
gdb Internals
A guide to the internals of the GNU debugger

John Gilmore
Cygnus Solutions
Second Edition:
Stan Shebs
Cygnus Solutions

Cygnus Solutions
Revision

TEXinfo 2007-09-03.05

Copyright c© 1990-2013 Free Software Foundation, Inc. Contributed by Cygnus Solutions.
Written by John Gilmore. Second Edition by Stan Shebs.
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

i

Table of Contents

Scope of this Document . 1

1 Summary . 1
1.1 Requirements . 1
1.2 Contributors . 1

2 Overall Structure . 2
2.1 The Symbol Side . 2
2.2 The Target Side . 2
2.3 Configurations . 2
2.4 Source Tree Structure . 3

3 Algorithms . 4
3.1 Prologue Analysis . 4
3.2 Breakpoint Handling . 6
3.3 Single Stepping . 7
3.4 Signal Handling . 7
3.5 Thread Handling . 7
3.6 Inferior Function Calls . 7
3.7 Longjmp Support . 7
3.8 Watchpoints . 8

3.8.1 Watchpoints and Threads . 10
3.8.2 x86 Watchpoints . 10

3.9 Checkpoints . 13
3.10 Observing changes in gdb internals . 13

4 User Interface . 14
4.1 Command Interpreter . 14
4.2 UI-Independent Output—the ui_out Functions 14

4.2.1 Overview and Terminology . 14
4.2.2 General Conventions . 15
4.2.3 Table, Tuple and List Functions . 15
4.2.4 Item Output Functions . 17
4.2.5 Utility Output Functions . 19
4.2.6 Examples of Use of ui_out functions . 20

4.3 Console Printing . 23
4.4 TUI . 23

ii

5 libgdb . 23
5.1 libgdb 1.0 . 23
5.2 libgdb 2.0 . 23
5.3 The libgdb Model . 23
5.4 CLI support . 24
5.5 libgdb components . 24

6 Values . 25
6.1 Values . 25

7 Stack Frames . 26
7.1 Selecting an Unwinder . 26
7.2 Unwinding the Frame ID . 27
7.3 Unwinding Registers . 27

8 Symbol Handling . 28
8.1 Symbol Reading . 28
8.2 Partial Symbol Tables . 29
8.3 Types . 31

Fundamental Types (e.g., FT_VOID, FT_BOOLEAN). 31
Type Codes (e.g., TYPE_CODE_PTR, TYPE_CODE_ARRAY). 31
Builtin Types (e.g., builtin_type_void, builtin_type_char). . . 31

8.4 Object File Formats . 31
8.4.1 a.out . 31
8.4.2 COFF . 31
8.4.3 ECOFF . 32
8.4.4 XCOFF . 32
8.4.5 PE . 32
8.4.6 ELF . 32
8.4.7 SOM . 32

8.5 Debugging File Formats . 32
8.5.1 stabs . 32
8.5.2 COFF . 32
8.5.3 Mips debug (Third Eye) . 33
8.5.4 DWARF 2 . 33
8.5.5 Compressed DWARF 2 . 33
8.5.6 DWARF 3 . 33
8.5.7 SOM . 33

8.6 Adding a New Symbol Reader to gdb . 33
8.7 Memory Management for Symbol Files . 34

9 Language Support . 34
9.1 Adding a Source Language to gdb . 34

iii

10 Host Definition . 36
10.1 Adding a New Host . 36
10.2 Host Conditionals . 36

11 Target Architecture Definition 37
11.1 Operating System ABI Variant Handling . 37
11.2 Initializing a New Architecture . 40

11.2.1 How an Architecture is Represented . 40
11.2.2 Looking Up an Existing Architecture . 40
11.2.3 Creating a New Architecture . 41

11.3 Registers and Memory . 42
11.4 Pointers Are Not Always Addresses . 42
11.5 Address Classes . 44
11.6 Register Representation . 45

11.6.1 Raw and Cooked Registers . 45
11.6.2 Functions and Variables Specifying the Register Architecture

. 45
11.6.3 Functions Giving Register Information 47
11.6.4 Using Different Register and Memory Data Representations

. 48
11.6.5 Register Caching . 49

11.7 Frame Interpretation . 50
11.7.1 All About Stack Frames . 50
11.7.2 Frame Handling Terminology . 51
11.7.3 Prologue Caches . 52
11.7.4 Functions and Variable to Analyze Frames 53
11.7.5 Functions to Access Frame Data . 54
11.7.6 Analyzing Stacks—Frame Sniffers . 55

11.8 Inferior Call Setup . 56
11.8.1 About Dummy Frames . 56
11.8.2 Functions Creating Dummy Frames . 56

11.9 Adding support for debugging core files . 58
11.10 Defining Other Architecture Features . 58
11.11 Adding a New Target . 67

12 Target Descriptions . 68
12.1 Target Descriptions Implementation . 68
12.2 Adding Target Described Register Support 68

13 Target Vector Definition . 69
13.1 Managing Execution State . 69
13.2 Existing Targets . 70

13.2.1 File Targets . 70
13.2.2 Standard Protocol and Remote Stubs . 70
13.2.3 ROM Monitor Interface . 70
13.2.4 Custom Protocols . 70
13.2.5 Transport Layer . 70
13.2.6 Builtin Simulator . 70

iv

14 Native Debugging . 71
14.1 ptrace . 71
14.2 /proc . 72
14.3 win32 . 72
14.4 shared libraries . 72
14.5 Native Conditionals . 72

15 Support Libraries . 72
15.1 BFD . 72
15.2 opcodes . 73
15.3 readline . 73
15.4 libiberty . 73

15.4.1 obstacks in gdb . 73
15.5 gnu-regex . 74
15.6 Array Containers . 74
15.7 include . 77

16 Coding Standards . 77
16.1 gdb C Coding Standards . 77

16.1.1 ISO C . 77
16.1.2 Formatting . 77
16.1.3 Comments . 78
16.1.4 C Usage . 78
16.1.5 Function Prototypes . 79
16.1.6 File Names . 79
16.1.7 Include Files . 80

16.2 gdb Python Coding Standards . 80
16.2.1 gdb-specific exceptions . 80

17 Misc Guidelines . 80
17.1 Cleanups . 80
17.2 Per-architecture module data . 82
17.3 Wrapping Output Lines . 83
17.4 Memory Management . 83
17.5 Compiler Warnings . 84
17.6 Internal Error Recovery . 85
17.7 Command Names . 85
17.8 Clean Design and Portable Implementation 85

18 Porting gdb . 87

v

19 Versions and Branches . 88
19.1 Versions . 88
19.2 Release Branches . 89
19.3 Vendor Branches . 89
19.4 Experimental Branches . 89

19.4.1 Guidelines . 89
19.4.2 Tags . 90

20 Start of New Year Procedure 91

21 Releasing gdb . 91
21.1 Branch Commit Policy . 91
21.2 Obsoleting code . 92
21.3 Before the Branch . 92

21.3.1 Review the bug data base . 93
21.3.2 Check all cross targets build . 93

21.4 Cut the Branch . 93
21.5 Stabilize the branch . 94
21.6 Create a Release . 95

21.6.1 Create a release candidate . 95
21.6.2 Sanity check the tar ball . 97
21.6.3 Make a release candidate available . 97
21.6.4 Make a formal release available . 98
21.6.5 Cleanup . 99

21.7 Post release . 100

22 Testsuite . 100
22.1 Using the Testsuite . 100
22.2 Testsuite Parameters . 101
22.3 Testsuite Configuration . 102
22.4 Testsuite Organization . 103
22.5 Writing Tests . 104
22.6 Board settings . 105

23 Hints . 106
23.1 Getting Started . 106
23.2 Debugging gdb with itself . 107
23.3 Submitting Patches . 107
23.4 Build Script . 108

Appendix A gdb Currently available observers
. 108

A.1 Implementation rationale . 108
A.2 Debugging . 109
A.3 normal_stop Notifications . 109

vi

Appendix B GNU Free Documentation License
. 112

Concept Index . 120

Function and Variable Index . 123

Chapter 1: Summary 1

Scope of this Document

This document documents the internals of the GNU debugger, gdb. It includes description
of gdb’s key algorithms and operations, as well as the mechanisms that adapt gdb to
specific hosts and targets.

1 Summary

1.1 Requirements

Before diving into the internals, you should understand the formal requirements and other
expectations for gdb. Although some of these may seem obvious, there have been proposals
for gdb that have run counter to these requirements.

First of all, gdb is a debugger. It’s not designed to be a front panel for embedded
systems. It’s not a text editor. It’s not a shell. It’s not a programming environment.

gdb is an interactive tool. Although a batch mode is available, gdb’s primary role is to
interact with a human programmer.

gdb should be responsive to the user. A programmer hot on the trail of a nasty bug, and
operating under a looming deadline, is going to be very impatient of everything, including
the response time to debugger commands.

gdb should be relatively permissive, such as for expressions. While the compiler should
be picky (or have the option to be made picky), since source code lives for a long time
usually, the programmer doing debugging shouldn’t be spending time figuring out to mollify
the debugger.

gdb will be called upon to deal with really large programs. Executable sizes of 50 to 100
megabytes occur regularly, and we’ve heard reports of programs approaching 1 gigabyte in
size.

gdb should be able to run everywhere. No other debugger is available for even half as
many configurations as gdb supports.

1.2 Contributors

The first edition of this document was written by John Gilmore of Cygnus Solutions. The
current second edition was written by Stan Shebs of Cygnus Solutions, who continues to
update the manual.

Over the years, many others have made additions and changes to this document. This
section attempts to record the significant contributors to that effort. One of the virtues
of free software is that everyone is free to contribute to it; with regret, we cannot actually
acknowledge everyone here.

Plea: This section has only been added relatively recently (four years after
publication of the second edition). Additions to this section are particularly
welcome. If you or your friends (or enemies, to be evenhanded) have been
unfairly omitted from this list, we would like to add your names!

A document such as this relies on being kept up to date by numerous small updates
by contributing engineers as they make changes to the code base. The file ‘ChangeLog’ in

Chapter 2: Overall Structure 2

the gdb distribution approximates a blow-by-blow account. The most prolific contributors
to this important, but low profile task are Andrew Cagney (responsible for over half the
entries), Daniel Jacobowitz, Mark Kettenis, Jim Blandy and Eli Zaretskii.

Eli Zaretskii and Daniel Jacobowitz wrote the sections documenting watchpoints.
Jeremy Bennett updated the sections on initializing a new architecture and register

representation, and added the section on Frame Interpretation.

2 Overall Structure

gdb consists of three major subsystems: user interface, symbol handling (the symbol side),
and target system handling (the target side).

The user interface consists of several actual interfaces, plus supporting code.
The symbol side consists of object file readers, debugging info interpreters, symbol table

management, source language expression parsing, type and value printing.
The target side consists of execution control, stack frame analysis, and physical target

manipulation.
The target side/symbol side division is not formal, and there are a number of excep-

tions. For instance, core file support involves symbolic elements (the basic core file reader
is in BFD) and target elements (it supplies the contents of memory and the values of reg-
isters). Instead, this division is useful for understanding how the minor subsystems should
fit together.

2.1 The Symbol Side

The symbolic side of gdb can be thought of as “everything you can do in gdb without
having a live program running”. For instance, you can look at the types of variables, and
evaluate many kinds of expressions.

2.2 The Target Side

The target side of gdb is the “bits and bytes manipulator”. Although it may make reference
to symbolic info here and there, most of the target side will run with only a stripped
executable available—or even no executable at all, in remote debugging cases.

Operations such as disassembly, stack frame crawls, and register display, are able to work
with no symbolic info at all. In some cases, such as disassembly, gdb will use symbolic info
to present addresses relative to symbols rather than as raw numbers, but it will work either
way.

2.3 Configurations

Host refers to attributes of the system where gdb runs. Target refers to the system where
the program being debugged executes. In most cases they are the same machine, in which
case a third type of Native attributes come into play.

Defines and include files needed to build on the host are host support. Examples are tty
support, system defined types, host byte order, host float format. These are all calculated
by autoconf when the debugger is built.

Chapter 2: Overall Structure 3

Defines and information needed to handle the target format are target dependent. Ex-
amples are the stack frame format, instruction set, breakpoint instruction, registers, and
how to set up and tear down the stack to call a function.

Information that is only needed when the host and target are the same, is native depen-
dent. One example is Unix child process support; if the host and target are not the same,
calling fork to start the target process is a bad idea. The various macros needed for finding
the registers in the upage, running ptrace, and such are all in the native-dependent files.

Another example of native-dependent code is support for features that are really part
of the target environment, but which require #include files that are only available on the
host system. Core file handling and setjmp handling are two common cases.

When you want to make gdb work as the traditional native debugger on a system, you
will need to supply both target and native information.

2.4 Source Tree Structure

The gdb source directory has a mostly flat structure—there are only a few subdirectories.
A file’s name usually gives a hint as to what it does; for example, ‘stabsread.c’ reads
stabs, ‘dwarf2read.c’ reads DWARF 2, etc.

Files that are related to some common task have names that share common substrings.
For example, ‘*-thread.c’ files deal with debugging threads on various platforms; ‘*read.c’
files deal with reading various kinds of symbol and object files; ‘inf*.c’ files deal with direct
control of the inferior program (gdb parlance for the program being debugged).

There are several dozens of files in the ‘*-tdep.c’ family. ‘tdep’ stands for target-
dependent code—each of these files implements debug support for a specific target architec-
ture (sparc, mips, etc). Usually, only one of these will be used in a specific gdb configuration
(sometimes two, closely related).

Similarly, there are many ‘*-nat.c’ files, each one for native debugging on a specific
system (e.g., ‘sparc-linux-nat.c’ is for native debugging of Sparc machines running the
Linux kernel).

The few subdirectories of the source tree are:

‘cli’ Code that implements CLI, the gdb Command-Line Interpreter. See Chapter 4
[User Interface], page 14.

‘gdbserver’
Code for the gdb remote server.

‘gdbtk’ Code for Insight, the gdb TK-based GUI front-end.

‘mi’ The GDB/MI, the gdb Machine Interface interpreter.

‘signals’ Target signal translation code.

‘tui’ Code for TUI, the gdb Text-mode full-screen User Interface. See Chapter 4
[User Interface], page 14.

Chapter 3: Algorithms 4

3 Algorithms

gdb uses a number of debugging-specific algorithms. They are often not very complicated,
but get lost in the thicket of special cases and real-world issues. This chapter describes the
basic algorithms and mentions some of the specific target definitions that they use.

3.1 Prologue Analysis

To produce a backtrace and allow the user to manipulate older frames’ variables and ar-
guments, gdb needs to find the base addresses of older frames, and discover where those
frames’ registers have been saved. Since a frame’s “callee-saves” registers get saved by
younger frames if and when they’re reused, a frame’s registers may be scattered unpre-
dictably across younger frames. This means that changing the value of a register-allocated
variable in an older frame may actually entail writing to a save slot in some younger frame.

Modern versions of GCC emit Dwarf call frame information (“CFI”), which describes
how to find frame base addresses and saved registers. But CFI is not always available, so
as a fallback gdb uses a technique called prologue analysis to find frame sizes and saved
registers. A prologue analyzer disassembles the function’s machine code starting from its
entry point, and looks for instructions that allocate frame space, save the stack pointer in a
frame pointer register, save registers, and so on. Obviously, this can’t be done accurately in
general, but it’s tractable to do well enough to be very helpful. Prologue analysis predates
the GNU toolchain’s support for CFI; at one time, prologue analysis was the only mechanism
gdb used for stack unwinding at all, when the function calling conventions didn’t specify a
fixed frame layout.

In the olden days, function prologues were generated by hand-written, target-specific
code in GCC, and treated as opaque and untouchable by optimizers. Looking at this code,
it was usually straightforward to write a prologue analyzer for gdb that would accurately
understand all the prologues GCC would generate. However, over time GCC became more
aggressive about instruction scheduling, and began to understand more about the semantics
of the prologue instructions themselves; in response, gdb’s analyzers became more complex
and fragile. Keeping the prologue analyzers working as GCC (and the instruction sets
themselves) evolved became a substantial task.

To try to address this problem, the code in ‘prologue-value.h’ and ‘prologue-value.c’
provides a general framework for writing prologue analyzers that are simpler and more ro-
bust than ad-hoc analyzers. When we analyze a prologue using the prologue-value frame-
work, we’re really doing “abstract interpretation” or “pseudo-evaluation”: running the
function’s code in simulation, but using conservative approximations of the values registers
and memory would hold when the code actually runs. For example, if our function starts
with the instruction:

addi r1, 42 # add 42 to r1

we don’t know exactly what value will be in r1 after executing this instruction, but we do
know it’ll be 42 greater than its original value.

If we then see an instruction like:
addi r1, 22 # add 22 to r1

we still don’t know what r1’s value is, but again, we can say it is now 64 greater than its
original value.

Chapter 3: Algorithms 5

If the next instruction were:

mov r2, r1 # set r2 to r1’s value

then we can say that r2’s value is now the original value of r1 plus 64.

It’s common for prologues to save registers on the stack, so we’ll need to track the values
of stack frame slots, as well as the registers. So after an instruction like this:

mov (fp+4), r2

then we’d know that the stack slot four bytes above the frame pointer holds the original
value of r1 plus 64.

And so on.

Of course, this can only go so far before it gets unreasonable. If we wanted to be able
to say anything about the value of r1 after the instruction:

xor r1, r3 # exclusive-or r1 and r3, place result in r1

then things would get pretty complex. But remember, we’re just doing a conservative
approximation; if exclusive-or instructions aren’t relevant to prologues, we can just say
r1’s value is now “unknown”. We can ignore things that are too complex, if that loss of
information is acceptable for our application.

So when we say “conservative approximation” here, what we mean is an approximation
that is either accurate, or marked “unknown”, but never inaccurate.

Using this framework, a prologue analyzer is simply an interpreter for machine code,
but one that uses conservative approximations for the contents of registers and memory
instead of actual values. Starting from the function’s entry point, you simulate instructions
up to the current PC, or an instruction that you don’t know how to simulate. Now you can
examine the state of the registers and stack slots you’ve kept track of.

• To see how large your stack frame is, just check the value of the stack pointer register;
if it’s the original value of the SP minus a constant, then that constant is the stack
frame’s size. If the SP’s value has been marked as “unknown”, then that means the
prologue has done something too complex for us to track, and we don’t know the frame
size.

• To see where we’ve saved the previous frame’s registers, we just search the values we’ve
tracked — stack slots, usually, but registers, too, if you want — for something equal
to the register’s original value. If the calling conventions suggest a standard place to
save a given register, then we can check there first, but really, anything that will get
us back the original value will probably work.

This does take some work. But prologue analyzers aren’t quick-and-simple pattern
patching to recognize a few fixed prologue forms any more; they’re big, hairy functions.
Along with inferior function calls, prologue analysis accounts for a substantial portion of
the time needed to stabilize a gdb port. So it’s worthwhile to look for an approach that
will be easier to understand and maintain. In the approach described above:

• It’s easier to see that the analyzer is correct: you just see whether the analyzer properly
(albeit conservatively) simulates the effect of each instruction.

• It’s easier to extend the analyzer: you can add support for new instructions, and know
that you haven’t broken anything that wasn’t already broken before.

Chapter 3: Algorithms 6

• It’s orthogonal: to gather new information, you don’t need to complicate the code for
each instruction. As long as your domain of conservative values is already detailed
enough to tell you what you need, then all the existing instruction simulations are
already gathering the right data for you.

The file ‘prologue-value.h’ contains detailed comments explaining the framework and
how to use it.

3.2 Breakpoint Handling

In general, a breakpoint is a user-designated location in the program where the user wants
to regain control if program execution ever reaches that location.

There are two main ways to implement breakpoints; either as “hardware” breakpoints
or as “software” breakpoints.

Hardware breakpoints are sometimes available as a builtin debugging features with some
chips. Typically these work by having dedicated register into which the breakpoint address
may be stored. If the PC (shorthand for program counter) ever matches a value in a
breakpoint registers, the CPU raises an exception and reports it to gdb.

Another possibility is when an emulator is in use; many emulators include circuitry that
watches the address lines coming out from the processor, and force it to stop if the address
matches a breakpoint’s address.

