidity with gmp-5.0.5) and MPFR (tested for Fluidity with mpfr-3.1.0) are needed
for the GCC 4.6 build if you do not already have them. Download GMP from http://gmplib.
org/ and build it in the source directory, appending --enable-cxx to the standard configure, then
running the standard make and install.

Once GMP has been installed, download MPFR from http://www.mpfr.org/mpfr-current/
and build it in the source directory, appending --with-gmp=\$WORKING/fluidity to the stan-
dard configure, then running the standard make and install.

Once MPFR has been installed, download MPC from http://www.multiprecision.org/
index.php?prog=mpc&page=download and build it in the source directory, appending
--with-gmp=$WORKING/fluidity --with-mpfr=$WORKING/fluidity to the standard con-
figure, then running the standard make and install.

If you have no compilers at all, you may need to download GMP, MPFR, and MPC as pre-built
binaries. If you have any compilers, even if not ones which support building Fluidity, you should
be able to build GMP, MPFR, and MPC and then go on to build GCC. Finding a binary compiler
distribution from the start will make matters a great deal simpler for you if that option is available.

C.4.3.2 GCC

GCC (tested for Fluidity with gcc-4.6.x Ubuntu-built compilers, assumed working with most 4.4.x
and 4.5.x, not known yet to work with 4.7.x) can be downloaded from the UK mirror at http:
//gcc-uk.internet.bs/ Before the build, make sure that the GMP, MPFR, and MPC libraries
are on LD LIBRARY PATH or the stage 1 configure will fail even if --with-[gmp|mpfr|mpc] is
supplied.

Also note that the build needs to be in a target build directory, NOT in the source directory, or again
the build will fail with definition conflicts against the system includes.

Finally, the java build appears to be buggy in (at least) 4.4 and is enabled by default, but Fluidity only
needs c, c++, and fortran, so just specify those.

Make a target build directory which is OUTSIDE the source tree, then build with the following con-
figure:

/path/to/gcc/source/configure --prefix=$WORKING/fluidity
--with-gmp=$WORKING/fluidity --with-mpfr=$WORKING/fluidity
--with-mpc=$WORKING/fluidity --enable-languages=c,c++,fortran

followed by the standard make and install.

The GCC4 build has not been tested by the Fluidity builders in an environment with no compilers at
all and thus the ability or otherwise of the build to bootstrap itself is not known.

C.4.3.3 OpenMPI

Finally, you’ll need an MPI implementation to wrap your compiler for the Fluidity build, which lets
you spawn parallel runs from the compiled Fluidity binary. Any full MPI implementation should
be sufficient, though Fluidity is generally tested using OpenMPI. Please note that Clustervision-
supplied clusters generally ship with broken MPI C++ support and will need attention before Fluid-
ity can be compiled. Fluidity is no longer generally supported as non-MPI code as it is assumed that
serial runs will be precursors to large parallel runs and will be built with MPI enabled for later use.

http://gmplib.org/
http://gmplib.org/
http://www.mpfr.org/mpfr-current/
http://www.multiprecision.org/index.php?prog=mpc&page=download
http://www.multiprecision.org/index.php?prog=mpc&page=download
http://gcc-uk.internet.bs/
http://gcc-uk.internet.bs/

C.4 Manual install of external libraries and software 281

OpenMPI (tested for Fluidity with openmpi-1.4.3) can be downloaded from http://www.
open-mpi.org/software/ompi/v1.4/. It is built in the source directory with the standard con-
figure, make, and install.

C.4.4 Python

Python is widely used within Fluidity for user-defined functions and for diagnostic tools and prob-
lem setup, and currently tested up to Python version 2.7. Earlier Python version may be suitable for
use but may lack later functionality. Python extensions required are: setuptools for Fluidity builds,
Python-4suite and Python-XML for options file parsing, and NumPy for custom function use within
Fluidity.

If you do not have a working version of Python it can be built from source.

C.4.4.1 Readline

Readline (tested version 6.2) is not strictly needed for Python to build but is very handy if you want
to make use of things like Python command history. Download readline from http://ftp.gnu.
org/pub/gnu/readline/ and then add -fPIC to CFLAGS and FFLAGS for the duration of this
build with:

export CFLAGS="$CFLAGS -fPIC"
export FFLAGS="$FFLAGS -fPIC"

These can be returned to their default values after the readline build. Building with -fPIC shouldn’t
be necessary but seems to be required by the later Python build.

Build readline in the source directory, appending --disable-shared to the standard configure
and then running the standard make and install.

C.4.4.2 Python

Python (tested version 2.7) can be downloaded from http://www.python.org/download/
and built in the source directory with the standard configure, make, and install, adding
--enable-shared to the configure flags.

C.4.4.3 Setuptools

Setuptools (tested version 0.6c11) can be downloaded from http://pypi.python.org/pypi/
setuptools and installed from the appropriate egg file with:

sh ./setuptools-0.6c11-py2.6.egg --prefix=$WORKING/fluidity

Use the appropriate filename for the Python egg you have downloaded.