A third possibility is that the target already has the ability to do breakpoints somehow;
for instance, a ROM monitor may do its own software breakpoints. So although these are
not literally “hardware breakpoints”, from gdb’s point of view they work the same; gdb
need not do anything more than set the breakpoint and wait for something to happen.

Since they depend on hardware resources, hardware breakpoints may be limited in num-
ber; when the user asks for more, gdb will start trying to set software breakpoints. (On
some architectures, notably the 32-bit x86 platforms, gdb cannot always know whether
there’s enough hardware resources to insert all the hardware breakpoints and watchpoints.
On those platforms, gdb prints an error message only when the program being debugged
is continued.)

Software breakpoints require gdb to do somewhat more work. The basic theory is that
gdb will replace a program instruction with a trap, illegal divide, or some other instruction
that will cause an exception, and then when it’s encountered, gdb will take the exception
and stop the program. When the user says to continue, gdb will restore the original
instruction, single-step, re-insert the trap, and continue on.

Since it literally overwrites the program being tested, the program area must be writable,
so this technique won’t work on programs in ROM. It can also distort the behavior of
programs that examine themselves, although such a situation would be highly unusual.

Also, the software breakpoint instruction should be the smallest size of instruction, so
it doesn’t overwrite an instruction that might be a jump target, and cause disaster when
the program jumps into the middle of the breakpoint instruction. (Strictly speaking, the
breakpoint must be no larger than the smallest interval between instructions that may be
jump targets; perhaps there is an architecture where only even-numbered instructions may
jumped to.) Note that it’s possible for an instruction set not to have any instructions usable

Chapter 3: Algorithms 7

for a software breakpoint, although in practice only the ARC has failed to define such an
instruction.

Basic breakpoint object handling is in ‘breakpoint.c’. However, much of the interesting
breakpoint action is in ‘infrun.c’.

target_remove_breakpoint (bp_tgt)
target_insert_breakpoint (bp_tgt)

Insert or remove a software breakpoint at address bp_tgt->placed_address.
Returns zero for success, non-zero for failure. On input, bp tgt contains the
address of the breakpoint, and is otherwise initialized to zero. The fields of the
struct bp_target_info pointed to by bp tgt are updated to contain other
information about the breakpoint on output. The field placed_address may
be updated if the breakpoint was placed at a related address; the field shadow_
contents contains the real contents of the bytes where the breakpoint has
been inserted, if reading memory would return the breakpoint instead of the
underlying memory; the field shadow_len is the length of memory cached in
shadow_contents, if any; and the field placed_size is optionally set and used
by the target, if it could differ from shadow_len.
For example, the remote target ‘Z0’ packet does not require shadowing mem-
ory, so shadow_len is left at zero. However, the length reported by gdbarch_
breakpoint_from_pc is cached in placed_size, so that a matching ‘z0’ packet
can be used to remove the breakpoint.

target_remove_hw_breakpoint (bp_tgt)
target_insert_hw_breakpoint (bp_tgt)

Insert or remove a hardware-assisted breakpoint at address bp_tgt->placed_
address. Returns zero for success, non-zero for failure. See target_insert_
breakpoint for a description of the struct bp_target_info pointed to by
bp tgt; the shadow_contents and shadow_len members are not used for hard-
ware breakpoints, but placed_size may be.

3.3 Single Stepping

3.4 Signal Handling

3.5 Thread Handling

3.6 Inferior Function Calls

3.7 Longjmp Support

gdb has support for figuring out that the target is doing a longjmp and for stopping at
the target of the jump, if we are stepping. This is done with a few specialized internal
breakpoints, which are visible in the output of the ‘maint info breakpoint’ command.

To make this work, you need to define a function called gdbarch_get_longjmp_target,
which will examine the jmp_buf structure and extract the longjmp target address. Since

Chapter 3: Algorithms 8

jmp_buf is target specific and typically defined in a target header not available to gdb, you
will need to determine the offset of the PC manually and return that; many targets define
a jb_pc_offset field in the tdep structure to save the value once calculated.

3.8 Watchpoints

Watchpoints are a special kind of breakpoints (see Chapter 3 [Algorithms], page 4) which
break when data is accessed rather than when some instruction is executed. When you have
data which changes without your knowing what code does that, watchpoints are the silver
bullet to hunt down and kill such bugs.

Watchpoints can be either hardware-assisted or not; the latter type is known as “software
watchpoints.” gdb always uses hardware-assisted watchpoints if they are available, and falls
back on software watchpoints otherwise. Typical situations where gdb will use software
watchpoints are:

• The watched memory region is too large for the underlying hardware watchpoint sup-
port. For example, each x86 debug register can watch up to 4 bytes of memory, so
trying to watch data structures whose size is more than 16 bytes will cause gdb to use
software watchpoints.

• The value of the expression to be watched depends on data held in registers (as opposed
to memory).

• Too many different watchpoints requested. (On some architectures, this situation is
impossible to detect until the debugged program is resumed.) Note that x86 debug
registers are used both for hardware breakpoints and for watchpoints, so setting too
many hardware breakpoints might cause watchpoint insertion to fail.

• No hardware-assisted watchpoints provided by the target implementation.

Software watchpoints are very slow, since gdb needs to single-step the program being
debugged and test the value of the watched expression(s) after each instruction. The rest
of this section is mostly irrelevant for software watchpoints.

When the inferior stops, gdb tries to establish, among other possible reasons, whether
it stopped due to a watchpoint being hit. It first uses STOPPED_BY_WATCHPOINT to see if
any watchpoint was hit. If not, all watchpoint checking is skipped.

Then gdb calls target_stopped_data_address exactly once. This method returns the
address of the watchpoint which triggered, if the target can determine it. If the triggered
address is available, gdb compares the address returned by this method with each watched
memory address in each active watchpoint. For data-read and data-access watchpoints,
gdb announces every watchpoint that watches the triggered address as being hit. For
this reason, data-read and data-access watchpoints require that the triggered address be
available; if not, read and access watchpoints will never be considered hit. For data-write
watchpoints, if the triggered address is available, gdb considers only those watchpoints
which match that address; otherwise, gdb considers all data-write watchpoints. For each
data-write watchpoint that gdb considers, it evaluates the expression whose value is being
watched, and tests whether the watched value has changed. Watchpoints whose watched
values have changed are announced as hit.

gdb uses several macros and primitives to support hardware watchpoints:

Chapter 3: Algorithms 9

TARGET_CAN_USE_HARDWARE_WATCHPOINT (type, count, other)
Return the number of hardware watchpoints of type type that are possible to
be set. The value is positive if count watchpoints of this type can be set, zero
if setting watchpoints of this type is not supported, and negative if count is
more than the maximum number of watchpoints of type type that can be set.
other is non-zero if other types of watchpoints are currently enabled (there are
architectures which cannot set watchpoints of different types at the same time).

TARGET_REGION_OK_FOR_HW_WATCHPOINT (addr, len)
Return non-zero if hardware watchpoints can be used to watch a region whose
address is addr and whose length in bytes is len.

target_insert_watchpoint (addr, len, type)
target_remove_watchpoint (addr, len, type)

Insert or remove a hardware watchpoint starting at addr, for len bytes. type
is the watchpoint type, one of the possible values of the enumerated data type
target_hw_bp_type, defined by ‘breakpoint.h’ as follows:

enum target_hw_bp_type

{

hw_write = 0, /* Common (write) HW watchpoint */

hw_read = 1, /* Read HW watchpoint */

hw_access = 2, /* Access (read or write) HW watchpoint */

hw_execute = 3 /* Execute HW breakpoint */

};

These two macros should return 0 for success, non-zero for failure.

target_stopped_data_address (addr_p)
If the inferior has some watchpoint that triggered, place the address associated
with the watchpoint at the location pointed to by addr p and return non-
zero. Otherwise, return zero. This is required for data-read and data-access
watchpoints. It is not required for data-write watchpoints, but gdb uses it to
improve handling of those also.
gdb will only call this method once per watchpoint stop, immediately after
calling STOPPED_BY_WATCHPOINT. If the target’s watchpoint indication is sticky,
i.e., stays set after resuming, this method should clear it. For instance, the x86
debug control register has sticky triggered flags.

target_watchpoint_addr_within_range (target, addr, start, length)
Check whether addr (as returned by target_stopped_data_address) lies
within the hardware-defined watchpoint region described by start and length.
This only needs to be provided if the granularity of a watchpoint is greater
than one byte, i.e., if the watchpoint can also trigger on nearby addresses
outside of the watched region.

HAVE_STEPPABLE_WATCHPOINT
If defined to a non-zero value, it is not necessary to disable a watchpoint to
step over it. Like gdbarch_have_nonsteppable_watchpoint, this is usually set
when watchpoints trigger at the instruction which will perform an interesting
read or write. It should be set if there is a temporary disable bit which allows the
processor to step over the interesting instruction without raising the watchpoint
exception again.

Chapter 3: Algorithms 10

int gdbarch_have_nonsteppable_watchpoint (gdbarch)
If it returns a non-zero value, gdb should disable a watchpoint to step the
inferior over it. This is usually set when watchpoints trigger at the instruction
which will perform an interesting read or write.

HAVE_CONTINUABLE_WATCHPOINT
If defined to a non-zero value, it is possible to continue the inferior after a
watchpoint has been hit. This is usually set when watchpoints trigger at the
instruction following an interesting read or write.

STOPPED_BY_WATCHPOINT (wait_status)
Return non-zero if stopped by a watchpoint. wait status is of the type struct
target_waitstatus, defined by ‘target.h’. Normally, this macro is defined to
invoke the function pointed to by the to_stopped_by_watchpoint member of
the structure (of the type target_ops, defined on ‘target.h’) that describes the
target-specific operations; to_stopped_by_watchpoint ignores the wait status
argument.

gdb does not require the non-zero value returned by STOPPED_BY_WATCHPOINT
to be 100% correct, so if a target cannot determine for sure whether the inferior
stopped due to a watchpoint, it could return non-zero “just in case”.

3.8.1 Watchpoints and Threads

gdb only supports process-wide watchpoints, which trigger in all threads. gdb uses the
thread ID to make watchpoints act as if they were thread-specific, but it cannot set hardware
watchpoints that only trigger in a specific thread. Therefore, even if the target supports
threads, per-thread debug registers, and watchpoints which only affect a single thread, it
should set the per-thread debug registers for all threads to the same value. On gnu/Linux
native targets, this is accomplished by using ALL_LWPS in target_insert_watchpoint and
target_remove_watchpoint and by using linux_set_new_thread to register a handler for
newly created threads.

gdb’s gnu/Linux support only reports a single event at a time, although multiple
events can trigger simultaneously for multi-threaded programs. When multiple events oc-
cur, ‘linux-nat.c’ queues subsequent events and returns them the next time the program is
resumed. This means that STOPPED_BY_WATCHPOINT and target_stopped_data_address
only need to consult the current thread’s state—the thread indicated by inferior_ptid.
If two threads have hit watchpoints simultaneously, those routines will be called a second
time for the second thread.

3.8.2 x86 Watchpoints

The 32-bit Intel x86 (a.k.a. ia32) processors feature special debug registers designed to
facilitate debugging. gdb provides a generic library of functions that x86-based ports
can use to implement support for watchpoints and hardware-assisted breakpoints. This
subsection documents the x86 watchpoint facilities in gdb.

(At present, the library functions read and write debug registers directly, and are thus
only available for native configurations.)

To use the generic x86 watchpoint support, a port should do the following:

Chapter 3: Algorithms 11

• Define the macro I386_USE_GENERIC_WATCHPOINTS somewhere in the target-dependent
headers.

• Include the ‘config/i386/nm-i386.h’ header file after defining I386_USE_GENERIC_
WATCHPOINTS.

• Add ‘i386-nat.o’ to the value of the Make variable NATDEPFILES (see Chapter 14
[Native Debugging], page 71).

• Provide implementations for the I386_DR_LOW_* macros described below. Typically,
each macro should call a target-specific function which does the real work.

The x86 watchpoint support works by maintaining mirror images of the debug registers.
Values are copied between the mirror images and the real debug registers via a set of macros
which each target needs to provide:

I386_DR_LOW_SET_CONTROL (val)
Set the Debug Control (DR7) register to the value val.

I386_DR_LOW_SET_ADDR (idx, addr)
Put the address addr into the debug register number idx.

I386_DR_LOW_RESET_ADDR (idx)
Reset (i.e. zero out) the address stored in the debug register number idx.

I386_DR_LOW_GET_STATUS
Return the value of the Debug Status (DR6) register. This value is used im-
mediately after it is returned by I386_DR_LOW_GET_STATUS, so as to support
per-thread status register values.

For each one of the 4 debug registers (whose indices are from 0 to 3) that store addresses,
a reference count is maintained by gdb, to allow sharing of debug registers by several
watchpoints. This allows users to define several watchpoints that watch the same expression,
but with different conditions and/or commands, without wasting debug registers which are
in short supply. gdb maintains the reference counts internally, targets don’t have to do
anything to use this feature.

The x86 debug registers can each watch a region that is 1, 2, or 4 bytes long. The ia32
architecture requires that each watched region be appropriately aligned: 2-byte region on
2-byte boundary, 4-byte region on 4-byte boundary. However, the x86 watchpoint support
in gdb can watch unaligned regions and regions larger than 4 bytes (up to 16 bytes) by
allocating several debug registers to watch a single region. This allocation of several registers
per a watched region is also done automatically without target code intervention.

The generic x86 watchpoint support provides the following API for the gdb’s application
code:

i386_region_ok_for_watchpoint (addr, len)
The macro TARGET_REGION_OK_FOR_HW_WATCHPOINT is set to call this function.
It counts the number of debug registers required to watch a given region, and
returns a non-zero value if that number is less than 4, the number of debug
registers available to x86 processors.

i386_stopped_data_address (addr_p)
The target function target_stopped_data_address is set to call this function.
This function examines the breakpoint condition bits in the DR6 Debug Status

Chapter 3: Algorithms 12

register, as returned by the I386_DR_LOW_GET_STATUS macro, and returns the
address associated with the first bit that is set in DR6.

i386_stopped_by_watchpoint (void)
The macro STOPPED_BY_WATCHPOINT is set to call this function. The argu-
ment passed to STOPPED_BY_WATCHPOINT is ignored. This function examines
the breakpoint condition bits in the DR6 Debug Status register, as returned
by the I386_DR_LOW_GET_STATUS macro, and returns true if any bit is set.
Otherwise, false is returned.

i386_insert_watchpoint (addr, len, type)
i386_remove_watchpoint (addr, len, type)

Insert or remove a watchpoint. The macros target_insert_watchpoint and
target_remove_watchpoint are set to call these functions. i386_insert_
watchpoint first looks for a debug register which is already set to watch the
same region for the same access types; if found, it just increments the reference
count of that debug register, thus implementing debug register sharing between
watchpoints. If no such register is found, the function looks for a vacant de-
bug register, sets its mirrored value to addr, sets the mirrored value of DR7
Debug Control register as appropriate for the len and type parameters, and
then passes the new values of the debug register and DR7 to the inferior by
calling I386_DR_LOW_SET_ADDR and I386_DR_LOW_SET_CONTROL. If more than
one debug register is required to cover the given region, the above process is
repeated for each debug register.

i386_remove_watchpoint does the opposite: it resets the address in the mir-
rored value of the debug register and its read/write and length bits in the
mirrored value of DR7, then passes these new values to the inferior via I386_
DR_LOW_RESET_ADDR and I386_DR_LOW_SET_CONTROL. If a register is shared by
several watchpoints, each time a i386_remove_watchpoint is called, it decre-
ments the reference count, and only calls I386_DR_LOW_RESET_ADDR and I386_
DR_LOW_SET_CONTROL when the count goes to zero.

i386_insert_hw_breakpoint (bp_tgt)
i386_remove_hw_breakpoint (bp_tgt)

These functions insert and remove hardware-assisted breakpoints. The macros
target_insert_hw_breakpoint and target_remove_hw_breakpoint are set
to call these functions. The argument is a struct bp_target_info *, as de-
scribed in the documentation for target_insert_breakpoint. These func-
tions work like i386_insert_watchpoint and i386_remove_watchpoint, re-
spectively, except that they set up the debug registers to watch instruction
execution, and each hardware-assisted breakpoint always requires exactly one
debug register.

i386_cleanup_dregs (void)
This function clears all the reference counts, addresses, and control bits in the
mirror images of the debug registers. It doesn’t affect the actual debug registers
in the inferior process.

Notes:

Chapter 3: Algorithms 13

1. x86 processors support setting watchpoints on I/O reads or writes. However, since no
target supports this (as of March 2001), and since enum target_hw_bp_type doesn’t
even have an enumeration for I/O watchpoints, this feature is not yet available to gdb
running on x86.

2. x86 processors can enable watchpoints locally, for the current task only, or globally, for
all the tasks. For each debug register, there’s a bit in the DR7 Debug Control register
that determines whether the associated address is watched locally or globally. The
current implementation of x86 watchpoint support in gdb always sets watchpoints to
be locally enabled, since global watchpoints might interfere with the underlying OS
and are probably unavailable in many platforms.

3.9 Checkpoints

In the abstract, a checkpoint is a point in the execution history of the program, which the
user may wish to return to at some later time.

Internally, a checkpoint is a saved copy of the program state, including whatever infor-
mation is required in order to restore the program to that state at a later time. This can
be expected to include the state of registers and memory, and may include external state
such as the state of open files and devices.

There are a number of ways in which checkpoints may be implemented in gdb, e.g. as
corefiles, as forked processes, and as some opaque method implemented on the target side.

A corefile can be used to save an image of target memory and register state, which can
in principle be restored later — but corefiles do not typically include information about
external entities such as open files. Currently this method is not implemented in gdb.

A forked process can save the state of user memory and registers, as well as some subset
of external (kernel) state. This method is used to implement checkpoints on Linux, and in
principle might be used on other systems.

Some targets, e.g. simulators, might have their own built-in method for saving check-
points, and gdb might be able to take advantage of that capability without necessarily
knowing any details of how it is done.

3.10 Observing changes in gdb internals

In order to function properly, several modules need to be notified when some changes occur
in the gdb internals. Traditionally, these modules have relied on several paradigms, the
most common ones being hooks and gdb-events. Unfortunately, none of these paradigms
was versatile enough to become the standard notification mechanism in gdb. The fact that
they only supported one “client” was also a strong limitation.

A new paradigm, based on the Observer pattern of the Design Patterns book, has there-
fore been implemented. The goal was to provide a new interface overcoming the issues with
the notification mechanisms previously available. This new interface needed to be strongly
typed, easy to extend, and versatile enough to be used as the standard interface when
adding new notifications.

See Appendix A [GDB Observers], page 108 for a brief description of the observers
currently implemented in GDB. The rationale for the current implementation is also briefly
discussed.

Chapter 4: User Interface 14

4 User Interface

gdb has several user interfaces, of which the traditional command-line interface is perhaps
the most familiar.

4.1 Command Interpreter

The command interpreter in gdb is fairly simple. It is designed to allow for the set of
commands to be augmented dynamically, and also has a recursive subcommand capability,
where the first argument to a command may itself direct a lookup on a different command
list.

For instance, the ‘set’ command just starts a lookup on the setlist command list,
while ‘set thread’ recurses to the set_thread_cmd_list.

To add commands in general, use add_cmd. add_com adds to the main command list,
and should be used for those commands. The usual place to add commands is in the
_initialize_xyz routines at the ends of most source files.

To add paired ‘set’ and ‘show’ commands, use add_setshow_cmd or add_setshow_cmd_
full. The former is a slightly simpler interface which is useful when you don’t need to
further modify the new command structures, while the latter returns the new command
structures for manipulation.

Before removing commands from the command set it is a good idea to deprecate them
for some time. Use deprecate_cmd on commands or aliases to set the deprecated flag.
deprecate_cmd takes a struct cmd_list_element as it’s first argument. You can use the
return value from add_com or add_cmd to deprecate the command immediately after it is
created.

The first time a command is used the user will be warned and offered a replacement (if
one exists). Note that the replacement string passed to deprecate_cmd should be the full
name of the command, i.e., the entire string the user should type at the command line.