C.4.4.4 NumPy

NumPy (tested version 1.6.0) can be installed through easy install which was provided by setuptools,
using:

easy_install numpy

http://www.open-mpi.org/software/ompi/v1.4/
http://www.open-mpi.org/software/ompi/v1.4/
http://ftp.gnu.org/pub/gnu/readline/
http://ftp.gnu.org/pub/gnu/readline/
http://www.python.org/download/
http://pypi.python.org/pypi/setuptools
http://pypi.python.org/pypi/setuptools

282 External libraries

C.4.5 Numerical Libraries

BLAS and LAPACK are required for efficient linear algebra methods within Fluidity, and are tested
with the netlib, ATLAS, and MKL implementations, though any standard BLAS or LAPACK imple-
mentation should be sufficient for Fluidity. PETSc is required to provide matrix solvers, and ParMetis
is required for mesh partitioning and sparse matrix operations.

C.4.5.1 BLAS

BLAS can be dowloaded from http://www.netlib.org/blas/ (for netlib BLAS), http://
sourceforge.net/projects/math-atlas/files/ (for ATLAS), or combined with commer-
cially available compilers such as MKL from Intel.

BLAS is built in the source directory after editing the following entries in the make.inc file:

FORTRAN = gfortran
LOADER = gfortran
OPTS = -O3 -fPIC

Then run:

make
cp blas_LINUX.a $WORKING/fluidity/lib/libblas.a

C.4.5.2 LAPACK

LAPACK can be downloaded from http://www.netlib.org/lapack/ (for netlib LAPACK),
http://sourceforge.net/projects/math-atlas/files/ (for ATLAS), or combined with
commercially available compilers such as MKL from Intel.

LAPACK is built in the source directory. First, make a copy of make.inc.example:

cp make.inc.example make.inc

Edit it to set:

FORTRAN = gfortran -fimplicit-none -g -fPIC
BLASLIB = /path/to/your/libraries/libblas.a

Then:

make
cp lapack_LINUX.a $WORKING/fluidity/lib/liblapack.a

C.4.5.3 ParMetis

ParMetis (tested for Fluidity with version 3.2.0) is required for mesh partitioning and sparse matrix
operations, and can be downloaded from http://glaros.dtc.umn.edu/gkhome/fsroot/sw/
parmetis/OLD

ParMetis is built in the source directory with:

make
cp lib*.a $WORKING/fluidity/lib
cp parmetis.h $WORKING/fluidity/include

http://www.netlib.org/blas/
http://sourceforge.net/projects/math-atlas/files/
http://sourceforge.net/projects/math-atlas/files/
http://www.netlib.org/lapack/
http://sourceforge.net/projects/math-atlas/files/
http://glaros.dtc.umn.edu/gkhome/fsroot/sw/parmetis/OLD
http://glaros.dtc.umn.edu/gkhome/fsroot/sw/parmetis/OLD

C.4 Manual install of external libraries and software 283

Note that Fluidity is NOT currently tested with ParMETIS 4.0.0, and further note that ParMETIS is
subject to licensing conditions for commercial users. Commercial users should contact the University
of Minnesota’s Office for Technology Commercialization directly.

Fluidity is in the process of transitioning away from using ParMETIS to avoid this restrictive com-
mercial licensing, and by release 4.2 should have an alternative partitioner which is free to use for
commercial partners.

C.4.5.4 PETSc

PETSc (currently tested for Fluidity with version 3.1p8) is required for efficient solver methods within
Fluidity. Some work has been carried out to ensure that Fluidity builds correctly with PETSc 3.2 but
this has not been extensively tested, so s used at your own risk. Work is ongoing to support the latest
development branch of PETSc but this is not currently supported as an option.

PETSc can be downloaded from http://www.mcs.anl.gov/petsc/petsc-2/download/
index.html and built in the source directory. First, set PETSC DIR in the source directory:

export PETSC_DIR=$PWD

Then configure with the following all on one line:

./configure --prefix=$WORKING/fluidity --with-mpi-shared=1 --with-shared=1
--with-debugging=0 --with-parmetis=1 --download-parmetis=1 --with-hypre=1
--download-hypre=1 --with-prometheus=1 --download-prometheus=1
--with-fortran-interfaces=1

When configure completes, it should supply you with a ’make all’ command line, including various
configuration variables. Copy and paste this into your terminal and run it. Once it completes, it will
supply you with a further ’make install’ command line containing other variables; do the same with
this, copy and pasting it into your terminal and running it.

Finally, reset the environment variables back to normal:

export PETSC_DIR=$WORKING/fluidity

NOTE: If you see problems with shared libraries not building correctly, make sure you have built
BLAS and LAPACK with -fPIC.

C.4.6 VTK and supporting software

VTK is required for Fluidity data output, and currently tested to version 5.6. If you do not already
have them installed, you will need Cmake (tested for version 2.8.5, download from http://www.
cmake.org/cmake/resources/software.html), as well as Tcl and Tk (tested for version 8.5.10,
download from http://www.tcl.tk/software/tcltk/download.html. All three packages
are built with the standard configure, make, and install, Cmake first in its source directory, then Tcl
followed by Tk in each package’s respective unix/ subdirectory of their main source directory.

VTK (tested version 5.8 from the Ubuntu build) can be download from http://www.vtk.org/
VTK/resources/software.html

The following build is for a non-graphical install of Fluidity- ie, one for a cluster, not one for a work-
station expected to run diamond. In the situation that diamond is required, VTK USE RENDERING
must be enabled and dependencies on GTK+ satisfied which are provided on the vast majority of
modern Linux systems. A description of how to satisfy these dependencies from scratch is beyond
the scope of this appendix. When building VTK, it is recommended that shared libraries are enabled,

http://www.mcs.anl.gov/petsc/petsc-2/download/index.html
http://www.mcs.anl.gov/petsc/petsc-2/download/index.html
http://www.cmake.org/cmake/resources/software.html
http://www.cmake.org/cmake/resources/software.html
http://www.tcl.tk/software/tcltk/download.html
http://www.vtk.org/VTK/resources/software.html
http://www.vtk.org/VTK/resources/software.html

284 External libraries

and that VTKpython is enabled. The Fluidity configure script should be tolerant of local variations
in terms of VTK libraries either being supported internally by VTK or supported through system
libraries.

At runtime, the environment variables VTK INCLUDE and VTK LIBS will need to be set to point at
your VTK install, and the library directory added to LD LIBRARY PATH.

For the build described here, these would be set to:

export VTK_INCLUDE="$WORKING/fluidity/include/vtk-5.6"
export VTK_LIBS="$WORKING/fluidity/lib/vtk-5.6"
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:$WORKING/fluidity/lib/vtk-5.6"

If you are building from source, VTK should be built in a separate build directory which is not inside
the source hierarchy. In the source directory run:

mkdir ../VTK-build
cd ../VTK-build
ccmake ../VTK/

Then type ’c’ and edit the resulting rules screen to:

BUILD_EXAMPLES OFF
BUILD_SHARED_LIBS ON
BUILD_TESTING ON
CMAKE_BACKWARDS_COMPATIBILITY 2.4
CMAKE_BUILD_TYPE
CMAKE_INSTALL_PREFIX /path/to/WORKING/fluidity
VTK_DATA_ROOT VTK_DATA_ROOT-NOTFOUND
VTK_USE_GEOVIS OFF
VTK_USE_INFOVIS OFF
VTK_USE_N_WAY_ARRAYS OFF
VTK_USE_PARALLEL OFF
VTK_USE_RENDERING OFF
VTK_USE_VIEWS OFF
VTK_WRAP_JAVA OFF
VTK_WRAP_PYTHON ON
VTK_WRAP_TCL OFF

Then:

• Type ’c’ a first time to configure

• Type ’c’ a second time to configure

• Type ’g’ to generate and quit

Finally, run the standard make and install.

C.4.7 Supporting Libraries

The above libraries should be sufficient for the most basic Fluidity builds, but, depending on local
requirements, other external libraries may be required. Brief details and suggestions for avoiding
common problems are given here, but package instructions should be referred to for full build details.

C.4 Manual install of external libraries and software 285

C.4.7.1 XML2

XML2 is required for parsing Fluidity’s flml parameter file format, and is tested with version 2.7.8. It
can be downloaded from ftp://xmlsoft.org/libxml2/

C.4.7.2 ARPACK

ARPACK is required for solving large eigenvalue problems, and is tested with version 96 with
paths configured for the local site. It can be downloaded from http://www.caam.rice.edu/
software/ARPACK/

C.4.7.3 NetCDF

NetCDF is required for reading datafiles in NetCDF format, and is tested with version 4.1.3. It is rec-
ommended to be configured with f77, f90, c, cxx, and utilities enabled, and with --enable-shared
added to the standard configure.

NetCDF can be downloaded from http://www.unidata.ucar.edu/downloads/netcdf/

Experimental NetCDF 5 is not yet tested for use with Fluidity.

C.4.7.4 UDUnits

UDUnits is required for physical unit conversions, and is tested with version 2.1.23. Note there is a
common issue with hand-building this package where CPPFLAGS needs to be correctly set with a -D
option for the relevant Fortran environment. This commonly leads to an error during the build when
not set. See for example http://www.unidata.ucar.edu/downloads/udunits/.

Setting

export CPPFLAGS=-Df2cFortran

should be sufficient for a GCC-based build on Linux.

UDUnits can be downloaded from http://www.unidata.ucar.edu/downloads/udunits/
index.jsp

Legacy support should be present for UDUnits 1.x but this is no longer tested hence is used at your
own risk.

C.4.7.5 Trang

Trang is required for parsing Fluidity’s flml schema, and is tested with 20030619 but any recent ver-
sion should be sufficient. Trang can be downloaded from http://www.thaiopensource.com/
relaxng/trang.html

C.4.7.6 Bazaar (bzr)

Bazaar is recommended as a general tool for accessing the Fluidity code repository, and tested to
version 2.5.0. Bazaar can be downloaded from https://launchpad.net/bzr/+download

ftp://xmlsoft.org/libxml2/
http://www.caam.rice.edu/software/ARPACK/
http://www.caam.rice.edu/software/ARPACK/
http://www.unidata.ucar.edu/downloads/netcdf/
http://www.unidata.ucar.edu/downloads/udunits/
http://www.unidata.ucar.edu/downloads/udunits/index.jsp
http://www.unidata.ucar.edu/downloads/udunits/index.jsp
http://www.thaiopensource.com/relaxng/trang.html
http://www.thaiopensource.com/relaxng/trang.html
https://launchpad.net/bzr/+download

286 External libraries

C.4.7.7 CGNS

CGNS is required when any CGNS-format datafiles are being read by Fluidity, and is currently tested
to version 2.5.4. It can be downloaded from http://cgns.sourceforge.net/download.html.

http://cgns.sourceforge.net/download.html

Appendix D

Troubleshooting

We have several sources of information in case you run into trouble installing or running Fluidity.