4.2 UI-Independent Output—the ui_out Functions

The ui_out functions present an abstraction level for the gdb output code. They hide
the specifics of different user interfaces supported by gdb, and thus free the programmer
from the need to write several versions of the same code, one each for every UI, to produce
output.

4.2.1 Overview and Terminology

In general, execution of each gdb command produces some sort of output, and can even
generate an input request.

Output can be generated for the following purposes:
• to display a result of an operation;
• to convey info or produce side-effects of a requested operation;
• to provide a notification of an asynchronous event (including progress indication of a

prolonged asynchronous operation);
• to display error messages (including warnings);

Chapter 4: User Interface 15

• to show debug data;
• to query or prompt a user for input (a special case).

This section mainly concentrates on how to build result output, although some of it also
applies to other kinds of output.

Generation of output that displays the results of an operation involves one or more of
the following:
• output of the actual data
• formatting the output as appropriate for console output, to make it easily readable by

humans
• machine oriented formatting–a more terse formatting to allow for easy parsing by pro-

grams which read gdb’s output
• annotation, whose purpose is to help legacy GUIs to identify interesting parts in the

output

The ui_out routines take care of the first three aspects. Annotations are provided by
separate annotation routines. Note that use of annotations for an interface between a GUI
and gdb is deprecated.

Output can be in the form of a single item, which we call a field; a list consisting
of identical fields; a tuple consisting of non-identical fields; or a table, which is a tuple
consisting of a header and a body. In a BNF-like form:

<table> 7→
<header> <body>

<header> 7→
{ <column> }

<column> 7→
<width> <alignment> <title>

<body> 7→ {<row>}

4.2.2 General Conventions

Most ui_out routines are of type void, the exceptions are ui_out_stream_new (which
returns a pointer to the newly created object) and the make_cleanup routines.

The first parameter is always the ui_out vector object, a pointer to a struct ui_out.
The format parameter is like in printf family of functions. When it is present, there

must also be a variable list of arguments sufficient used to satisfy the % specifiers in the
supplied format.

When a character string argument is not used in a ui_out function call, a NULL pointer
has to be supplied instead.

4.2.3 Table, Tuple and List Functions

This section introduces ui_out routines for building lists, tuples and tables. The routines
to output the actual data items (fields) are presented in the next section.

To recap: A tuple is a sequence of fields, each field containing information about an
object; a list is a sequence of fields where each field describes an identical object.

Chapter 4: User Interface 16

Use the table functions when your output consists of a list of rows (tuples) and the
console output should include a heading. Use this even when you are listing just one object
but you still want the header.

Tables can not be nested. Tuples and lists can be nested up to a maximum of five levels.

The overall structure of the table output code is something like this:
ui_out_table_begin

ui_out_table_header

...

ui_out_table_body

ui_out_tuple_begin

ui_out_field_*

...

ui_out_tuple_end

...

ui_out_table_end

Here is the description of table-, tuple- and list-related ui_out functions:

[Function]void ui_out_table_begin (struct ui out *uiout, int nbrofcols, int
nr_rows, const char *tblid)

The function ui_out_table_begin marks the beginning of the output of a table. It
should always be called before any other ui_out function for a given table. nbrofcols
is the number of columns in the table. nr rows is the number of rows in the table.
tblid is an optional string identifying the table. The string pointed to by tblid is
copied by the implementation of ui_out_table_begin, so the application can free
the string if it was malloced.

The companion function ui_out_table_end, described below, marks the end of the
table’s output.

[Function]void ui_out_table_header (struct ui out *uiout, int width, enum
ui align alignment, const char *colhdr)

ui_out_table_header provides the header information for a single table column.
You call this function several times, one each for every column of the table, after
ui_out_table_begin, but before ui_out_table_body.

The value of width gives the column width in characters. The value of alignment is
one of left, center, and right, and it specifies how to align the header: left-justify,
center, or right-justify it. colhdr points to a string that specifies the column header;
the implementation copies that string, so column header strings in malloced storage
can be freed after the call.

[Function]void ui_out_table_body (struct ui out *uiout)
This function delimits the table header from the table body.

[Function]void ui_out_table_end (struct ui out *uiout)
This function signals the end of a table’s output. It should be called after the table
body has been produced by the list and field output functions.

There should be exactly one call to ui_out_table_end for each call to ui_out_table_
begin, otherwise the ui_out functions will signal an internal error.

Chapter 4: User Interface 17

The output of the tuples that represent the table rows must follow the call to ui_out_
table_body and precede the call to ui_out_table_end. You build a tuple by calling ui_
out_tuple_begin and ui_out_tuple_end, with suitable calls to functions which actually
output fields between them.

[Function]void ui_out_tuple_begin (struct ui out *uiout, const char *id)
This function marks the beginning of a tuple output. id points to an optional string
that identifies the tuple; it is copied by the implementation, and so strings in malloced
storage can be freed after the call.

[Function]void ui_out_tuple_end (struct ui out *uiout)
This function signals an end of a tuple output. There should be exactly one call to
ui_out_tuple_end for each call to ui_out_tuple_begin, otherwise an internal gdb
error will be signaled.

[Function]struct cleanup * make_cleanup_ui_out_tuple_begin_end (struct
ui out *uiout, const char *id)

This function first opens the tuple and then establishes a cleanup (see Chapter 17
[Misc Guidelines], page 80) to close the tuple. It provides a convenient and correct
implementation of the non-portable1 code sequence:

struct cleanup *old_cleanup;

ui_out_tuple_begin (uiout, "...");

old_cleanup = make_cleanup ((void(*)(void *)) ui_out_tuple_end,

uiout);

[Function]void ui_out_list_begin (struct ui out *uiout, const char *id)
This function marks the beginning of a list output. id points to an optional string
that identifies the list; it is copied by the implementation, and so strings in malloced
storage can be freed after the call.

[Function]void ui_out_list_end (struct ui out *uiout)
This function signals an end of a list output. There should be exactly one call to
ui_out_list_end for each call to ui_out_list_begin, otherwise an internal gdb
error will be signaled.

[Function]struct cleanup * make_cleanup_ui_out_list_begin_end (struct
ui out *uiout, const char *id)

Similar to make_cleanup_ui_out_tuple_begin_end, this function opens a list and
then establishes cleanup (see Chapter 17 [Misc Guidelines], page 80) that will close
the list.

4.2.4 Item Output Functions

The functions described below produce output for the actual data items, or fields, which
contain information about the object.

Choose the appropriate function accordingly to your particular needs.

1 The function cast is not portable ISO C.

Chapter 4: User Interface 18

[Function]void ui_out_field_fmt (struct ui out *uiout, char *fldname, char
*format, ...)

This is the most general output function. It produces the representation of the data
in the variable-length argument list according to formatting specifications in format,
a printf-like format string. The optional argument fldname supplies the name of the
field. The data items themselves are supplied as additional arguments after format.
This generic function should be used only when it is not possible to use one of the
specialized versions (see below).

[Function]void ui_out_field_int (struct ui out *uiout, const char *fldname,
int value)

This function outputs a value of an int variable. It uses the "%d" output conversion
specification. fldname specifies the name of the field.

[Function]void ui_out_field_fmt_int (struct ui out *uiout, int width, enum
ui align alignment, const char *fldname, int value)

This function outputs a value of an int variable. It differs from ui_out_field_int
in that the caller specifies the desired width and alignment of the output. fldname
specifies the name of the field.

[Function]void ui_out_field_core_addr (struct ui out *uiout, const char
*fldname, struct gdbarch *gdbarch, CORE ADDR address)

This function outputs an address as appropriate for gdbarch.

[Function]void ui_out_field_string (struct ui out *uiout, const char
*fldname, const char *string)

This function outputs a string using the "%s" conversion specification.

Sometimes, there’s a need to compose your output piece by piece using functions that
operate on a stream, such as value_print or fprintf_symbol_filtered. These functions
accept an argument of the type struct ui_file *, a pointer to a ui_file object used to
store the data stream used for the output. When you use one of these functions, you need
a way to pass their results stored in a ui_file object to the ui_out functions. To this
end, you first create a ui_stream object by calling ui_out_stream_new, pass the stream
member of that ui_stream object to value_print and similar functions, and finally call
ui_out_field_stream to output the field you constructed. When the ui_stream object
is no longer needed, you should destroy it and free its memory by calling ui_out_stream_
delete.

[Function]struct ui_stream * ui_out_stream_new (struct ui out *uiout)
This function creates a new ui_stream object which uses the same output methods
as the ui_out object whose pointer is passed in uiout. It returns a pointer to the
newly created ui_stream object.

[Function]void ui_out_stream_delete (struct ui stream *streambuf)
This functions destroys a ui_stream object specified by streambuf.

[Function]void ui_out_field_stream (struct ui out *uiout, const char
*fieldname, struct ui stream *streambuf)

This function consumes all the data accumulated in streambuf->stream and out-
puts it like ui_out_field_string does. After a call to ui_out_field_stream, the

Chapter 4: User Interface 19

accumulated data no longer exists, but the stream is still valid and may be used for
producing more fields.

Important: If there is any chance that your code could bail out before completing output
generation and reaching the point where ui_out_stream_delete is called, it is necessary
to set up a cleanup, to avoid leaking memory and other resources. Here’s a skeleton code
to do that:

struct ui_stream *mybuf = ui_out_stream_new (uiout);

struct cleanup *old = make_cleanup (ui_out_stream_delete, mybuf);

...

do_cleanups (old);

If the function already has the old cleanup chain set (for other kinds of cleanups), you
just have to add your cleanup to it:

mybuf = ui_out_stream_new (uiout);

make_cleanup (ui_out_stream_delete, mybuf);

Note that with cleanups in place, you should not call ui_out_stream_delete directly,
or you would attempt to free the same buffer twice.

4.2.5 Utility Output Functions

[Function]void ui_out_field_skip (struct ui out *uiout, const char *fldname)
This function skips a field in a table. Use it if you have to leave an empty field
without disrupting the table alignment. The argument fldname specifies a name for
the (missing) filed.

[Function]void ui_out_text (struct ui out *uiout, const char *string)
This function outputs the text in string in a way that makes it easy to be read by
humans. For example, the console implementation of this method filters the text
through a built-in pager, to prevent it from scrolling off the visible portion of the
screen.

Use this function for printing relatively long chunks of text around the actual field
data: the text it produces is not aligned according to the table’s format. Use ui_out_
field_string to output a string field, and use ui_out_message, described below, to
output short messages.

[Function]void ui_out_spaces (struct ui out *uiout, int nspaces)
This function outputs nspaces spaces. It is handy to align the text produced by
ui_out_text with the rest of the table or list.

[Function]void ui_out_message (struct ui out *uiout, int verbosity, const char
*format, ...)

This function produces a formatted message, provided that the current verbosity level
is at least as large as given by verbosity. The current verbosity level is specified by
the user with the ‘set verbositylevel’ command.2

2 As of this writing (April 2001), setting verbosity level is not yet implemented, and is always returned as
zero. So calling ui_out_message with a verbosity argument more than zero will cause the message to
never be printed.

Chapter 4: User Interface 20

[Function]void ui_out_wrap_hint (struct ui out *uiout, char *indent)
This function gives the console output filter (a paging filter) a hint of where to break
lines which are too long. Ignored for all other output consumers. indent, if non-NULL,
is the string to be printed to indent the wrapped text on the next line; it must remain
accessible until the next call to ui_out_wrap_hint, or until an explicit newline is
produced by one of the other functions. If indent is NULL, the wrapped text will not
be indented.

[Function]void ui_out_flush (struct ui out *uiout)
This function flushes whatever output has been accumulated so far, if the UI buffers
output.

4.2.6 Examples of Use of ui_out functions

This section gives some practical examples of using the ui_out functions to generalize the
old console-oriented code in gdb. The examples all come from functions defined on the
‘breakpoints.c’ file.

This example, from the breakpoint_1 function, shows how to produce a table.
The original code was:

if (!found_a_breakpoint++)

{

annotate_breakpoints_headers ();

annotate_field (0);

printf_filtered ("Num ");

annotate_field (1);

printf_filtered ("Type ");

annotate_field (2);

printf_filtered ("Disp ");

annotate_field (3);

printf_filtered ("Enb ");

if (addressprint)

{

annotate_field (4);

printf_filtered ("Address ");

}

annotate_field (5);

printf_filtered ("What\n");

annotate_breakpoints_table ();

}

Here’s the new version:
nr_printable_breakpoints = ...;

if (addressprint)

ui_out_table_begin (ui, 6, nr_printable_breakpoints, "BreakpointTable");

else

ui_out_table_begin (ui, 5, nr_printable_breakpoints, "BreakpointTable");

if (nr_printable_breakpoints > 0)

annotate_breakpoints_headers ();

if (nr_printable_breakpoints > 0)

annotate_field (0);

ui_out_table_header (uiout, 3, ui_left, "number", "Num"); /* 1 */

Chapter 4: User Interface 21

if (nr_printable_breakpoints > 0)

annotate_field (1);

ui_out_table_header (uiout, 14, ui_left, "type", "Type"); /* 2 */

if (nr_printable_breakpoints > 0)

annotate_field (2);

ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */

if (nr_printable_breakpoints > 0)

annotate_field (3);

ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */

if (addressprint)

{

if (nr_printable_breakpoints > 0)

annotate_field (4);

if (print_address_bits <= 32)

ui_out_table_header (uiout, 10, ui_left, "addr", "Address");/* 5 */

else

ui_out_table_header (uiout, 18, ui_left, "addr", "Address");/* 5 */

}

if (nr_printable_breakpoints > 0)

annotate_field (5);

ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */

ui_out_table_body (uiout);

if (nr_printable_breakpoints > 0)

annotate_breakpoints_table ();

This example, from the print_one_breakpoint function, shows how to produce the
actual data for the table whose structure was defined in the above example. The original
code was:

annotate_record ();

annotate_field (0);

printf_filtered ("%-3d ", b->number);

annotate_field (1);

if ((int)b->type > (sizeof(bptypes)/sizeof(bptypes[0]))

|| ((int) b->type != bptypes[(int) b->type].type))

internal_error ("bptypes table does not describe type #%d.",

(int)b->type);

printf_filtered ("%-14s ", bptypes[(int)b->type].description);

annotate_field (2);

printf_filtered ("%-4s ", bpdisps[(int)b->disposition]);

annotate_field (3);

printf_filtered ("%-3c ", bpenables[(int)b->enable]);

...

This is the new version:
annotate_record ();

ui_out_tuple_begin (uiout, "bkpt");

annotate_field (0);

ui_out_field_int (uiout, "number", b->number);

annotate_field (1);

if (((int) b->type > (sizeof (bptypes) / sizeof (bptypes[0])))

|| ((int) b->type != bptypes[(int) b->type].type))

internal_error ("bptypes table does not describe type #%d.",

(int) b->type);

ui_out_field_string (uiout, "type", bptypes[(int)b->type].description);

annotate_field (2);

ui_out_field_string (uiout, "disp", bpdisps[(int)b->disposition]);

annotate_field (3);

ui_out_field_fmt (uiout, "enabled", "%c", bpenables[(int)b->enable]);

Chapter 4: User Interface 22

...

This example, also from print_one_breakpoint, shows how to produce a complicated
output field using the print_expression functions which requires a stream to be passed.
It also shows how to automate stream destruction with cleanups. The original code was:

annotate_field (5);

print_expression (b->exp, gdb_stdout);

The new version is:
struct ui_stream *stb = ui_out_stream_new (uiout);

struct cleanup *old_chain = make_cleanup_ui_out_stream_delete (stb);

...

annotate_field (5);

print_expression (b->exp, stb->stream);

ui_out_field_stream (uiout, "what", local_stream);

This example, also from print_one_breakpoint, shows how to use ui_out_text and
ui_out_field_string. The original code was:

annotate_field (5);

if (b->dll_pathname == NULL)

printf_filtered ("<any library> ");

else

printf_filtered ("library \"%s\" ", b->dll_pathname);

It became:
annotate_field (5);

if (b->dll_pathname == NULL)

{

ui_out_field_string (uiout, "what", "<any library>");

ui_out_spaces (uiout, 1);

}

else

{

ui_out_text (uiout, "library \"");

ui_out_field_string (uiout, "what", b->dll_pathname);

ui_out_text (uiout, "\" ");

}

The following example from print_one_breakpoint shows how to use ui_out_field_
int and ui_out_spaces. The original code was:

annotate_field (5);

if (b->forked_inferior_pid != 0)

printf_filtered ("process %d ", b->forked_inferior_pid);

It became:
annotate_field (5);

if (b->forked_inferior_pid != 0)

{

ui_out_text (uiout, "process ");

ui_out_field_int (uiout, "what", b->forked_inferior_pid);

ui_out_spaces (uiout, 1);

}

Here’s an example of using ui_out_field_string. The original code was:
annotate_field (5);

if (b->exec_pathname != NULL)

printf_filtered ("program \"%s\" ", b->exec_pathname);

It became:

Chapter 5: libgdb 23

annotate_field (5);

if (b->exec_pathname != NULL)

{

ui_out_text (uiout, "program \"");

ui_out_field_string (uiout, "what", b->exec_pathname);

ui_out_text (uiout, "\" ");

}

Finally, here’s an example of printing an address. The original code:
annotate_field (4);

printf_filtered ("%s ",

hex_string_custom ((unsigned long) b->address, 8));

It became:
annotate_field (4);

ui_out_field_core_addr (uiout, "Address", b->address);

4.3 Console Printing

4.4 TUI

5 libgdb

5.1 libgdb 1.0

libgdb 1.0 was an abortive project of years ago. The theory was to provide an API to
gdb’s functionality.

5.2 libgdb 2.0

libgdb 2.0 is an ongoing effort to update gdb so that is better able to support graphical
and other environments.

Since libgdb development is on-going, its architecture is still evolving. The following
components have so far been identified:
• Observer - ‘gdb-events.h’.
• Builder - ‘ui-out.h’
• Event Loop - ‘event-loop.h’
• Library - ‘gdb.h’

The model that ties these components together is described below.

5.3 The libgdb Model

A client of libgdb interacts with the library in two ways.
• As an observer (using ‘gdb-events’) receiving notifications from libgdb of any internal

state changes (break point changes, run state, etc).
• As a client querying libgdb (using the ‘ui-out’ builder) to obtain various status values

from gdb.

Chapter 5: libgdb 24

Since libgdb could have multiple clients (e.g., a GUI supporting the existing gdb CLI),
those clients must co-operate when controlling libgdb. In particular, a client must ensure
that libgdb is idle (i.e. no other client is using libgdb) before responding to a ‘gdb-event’
by making a query.

5.4 CLI support

At present gdb’s CLI is very much entangled in with the core of libgdb. Consequently, a
client wishing to include the CLI in their interface needs to carefully co-ordinate its own
and the CLI’s requirements.

It is suggested that the client set libgdb up to be bi-modal (alternate between CLI and
client query modes). The notes below sketch out the theory:

• The client registers itself as an observer of libgdb.

• The client create and install cli-out builder using its own versions of the ui-file
gdb_stderr, gdb_stdtarg and gdb_stdout streams.

• The client creates a separate custom ui-out builder that is only used while making
direct queries to libgdb.

When the client receives input intended for the CLI, it simply passes it along. Since the
cli-out builder is installed by default, all the CLI output in response to that command
is routed (pronounced rooted) through to the client controlled gdb_stdout et. al. streams.
At the same time, the client is kept abreast of internal changes by virtue of being a libgdb
observer.

The only restriction on the client is that it must wait until libgdb becomes idle before
initiating any queries (using the client’s custom builder).

5.5 libgdb components

Observer - ‘gdb-events.h’

‘gdb-events’ provides the client with a very raw mechanism that can be used to implement
an observer. At present it only allows for one observer and that observer must, internally,
handle the need to delay the processing of any event notifications until after libgdb has
finished the current command.

Builder - ‘ui-out.h’

‘ui-out’ provides the infrastructure necessary for a client to create a builder. That builder
is then passed down to libgdb when doing any queries.

Event Loop - ‘event-loop.h’

‘event-loop’, currently non-re-entrant, provides a simple event loop. A client would need
to either plug its self into this loop or, implement a new event-loop that gdb would use.

The event-loop will eventually be made re-entrant. This is so that gdb can better handle
the problem of some commands blocking instead of returning.