Firstly, check if your question is answered in this manual. An overview how to correctly set up
Fluidity is given in chapter 1. Questions about configuring Fluidity are covered in chapter 8.

Secondly, have a look at our ”Cookbook for Fluidity “ (http://amcg.ese.ic.ac.uk/index.
php?title=Cook_Book). This webpage provides examples of how to set up particular types of
problems in Fluidity.

If none of these documents answered your question, we highly encourage you to get in contact with
us by sending us an email to fluidity@imperial.ac.uk.

287

http://amcg.ese.ic.ac.uk/index.php?title=Cook_Book
http://amcg.ese.ic.ac.uk/index.php?title=Cook_Book
fluidity@imperial.ac.uk

288 Troubleshooting

Appendix E

Mesh formats

This chapter describes the information contained in a mesh file and the three mesh formats that can
be read by Fluidity: the gmsh, triangle and ExodusII format. For an overview and further pointers
on how to generate these meshes see chapter 6.

E.1 Mesh data

A mesh describes the computational domain in which a simulation takes place. Regardless of the
mesh file format in use, the information conveyed is essentially the same.

E.1.1 Node location

The locations of the element vertices are recorded. Usually, these have the same dimension as the
topological dimension of the mesh elements. Fluidity does not currently support configurations such
as shells in which the node location dimension differs from the element topology dimension.

E.1.2 Element topology

The mesh is composed of elements. In one dimension these will be intervals with each interval joining
two nodes. In two dimensions, triangles or quadrilaterals are supported with the elements joining
three or four nodes respectively. In three dimensions, the elements can be tetrahedra or hexahedra
and will join four or eight nodes.

The element topology will store the indices of the nodes which make up each of the elements in the
mesh.

E.1.3 Facets

Facets form the surface of elements. In one dimension, the facets of an element are its bounding
nodes. In two dimensions, the facets are the edge intervals while the facets of a three-dimensional
tetrahedral element are triangles and those of a hexahedral element are quadrilaterals. External mesh
formats tend to only supply facet topology information for facets on the surface of each domain.
For each facet specified, the node indices of that facet will be given. These surface facets are used
in combination with surface IDs to specify the regions over which boundary conditions should be
applied.

289

290 Mesh formats

E.1.4 Surface IDs

Numbers can be assigned to label particular facets (boundary nodes, edges or faces in 1, 2 or 3 dimen-
sions respectively) in order to set boundary conditions or other parameters. This number can then
be used to specify which surface a particular boundary condition should be applied to in Fluidity.

E.1.5 Region IDs

These are analogous to surface IDs, however they are associated with elements rather than facets.
Region IDs may be used in Fluidity to specify different initial conditions or material properties to
different parts of the domain.

E.2 The triangle format

The triangle format is a ASCII file format originally designed for 2D triangle meshes, but it can be
easily extended to different dimensions and more complex geometries. Fluidity supports a version of
the triangle format which supports 1D, 2D and 3D meshes. The following table shows the supported
combinations of element dimension and geometry.

Dimension Geometry Number of vertices per element
1D Line 2
2D Triangles 3
2D Quadrilateral 4
3D Tetrahedra 4
3D Hexahedra 8

A complete triangle mesh consists of three files: one file defining the nodes of the mesh, one file
describing the elements (for example triangles in 2D) and one file defining the boundary parts of the
mesh.

The triangle file format is very simple. Since the data is stored in ASCII, any text editor can be used to
edit the files. Lines starting with # will be interpreted as a comment by Fluidity. The filename should
end with either .node, .ele, .bound, .edge or .face. The structure of these files will now be explained:

.node file This file holds the coordinates of the nodes. The file structure is:

First line

<total number of vertices> <dimension (must be 1,2 or 3)> 0 0

Remaining lines

<vertex number> <x> [<y> [<z>]]

where x, y and z are the coordinates.

Vertices must be numbered consecutively, starting from one.

.ele file Saves the elements of the mesh. The file structure is:

First line:

<total number of elements> <nodes per element> 1

Remaining lines:

<element number> <node> <node> <node> ... <region id>

E.2 The triangle format 291

The elements must be numbered consecutively, starting from one. Nodes are indices into the
corresponding .node file. For example in case of describing a 2D triangle mesh, the first three
nodes are the corner vertices. The region ID can be used by Fluidity to set conditions on differ-
ent parts of the mesh, see section E.1.5.

.bound file This file is only generated for one-dimensional meshes. It records the boundary points
and assigns surface IDs to them. The file structure is:

First line:

<total number of boundary points> 1

Remaining lines:

<boundary point number> <node> <surface id>

The boundary points must be numbered consecutively, starting from one. Nodes are indices
into the corresponding .node file. The surface ID is used by Fluidity to specify parts of the
surface where different boundary conditions will be applied, see section E.1.4.

.edge file This file is only generated for two-dimensional meshes. It records the edges and assigns
surface IDs to part of the mesh surface. The file structure is:

First line:

<total number of edges> 1

Remaining lines:

<edge number> <node> <node> ... <surface id>

The edges must be numbered consecutively, starting from one. Nodes are indices into the
corresponding .node file. The surface ID is used by Fluidity to specify parts of the surface
where different boundary conditions will be applied, see section E.1.4.

.face file This file is only generated for three-dimensional meshes. It records the faces and assigns
surface IDs to part of the mesh surface. The file structure is:

First line:

<total number of faces> 1

Remaining lines:

<face number> <node> <node> <node> ... <surface id>

The faces must be numbered consecutively, starting from one. Nodes are indices into the cor-
responding .node file. The surface ID is used by Fluidity to specify parts of the surface where
different boundary conditions will be applied, see section E.1.4.

To clarify the file format, a simple 1D example is shown: The following .node file defines 6 equidistant
nodes from 0.0 to 5.0

example.node
6 1 0 0
1 0.0
2 1.0
3 2.0
4 3.0
5 4.0
6 5.0

292 Mesh formats

The .ele file connects these nodes to 5 lines. Two regions will be defined with the IDs 1 and 2.

example.ele
5 2 1
1 1 2 1
2 2 3 1
3 3 4 1
4 4 5 2
5 5 6 2

Finally, the .bound file tags the very left and very right nodes as boundary points an assigns the
surface IDs 1 and 2 to them.

example.bound
2 1
1 1 1
2 6 2

E.3 The Gmsh format

Fluidity contains support for the Gmsh format. Gmsh is a mesh generator freely available on the Web
at (http://geuz.org/gmsh/), and is included in Linux distributions such as Ubuntu.

Unlike triangle files, Gmsh meshes are contained within one file, which have the extension .msh.
The file contents may be either binary or ASCII.

This section briefly describes the Gmsh format, and is only intended to serve as a short intro-
duction. If you need further information, please read the official Gmsh documentation (http:
//geuz.org/gmsh/doc/texinfo/gmsh.pdf). Typically Gmsh files used in Fluidity contain
three parts: a header, a section for nodes, and one for elements. These are explained in more de-
tail below.

The header

This contains Gmsh file version information, and indicates whether the main data is in ASCII or
binary format. This will typically look like:

$MeshFormat
2.1 0 8
[Extra data here in binary mode]
$EndMeshFormat

From the listing above we can tell that:

• the Gmsh format version is 2.1

• it is in ASCII, as indicated by the 0 (1=binary)

• the byte size of double precision is 8

In addition, in binary mode the integer 1 is written as 4 raw bytes, to check that the endianness of the
Gmsh file and the system are the same (you will rarely have to worry about this)

http://geuz.org/gmsh/
http://geuz.org/gmsh/doc/texinfo/gmsh.pdf
http://geuz.org/gmsh/doc/texinfo/gmsh.pdf

E.4 The ExodusII format 293

The nodes section

The next section contains node data, viz:

$Nodes
number_of_nodes
[node data]
$EndNodes

The [node data] part contains the listing of nodes, with ID, followed by x, y, and z coordinates.
This part will be in binary when binary mode has been selected. Note that even with 2D problems,
there will be a zeroed z coordinate.

The elements section

The elements section contains information on both facets and regular elements. It also varies between
binary and ASCII formats. The ASCII version is:

$Elements
element1_id element_type number_of_tags tag_list node_number_list
element2_id ...
...
...
$EndElements

Tags are integer properties ascribed to the element. In Fluidity, usually we are only concerned with
the first one, the physical ID. This can mean one of two things:

• A region ID - in the case of elements

• A surface ID - in the case of facets

Since Gmsh doesn’t explicitly label facets or regular elements as such, internally Fluidity works this
out from type: eg, if there a mesh consists of tetrahedra and triangles, then triangles must be the
facets.

Internal use

Fluidity occasionally augments GMSH files for its own internal use. It does this in two cases. Firstly,
when generating periodic meshes through periodise (section 6.6.5), the fourth element tag is re-
served to label elements at the periodic boundary. Secondly, when checkpointing extruded meshes,
a new section called $NodeData is created at the end of the GMSH file; this contains essential node
column ID information.

E.4 The ExodusII format

Currently Fluidity support read-only support for serial ExodusII files. It is the default output mesh
format of the automated mesh generation toolkit Cubit. The mesh is stored within one binary file
and typically has one of the following file extensions: .e, .E, .exo, or .EXO.

A brief description of the structure of an ExodusII file is given. Interested readers can find a more
detailed description of the ExodusII format in the official manual at http://sourceforge.net/
projects/exodusii/.

http://cubit.sandia.gov/
http://sourceforge.net/projects/exodusii/
http://sourceforge.net/projects/exodusii/

294 Mesh formats

The header

The header contains basic information about the ExodusII file, such as the number of dimensions,
nodes, elements, blocks, sidesets and many more. Below an excerpt of the header is given.

netcdf \2dbox_with_sideset {
dimensions:

...
num_dim = 2 ;
num_nodes = 23 ;
num_elem = 35 ;
num_el_blk = 2 ;
...
num_side_sets = 4 ;
num_side_ss1 = 5 ;
...
num_el_in_blk1 = 30 ;
num_nod_per_el1 = 3 ;
...

From this header we can identify that the file contains a 2-dimensional mesh (num dim = 2), with
23 nodes (num nodes), and 35 elements (num elem). Furthermore, the mesh was divided into two
blocks (num el blk = 2), whereas the first block has 30 elements (num el in blk1) and the num-
ber of nodes of each element in this block is three (num nod per el1 = 3). In addition to the
blocks, four sidesets were defined (num side sets), whereas the first sideset contains 5 elements
(num side ss1 = 5). The ids of the blocks and sidesets are not to be confused with the numbering
of the blocks and sidesets above. The corresponding ids are stored in the data section of an ExodusII
file, which is covered in the following section.