Chapter 6: Values 25

Library - ‘gdb.h’

‘libgdb’ is the most obvious component of this system. It provides the query interface.
Each function is parameterized by a ui-out builder. The result of the query is constructed
using that builder before the query function returns.

6 Values

6.1 Values

gdb uses struct value, or values, as an internal abstraction for the representation of a
variety of inferior objects and gdb convenience objects.

Values have an associated struct type, that describes a virtual view of the raw data or
object stored in or accessed through the value.

A value is in addition discriminated by its lvalue-ness, given its enum lval_type enu-
meration type:

not_lval This value is not an lval. It can’t be assigned to.

lval_memory
This value represents an object in memory.

lval_register
This value represents an object that lives in a register.

lval_internalvar
Represents the value of an internal variable.

lval_internalvar_component
Represents part of a gdb internal variable. E.g., a structure field.

lval_computed
These are “computed” values. They allow creating specialized value objects for
specific purposes, all abstracted away from the core value support code. The
creator of such a value writes specialized functions to handle the reading and
writing to/from the value’s backend data, and optionally, a “copy operator”
and a “destructor”.
Pointers to these functions are stored in a struct lval_funcs instance (de-
clared in ‘value.h’), and passed to the allocate_computed_value function,
as in the example below.

static void

nil_value_read (struct value *v)

{

/* This callback reads data from some backend, and stores it in V.

In this case, we always read null data. You’ll want to fill in

something more interesting. */

memset (value_contents_all_raw (v),

value_offset (v),

TYPE_LENGTH (value_type (v)));

}

Chapter 7: Stack Frames 26

static void

nil_value_write (struct value *v, struct value *fromval)

{

/* Takes the data from FROMVAL and stores it in the backend of V. */

to_oblivion (value_contents_all_raw (fromval),

value_offset (v),

TYPE_LENGTH (value_type (fromval)));

}

static struct lval_funcs nil_value_funcs =

{

nil_value_read,

nil_value_write

};

struct value *

make_nil_value (void)

{

struct type *type;

struct value *v;

type = make_nils_type ();

v = allocate_computed_value (type, &nil_value_funcs, NULL);

return v;

}

See the implementation of the $_siginfo convenience variable in ‘infrun.c’
as a real example use of lval computed.

7 Stack Frames

A frame is a construct that gdb uses to keep track of calling and called functions.
gdb’s frame model, a fresh design, was implemented with the need to support dwarf’s

Call Frame Information in mind. In fact, the term “unwind” is taken directly from that
specification. Developers wishing to learn more about unwinders, are encouraged to read
the dwarf specification, available from http://www.dwarfstd.org.

gdb’s model is that you find a frame’s registers by “unwinding” them from the next
younger frame. That is, ‘get_frame_register’ which returns the value of a register in frame
#1 (the next-to-youngest frame), is implemented by calling frame #0’s frame_register_
unwind (the youngest frame). But then the obvious question is: how do you access the
registers of the youngest frame itself?

To answer this question, gdb has the sentinel frame, the “-1st” frame. Unwinding
registers from the sentinel frame gives you the current values of the youngest real frame’s
registers. If f is a sentinel frame, then get_frame_type (f) ≡ SENTINEL_FRAME.

7.1 Selecting an Unwinder

The architecture registers a list of frame unwinders (struct frame_unwind), using the
functions frame_unwind_prepend_unwinder and frame_unwind_append_unwinder. Each

http://www.dwarfstd.org

Chapter 7: Stack Frames 27

unwinder includes a sniffer. Whenever gdb needs to unwind a frame (to fetch the previous
frame’s registers or the current frame’s ID), it calls registered sniffers in order to find one
which recognizes the frame. The first time a sniffer returns non-zero, the corresponding
unwinder is assigned to the frame.

7.2 Unwinding the Frame ID

Every frame has an associated ID, of type struct frame_id. The ID includes the stack
base and function start address for the frame. The ID persists through the entire life of the
frame, including while other called frames are running; it is used to locate an appropriate
struct frame_info from the cache.

Every time the inferior stops, and at various other times, the frame cache is flushed.
Because of this, parts of gdb which need to keep track of individual frames cannot use
pointers to struct frame_info. A frame ID provides a stable reference to a frame, even
when the unwinder must be run again to generate a new struct frame_info for the same
frame.

The frame’s unwinder’s this_id method is called to find the ID. Note that this is different
from register unwinding, where the next frame’s prev_register is called to unwind this
frame’s registers.

Both stack base and function address are required to identify the frame, because a
recursive function has the same function address for two consecutive frames and a leaf
function may have the same stack address as its caller. On some platforms, a third address
is part of the ID to further disambiguate frames—for instance, on IA-64 the separate register
stack address is included in the ID.

An invalid frame ID (outer_frame_id) returned from the this_id method means to
stop unwinding after this frame.

null_frame_id is another invalid frame ID which should be used when there is no
frame. For instance, certain breakpoints are attached to a specific frame, and that frame
is identified through its frame ID (we use this to implement the "finish" command). Using
null_frame_id as the frame ID for a given breakpoint means that the breakpoint is not
specific to any frame. The this_id method should never return null_frame_id.

7.3 Unwinding Registers

Each unwinder includes a prev_register method. This method takes a frame, an asso-
ciated cache pointer, and a register number. It returns a struct value * describing the
requested register, as saved by this frame. This is the value of the register that is current
in this frame’s caller.

The returned value must have the same type as the register. It may have any lvalue
type. In most circumstances one of these routines will generate the appropriate value:

frame_unwind_got_optimized
This register was not saved.

frame_unwind_got_register
This register was copied into another register in this frame. This is also used
for unchanged registers; they are “copied” into the same register.

Chapter 8: Symbol Handling 28

frame_unwind_got_memory
This register was saved in memory.

frame_unwind_got_constant
This register was not saved, but the unwinder can compute the previous value
some other way.

frame_unwind_got_address
Same as frame_unwind_got_constant, except that the value is a target ad-
dress. This is frequently used for the stack pointer, which is not explicitly
saved but has a known offset from this frame’s stack pointer. For architectures
with a flat unified address space, this is generally the same as frame_unwind_
got_constant.

8 Symbol Handling

Symbols are a key part of gdb’s operation. Symbols include variables, functions, and types.
Symbol information for a large program can be truly massive, and reading of symbol

information is one of the major performance bottlenecks in gdb; it can take many minutes
to process it all. Studies have shown that nearly all the time spent is computational, rather
than file reading.

One of the ways for gdb to provide a good user experience is to start up quickly, taking
no more than a few seconds. It is simply not possible to process all of a program’s debugging
info in that time, and so we attempt to handle symbols incrementally. For instance, we
create partial symbol tables consisting of only selected symbols, and only expand them to
full symbol tables when necessary.

8.1 Symbol Reading

gdb reads symbols from symbol files. The usual symbol file is the file containing the program
which gdb is debugging. gdb can be directed to use a different file for symbols (with the
‘symbol-file’ command), and it can also read more symbols via the ‘add-file’ and ‘load’
commands. In addition, it may bring in more symbols while loading shared libraries.

Symbol files are initially opened by code in ‘symfile.c’ using the BFD library (see
Chapter 15 [Support Libraries], page 72). BFD identifies the type of the file by examining
its header. find_sym_fns then uses this identification to locate a set of symbol-reading
functions.

Symbol-reading modules identify themselves to gdb by calling add_symtab_fns during
their module initialization. The argument to add_symtab_fns is a struct sym_fns which
contains the name (or name prefix) of the symbol format, the length of the prefix, and
pointers to four functions. These functions are called at various times to process symbol
files whose identification matches the specified prefix.

The functions supplied by each module are:

xyz_symfile_init(struct sym_fns *sf)
Called from symbol_file_add when we are about to read a new symbol file.
This function should clean up any internal state (possibly resulting from half-
read previous files, for example) and prepare to read a new symbol file. Note

Chapter 8: Symbol Handling 29

that the symbol file which we are reading might be a new “main” symbol file, or
might be a secondary symbol file whose symbols are being added to the existing
symbol table.
The argument to xyz_symfile_init is a newly allocated struct sym_fns
whose bfd field contains the BFD for the new symbol file being read. Its
private field has been zeroed, and can be modified as desired. Typically,
a struct of private information will be malloc’d, and a pointer to it will be
placed in the private field.
There is no result from xyz_symfile_init, but it can call error if it detects
an unavoidable problem.

xyz_new_init()
Called from symbol_file_add when discarding existing symbols. This function
needs only handle the symbol-reading module’s internal state; the symbol table
data structures visible to the rest of gdb will be discarded by symbol_file_add.
It has no arguments and no result. It may be called after xyz_symfile_init,
if a new symbol table is being read, or may be called alone if all symbols are
simply being discarded.

xyz_symfile_read(struct sym_fns *sf, CORE_ADDR addr, int mainline)
Called from symbol_file_add to actually read the symbols from a symbol-file
into a set of psymtabs or symtabs.
sf points to the struct sym_fns originally passed to xyz_sym_init for possible
initialization. addr is the offset between the file’s specified start address and
its true address in memory. mainline is 1 if this is the main symbol table
being read, and 0 if a secondary symbol file (e.g., shared library or dynamically
loaded file) is being read.

In addition, if a symbol-reading module creates psymtabs when xyz symfile read is
called, these psymtabs will contain a pointer to a function xyz_psymtab_to_symtab, which
can be called from any point in the gdb symbol-handling code.

xyz_psymtab_to_symtab (struct partial_symtab *pst)
Called from psymtab_to_symtab (or the PSYMTAB_TO_SYMTAB macro) if the
psymtab has not already been read in and had its pst->symtab pointer set.
The argument is the psymtab to be fleshed-out into a symtab. Upon return,
pst->readin should have been set to 1, and pst->symtab should contain a
pointer to the new corresponding symtab, or zero if there were no symbols in
that part of the symbol file.

8.2 Partial Symbol Tables

gdb has three types of symbol tables:
• Full symbol tables (symtabs). These contain the main information about symbols and

addresses.
• Partial symbol tables (psymtabs). These contain enough information to know when to

read the corresponding part of the full symbol table.
• Minimal symbol tables (msymtabs). These contain information gleaned from non-

debugging symbols.

Chapter 8: Symbol Handling 30

This section describes partial symbol tables.

A psymtab is constructed by doing a very quick pass over an executable file’s debugging
information. Small amounts of information are extracted—enough to identify which parts
of the symbol table will need to be re-read and fully digested later, when the user needs
the information. The speed of this pass causes gdb to start up very quickly. Later, as the
detailed rereading occurs, it occurs in small pieces, at various times, and the delay therefrom
is mostly invisible to the user.

The symbols that show up in a file’s psymtab should be, roughly, those visible to the
debugger’s user when the program is not running code from that file. These include external
symbols and types, static symbols and types, and enum values declared at file scope.

The psymtab also contains the range of instruction addresses that the full symbol table
would represent.

The idea is that there are only two ways for the user (or much of the code in the debugger)
to reference a symbol:

• By its address (e.g., execution stops at some address which is inside a function in this
file). The address will be noticed to be in the range of this psymtab, and the full
symtab will be read in. find_pc_function, find_pc_line, and other find_pc_...
functions handle this.

• By its name (e.g., the user asks to print a variable, or set a breakpoint on a function).
Global names and file-scope names will be found in the psymtab, which will cause the
symtab to be pulled in. Local names will have to be qualified by a global name, or a
file-scope name, in which case we will have already read in the symtab as we evaluated
the qualifier. Or, a local symbol can be referenced when we are “in” a local scope, in
which case the first case applies. lookup_symbol does most of the work here.

The only reason that psymtabs exist is to cause a symtab to be read in at the right
moment. Any symbol that can be elided from a psymtab, while still causing that to happen,
should not appear in it. Since psymtabs don’t have the idea of scope, you can’t put local
symbols in them anyway. Psymtabs don’t have the idea of the type of a symbol, either, so
types need not appear, unless they will be referenced by name.

It is a bug for gdb to behave one way when only a psymtab has been read, and another
way if the corresponding symtab has been read in. Such bugs are typically caused by a
psymtab that does not contain all the visible symbols, or which has the wrong instruction
address ranges.

The psymtab for a particular section of a symbol file (objfile) could be thrown away after
the symtab has been read in. The symtab should always be searched before the psymtab,
so the psymtab will never be used (in a bug-free environment). Currently, psymtabs are
allocated on an obstack, and all the psymbols themselves are allocated in a pair of large
arrays on an obstack, so there is little to be gained by trying to free them unless you want
to do a lot more work.

Whether or not psymtabs are created depends on the objfile’s symbol reader. The core
of gdb hides the details of partial symbols and partial symbol tables behind a set of function
pointers known as the quick symbol functions. These are documented in ‘symfile.h’.

Chapter 8: Symbol Handling 31

8.3 Types

Fundamental Types (e.g., FT_VOID, FT_BOOLEAN).

These are the fundamental types that gdb uses internally. Fundamental types from the
various debugging formats (stabs, ELF, etc) are mapped into one of these. They are ba-
sically a union of all fundamental types that gdb knows about for all the languages that
gdb knows about.

Type Codes (e.g., TYPE_CODE_PTR, TYPE_CODE_ARRAY).

Each time gdb builds an internal type, it marks it with one of these types. The type may
be a fundamental type, such as TYPE_CODE_INT, or a derived type, such as TYPE_CODE_PTR
which is a pointer to another type. Typically, several FT_* types map to one TYPE_CODE_*
type, and are distinguished by other members of the type struct, such as whether the type
is signed or unsigned, and how many bits it uses.

Builtin Types (e.g., builtin_type_void, builtin_type_char).

These are instances of type structs that roughly correspond to fundamental types and are
created as global types for gdb to use for various ugly historical reasons. We eventually want
to eliminate these. Note for example that builtin_type_int initialized in ‘gdbtypes.c’
is basically the same as a TYPE_CODE_INT type that is initialized in ‘c-lang.c’ for an
FT_INTEGER fundamental type. The difference is that the builtin_type is not associated
with any particular objfile, and only one instance exists, while ‘c-lang.c’ builds as many
TYPE_CODE_INT types as needed, with each one associated with some particular objfile.

8.4 Object File Formats

8.4.1 a.out

The a.out format is the original file format for Unix. It consists of three sections: text,
data, and bss, which are for program code, initialized data, and uninitialized data, respec-
tively.

The a.out format is so simple that it doesn’t have any reserved place for debugging
information. (Hey, the original Unix hackers used ‘adb’, which is a machine-language de-
bugger!) The only debugging format for a.out is stabs, which is encoded as a set of normal
symbols with distinctive attributes.

The basic a.out reader is in ‘dbxread.c’.

8.4.2 COFF

The COFF format was introduced with System V Release 3 (SVR3) Unix. COFF files may
have multiple sections, each prefixed by a header. The number of sections is limited.

The COFF specification includes support for debugging. Although this was a step for-
ward, the debugging information was woefully limited. For instance, it was not possible
to represent code that came from an included file. GNU’s COFF-using configs often use
stabs-type info, encapsulated in special sections.

The COFF reader is in ‘coffread.c’.

Chapter 8: Symbol Handling 32

8.4.3 ECOFF

ECOFF is an extended COFF originally introduced for Mips and Alpha workstations.
The basic ECOFF reader is in ‘mipsread.c’.

8.4.4 XCOFF

The IBM RS/6000 running AIX uses an object file format called XCOFF. The COFF
sections, symbols, and line numbers are used, but debugging symbols are dbx-style stabs
whose strings are located in the .debug section (rather than the string table). For more
information, see Section “Top” in The Stabs Debugging Format.

The shared library scheme has a clean interface for figuring out what shared libraries
are in use, but the catch is that everything which refers to addresses (symbol tables and
breakpoints at least) needs to be relocated for both shared libraries and the main executable.
At least using the standard mechanism this can only be done once the program has been
run (or the core file has been read).

8.4.5 PE

Windows 95 and NT use the PE (Portable Executable) format for their executables. PE is
basically COFF with additional headers.

While BFD includes special PE support, gdb needs only the basic COFF reader.

8.4.6 ELF

The ELF format came with System V Release 4 (SVR4) Unix. ELF is similar to COFF
in being organized into a number of sections, but it removes many of COFF’s limitations.
Debugging info may be either stabs encapsulated in ELF sections, or more commonly these
days, DWARF.

The basic ELF reader is in ‘elfread.c’.

8.4.7 SOM

SOM is HP’s object file and debug format (not to be confused with IBM’s SOM, which is
a cross-language ABI).

The SOM reader is in ‘somread.c’.

8.5 Debugging File Formats

This section describes characteristics of debugging information that are independent of the
object file format.

8.5.1 stabs

stabs started out as special symbols within the a.out format. Since then, it has been
encapsulated into other file formats, such as COFF and ELF.

While ‘dbxread.c’ does some of the basic stab processing, including for encapsulated
versions, ‘stabsread.c’ does the real work.

8.5.2 COFF

The basic COFF definition includes debugging information. The level of support is minimal
and non-extensible, and is not often used.

Chapter 8: Symbol Handling 33

8.5.3 Mips debug (Third Eye)

ECOFF includes a definition of a special debug format.

The file ‘mdebugread.c’ implements reading for this format.

8.5.4 DWARF 2

DWARF 2 is an improved but incompatible version of DWARF 1.

The DWARF 2 reader is in ‘dwarf2read.c’.

8.5.5 Compressed DWARF 2

Compressed DWARF 2 is not technically a separate debugging format, but merely DWARF
2 debug information that has been compressed. In this format, every object-file section
holding DWARF 2 debugging information is compressed and prepended with a header.
(The section is also typically renamed, so a section called .debug_info in a DWARF 2
binary would be called .zdebug_info in a compressed DWARF 2 binary.) The header is
12 bytes long:

• 4 bytes: the literal string “ZLIB”

• 8 bytes: the uncompressed size of the section, in big-endian byte order.

The same reader is used for both compressed an normal DWARF 2 info. Section decom-
pression is done in zlib_decompress_section in ‘dwarf2read.c’.

8.5.6 DWARF 3

DWARF 3 is an improved version of DWARF 2.

8.5.7 SOM

Like COFF, the SOM definition includes debugging information.

8.6 Adding a New Symbol Reader to gdb

If you are using an existing object file format (a.out, COFF, ELF, etc), there is probably
little to be done.

If you need to add a new object file format, you must first add it to BFD. This is beyond
the scope of this document.

You must then arrange for the BFD code to provide access to the debugging symbols.
Generally gdb will have to call swapping routines from BFD and a few other BFD internal
routines to locate the debugging information. As much as possible, gdb should not depend
on the BFD internal data structures.

For some targets (e.g., COFF), there is a special transfer vector used to call swapping
routines, since the external data structures on various platforms have different sizes and
layouts. Specialized routines that will only ever be implemented by one object file format
may be called directly. This interface should be described in a file ‘bfd/libxyz.h’, which
is included by gdb.

Chapter 9: Language Support 34

8.7 Memory Management for Symbol Files

Most memory associated with a loaded symbol file is stored on its objfile_obstack. This
includes symbols, types, namespace data, and other information produced by the symbol
readers.

Because this data lives on the objfile’s obstack, it is automatically released when the
objfile is unloaded or reloaded. Therefore one objfile must not reference symbol or type
data from another objfile; they could be unloaded at different times.

User convenience variables, et cetera, have associated types. Normally these types live
in the associated objfile. However, when the objfile is unloaded, those types are deep copied
to global memory, so that the values of the user variables and history items are not lost.

9 Language Support

gdb’s language support is mainly driven by the symbol reader, although it is possible for
the user to set the source language manually.

gdb chooses the source language by looking at the extension of the file recorded in
the debug info; ‘.c’ means C, ‘.f’ means Fortran, etc. It may also use a special-purpose
language identifier if the debug format supports it, like with DWARF.