The data section

The data section contains the actual mesh properties, such as block and sideset ids, the list of elements
and sides of each sideset, the node connectivity of each defined block, and of course the element
mapping of the entire mesh and the coordinates of the vertices.

data:
...
ss_prop1 = 10, 11, 12, 13 ;
...
elem_ss1 = 4, 8, 19, 20, 21 ;
...
elem_ss2 = 2, 4, 13 ;
...
elem_map = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 ;
...
eb_prop1 = 1, 2 ;
...
connect2 =
7, 8,
8, 20,
20, 23,
23, 15,
15, 16 ;

E.4 The ExodusII format 295

...
coord =
0.283701736685801, 0.166666666666667, 0.0265230044875502, 0.5,

-0.0944251982348238, -0.258225085856399, -0.5, -0.5, -0.166666666666667,
0.218376401545253, 0.283363015396065, 0.5, -0.166666666666667,
-0.25779029343402, -0.5, -0.5, 0.0259480610716054, 0.5, 0.5, -0.5,
-0.321383277222933, 0.166666666666667, -0.5,

0.280428743148782, 0.5, 0.242760465386713, 0.5, -0.00227602386180678,
0.188837287760358, 0.5, 0.3, 0.5, -0.00202880785288154,
-0.284316506446615, -0.166666666666667, -0.5, -0.193411124527211, -0.3,
-0.5, -0.247855406465798, -0.5, 0.166666666666667, 0.1,
-0.00195855747202122, -0.5, -0.1 ;

Here ss prop1 lists the id numbers of the defined sidesets, e.g. the id number 10 was assigned to
the first sideset. As stated in the header, the first sideset contains five elements (num side ss1 =
5), which are listed in the data section under elem ss1 = 4, 8, 19, 20, 21 ;

As stated above, the mesh was divided into two blocks. Their id numbers are 1 and 2, as can be
seen under eb prop1 = 1, 2; The element connectivity stored for each block separately under
connect1 and connect2.

Finally the coordinates of the vertices are stored under coord = ...

Use within Fluidity

Once the mesh is generated, it can be read in by Fluidity by simply setting the mesh format in Dia-
mond to exodusii and providing its file name.

The region ids and surface ids set in Diamond are the block ids and sideset ids in the ExodusII file
respectively.

Current restrictions

This is work in progress and the following restrictions apply to using the ExodusII mesh format:

• Currently only serial mesh files can be read in

• Currently Fluidity does not support writing ExodusII files, thus whenever an ExodusII mesh
file is read in, the checkpointed mesh files that are written are in the gmsh mesh format.

• FLTools such as periodise currently do not support the ExodusII mesh format.

296 Mesh formats

Index

absorption term . 14, 134
adaptivity options . 157, 159
advection-diffusion equation 13

continuous Galerkin . 34
control volume . 46
discontinuous Galerkin 38
discretisation options.132
weak form . 32

discretised . 33
algebraic multigrid (AMG) 69
ARPACK . 285

basis function . 33
Bassi-Rebay . 45
bazaar . 2
biology . 149
BLAS. .282
body forces

astronomical tides . 25
boundary conditions . 143

boundary tides . 25
bulk parameterisations 25
Dirichlet . 14, 19, 143

strongly imposed. .38
weakly imposed. .38

drag . 145
flux . 145
free stress . 19
free surface. .145
generic length scale model 148
k-ε model . 148
Momentum . 19
NEMO data . 147
Neumann. .15, 144

weakly imposed. .37
no normal flow. 146
ocean . 118, 147
prescribed stress. .19
Robin . 144
scalar . 14
setting . 143
synthetic eddy method 147
traction . 19
wetting and drying . 145
wind stress . 146
zero flux . 144

Boussinesq
approximation . 23

discretised . 60
equations . 24

bzr . see bazaar
installing . 285

CGNS . 286
checkpointing . 120

restarting . 121
Compact Discontinuous Galerkin 45
compilers . 279
compressible fluid model . 165
conjugate gradient . 136
conjugate gradient method 68
conservation

equation . 15
mass . 15
momentum . 16

continuity equation . 24
continuous Galerkin

seeGalerkin
continuous . 41

control volume
advection . 46

convergence criteria . 69
Coriolis . 21

β-plane . 22
f -plane. .22
options .124

Cubit . see exodusii

density
reference . 23

detectors
Lagrangian . 70
options .121

Diamond . 10
diffusion

discontinuous Galerkin 43
Bassi-Rebay . 45
CDG . 45

diffusivity
eddy . 73, 76

dimension. 117
discontinuous Galerkin

297

298 Index

seeGalerkin
discontinuous . 41

Entering bathymetry data into fluidity using
Gmsh . 102

equation of state . 17, 18
linear . 18, 138
options .138
Pade approximation 19, 139
stiffened gas . 139

errors
linear solver . 137

exodusii . 97, 293

field . 128
constant . 129
from Nemo . 131
input . 130
Python function . 130, 273
values . 129

free slip . 19
free stress . 19
free surface . 20, 24

boundary condition . 145
initial condition . 131
weak form . 66
Wetting and drying. .20

Galerkin
continuous . 32

advection . 34
discontinuous . 32

advection . 38
diffusion . 43
slope limiters . 41

methods . 32
Petrov- . 35
projection . 32

Gauss-Seidel iteration . 68
generic length scale model . 73

boundary conditions . 148
GLS see generic length scale model
GMRES . 68, 136
gmsh . 102
gravity . 124
grid . see mesh, see mesh

inital conditions
free surface height .131

initial conditions
setting . 129

Jacobi iteration . 67

k-ε model . 76, 140

boundary conditions . 148
kinematic boundary condition 20
Krylov subspace methods . 68

Lagrangian trajectories . 70
LAPACK . 282
large eddy simulation . 80
libraries

installing externals from source.278
installing on debian and ubuntu 278

linear momentum . 23
linear solvers . 67

convergence criteria 69, 137
iterative . 67
Krylov subspace methods 68
options .136
preconditioners . 69, 136

mass lumping . 62
mesh

coordinate mesh. 98
cubical . 98
derived . 126
extruded . 99
file formats . 290
generation . 97, 289
input . 125
meshing tools . 99

fldecomp. .101
flredecomp. 100
gmsh . 102
mesh conversion . 100
mesh creation . 99
mesh verification . 99
periodise . 101
Terreno . 102

nodes . 98
output . 119
periodic . 99, 126
simplicial . 98

momentum equation 15, 19, 24
discretisation options.132
discretised . 59

multi-material flow . 26
multigrid . 69, 136
multigrid methods . 69
multiphase flow . 27

NetCDF . 285
numpy . 281

OpenMPI . 280
options

names. 116
syntax . 115

299

P1 . 33
Péclet number

grid . 34
parallel . 10

mesh decomposition . 100
ParMetis . 282
penalty parameter

CDG . 134
interior penalty method 134

periodic domain . 99, 126
Petrov-Galerkin . 35
PETSc . 136, 283
PN . 32
porous media darcy flow 28, 58, 60, 63, 166
preconditioners .69
pressue

discretisation . 60
pressure

balance . 65
CG with CV tested continuity 64, 136
correction . 61
geostrophic balance . 135
null space . 135
options .135
perturbation. .23

Python
detector positions . 121
installing . 281
prescribed field values 130
state interface . 273

quadrature
options .118

reaction term . 14
region ID . 97, 131, 290
Reynolds stress . 73, 76
Reynolds Transport theorem 15

sediments . 149
slope limiters . 41
Sobolev space . 32
solvers . see linear solvers
source term . 14, 134
spherical earth . 118
sponge regions . 135
stabilisation

advection . 34
balancing diffusion . 34
discontinuous Galerkin.41
Petrov-Galerkin . 35

stat file . 121, 202
strain . 17
stress . 17

subversion . 2–4
surface ID . 97, 143, 290, 291
symmetric positive definite (SPD).68

Terreno. .102
test function . 32
θ-scheme . 57
tides . 148
time

advection subcycling . 57
step . 122
θ-scheme . 57

traction force . 19
traditional approximation . 22
Trang . 285
trial function . 32
turbulence model . 76
turbulence model . 73, 80, 140

UDUnits . 285

viscosity
eddy . 73, 76

visualisation . 169
vtk . 119

installing . 283
vtu . 169

weak form. .32
wind forcing . 146

XML2 . 285

zoltan . 113, 159

	Getting started
	Introduction
	Obtaining Fluidity
	Overview
	Fluidity binary packages for Ubuntu Linux
	Fluidity source packages
	Bazaar

	Building Fluidity
	Setting up the build environment
	Configuring the build process
	Compiling Fluidity
	Installing Fluidity and diamond

	Running Fluidity
	Running Fluidity in serial
	Running Fluidity in parallel

	Running diamond
	Working with the output

	Model equations
	How to navigate this chapter
	Advection–Diffusion equation
	General equation
	Scalar boundary conditions

	Fluid equations
	Mass conservation
	Momentum conservation
	Equations of state & constitutive relations
	Momentum boundary conditions

	Extensions, assumptions and derived equation sets
	Equations in a moving reference frame
	Linear Momentum
	The Boussinesq approximation
	Supplementary boundary conditions and body forces
	Multi-material simulations
	Multiphase simulations
	Porous Media Darcy Flow

	Numerical discretisation
	Introduction & some definitions
	Spatial discretisation of the advection-diffusion equation
	Continuous Galerkin discretisation
	Boundary conditions
	Discontinuous Galerkin discretisation
	Control volume discretisation

	The time loop
	Time notation
	Nonlinear relaxation
	The scheme

	Time discretisation of the advection-diffusion equation
	Discontinuous Galerkin
	Control Volumes
	Porous Media

	Momentum equation
	Boussinesq approximation
	Porous Media Darcy Flow

	Pressure equation for incompressible flow
	Pressure correction
	Porous Media Darcy Flow

	Velocity and pressure element pairs
	Continuous Galerkin pressure with control volume tested continuity

	Balance pressure
	Free surface
	Wetting and drying
	Linear solvers
	Iterative solvers
	Preconditioned Krylov subspace methods
	Convergence criteria

	Algorithm for detectors (Lagrangian trajectories)

	Parameterisations
	Turbulent flow modelling and simulation
	Reynolds Averaged Navier Stokes (RANS) Modelling
	Large-Eddy Simulation (LES)