9.1 Adding a Source Language to gdb

To add other languages to gdb’s expression parser, follow the following steps:

Create the expression parser.
This should reside in a file ‘lang-exp.y’. Routines for building parsed expres-
sions into a union exp_element list are in ‘parse.c’.
Since we can’t depend upon everyone having Bison, and YACC produces parsers
that define a bunch of global names, the following lines must be included at the
top of the YACC parser, to prevent the various parsers from defining the same
global names:

#define yyparse lang_parse

#define yylex lang_lex

#define yyerror lang_error

#define yylval lang_lval

#define yychar lang_char

#define yydebug lang_debug

#define yypact lang_pact

#define yyr1 lang_r1

#define yyr2 lang_r2

#define yydef lang_def

#define yychk lang_chk

#define yypgo lang_pgo

#define yyact lang_act

#define yyexca lang_exca

#define yyerrflag lang_errflag

#define yynerrs lang_nerrs

At the bottom of your parser, define a struct language_defn and initialize it
with the right values for your language. Define an initialize_lang routine
and have it call ‘add_language(lang_language_defn)’ to tell the rest of gdb

Chapter 9: Language Support 35

that your language exists. You’ll need some other supporting variables and
functions, which will be used via pointers from your lang_language_defn.
See the declaration of struct language_defn in ‘language.h’, and the other
‘*-exp.y’ files, for more information.

Add any evaluation routines, if necessary
If you need new opcodes (that represent the operations of the language), add
them to the enumerated type in ‘expression.h’. Add support code for these
operations in the evaluate_subexp function defined in the file ‘eval.c’. Add
cases for new opcodes in two functions from ‘parse.c’: prefixify_subexp and
length_of_subexp. These compute the number of exp_elements that a given
operation takes up.

Update some existing code
Add an enumerated identifier for your language to the enumerated type enum
language in ‘defs.h’.

Update the routines in ‘language.c’ so your language is included. These rou-
tines include type predicates and such, which (in some cases) are language
dependent. If your language does not appear in the switch statement, an error
is reported.

Also included in ‘language.c’ is the code that updates the variable current_
language, and the routines that translate the language_lang enumerated iden-
tifier into a printable string.

Update the function _initialize_language to include your language. This
function picks the default language upon startup, so is dependent upon which
languages that gdb is built for.

Update allocate_symtab in ‘symfile.c’ and/or symbol-reading code so that
the language of each symtab (source file) is set properly. This is used to deter-
mine the language to use at each stack frame level. Currently, the language is
set based upon the extension of the source file. If the language can be better
inferred from the symbol information, please set the language of the symtab in
the symbol-reading code.

Add helper code to print_subexp (in ‘expprint.c’) to handle any new ex-
pression opcodes you have added to ‘expression.h’. Also, add the printed
representations of your operators to op_print_tab.

Add a place of call
Add a call to lang_parse() and lang_error in parse_exp_1 (defined in
‘parse.c’).

Edit ‘Makefile.in’
Add dependencies in ‘Makefile.in’. Make sure you update the macro variables
such as HFILES and OBJS, otherwise your code may not get linked in, or, worse
yet, it may not get tarred into the distribution!

Chapter 10: Host Definition 36

10 Host Definition

With the advent of Autoconf, it’s rarely necessary to have host definition machinery any-
more. The following information is provided, mainly, as an historical reference.

10.1 Adding a New Host

gdb’s host configuration support normally happens via Autoconf. New host-specific defini-
tions should not be needed. Older hosts gdb still use the host-specific definitions and files
listed below, but these mostly exist for historical reasons, and will eventually disappear.

‘gdb/config/arch/xyz.mh’
This file is a Makefile fragment that once contained both host and native con-
figuration information (see Chapter 14 [Native Debugging], page 71) for the
machine xyz. The host configuration information is now handled by Autoconf.
Host configuration information included definitions for CC, SYSV_DEFINE, XM_
CFLAGS, XM_ADD_FILES, XM_CLIBS, XM_CDEPS, etc.; see ‘Makefile.in’.
New host-only configurations do not need this file.

(Files named ‘gdb/config/arch/xm-xyz.h’ were once used to define host-specific
macros, but were no longer needed and have all been removed.)

Generic Host Support Files

There are some “generic” versions of routines that can be used by various systems.

‘ser-unix.c’
This contains serial line support for Unix systems. It is included by default on
all Unix-like hosts.

‘ser-pipe.c’
This contains serial pipe support for Unix systems. It is included by default on
all Unix-like hosts.

‘ser-mingw.c’
This contains serial line support for 32-bit programs running under Windows
using MinGW.

‘ser-go32.c’
This contains serial line support for 32-bit programs running under DOS, using
the DJGPP (a.k.a. GO32) execution environment.

‘ser-tcp.c’
This contains generic TCP support using sockets. It is included by default on
all Unix-like hosts and with MinGW.

10.2 Host Conditionals

When gdb is configured and compiled, various macros are defined or left undefined, to
control compilation based on the attributes of the host system. While formerly they could
be set in host-specific header files, at present they can be changed only by setting CFLAGS
when building, or by editing the source code.

Chapter 11: Target Architecture Definition 37

These macros and their meanings (or if the meaning is not documented here, then one
of the source files where they are used is indicated) are:

gdbINIT_FILENAME
The default name of gdb’s initialization file (normally ‘.gdbinit’).

CRLF_SOURCE_FILES
Define this if host files use \r\n rather than \n as a line terminator. This will
cause source file listings to omit \r characters when printing and it will allow
\r\n line endings of files which are “sourced” by gdb. It must be possible to
open files in binary mode using O_BINARY or, for fopen, "rb".

DEFAULT_PROMPT
The default value of the prompt string (normally "(gdb) ").

DEV_TTY The name of the generic TTY device, defaults to "/dev/tty".

ISATTY Substitute for isatty, if not available.

FOPEN_RB Define this if binary files are opened the same way as text files.

PRINTF_HAS_LONG_LONG
Define this if the host can handle printing of long long integers via the printf
format conversion specifier ll. This is set by the configure script.

LSEEK_NOT_LINEAR
Define this if lseek (n) does not necessarily move to byte number n in the
file. This is only used when reading source files. It is normally faster to define
CRLF_SOURCE_FILES when possible.

lint Define this to help placate lint in some situations.

volatile Define this to override the defaults of __volatile__ or /**/.

11 Target Architecture Definition

gdb’s target architecture defines what sort of machine-language programs gdb can work
with, and how it works with them.

The target architecture object is implemented as the C structure struct gdbarch *.
The structure, and its methods, are generated using the Bourne shell script ‘gdbarch.sh’.

11.1 Operating System ABI Variant Handling

gdb provides a mechanism for handling variations in OS ABIs. An OS ABI variant may
have influence over any number of variables in the target architecture definition. There are
two major components in the OS ABI mechanism: sniffers and handlers.

A sniffer examines a file matching a BFD architecture/flavour pair (the architecture
may be wildcarded) in an attempt to determine the OS ABI of that file. Sniffers with a
wildcarded architecture are considered to be generic, while sniffers for a specific architecture
are considered to be specific. A match from a specific sniffer overrides a match from a generic
sniffer. Multiple sniffers for an architecture/flavour may exist, in order to differentiate
between two different operating systems which use the same basic file format. The OS ABI

Chapter 11: Target Architecture Definition 38

framework provides a generic sniffer for ELF-format files which examines the EI_OSABI field
of the ELF header, as well as note sections known to be used by several operating systems.

A handler is used to fine-tune the gdbarch structure for the selected OS ABI. There
may be only one handler for a given OS ABI for each BFD architecture.

The following OS ABI variants are defined in ‘defs.h’:

GDB_OSABI_UNINITIALIZED
Used for struct gdbarch info if ABI is still uninitialized.

GDB_OSABI_UNKNOWN
The ABI of the inferior is unknown. The default gdbarch settings for the
architecture will be used.

GDB_OSABI_SVR4
UNIX System V Release 4.

GDB_OSABI_HURD
GNU using the Hurd kernel.

GDB_OSABI_SOLARIS
Sun Solaris.

GDB_OSABI_OSF1
OSF/1, including Digital UNIX and Compaq Tru64 UNIX.

GDB_OSABI_LINUX
GNU using the Linux kernel.

GDB_OSABI_FREEBSD_AOUT
FreeBSD using the a.out executable format.

GDB_OSABI_FREEBSD_ELF
FreeBSD using the ELF executable format.

GDB_OSABI_NETBSD_AOUT
NetBSD using the a.out executable format.

GDB_OSABI_NETBSD_ELF
NetBSD using the ELF executable format.

GDB_OSABI_OPENBSD_ELF
OpenBSD using the ELF executable format.

GDB_OSABI_WINCE
Windows CE.

GDB_OSABI_GO32
DJGPP.

GDB_OSABI_IRIX
Irix.

GDB_OSABI_INTERIX
Interix (Posix layer for MS-Windows systems).

GDB_OSABI_HPUX_ELF
HP/UX using the ELF executable format.

Chapter 11: Target Architecture Definition 39

GDB_OSABI_HPUX_SOM
HP/UX using the SOM executable format.

GDB_OSABI_QNXNTO
QNX Neutrino.

GDB_OSABI_CYGWIN
Cygwin.

GDB_OSABI_AIX
AIX.

Here are the functions that make up the OS ABI framework:

[Function]const char * gdbarch_osabi_name (enum gdb osabi osabi)
Return the name of the OS ABI corresponding to osabi.

[Function]void gdbarch_register_osabi (enum bfd architecture arch, unsigned
long machine, enum gdb osabi osabi, void (*init_osabi)(struct
gdbarch info info, struct gdbarch *gdbarch))

Register the OS ABI handler specified by init osabi for the architecture, machine
type and OS ABI specified by arch, machine and osabi. In most cases, a value of
zero for the machine type, which implies the architecture’s default machine type, will
suffice.

[Function]void gdbarch_register_osabi_sniffer (enum bfd architecture
arch, enum bfd flavour flavour, enum gdb osabi (*sniffer)(bfd *abfd))

Register the OS ABI file sniffer specified by sniffer for the BFD architecture/flavour
pair specified by arch and flavour. If arch is bfd_arch_unknown, the sniffer is consid-
ered to be generic, and is allowed to examine flavour-flavoured files for any architec-
ture.

[Function]enum gdb_osabi gdbarch_lookup_osabi (bfd *abfd)
Examine the file described by abfd to determine its OS ABI. The value GDB_OSABI_
UNKNOWN is returned if the OS ABI cannot be determined.

[Function]void gdbarch_init_osabi (struct gdbarch info info, struct gdbarch
*gdbarch, enum gdb osabi osabi)

Invoke the OS ABI handler corresponding to osabi to fine-tune the gdbarch structure
specified by gdbarch. If a handler corresponding to osabi has not been registered
for gdbarch’s architecture, a warning will be issued and the debugging session will
continue with the defaults already established for gdbarch.

[Function]void generic_elf_osabi_sniff_abi_tag_sections (bfd *abfd,
asection *sect, void *obj)

Helper routine for ELF file sniffers. Examine the file described by abfd and look at
ABI tag note sections to determine the OS ABI from the note. This function should
be called via bfd_map_over_sections.

Chapter 11: Target Architecture Definition 40

11.2 Initializing a New Architecture

11.2.1 How an Architecture is Represented

Each gdbarch is associated with a single bfd architecture, via a bfd_arch_arch in the bfd_
architecture enumeration. The gdbarch is registered by a call to register_gdbarch_
init, usually from the file’s _initialize_filename routine, which will be automatically
called during gdb startup. The arguments are a bfd architecture constant and an initial-
ization function.

A gdb description for a new architecture, arch is created by defining a global function
_initialize_arch_tdep, by convention in the source file ‘arch-tdep.c’. For example,
in the case of the OpenRISC 1000, this function is called _initialize_or1k_tdep and is
found in the file ‘or1k-tdep.c’.

The resulting object files containing the implementation of the _initialize_arch_
tdep function are specified in the gdb ‘configure.tgt’ file, which includes a large case
statement pattern matching against the --target option of the configure script. The
new struct gdbarch is created within the _initialize_arch_tdep function by calling
gdbarch_register:

void gdbarch_register (enum bfd_architecture architecture,

gdbarch_init_ftype *init_func,

gdbarch_dump_tdep_ftype *tdep_dump_func);

The architecture will identify the unique bfd to be associated with this gdbarch.
The init func funciton is called to create and return the new struct gdbarch. The
tdep dump func function will dump the target specific details associated with this
architecture.

For example the function _initialize_or1k_tdep creates its architecture for 32-bit
OpenRISC 1000 architectures by calling:

gdbarch_register (bfd_arch_or32, or1k_gdbarch_init, or1k_dump_tdep);

11.2.2 Looking Up an Existing Architecture

The initialization function has this prototype:
static struct gdbarch *

arch_gdbarch_init (struct gdbarch_info info,

struct gdbarch_list *arches)

The info argument contains parameters used to select the correct architecture, and arches
is a list of architectures which have already been created with the same bfd_arch_arch
value.

The initialization function should first make sure that info is acceptable, and return NULL
if it is not. Then, it should search through arches for an exact match to info, and return
one if found. Lastly, if no exact match was found, it should create a new architecture based
on info and return it.

The lookup is done using gdbarch_list_lookup_by_info. It is passed the list of existing
architectures, arches, and the struct gdbarch_info, info, and returns the first matching
architecture it finds, or NULL if none are found. If an architecture is found it can be returned
as the result from the initialization function, otherwise a new struct gdbach will need to
be created.

The struct gdbarch info has the following components:

Chapter 11: Target Architecture Definition 41

struct gdbarch_info

{

const struct bfd_arch_info *bfd_arch_info;

int byte_order;

bfd *abfd;

struct gdbarch_tdep_info *tdep_info;

enum gdb_osabi osabi;

const struct target_desc *target_desc;

};

The bfd_arch_info member holds the key details about the architecture. The byte_
order member is a value in an enumeration indicating the endianism. The abfd member
is a pointer to the full bfd, the tdep_info member is additional custom target specific
information, osabi identifies which (if any) of a number of operating specific ABIs are
used by this architecture and the target_desc member is a set of name-value pairs with
information about register usage in this target.

When the struct gdbarch initialization function is called, not all the fields are
provided—only those which can be deduced from the bfd. The struct gdbarch_info,
info is used as a look-up key with the list of existing architectures, arches to see if a
suitable architecture already exists. The tdep info, osabi and target desc fields may be
added before this lookup to refine the search.

Only information in info should be used to choose the new architecture. Historically, info
could be sparse, and defaults would be collected from the first element on arches. However,
gdb now fills in info more thoroughly, so new gdbarch initialization functions should not
take defaults from arches.

11.2.3 Creating a New Architecture

If no architecture is found, then a new architecture must be created, by calling gdbarch_
alloc using the supplied struct gdbarch_info and any additional custom target specific
information in a struct gdbarch_tdep. The prototype for gdbarch_alloc is:

struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info,

struct gdbarch_tdep *tdep);

The newly created struct gdbarch must then be populated. Although there are default
values, in most cases they are not what is required.

For each element, X, there is are a pair of corresponding accessor functions, one to set
the value of that element, set_gdbarch_X , the second to either get the value of an element
(if it is a variable) or to apply the element (if it is a function), gdbarch_X . Note that both
accessor functions take a pointer to the struct gdbarch as first argument. Populating the
new gdbarch should use the set_gdbarch functions.

The following sections identify the main elements that should be set in this way. This
is not the complete list, but represents the functions and elements that must commonly be
specified for a new architecture. Many of the functions and variables are described in the
header file ‘gdbarch.h’.

This is the main work in defining a new architecture. Implementing the set of functions
to populate the struct gdbarch.

struct gdbarch_tdep is not defined within gdb—it is up to the user to define this
struct if it is needed to hold custom target information that is not covered by the standard

Chapter 11: Target Architecture Definition 42

struct gdbarch. For example with the OpenRISC 1000 architecture it is used to hold the
number of matchpoints available in the target (along with other information).

If there is no additional target specific information, it can be set to NULL.

11.3 Registers and Memory

gdb’s model of the target machine is rather simple. gdb assumes the machine includes a
bank of registers and a block of memory. Each register may have a different size.

gdb does not have a magical way to match up with the compiler’s idea of which registers
are which; however, it is critical that they do match up accurately. The only way to make
this work is to get accurate information about the order that the compiler uses, and to
reflect that in the gdbarch_register_name and related functions.

gdb can handle big-endian, little-endian, and bi-endian architectures.

11.4 Pointers Are Not Always Addresses

On almost all 32-bit architectures, the representation of a pointer is indistinguishable from
the representation of some fixed-length number whose value is the byte address of the
object pointed to. On such machines, the words “pointer” and “address” can be used
interchangeably. However, architectures with smaller word sizes are often cramped for
address space, so they may choose a pointer representation that breaks this identity, and
allows a larger code address space.

For example, the Renesas D10V is a 16-bit VLIW processor whose instructions are 32
bits long3. If the D10V used ordinary byte addresses to refer to code locations, then the
processor would only be able to address 64kb of instructions. However, since instructions
must be aligned on four-byte boundaries, the low two bits of any valid instruction’s byte
address are always zero—byte addresses waste two bits. So instead of byte addresses, the
D10V uses word addresses—byte addresses shifted right two bits—to refer to code. Thus,
the D10V can use 16-bit words to address 256kb of code space.

However, this means that code pointers and data pointers have different forms on the
D10V. The 16-bit word 0xC020 refers to byte address 0xC020 when used as a data address,
but refers to byte address 0x30080 when used as a code address.

(The D10V also uses separate code and data address spaces, which also affects the
correspondence between pointers and addresses, but we’re going to ignore that here; this
example is already too long.)

To cope with architectures like this—the D10V is not the only one!—gdb tries to dis-
tinguish between addresses, which are byte numbers, and pointers, which are the target’s
representation of an address of a particular type of data. In the example above, 0xC020
is the pointer, which refers to one of the addresses 0xC020 or 0x30080, depending on the
type imposed upon it. gdb provides functions for turning a pointer into an address and
vice versa, in the appropriate way for the current architecture.

Unfortunately, since addresses and pointers are identical on almost all processors, this
distinction tends to bit-rot pretty quickly. Thus, each time you port gdb to an architecture

3 Some D10V instructions are actually pairs of 16-bit sub-instructions. However, since you can’t jump
into the middle of such a pair, code addresses can only refer to full 32 bit instructions, which is what
matters in this explanation.

Chapter 11: Target Architecture Definition 43

which does distinguish between pointers and addresses, you’ll probably need to clean up
some architecture-independent code.

Here are functions which convert between pointers and addresses:

[Function]CORE_ADDR extract_typed_address (void *buf, struct type *type)
Treat the bytes at buf as a pointer or reference of type type, and return the address
it represents, in a manner appropriate for the current architecture. This yields an
address gdb can use to read target memory, disassemble, etc. Note that buf refers
to a buffer in gdb’s memory, not the inferior’s.
For example, if the current architecture is the Intel x86, this function extracts a little-
endian integer of the appropriate length from buf and returns it. However, if the
current architecture is the D10V, this function will return a 16-bit integer extracted
from buf, multiplied by four if type is a pointer to a function.
If type is not a pointer or reference type, then this function will signal an internal
error.

[Function]CORE_ADDR store_typed_address (void *buf, struct type *type,
CORE ADDR addr)

Store the address addr in buf, in the proper format for a pointer of type type in
the current architecture. Note that buf refers to a buffer in gdb’s memory, not the
inferior’s.
For example, if the current architecture is the Intel x86, this function stores addr
unmodified as a little-endian integer of the appropriate length in buf. However, if
the current architecture is the D10V, this function divides addr by four if type is a
pointer to a function, and then stores it in buf.
If type is not a pointer or reference type, then this function will signal an internal
error.

[Function]CORE_ADDR value_as_address (struct value *val)
Assuming that val is a pointer, return the address it represents, as appropriate for
the current architecture.
This function actually works on integral values, as well as pointers. For pointers,
it performs architecture-specific conversions as described above for extract_typed_
address.

[Function]CORE_ADDR value_from_pointer (struct type *type, CORE ADDR
addr)

Create and return a value representing a pointer of type type to the address addr, as
appropriate for the current architecture. This function performs architecture-specific
conversions as described above for store_typed_address.

Here are two functions which architectures can define to indicate the relationship between
pointers and addresses. These have default definitions, appropriate for architectures on
which all pointers are simple unsigned byte addresses.

[Function]CORE_ADDR gdbarch_pointer_to_address (struct gdbarch *gdbarch,
struct type *type, char *buf)

Assume that buf holds a pointer of type type, in the appropriate format for the
current architecture. Return the byte address the pointer refers to.

Chapter 11: Target Architecture Definition 44

This function may safely assume that type is either a pointer or a C++ reference type.

[Function]void gdbarch_address_to_pointer (struct gdbarch *gdbarch, struct
type *type, char *buf, CORE ADDR addr)

Store in buf a pointer of type type representing the address addr, in the appropriate
format for the current architecture.
This function may safely assume that type is either a pointer or a C++ reference type.

11.5 Address Classes

Sometimes information about different kinds of addresses is available via the debug infor-
mation. For example, some programming environments define addresses of several different
sizes. If the debug information distinguishes these kinds of address classes through either
the size info (e.g, DW_AT_byte_size in DWARF 2) or through an explicit address class at-
tribute (e.g, DW_AT_address_class in DWARF 2), the following macros should be defined
in order to disambiguate these types within gdb as well as provide the added information
to a gdb user when printing type expressions.

[Function]int gdbarch_address_class_type_flags (struct gdbarch *gdbarch,
int byte_size, int dwarf2_addr_class)

Returns the type flags needed to construct a pointer type whose size is byte size and
whose address class is dwarf2 addr class. This function is normally called from within
a symbol reader. See ‘dwarf2read.c’.

[Function]char * gdbarch_address_class_type_flags_to_name (struct
gdbarch *gdbarch, int type_flags)

Given the type flags representing an address class qualifier, return its name.

[Function]int gdbarch_address_class_name_to_type_flags (struct gdbarch
*gdbarch, int name, int *type_flags_ptr)

Given an address qualifier name, set the int referenced by type flags ptr to the type
flags for that address class qualifier.

Since the need for address classes is rather rare, none of the address class functions are
defined by default. Predicate functions are provided to detect when they are defined.

Consider a hypothetical architecture in which addresses are normally 32-bits wide, but
16-bit addresses are also supported. Furthermore, suppose that the DWARF 2 information
for this architecture simply uses a DW_AT_byte_size value of 2 to indicate the use of one of
these "short" pointers. The following functions could be defined to implement the address
class functions:

somearch_address_class_type_flags (int byte_size,

int dwarf2_addr_class)

{

if (byte_size == 2)

return TYPE_FLAG_ADDRESS_CLASS_1;

else

return 0;

}

static char *

Chapter 11: Target Architecture Definition 45

somearch_address_class_type_flags_to_name (int type_flags)

{

if (type_flags & TYPE_FLAG_ADDRESS_CLASS_1)

return "short";

else

return NULL;

}

int

somearch_address_class_name_to_type_flags (char *name,

int *type_flags_ptr)

{

if (strcmp (name, "short") == 0)

{

*type_flags_ptr = TYPE_FLAG_ADDRESS_CLASS_1;

return 1;

}

else

return 0;

}

The qualifier @short is used in gdb’s type expressions to indicate the presence of one of
these “short” pointers. For example if the debug information indicates that short_ptr_var
is one of these short pointers, gdb might show the following behavior:

(gdb) ptype short_ptr_var

type = int * @short

11.6 Register Representation

11.6.1 Raw and Cooked Registers

gdb considers registers to be a set with members numbered linearly from 0 upwards. The
first part of that set corresponds to real physical registers, the second part to any pseudo-
registers. Pseudo-registers have no independent physical existence, but are useful represen-
tations of information within the architecture. For example the OpenRISC 1000 architecture
has up to 32 general purpose registers, which are typically represented as 32-bit (or 64-bit)
integers. However the GPRs are also used as operands to the floating point operations, and
it could be convenient to define a set of pseudo-registers, to show the GPRs represented as
floating point values.

For any architecture, the implementer will decide on a mapping from hardware to gdb
register numbers. The registers corresponding to real hardware are referred to as raw
registers, the remaining registers are pseudo-registers. The total register set (raw and
pseudo) is called the cooked register set.

11.6.2 Functions and Variables Specifying the Register
Architecture

These struct gdbarch functions and variables specify the number and type of registers in
the architecture.

Chapter 11: Target Architecture Definition 46

[Architecture Function]CORE_ADDR read_pc (struct regcache *regcache)

[Architecture Function]void write_pc (struct regcache *regcache, CORE ADDR
val)

Read or write the program counter. The default value of both functions is NULL (no
function available). If the program counter is just an ordinary register, it can be
specified in struct gdbarch instead (see pc_regnum below) and it will be read or
written using the standard routines to access registers. This function need only be
specified if the program counter is not an ordinary register.
Any register information can be obtained using the supplied register cache, regcache.
See Section 11.6.5 [Register Caching], page 49.

[Architecture Function]void pseudo_register_read (struct gdbarch *gdbarch,
struct regcache *regcache, int regnum, const gdb byte *buf)

[Architecture Function]void pseudo_register_write (struct gdbarch *gdbarch,
struct regcache *regcache, int regnum, const gdb byte *buf)

These functions should be defined if there are any pseudo-registers. The default value
is NULL. regnum is the number of the register to read or write (which will be a cooked
register number) and buf is the buffer where the value read will be placed, or from
which the value to be written will be taken. The value in the buffer may be converted
to or from a signed or unsigned integral value using one of the utility functions (see
Section 11.6.4 [Using Different Register and Memory Data Representations], page 48).
The access should be for the specified architecture, gdbarch. Any register informa-
tion can be obtained using the supplied register cache, regcache. See Section 11.6.5
[Register Caching], page 49.

[Architecture Variable]int sp_regnum
This specifies the register holding the stack pointer, which may be a raw or pseudo-
register. It defaults to -1 (not defined), but it is an error for it not to be defined.
The value of the stack pointer register can be accessed withing gdb as the variable
$sp.

[Architecture Variable]int pc_regnum
This specifies the register holding the program counter, which may be a raw or pseudo-
register. It defaults to -1 (not defined). If pc_regnum is not defined, then the functions
read_pc and write_pc (see above) must be defined.
The value of the program counter (whether defined as a register, or through read_pc
and write_pc) can be accessed withing gdb as the variable $pc.

[Architecture Variable]int ps_regnum
This specifies the register holding the processor status (often called the status regis-
ter), which may be a raw or pseudo-register. It defaults to -1 (not defined).
If defined, the value of this register can be accessed withing gdb as the variable $ps.

[Architecture Variable]int fp0_regnum
This specifies the first floating point register. It defaults to 0. fp0_regnum is not
needed unless the target offers support for floating point.

Chapter 11: Target Architecture Definition 47

11.6.3 Functions Giving Register Information

These functions return information about registers.

[Architecture Function]const char * register_name (struct gdbarch *gdbarch,
int regnum)

This function should convert a register number (raw or pseudo) to a register name (as
a C const char *). This is used both to determine the name of a register for output
and to work out the meaning of any register names used as input. The function may
also return NULL, to indicate that regnum is not a valid register.
For example with the OpenRISC 1000, gdb registers 0-31 are the General Purpose
Registers, register 32 is the program counter and register 33 is the supervision reg-
ister (i.e. the processor status register), which map to the strings "gpr00" through
"gpr31", "pc" and "sr" respectively. This means that the gdb command print

$gpr5 should print the value of the OR1K general purpose register 54.
The default value for this function is NULL, meaning undefined. It should always be
defined.
The access should be for the specified architecture, gdbarch.

[Architecture Function]struct type * register_type (struct gdbarch
*gdbarch, int regnum)

Given a register number, this function identifies the type of data it may be holding,
specified as a struct type. gdb allows creation of arbitrary types, but a number of
built in types are provided (builtin_type_void, builtin_type_int32 etc), together
with functions to derive types from these.
Typically the program counter will have a type of “pointer to function” (it points to
code), the frame pointer and stack pointer will have types of “pointer to void” (they
point to data on the stack) and all other integer registers will have a type of 32-bit
integer or 64-bit integer.
This information guides the formatting when displaying register information. The
default value is NULL meaning no information is available to guide formatting when
displaying registers.

[Architecture Function]void print_registers_info (struct gdbarch *gdbarch,
struct ui file *file, struct frame info *frame, int regnum, int all)

Define this function to print out one or all of the registers for the gdb info registers

command. The default value is the function default_print_registers_info, which
uses the register type information (see register_type above) to determine how each
register should be printed. Define a custom version of this function for fuller control
over how the registers are displayed.
The access should be for the specified architecture, gdbarch, with output to the
file specified by the User Interface Independent Output file handle, file (see [UI-
Independent Output—the ui_out Functions], page 14).

4 Historically, gdb always had a concept of a frame pointer register, which could be accessed via the gdb
variable, $fp. That concept is now deprecated, recognizing that not all architectures have a frame pointer.
However if an architecture does have a frame pointer register, and defines a register or pseudo-register
with the name "fp", then that register will be used as the value of the $fp variable.

Chapter 11: Target Architecture Definition 48

The registers should show their values in the frame specified by frame. If regnum is -1
and all is zero, then all the “significant” registers should be shown (the implementer
should decide which registers are “significant”). Otherwise only the value of the
register specified by regnum should be output. If regnum is -1 and all is non-zero
(true), then the value of all registers should be shown.
By default default_print_registers_info prints one register per line, and if all is
zero omits floating-point registers.

[Architecture Function]void print_float_info (struct gdbarch *gdbarch, struct
ui file *file, struct frame info *frame, const char *args)

Define this function to provide output about the floating point unit and registers for
the gdb info float command respectively. The default value is NULL (not defined),
meaning no information will be provided.
The gdbarch and file and frame arguments have the same meaning as in the print_
registers_info function above. The string args contains any supplementary argu-
ments to the info float command.
Define this function if the target supports floating point operations.

[Architecture Function]void print_vector_info (struct gdbarch *gdbarch,
struct ui file *file, struct frame info *frame, const char *args)

Define this function to provide output about the vector unit and registers for the gdb
info vector command respectively. The default value is NULL (not defined), meaning
no information will be provided.
The gdbarch, file and frame arguments have the same meaning as in the print_
registers_info function above. The string args contains any supplementary argu-
ments to the info vector command.
Define this function if the target supports vector operations.

[Architecture Function]int register_reggroup_p (struct gdbarch *gdbarch, int
regnum, struct reggroup *group)

gdb groups registers into different categories (general, vector, floating point etc). This
function, given a register, regnum, and group, group, returns 1 (true) if the register
is in the group and 0 (false) otherwise.
The information should be for the specified architecture, gdbarch

The default value is the function default_register_reggroup_p which will do a rea-
sonable job based on the type of the register (see the function register_type above),
with groups for general purpose registers, floating point registers, vector registers and
raw (i.e not pseudo) registers.

11.6.4 Using Different Register and Memory Data
Representations

Some architectures have different representations of data objects, depending whether the
object is held in a register or memory. For example:
• The Alpha architecture can represent 32 bit integer values in floating-point registers.
• The x86 architecture supports 80-bit floating-point registers. The long double data

type occupies 96 bits in memory but only 80 bits when stored in a register.

Chapter 11: Target Architecture Definition 49

In general, the register representation of a data type is determined by the architecture,
or gdb’s interface to the architecture, while the memory representation is determined by
the Application Binary Interface.

For almost all data types on almost all architectures, the two representations are identi-
cal, and no special handling is needed. However, they do occasionally differ. An architecture
may define the following struct gdbarch functions to request conversions between the reg-
ister and memory representations of a data type:

[Architecture Function]int gdbarch_convert_register_p (struct gdbarch
*gdbarch, int reg)

Return non-zero (true) if the representation of a data value stored in this register may
be different to the representation of that same data value when stored in memory.
The default value is NULL (undefined).
If this function is defined and returns non-zero, the struct gdbarch functions
gdbarch_register_to_value and gdbarch_value_to_register (see below) should
be used to perform any necessary conversion.
If defined, this function should return zero for the register’s native type, when no
conversion is necessary.

[Architecture Function]void gdbarch_register_to_value (struct gdbarch
*gdbarch, int reg, struct type *type, char *from, char *to)

Convert the value of register number reg to a data object of type type. The buffer at
from holds the register’s value in raw format; the converted value should be placed in
the buffer at to.

Note: gdbarch_register_to_value and gdbarch_value_to_register
take their reg and type arguments in different orders.

gdbarch_register_to_value should only be used with registers for which the
gdbarch_convert_register_p function returns a non-zero value.

[Architecture Function]void gdbarch_value_to_register (struct gdbarch
*gdbarch, struct type *type, int reg, char *from, char *to)

Convert a data value of type type to register number reg ’ raw format.
Note: gdbarch_register_to_value and gdbarch_value_to_register
take their reg and type arguments in different orders.

gdbarch_value_to_register should only be used with registers for which the
gdbarch_convert_register_p function returns a non-zero value.

11.6.5 Register Caching

Caching of registers is used, so that the target does not need to be accessed and reana-
lyzed multiple times for each register in circumstances where the register value cannot have
changed.

gdb provides struct regcache, associated with a particular struct gdbarch to hold
the cached values of the raw registers. A set of functions is provided to access both the raw
registers (with raw in their name) and the full set of cooked registers (with cooked in their
name). Functions are provided to ensure the register cache is kept synchronized with the
values of the actual registers in the target.

Chapter 11: Target Architecture Definition 50

Accessing registers through the struct regcache routines will ensure that the appro-
priate struct gdbarch functions are called when necessary to access the underlying target
architecture. In general users should use the cooked functions, since these will map to the
raw functions automatically as appropriate.

The two key functions are regcache_cooked_read and regcache_cooked_write which
read or write a register from or to a byte buffer (type gdb_byte *). For convenience the
wrapper functions regcache_cooked_read_signed, regcache_cooked_read_unsigned,
regcache_cooked_write_signed and regcache_cooked_write_unsigned are provided,
which read or write the value using the buffer and convert to or from an integral value as
appropriate.

11.7 Frame Interpretation

11.7.1 All About Stack Frames

gdb needs to understand the stack on which local (automatic) variables are stored. The
area of the stack containing all the local variables for a function invocation is known as the
stack frame for that function (or colloquially just as the frame). In turn the function that
called the function will have its stack frame, and so on back through the chain of functions
that have been called.

Almost all architectures have one register dedicated to point to the end of the stack (the
stack pointer). Many have a second register which points to the start of the currently active
stack frame (the frame pointer). The specific arrangements for an architecture are a key
part of the ABI.

A diagram helps to explain this. Here is a simple program to compute factorials:
#include <stdio.h>

int fact (int n)

{

if (0 == n)

{

return 1;

}

else

{

return n * fact (n - 1);

}

}

main ()

{

int i;

for (i = 0; i < 10; i++)

{

int f = fact (i);

printf ("%d! = %d\n", i, f);

}

}

Consider the state of the stack when the code reaches line 6 after the main program has
called fact (3). The chain of function calls will be main (), fact (3), fact (2), fact (1)
and fact (0).

Chapter 11: Target Architecture Definition 51

In this illustration the stack is falling (as used for example by the OpenRISC 1000 ABI).
The stack pointer (SP) is at the end of the stack (lowest address) and the frame pointer
(FP) is at the highest address in the current stack frame. The following diagram shows how
the stack looks.

In each stack frame, offset 0 from the stack pointer is the frame pointer of the previous
frame and offset 4 (this is illustrating a 32-bit architecture) from the stack pointer is the
return address. Local variables are indexed from the frame pointer, with negative indexes.
In the function fact, offset -4 from the frame pointer is the argument n. In the main
function, offset -4 from the frame pointer is the local variable i and offset -8 from the frame
pointer is the local variable f 5.

It is very easy to get confused when examining stacks. gdb has terminology it uses
rigorously throughout. The stack frame of the function currently executing, or where exe-
cution stopped is numbered zero. In this example frame #0 is the stack frame of the call to
fact (0). The stack frame of its calling function (fact (1) in this case) is numbered #1
and so on back through the chain of calls.

The main gdb data structure describing frames is struct frame_info. It is not used
directly, but only via its accessor functions. frame_info includes information about the
registers in the frame and a pointer to the code of the function with which the frame is
associated. The entire stack is represented as a linked list of frame_info structs.

11.7.2 Frame Handling Terminology

It is easy to get confused when referencing stack frames. gdb uses some precise terminology.

5 This is a simplified example for illustrative purposes only. Good optimizing compilers would not put
anything on the stack for such simple functions. Indeed they might eliminate the recursion and use of
the stack entirely!

Chapter 11: Target Architecture Definition 52

• THIS frame is the frame currently under consideration.
• The NEXT frame, also sometimes called the inner or newer frame is the frame of the

function called by the function of THIS frame.
• The PREVIOUS frame, also sometimes called the outer or older frame is the frame of

the function which called the function of THIS frame.

So in the example in the previous section (see Section 11.7.1 [All About Stack Frames],
page 50), if THIS frame is #3 (the call to fact (3)), the NEXT frame is frame #2 (the
call to fact (2)) and the PREVIOUS frame is frame #4 (the call to main ()).

The innermost frame is the frame of the current executing function, or where the program
stopped, in this example, in the middle of the call to fact (0)). It is always numbered
frame #0.

The base of a frame is the address immediately before the start of the NEXT frame.
For a stack which grows down in memory (a falling stack) this will be the lowest address
and for a stack which grows up in memory (a rising stack) this will be the highest address
in the frame.

gdb functions to analyze the stack are typically given a pointer to the NEXT frame to
determine information about THIS frame. Information about THIS frame includes data on
where the registers of the PREVIOUS frame are stored in this stack frame. In this example
the frame pointer of the PREVIOUS frame is stored at offset 0 from the stack pointer of
THIS frame.

The process whereby a function is given a pointer to the NEXT frame to work out
information about THIS frame is referred to as unwinding. The gdb functions involved in
this typically include unwind in their name.

The process of analyzing a target to determine the information that should go in struct
frame info is called sniffing. The functions that carry this out are called sniffers and typically
include sniffer in their name. More than one sniffer may be required to extract all the
information for a particular frame.

Because so many functions work using the NEXT frame, there is an issue about address-
ing the innermost frame—it has no NEXT frame. To solve this gdb creates a dummy frame
#-1, known as the sentinel frame.

11.7.3 Prologue Caches

All the frame sniffing functions typically examine the code at the start of the corresponding
function, to determine the state of registers. The ABI will save old values and set new values
of key registers at the start of each function in what is known as the function prologue.

For any particular stack frame this data does not change, so all the standard unwinding
functions, in addition to receiving a pointer to the NEXT frame as their first argument,
receive a pointer to a prologue cache as their second argument. This can be used to store
values associated with a particular frame, for reuse on subsequent calls involving the same
frame.

It is up to the user to define the structure used (it is a void * pointer) and
arrange allocation and deallocation of storage. However for general use, gdb provides
struct trad_frame_cache, with a set of accessor routines. This structure holds the stack
and code address of THIS frame, the base address of the frame, a pointer to the struct

Chapter 11: Target Architecture Definition 53

frame_info for the NEXT frame and details of where the registers of the PREVIOUS
frame may be found in THIS frame.

Typically the first time any sniffer function is called with NEXT frame, the prologue
sniffer for THIS frame will be NULL. The sniffer will analyze the frame, allocate a prologue
cache structure and populate it. Subsequent calls using the same NEXT frame will pass in
this prologue cache, so the data can be returned with no additional analysis.

11.7.4 Functions and Variable to Analyze Frames

These struct gdbarch functions and variable should be defined to provide analysis of the
stack frame and allow it to be adjusted as required.

[Architecture Function]CORE_ADDR skip_prologue (struct gdbarch *gdbarch,
CORE ADDR pc)

The prologue of a function is the code at the beginning of the function which sets up
the stack frame, saves the return address etc. The code representing the behavior of
the function starts after the prologue.
This function skips past the prologue of a function if the program counter, pc, is
within the prologue of a function. The result is the program counter immediately
after the prologue. With modern optimizing compilers, this may be a far from trivial
exercise. However the required information may be within the binary as DWARF2
debugging information, making the job much easier.
The default value is NULL (not defined). This function should always be provided,
but can take advantage of DWARF2 debugging information, if that is available.

[Architecture Function]int inner_than (CORE ADDR lhs, CORE ADDR rhs)
Given two frame or stack pointers, return non-zero (true) if the first represents the
inner stack frame and 0 (false) otherwise. This is used to determine whether the target
has a stack which grows up in memory (rising stack) or grows down in memory (falling
stack). See Section 11.7.1 [All About Stack Frames], page 50, for an explanation of
inner frames.
The default value of this function is NULL and it should always be defined. How-
ever for almost all architectures one of the built-in functions can be used: core_
addr_lessthan (for stacks growing down in memory) or core_addr_greaterthan
(for stacks growing up in memory).