	Ice shelf parameterisation
	Boundary condition at ice surface

	Embedded models
	Biology
	Four component model
	Six-component model
	Photosynthetically active radiation (PAR)
	Detritus falling velocity

	Sediments
	Hindered Sinking Velocity
	Deposition and erosion
	Sediment concentration dependent viscosity

	Meshes in Fluidity
	Supported mesh formats
	Surface and regions ids
	Meshes and function spaces
	Extruded meshes
	Periodic meshes
	Meshing tools
	Mesh Verification
	Mesh creation
	Mesh conversion
	Decomposing meshes for parallel
	Decomposing a periodic mesh

	Non-Fluidity tools
	Terreno
	Gmsh
	Importing contours from bathymetric data into Gmsh

	Adaptive remeshing
	Motivation
	A typical adaptive loop
	Representing meshes as metric tensors
	Adaptive remeshing technology
	Using mesh adaptivity
	Choice of norm
	Absolute, relative and p– metrics
	Weights
	Gradation parameter
	Maximum and minimum edge length tensors
	Maximum and minimum numbers of nodes
	Metric advection

	Interpolation
	Parallel adaptivity
	The cost of adaptivity

	Configuring Fluidity
	Overview
	Options syntax
	Allowed Characters
	Named options

	The options tree
	Simulation Name
	Problem Type
	Geometry
	IO
	Timestepping
	Physical parameters

	Meshes
	Reading meshes from file
	Deriving meshes from other meshes

	Material/Phase
	Fields
	Types of field
	Setting field values
	Region IDs
	Mathematical constraints on initial conditions

	Advected quantities: momentum and tracers
	Spatial discretisations
	Temporal discretisations
	Source and absorption terms
	Sponge regions

	Solving for pressure
	Geostrophic pressure solvers
	First guess for poisson pressure equation
	Removing the null space of the pressure gradient operator
	Continuous Galerkin pressure with control volume tested continuity

	Solution of linear systems
	Iterative Method
	Preconditioner
	Relative Error
	Absolute Error
	Max Iterations
	Start from Zero
	Remove Null Space
	Solver Failures
	Reordering RCM
	Solver Diagnostics

	Equation of State (EoS)
	Sub-grid Scale Parameterisations
	GLS
	k- Turbulence Model
	Large Eddy Simulation Models

	Boundary conditions
	Adding a boundary condition
	Selecting surfaces
	Boundary condition types
	Special input date for boundary conditions
	Special cases

	Astronomical tidal forcing
	Ocean biology
	Sediment model
	Large scale low aspect ratio ocean simulations
	Options that must be switched on
	Recommended or optional settings

	Geophysical fluid dynamics problems
	Problem type
	Geometry
	Timestepping
	Material/phase

	Mesh adaptivity
	Field settings
	General adaptivity options

	Multiple material/phase models
	Multiple material models
	Multiple phase models

	Compressible fluid model
	Pressure options
	Density options
	Velocity options
	Restrictions: discretisation options and element pairs

	Porous Media Darcy Flow
	Single Phase

	Visualisation and Diagnostics
	Visualisation
	Online diagnostics
	Fields

	Offline diagnostics
	vtktools
	Diagnostic output
	fltools

	The stat file
	File format
	Reading .stat files in python
	Stat file diagnostics
	Detectors

	Examples
	Introduction
	One dimensional advection
	Overview
	Configuration
	Results
	Exercises

	The lock-exchange
	Overview
	Configuration
	Results
	Exercises

	Lid-driven cavity
	Overview
	Configuration
	Results
	Exercises

	2D Backward facing step
	Overview
	Geometry
	Initial and boundary conditions
	Results

	3D Backward facing step
	Configuration
	Geometry
	Initial and boundary conditions
	Results

	Flow past a sphere: drag calculation
	Overview
	Configuration
	Results
	Exercises

	Rotating periodic channel
	Overview
	Results

	Water column collapse
	Overview
	Problem specification
	Results
	Exercises

	The restratification following open ocean deep convection
	Overview
	Configuration
	Results

	Tides in the Mediterranean Sea
	Overview
	Configuration
	Results

	Hokkaido-Nansei-Oki tsunami
	Overview
	Configuration
	Results
	Exercises

	Tephra settling
	Overview
	Problem specification
	Results
	Exercises

	Stokes Square Convection
	Overview
	Problem Specification
	Results
	Exercises

	Bibliography
	About this manual
	Introduction
	Audience and Scope
	Style guide
	Headings
	Language
	Labelling
	Images
	flml options
	Generating pdf and html output
	Representing source code
	Bibliography
	Mathematical notation conventions

	The Fluidity Python state interface
	System requirements
	Data types
	[language=Python]+Field+ objects
	[language=Python]+State+ objects

	Predefined data
	Importing modules and accessing external data
	The persistent dictionary
	Debugging with an interactive Python session
	Limitations

	External libraries
	Introduction
	List of external libraries and software
	Installing required libraries on Debian or Ubuntu
	Manual install of external libraries and software
	Supported compilers
	Build environment
	Compilers
	Python
	Numerical Libraries
	VTK and supporting software
	Supporting Libraries

	Troubleshooting
	Mesh formats
	Mesh data
	Node location
	Element topology
	Facets
	Surface IDs
	Region IDs

	The triangle format
	The Gmsh format
	The ExodusII format

	Index