[Architecture Function]CORE_ADDR frame_align (struct gdbarch *gdbarch,
CORE ADDR address)

The architecture may have constraints on how its frames are aligned. For example
the OpenRISC 1000 ABI requires stack frames to be double-word aligned, but 32-
bit versions of the architecture allocate single-word values to the stack. Thus extra
padding may be needed at the end of a stack frame.
Given a proposed address for the stack pointer, this function returns a suitably aligned
address (by expanding the stack frame).
The default value is NULL (undefined). This function should be defined for any archi-
tecture where it is possible the stack could become misaligned. The utility functions
align_down (for falling stacks) and align_up (for rising stacks) will facilitate the
implementation of this function.

Chapter 11: Target Architecture Definition 54

[Architecture Variable]int frame_red_zone_size
Some ABIs reserve space beyond the end of the stack for use by leaf functions without
prologue or epilogue or by exception handlers (for example the OpenRISC 1000).

This is known as a red zone (AMD terminology). The amd64 (nee x86-64) ABI
documentation refers to the red zone when describing this scratch area.

The default value is 0. Set this field if the architecture has such a red zone. The value
must be aligned as required by the ABI (see frame_align above for an explanation
of stack frame alignment).

11.7.5 Functions to Access Frame Data

These functions provide access to key registers and arguments in the stack frame.

[Architecture Function]CORE_ADDR unwind_pc (struct gdbarch *gdbarch, struct
frame info *next_frame)

This function is given a pointer to the NEXT stack frame (see Section 11.7.1 [All
About Stack Frames], page 50, for how frames are represented) and returns the value
of the program counter in the PREVIOUS frame (i.e. the frame of the function that
called THIS one). This is commonly referred to as the return address.

The implementation, which must be frame agnostic (work with any frame), is typically
no more than:

ULONGEST pc;

pc = frame_unwind_register_unsigned (next_frame, ARCH_PC_REGNUM);

return gdbarch_addr_bits_remove (gdbarch, pc);

[Architecture Function]CORE_ADDR unwind_sp (struct gdbarch *gdbarch, struct
frame info *next_frame)

This function is given a pointer to the NEXT stack frame (see Section 11.7.1 [All
About Stack Frames], page 50 for how frames are represented) and returns the value
of the stack pointer in the PREVIOUS frame (i.e. the frame of the function that
called THIS one).

The implementation, which must be frame agnostic (work with any frame), is typically
no more than:

ULONGEST sp;

sp = frame_unwind_register_unsigned (next_frame, ARCH_SP_REGNUM);

return gdbarch_addr_bits_remove (gdbarch, sp);

[Architecture Function]int frame_num_args (struct gdbarch *gdbarch, struct
frame info *this_frame)

This function is given a pointer to THIS stack frame (see Section 11.7.1 [All About
Stack Frames], page 50 for how frames are represented), and returns the number of
arguments that are being passed, or -1 if not known.

The default value is NULL (undefined), in which case the number of arguments passed
on any stack frame is always unknown. For many architectures this will be a suitable
default.

Chapter 11: Target Architecture Definition 55

11.7.6 Analyzing Stacks—Frame Sniffers

When a program stops, gdb needs to construct the chain of struct frame_info representing
the state of the stack using appropriate sniffers.

Each architecture requires appropriate sniffers, but they do not form entries in
struct gdbarch, since more than one sniffer may be required and a sniffer may be suitable
for more than one struct gdbarch. Instead sniffers are associated with architectures using
the following functions.
• frame_unwind_append_sniffer is used to add a new sniffer to analyze THIS frame

when given a pointer to the NEXT frame.
• frame_base_append_sniffer is used to add a new sniffer which can determine infor-

mation about the base of a stack frame.
• frame_base_set_default is used to specify the default base sniffer.

These functions all take a reference to struct gdbarch, so they are associated with a
specific architecture. They are usually called in the gdbarch initialization function, after the
gdbarch struct has been set up. Unless a default has been set, the most recently appended
sniffer will be tried first.

The main frame unwinding sniffer (as set by frame_unwind_append_sniffer) returns
a structure specifying a set of sniffing functions:

struct frame_unwind

{

enum frame_type type;

frame_this_id_ftype *this_id;

frame_prev_register_ftype *prev_register;

const struct frame_data *unwind_data;

frame_sniffer_ftype *sniffer;

frame_prev_pc_ftype *prev_pc;

frame_dealloc_cache_ftype *dealloc_cache;

};

The type field indicates the type of frame this sniffer can handle: normal, dummy (see
Section 11.8.2 [Functions Creating Dummy Frames], page 56), signal handler or sentinel.
Signal handlers sometimes have their own simplified stack structure for efficiency, so may
need their own handlers.

The unwind_data field holds additional information which may be relevant to particular
types of frame. For example it may hold additional information for signal handler frames.

The remaining fields define functions that yield different types of information when given
a pointer to the NEXT stack frame. Not all functions need be provided. If an entry is NULL,
the next sniffer will be tried instead.
• this_id determines the stack pointer and function (code entry point) for THIS stack

frame.
• prev_register determines where the values of registers for the PREVIOUS stack

frame are stored in THIS stack frame.
• sniffer takes a look at THIS frame’s registers to determine if this is the appropriate

unwinder.
• prev_pc determines the program counter for THIS frame. Only needed if the pro-

gram counter is not an ordinary register (see Section 11.6.2 [Functions and Variables
Specifying the Register Architecture], page 45).

Chapter 11: Target Architecture Definition 56

• dealloc_cache frees any additional memory associated with the prologue cache for
this frame (see Section 11.7.3 [Prologue Caches], page 52).

In general it is only the this_id and prev_register fields that need be defined for
custom sniffers.

The frame base sniffer is much simpler. It is a struct frame_base, which refers to
the corresponding frame_unwind struct and whose fields refer to functions yielding various
addresses within the frame.

struct frame_base

{

const struct frame_unwind *unwind;

frame_this_base_ftype *this_base;

frame_this_locals_ftype *this_locals;

frame_this_args_ftype *this_args;

};

All the functions referred to take a pointer to the NEXT frame as argument. The
function referred to by this_base returns the base address of THIS frame, the function
referred to by this_locals returns the base address of local variables in THIS frame and
the function referred to by this_args returns the base address of the function arguments
in this frame.

As described above, the base address of a frame is the address immediately before the
start of the NEXT frame. For a falling stack, this is the lowest address in the frame and
for a rising stack it is the highest address in the frame. For most architectures the same
address is also the base address for local variables and arguments, in which case the same
function can be used for all three entries6.

11.8 Inferior Call Setup

11.8.1 About Dummy Frames

gdb can call functions in the target code (for example by using the call or print com-
mands). These functions may be breakpointed, and it is essential that if a function does
hit a breakpoint, commands like backtrace work correctly.

This is achieved by making the stack look as though the function had been called from
the point where gdb had previously stopped. This requires that gdb can set up stack
frames appropriate for such function calls.

11.8.2 Functions Creating Dummy Frames

The following functions provide the functionality to set up such dummy stack frames.

6 It is worth noting that if it cannot be determined in any other way (for example by there being a register
with the name "fp"), then the result of the this_base function will be used as the value of the frame
pointer variable $fp in gdb. This is very often not correct (for example with the OpenRISC 1000, this
value is the stack pointer, $sp). In this case a register (raw or pseudo) with the name "fp" should be
defined. It will be used in preference as the value of $fp.

Chapter 11: Target Architecture Definition 57

[Architecture Function]CORE_ADDR push_dummy_call (struct gdbarch *gdbarch,
struct value *function, struct regcache *regcache, CORE ADDR bp_addr,
int nargs, struct value **args, CORE ADDR sp, int struct_return,
CORE ADDR struct_addr)

This function sets up a dummy stack frame for the function about to be called. push_
dummy_call is given the arguments to be passed and must copy them into registers
or push them on to the stack as appropriate for the ABI.
function is a pointer to the function that will be called and regcache the register cache
from which values should be obtained. bp addr is the address to which the function
should return (which is breakpointed, so gdb can regain control, hence the name).
nargs is the number of arguments to pass and args an array containing the argument
values. struct return is non-zero (true) if the function returns a structure, and if so
struct addr is the address in which the structure should be returned.
After calling this function, gdb will pass control to the target at the address of the
function, which will find the stack and registers set up just as expected.
The default value of this function is NULL (undefined). If the function is not defined,
then gdb will not allow the user to call functions within the target being debugged.

[Architecture Function]struct frame_id unwind_dummy_id (struct gdbarch
*gdbarch, struct frame info *next_frame)

This is the inverse of push_dummy_call which restores the stack pointer and program
counter after a call to evaluate a function using a dummy stack frame. The result is a
struct frame_id, which contains the value of the stack pointer and program counter
to be used.
The NEXT frame pointer is provided as argument, next frame. THIS frame is the
frame of the dummy function, which can be unwound, to yield the required stack
pointer and program counter from the PREVIOUS frame.
The default value is NULL (undefined). If push_dummy_call is defined, then this
function should also be defined.

[Architecture Function]CORE_ADDR push_dummy_code (struct gdbarch *gdbarch,
CORE ADDR sp, CORE ADDR funaddr, struct value **args, int nargs,
struct type *value_type, CORE ADDR *real_pc, CORE ADDR
*bp_addr, struct regcache *regcache)

If this function is not defined (its default value is NULL), a dummy call will use
the entry point of the currently loaded code on the target as its return address. A
temporary breakpoint will be set there, so the location must be writable and have
room for a breakpoint.
It is possible that this default is not suitable. It might not be writable (in ROM
possibly), or the ABI might require code to be executed on return from a call to
unwind the stack before the breakpoint is encountered.
If either of these is the case, then push dummy code should be defined to push an
instruction sequence onto the end of the stack to which the dummy call should return.
The arguments are essentially the same as those to push_dummy_call. However the
function is provided with the type of the function result, value type, bp addr is used
to return a value (the address at which the breakpoint instruction should be inserted)

Chapter 11: Target Architecture Definition 58

and real pc is used to specify the resume address when starting the call sequence.
The function should return the updated innermost stack address.

Note: This does require that code in the stack can be executed. Some
Harvard architectures may not allow this.

11.9 Adding support for debugging core files

The prerequisite for adding core file support in gdb is to have core file support in BFD.

Once BFD support is available, writing the apropriate regset_from_core_section ar-
chitecture function should be all that is needed in order to add support for core files in
gdb.

11.10 Defining Other Architecture Features

This section describes other functions and values in gdbarch, together with some useful
macros, that you can use to define the target architecture.

CORE_ADDR gdbarch_addr_bits_remove (gdbarch, addr)
If a raw machine instruction address includes any bits that are not really part
of the address, then this function is used to zero those bits in addr. This is only
used for addresses of instructions, and even then not in all contexts.
For example, the two low-order bits of the PC on the Hewlett-Packard PA
2.0 architecture contain the privilege level of the corresponding instruction.
Since instructions must always be aligned on four-byte boundaries, the processor
masks out these bits to generate the actual address of the instruction. gdbarch_
addr_bits_remove would then for example look like that:

arch_addr_bits_remove (CORE_ADDR addr)

{

return (addr &= ~0x3);

}

int address_class_name_to_type_flags (gdbarch, name, type_flags_ptr)
If name is a valid address class qualifier name, set the int referenced by
type flags ptr to the mask representing the qualifier and return 1. If name
is not a valid address class qualifier name, return 0.
The value for type flags ptr should be one of TYPE_FLAG_ADDRESS_CLASS_1,
TYPE_FLAG_ADDRESS_CLASS_2, or possibly some combination of these values
or’d together. See Chapter 11 [Address Classes], page 37.

int address_class_name_to_type_flags_p (gdbarch)
Predicate which indicates whether address_class_name_to_type_flags has
been defined.

int gdbarch_address_class_type_flags (gdbarch, byte_size, dwarf2_addr_class)
Given a pointers byte size (as described by the debug information) and the possi-
ble DW_AT_address_class value, return the type flags used by gdb to represent
this address class. The value returned should be one of TYPE_FLAG_ADDRESS_
CLASS_1, TYPE_FLAG_ADDRESS_CLASS_2, or possibly some combination of these
values or’d together. See Chapter 11 [Address Classes], page 37.

Chapter 11: Target Architecture Definition 59

int gdbarch_address_class_type_flags_p (gdbarch)
Predicate which indicates whether gdbarch_address_class_type_flags_p
has been defined.

const char *gdbarch_address_class_type_flags_to_name (gdbarch, type_flags)
Return the name of the address class qualifier associated with the type flags
given by type flags.

int gdbarch_address_class_type_flags_to_name_p (gdbarch)
Predicate which indicates whether gdbarch_address_class_type_flags_to_
name has been defined. See Chapter 11 [Address Classes], page 37.

void gdbarch_address_to_pointer (gdbarch, type, buf, addr)
Store in buf a pointer of type type representing the address addr, in the ap-
propriate format for the current architecture. This function may safely assume
that type is either a pointer or a C++ reference type. See Chapter 11 [Pointers
Are Not Always Addresses], page 37.

int gdbarch_believe_pcc_promotion (gdbarch)
Used to notify if the compiler promotes a short or char parameter to an int,
but still reports the parameter as its original type, rather than the promoted
type.

gdbarch_bits_big_endian (gdbarch)
This is used if the numbering of bits in the targets does not match the endianism
of the target byte order. A value of 1 means that the bits are numbered in a
big-endian bit order, 0 means little-endian.

set_gdbarch_bits_big_endian (gdbarch, bits_big_endian)
Calling set gdbarch bits big endian with a value of 1 indicates that the bits in
the target are numbered in a big-endian bit order, 0 indicates little-endian.

BREAKPOINT
This is the character array initializer for the bit pattern to put into memory
where a breakpoint is set. Although it’s common to use a trap instruction for
a breakpoint, it’s not required; for instance, the bit pattern could be an invalid
instruction. The breakpoint must be no longer than the shortest instruction of
the architecture.
BREAKPOINT has been deprecated in favor of gdbarch_breakpoint_from_pc.

BIG_BREAKPOINT
LITTLE_BREAKPOINT

Similar to BREAKPOINT, but used for bi-endian targets.
BIG_BREAKPOINT and LITTLE_BREAKPOINT have been deprecated in favor of
gdbarch_breakpoint_from_pc.

const gdb_byte *gdbarch_breakpoint_from_pc (gdbarch, pcptr, lenptr)
Use the program counter to determine the contents and size of a breakpoint
instruction. It returns a pointer to a static string of bytes that encode a break-
point instruction, stores the length of the string to *lenptr , and adjusts the
program counter (if necessary) to point to the actual memory location where

Chapter 11: Target Architecture Definition 60

the breakpoint should be inserted. On input, the program counter (*pcptr
is the encoded inferior’s PC register. If software breakpoints are supported,
the function sets this argument to the PC’s plain address. If software break-
points are not supported, the function returns NULL instead of the encoded
breakpoint instruction.

Although it is common to use a trap instruction for a breakpoint, it’s not
required; for instance, the bit pattern could be an invalid instruction. The
breakpoint must be no longer than the shortest instruction of the architecture.

Provided breakpoint bytes can be also used by bp_loc_is_permanent to de-
tect permanent breakpoints. gdbarch_breakpoint_from_pc should return an
unchanged memory copy if it was called for a location with permanent break-
point as some architectures use breakpoint instructions containing arbitrary
parameter value.

Replaces all the other BREAKPOINT macros.

int gdbarch_memory_insert_breakpoint (gdbarch, bp_tgt)
gdbarch_memory_remove_breakpoint (gdbarch, bp_tgt)

Insert or remove memory based breakpoints. Reasonable defaults (default_
memory_insert_breakpoint and default_memory_remove_breakpoint
respectively) have been provided so that it is not necessary to set these for
most architectures. Architectures which may want to set gdbarch_memory_
insert_breakpoint and gdbarch_memory_remove_breakpoint will likely
have instructions that are oddly sized or are not stored in a conventional
manner.

It may also be desirable (from an efficiency standpoint) to define custom break-
point insertion and removal routines if gdbarch_breakpoint_from_pc needs to
read the target’s memory for some reason.

CORE_ADDR gdbarch_adjust_breakpoint_address (gdbarch, bpaddr)
Given an address at which a breakpoint is desired, return a breakpoint address
adjusted to account for architectural constraints on breakpoint placement. This
method is not needed by most targets.

The FR-V target (see ‘frv-tdep.c’) requires this method. The FR-V is a
VLIW architecture in which a number of RISC-like instructions are grouped
(packed) together into an aggregate instruction or instruction bundle. When
the processor executes one of these bundles, the component instructions are
executed in parallel.

In the course of optimization, the compiler may group instructions from dis-
tinct source statements into the same bundle. The line number information
associated with one of the latter statements will likely refer to some instruc-
tion other than the first one in the bundle. So, if the user attempts to place a
breakpoint on one of these latter statements, gdb must be careful to not place
the break instruction on any instruction other than the first one in the bundle.
(Remember though that the instructions within a bundle execute in parallel,
so the first instruction is the instruction at the lowest address and has nothing
to do with execution order.)

Chapter 11: Target Architecture Definition 61

The FR-V’s gdbarch_adjust_breakpoint_address method will adjust a
breakpoint’s address by scanning backwards for the beginning of the bundle,
returning the address of the bundle.
Since the adjustment of a breakpoint may significantly alter a user’s expecta-
tion, gdb prints a warning when an adjusted breakpoint is initially set and each
time that that breakpoint is hit.

int gdbarch_call_dummy_location (gdbarch)
See the file ‘inferior.h’.
This method has been replaced by gdbarch_push_dummy_code (see
[gdbarch push dummy code], page 64).

int gdbarch_cannot_fetch_register (gdbarch, regum)
This function should return nonzero if regno cannot be fetched from an inferior
process.

int gdbarch_cannot_store_register (gdbarch, regnum)
This function should return nonzero if regno should not be written to the target.
This is often the case for program counters, status words, and other special
registers. This function returns 0 as default so that gdb will assume that all
registers may be written.

int gdbarch_convert_register_p (gdbarch, regnum, struct type *type)
Return non-zero if register regnum represents data values of type type in a
non-standard form. See Chapter 11 [Using Different Register and Memory
Data Representations], page 37.

int gdbarch_fp0_regnum (gdbarch)
This function returns the number of the first floating point register, if the
machine has such registers. Otherwise, it returns -1.

CORE_ADDR gdbarch_decr_pc_after_break (gdbarch)
This function shall return the amount by which to decrement the PC after
the program encounters a breakpoint. This is often the number of bytes in
BREAKPOINT, though not always. For most targets this value will be 0.

DISABLE_UNSETTABLE_BREAK (addr)
If defined, this should evaluate to 1 if addr is in a shared library in which
breakpoints cannot be set and so should be disabled.

int gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf2_regnr)
Convert DWARF2 register number dwarf2 regnr into gdb regnum. If not de-
fined, no conversion will be performed.

int gdbarch_ecoff_reg_to_regnum (gdbarch, ecoff_regnr)
Convert ECOFF register number ecoff regnr into gdb regnum. If not defined,
no conversion will be performed.

GCC_COMPILED_FLAG_SYMBOL
GCC2_COMPILED_FLAG_SYMBOL

If defined, these are the names of the symbols that gdb will look for to detect
that GCC compiled the file. The default symbols are gcc_compiled. and
gcc2_compiled., respectively. (Currently only defined for the Delta 68.)

Chapter 11: Target Architecture Definition 62

gdbarch_get_longjmp_target
This function determines the target PC address that longjmp will jump to,
assuming that we have just stopped at a longjmp breakpoint. It takes a
CORE_ADDR * as argument, and stores the target PC value through this pointer.
It examines the current state of the machine as needed, typically by using a
manually-determined offset into the jmp_buf. (While we might like to get the
offset from the target’s ‘jmpbuf.h’, that header file cannot be assumed to be
available when building a cross-debugger.)

DEPRECATED_IBM6000_TARGET
Shows that we are configured for an IBM RS/6000 system. This conditional
should be eliminated (FIXME) and replaced by feature-specific macros. It was
introduced in haste and we are repenting at leisure.

I386_USE_GENERIC_WATCHPOINTS
An x86-based target can define this to use the generic x86 watchpoint support;
see Chapter 3 [Algorithms], page 4.

gdbarch_in_function_epilogue_p (gdbarch, addr)
Returns non-zero if the given addr is in the epilogue of a function. The epilogue
of a function is defined as the part of a function where the stack frame of the
function already has been destroyed up to the final ‘return from function call’
instruction.

int gdbarch_in_solib_return_trampoline (gdbarch, pc, name)
Define this function to return nonzero if the program is stopped in the tram-
poline that returns from a shared library.

target_so_ops.in_dynsym_resolve_code (pc)
Define this to return nonzero if the program is stopped in the dynamic linker.

SKIP_SOLIB_RESOLVER (pc)
Define this to evaluate to the (nonzero) address at which execution should
continue to get past the dynamic linker’s symbol resolution function. A zero
value indicates that it is not important or necessary to set a breakpoint to get
through the dynamic linker and that single stepping will suffice.

CORE_ADDR gdbarch_integer_to_address (gdbarch, type, buf)
Define this when the architecture needs to handle non-pointer to address con-
versions specially. Converts that value to an address according to the current
architectures conventions.
Pragmatics: When the user copies a well defined expression from their source
code and passes it, as a parameter, to gdb’s print command, they should
get the same value as would have been computed by the target program. Any
deviation from this rule can cause major confusion and annoyance, and needs to
be justified carefully. In other words, gdb doesn’t really have the freedom to do
these conversions in clever and useful ways. It has, however, been pointed out
that users aren’t complaining about how gdb casts integers to pointers; they are
complaining that they can’t take an address from a disassembly listing and give
it to x/i. Adding an architecture method like gdbarch_integer_to_address
certainly makes it possible for gdb to “get it right” in all circumstances.

Chapter 11: Target Architecture Definition 63

See Chapter 11 [Pointers Are Not Always Addresses], page 37.

CORE_ADDR gdbarch_pointer_to_address (gdbarch, type, buf)
Assume that buf holds a pointer of type type, in the appropriate format for
the current architecture. Return the byte address the pointer refers to. See
Chapter 11 [Pointers Are Not Always Addresses], page 37.

void gdbarch_register_to_value(gdbarch, frame, regnum, type, fur)
Convert the raw contents of register regnum into a value of type type. See
Chapter 11 [Using Different Register and Memory Data Representations],
page 37.

REGISTER_CONVERT_TO_VIRTUAL(reg, type, from, to)
Convert the value of register reg from its raw form to its virtual form. See
Chapter 11 [Raw and Virtual Register Representations], page 37.

REGISTER_CONVERT_TO_RAW(type, reg, from, to)
Convert the value of register reg from its virtual form to its raw form. See
Chapter 11 [Raw and Virtual Register Representations], page 37.

const struct regset *regset_from_core_section (struct gdbarch * gdbarch, const
char * sect_name, size_t sect_size)

Return the appropriate register set for a core file section with name sect name
and size sect size.

SOFTWARE_SINGLE_STEP_P()
Define this as 1 if the target does not have a hardware single-step mechanism.
The macro SOFTWARE_SINGLE_STEP must also be defined.

SOFTWARE_SINGLE_STEP(signal, insert_breakpoints_p)
A function that inserts or removes (depending on insert breakpoints p) break-
points at each possible destinations of the next instruction. See ‘sparc-tdep.c’
and ‘rs6000-tdep.c’ for examples.

set_gdbarch_sofun_address_maybe_missing (gdbarch, set)
Somebody clever observed that, the more actual addresses you have in the
debug information, the more time the linker has to spend relocating them. So
whenever there’s some other way the debugger could find the address it needs,
you should omit it from the debug info, to make linking faster.
Calling set_gdbarch_sofun_address_maybe_missing with a non-zero argu-
ment set indicates that a particular set of hacks of this sort are in use, affecting
N_SO and N_FUN entries in stabs-format debugging information. N_SO stabs
mark the beginning and ending addresses of compilation units in the text seg-
ment. N_FUN stabs mark the starts and ends of functions.
In this case, gdb assumes two things:
• N_FUN stabs have an address of zero. Instead of using those addresses,

you should find the address where the function starts by taking the func-
tion name from the stab, and then looking that up in the minsyms (the
linker/assembler symbol table). In other words, the stab has the name,
and the linker/assembler symbol table is the only place that carries the
address.

Chapter 11: Target Architecture Definition 64

• N_SO stabs have an address of zero, too. You just look at the N_FUN stabs
that appear before and after the N_SO stab, and guess the starting and
ending addresses of the compilation unit from them.

int gdbarch_stabs_argument_has_addr (gdbarch, type)
Define this function to return nonzero if a function argument of type type is
passed by reference instead of value.

CORE_ADDR gdbarch_push_dummy_call (gdbarch, function, regcache, bp_addr,
nargs, args, sp, struct_return, struct_addr)

Define this to push the dummy frame’s call to the inferior function onto the
stack. In addition to pushing nargs, the code should push struct addr (when
struct return is non-zero), and the return address (bp addr, in inferior’s PC
register encoding).

function is a pointer to a struct value; on architectures that use function
descriptors, this contains the function descriptor value.

Returns the updated top-of-stack pointer.

CORE_ADDR gdbarch_push_dummy_code (gdbarch, sp, funaddr, using_gcc, args,
nargs, value_type, real_pc, bp_addr, regcache)

Given a stack based call dummy, push the instruction sequence (including space
for a breakpoint) to which the called function should return.

Set bp addr to the address at which the breakpoint instruction should be in-
serted (in inferior’s PC register encoding), real pc to the resume address when
starting the call sequence, and return the updated inner-most stack address.

By default, the stack is grown sufficient to hold a frame-aligned (see
[frame align], page 53) breakpoint, bp addr is set to the address reserved
for that breakpoint (in inferior’s PC register encoding), and real pc set to
funaddr.

This method replaces gdbarch_call_dummy_location (gdbarch).

int gdbarch_sdb_reg_to_regnum (gdbarch, sdb_regnr)
Use this function to convert sdb register sdb regnr into gdb regnum. If not
defined, no conversion will be done.

enum return_value_convention gdbarch_return_value (struct gdbarch *gdbarch,
struct type *valtype, struct regcache *regcache, void *readbuf, const void
*writebuf)

Given a function with a return-value of type rettype, return which return-value
convention that function would use.

gdb currently recognizes two function return-value conventions: RETURN_
VALUE_REGISTER_CONVENTION where the return value is found in registers;
and RETURN_VALUE_STRUCT_CONVENTION where the return value is found in
memory and the address of that memory location is passed in as the function’s
first parameter.

If the register convention is being used, and writebuf is non-NULL, also copy
the return-value in writebuf into regcache.

Chapter 11: Target Architecture Definition 65

If the register convention is being used, and readbuf is non-NULL, also copy
the return value from regcache into readbuf (regcache contains a copy of the
registers from the just returned function).
Maintainer note: This method replaces separate predicate, extract, store meth-
ods. By having only one method, the logic needed to determine the return-value
convention need only be implemented in one place. If gdb were written in an oo
language, this method would instead return an object that knew how to perform
the register return-value extract and store.
Maintainer note: This method does not take a gcc p parameter, and such a
parameter should not be added. If an architecture that requires per-compiler
or per-function information be identified, then the replacement of rettype with
struct value function should be pursued.
Maintainer note: The regcache parameter limits this methods to the inner most
frame. While replacing regcache with a struct frame_info frame parameter
would remove that limitation there has yet to be a demonstrated need for such
a change.

void gdbarch_skip_permanent_breakpoint (gdbarch, regcache)
Advance the inferior’s PC past a permanent breakpoint. gdb normally steps
over a breakpoint by removing it, stepping one instruction, and re-inserting the
breakpoint. However, permanent breakpoints are hardwired into the inferior,
and can’t be removed, so this strategy doesn’t work. Calling gdbarch_skip_
permanent_breakpoint adjusts the processor’s state so that execution will re-
sume just after the breakpoint. This function does the right thing even when
the breakpoint is in the delay slot of a branch or jump.

CORE_ADDR gdbarch_skip_trampoline_code (gdbarch, frame, pc)
If the target machine has trampoline code that sits between callers and the
functions being called, then define this function to return a new PC that is at
the start of the real function.

int gdbarch_deprecated_fp_regnum (gdbarch)
If the frame pointer is in a register, use this function to return the number of
that register.

int gdbarch_stab_reg_to_regnum (gdbarch, stab_regnr)
Use this function to convert stab register stab regnr into gdb regnum. If not
defined, no conversion will be done.

TARGET_CHAR_BIT
Number of bits in a char; defaults to 8.

int gdbarch_char_signed (gdbarch)
Non-zero if char is normally signed on this architecture; zero if it should be
unsigned.
The ISO C standard requires the compiler to treat char as equivalent to either
signed char or unsigned char; any character in the standard execution set
is supposed to be positive. Most compilers treat char as signed, but char is
unsigned on the IBM S/390, RS6000, and PowerPC targets.

Chapter 11: Target Architecture Definition 66

int gdbarch_double_bit (gdbarch)
Number of bits in a double float; defaults to 8 * TARGET_CHAR_BIT.

int gdbarch_float_bit (gdbarch)
Number of bits in a float; defaults to 4 * TARGET_CHAR_BIT.

int gdbarch_int_bit (gdbarch)
Number of bits in an integer; defaults to 4 * TARGET_CHAR_BIT.

int gdbarch_long_bit (gdbarch)
Number of bits in a long integer; defaults to 4 * TARGET_CHAR_BIT.

int gdbarch_long_double_bit (gdbarch)
Number of bits in a long double float; defaults to 2 * gdbarch_double_bit (gdbarch).

int gdbarch_long_long_bit (gdbarch)
Number of bits in a long long integer; defaults to 2 * gdbarch_long_bit (gdbarch).

int gdbarch_ptr_bit (gdbarch)
Number of bits in a pointer; defaults to gdbarch_int_bit (gdbarch).

int gdbarch_short_bit (gdbarch)
Number of bits in a short integer; defaults to 2 * TARGET_CHAR_BIT.

void gdbarch_virtual_frame_pointer (gdbarch, pc, frame_regnum, frame_offset)
Returns a (register, offset) pair representing the virtual frame pointer in
use at the code address pc. If virtual frame pointers are not used, a default
definition simply returns gdbarch_deprecated_fp_regnum (or gdbarch_sp_
regnum, if no frame pointer is defined), with an offset of zero.

TARGET_HAS_HARDWARE_WATCHPOINTS
If non-zero, the target has support for hardware-assisted watchpoints. See
Chapter 3 [Algorithms], page 4, for more details and other related macros.

int gdbarch_print_insn (gdbarch, vma, info)
This is the function used by gdb to print an assembly instruction. It prints the
instruction at address vma in debugged memory and returns the length of the in-
struction, in bytes. This usually points to a function in the opcodes library (see
Chapter 15 [Opcodes], page 72). info is a structure (of type disassemble_info)
defined in the header file ‘include/dis-asm.h’, and used to pass information
to the instruction decoding routine.

frame_id gdbarch_dummy_id (gdbarch, frame)
Given frame return a struct frame_id that uniquely identifies an inferior func-
tion call’s dummy frame. The value returned must match the dummy frame
stack value previously saved by call_function_by_hand.

void gdbarch_value_to_register (gdbarch, frame, type, buf)
Convert a value of type type into the raw contents of a register. See Chapter 11
[Using Different Register and Memory Data Representations], page 37.

Motorola M68K target conditionals.

BPT_VECTOR
Define this to be the 4-bit location of the breakpoint trap vector. If not defined,
it will default to 0xf.

Chapter 11: Target Architecture Definition 67

REMOTE_BPT_VECTOR
Defaults to 1.

11.11 Adding a New Target

The following files add a target to gdb:

‘gdb/ttt-tdep.c’
Contains any miscellaneous code required for this target machine. On some
machines it doesn’t exist at all.

‘gdb/arch-tdep.c’
‘gdb/arch-tdep.h’

This is required to describe the basic layout of the target machine’s processor
chip (registers, stack, etc.). It can be shared among many targets that use the
same processor architecture.

(Target header files such as ‘gdb/config/arch/tm-ttt.h’, ‘gdb/config/arch/tm-arch.h’,
and ‘config/tm-os.h’ are no longer used.)

A gdb description for a new architecture, arch is created by defining a global function
_initialize_arch_tdep, by convention in the source file ‘arch-tdep.c’. For example,
in the case of the OpenRISC 1000, this function is called _initialize_or1k_tdep and is
found in the file ‘or1k-tdep.c’.

The object file resulting from compiling this source file, which will contain the imple-
mentation of the _initialize_arch_tdep function is specified in the gdb ‘configure.tgt’
file, which includes a large case statement pattern matching against the --target option
of the configure script.

Note: If the architecture requires multiple source files, the corresponding bi-
naries should be included in ‘configure.tgt’. However if there are header
files, the dependencies on these will not be picked up from the entries in
‘configure.tgt’. The ‘Makefile.in’ file will need extending to show these
dependencies.

A new struct gdbarch, defining the new architecture, is created within the _initialize_
arch_tdep function by calling gdbarch_register:

void gdbarch_register (enum bfd_architecture architecture,

gdbarch_init_ftype *init_func,

gdbarch_dump_tdep_ftype *tdep_dump_func);

This function has been described fully in an earlier section. See Section 11.2.1 [How an
Architecture is Represented], page 40.

The new struct gdbarch should contain implementations of the necessary functions
(described in the previous sections) to describe the basic layout of the target machine’s
processor chip (registers, stack, etc.). It can be shared among many targets that use the
same processor architecture.

Chapter 12: Target Descriptions 68

12 Target Descriptions

The target architecture definition (see Chapter 11 [Target Architecture Definition], page 37)
contains gdb’s hard-coded knowledge about an architecture. For some platforms, it is handy
to have more flexible knowledge about a specific instance of the architecture—for instance,
a processor or development board. Target descriptions provide a mechanism for the user to
tell gdb more about what their target supports, or for the target to tell gdb directly.

For details on writing, automatically supplying, and manually selecting target descrip-
tions, see Section “Target Descriptions” in Debugging with gdb. This section will cover
some related topics about the gdb internals.

12.1 Target Descriptions Implementation

Before gdb connects to a new target, or runs a new program on an existing target, it discards
any existing target description and reverts to a default gdbarch. Then, after connecting, it
looks for a new target description by calling target_find_description.

A description may come from a user specified file (XML), the remote
‘qXfer:features:read’ packet (also XML), or from any custom to_read_description
routine in the target vector. For instance, the remote target supports guessing whether a
MIPS target is 32-bit or 64-bit based on the size of the ‘g’ packet.

If any target description is found, gdb creates a new gdbarch incorporating the de-
scription by calling gdbarch_update_p. Any ‘<architecture>’ element is handled first,
to determine which architecture’s gdbarch initialization routine is called to create the new
architecture. Then the initialization routine is called, and has a chance to adjust the con-
structed architecture based on the contents of the target description. For instance, it can
recognize any properties set by a to_read_description routine. Also see Section 12.2
[Adding Target Described Register Support], page 68.

12.2 Adding Target Described Register Support

Target descriptions can report additional registers specific to an instance of the target. But
it takes a little work in the architecture specific routines to support this.

A target description must either have no registers or a complete set—this avoids com-
plexity in trying to merge standard registers with the target defined registers. It is the
architecture’s responsibility to validate that a description with registers has everything it
needs. To keep architecture code simple, the same mechanism is used to assign fixed internal
register numbers to standard registers.

If tdesc_has_registers returns 1, the description contains registers. The architecture’s
gdbarch_init routine should:
• Call tdesc_data_alloc to allocate storage, early, before searching for a matching

gdbarch or allocating a new one.
• Use tdesc_find_feature to locate standard features by name.
• Use tdesc_numbered_register and tdesc_numbered_register_choices to locate

the expected registers in the standard features.
• Return NULL if a required feature is missing, or if any standard feature is missing

expected registers. This will produce a warning that the description was incomplete.

Chapter 13: Target Vector Definition 69

• Free the allocated data before returning, unless tdesc_use_registers is called.
• Call set_gdbarch_num_regs as usual, with a number higher than any fixed number

passed to tdesc_numbered_register.
• Call tdesc_use_registers after creating a new gdbarch, before returning it.

After tdesc_use_registers has been called, the architecture’s register_name,
register_type, and register_reggroup_p routines will not be called; that information
will be taken from the target description. num_regs may be increased to account for any
additional registers in the description.

Pseudo-registers require some extra care:
• Using tdesc_numbered_register allows the architecture to give constant register num-

bers to standard architectural registers, e.g. as an enum in ‘arch-tdep.h’. But because
pseudo-registers are always numbered above num_regs, which may be increased by the
description, constant numbers can not be used for pseudos. They must be numbered
relative to num_regs instead.

• The description will not describe pseudo-registers, so the architecture must call set_
tdesc_pseudo_register_name, set_tdesc_pseudo_register_type, and set_tdesc_
pseudo_register_reggroup_p to supply routines describing pseudo registers. These
routines will be passed internal register numbers, so the same routines used for the
gdbarch equivalents are usually suitable.

13 Target Vector Definition

The target vector defines the interface between gdb’s abstract handling of target systems,
and the nitty-gritty code that actually exercises control over a process or a serial port. gdb
includes some 30-40 different target vectors; however, each configuration of gdb includes
only a few of them.

13.1 Managing Execution State

A target vector can be completely inactive (not pushed on the target stack), active but not
running (pushed, but not connected to a fully manifested inferior), or completely active
(pushed, with an accessible inferior). Most targets are only completely inactive or com-
pletely active, but some support persistent connections to a target even when the target
has exited or not yet started.

For example, connecting to the simulator using target sim does not create a running
program. Neither registers nor memory are accessible until run. Similarly, after kill, the
program can not continue executing. But in both cases gdb remains connected to the
simulator, and target-specific commands are directed to the simulator.

A target which only supports complete activation should push itself onto the stack in
its to_open routine (by calling push_target), and unpush itself from the stack in its to_
mourn_inferior routine (by calling unpush_target).

A target which supports both partial and complete activation should still call push_
target in to_open, but not call unpush_target in to_mourn_inferior. Instead, it should
call either target_mark_running or target_mark_exited in its to_open, depending on

Chapter 13: Target Vector Definition 70

whether the target is fully active after connection. It should also call target_mark_running
any time the inferior becomes fully active (e.g. in to_create_inferior and to_attach),
and target_mark_exited when the inferior becomes inactive (in to_mourn_inferior).
The target should also make sure to call target_mourn_inferior from its to_kill, to
return the target to inactive state.

13.2 Existing Targets

13.2.1 File Targets

Both executables and core files have target vectors.

13.2.2 Standard Protocol and Remote Stubs

gdb’s file ‘remote.c’ talks a serial protocol to code that runs in the target system. gdb pro-
vides several sample stubs that can be integrated into target programs or operating systems
for this purpose; they are named ‘cpu-stub.c’. Many operating systems, embedded tar-
gets, emulators, and simulators already have a gdb stub built into them, and maintenance
of the remote protocol must be careful to preserve compatibility.

The gdb user’s manual describes how to put such a stub into your target code. What
follows is a discussion of integrating the SPARC stub into a complicated operating system
(rather than a simple program), by Stu Grossman, the author of this stub.

The trap handling code in the stub assumes the following upon entry to trap_low:
1. %l1 and %l2 contain pc and npc respectively at the time of the trap;
2. traps are disabled;
3. you are in the correct trap window.

As long as your trap handler can guarantee those conditions, then there is no rea-
son why you shouldn’t be able to “share” traps with the stub. The stub has no require-
ment that it be jumped to directly from the hardware trap vector. That is why it calls
exceptionHandler(), which is provided by the external environment. For instance, this
could set up the hardware traps to actually execute code which calls the stub first, and then
transfers to its own trap handler.

For the most point, there probably won’t be much of an issue with “sharing” traps, as
the traps we use are usually not used by the kernel, and often indicate unrecoverable error
conditions. Anyway, this is all controlled by a table, and is trivial to modify. The most
important trap for us is for ta 1. Without that, we can’t single step or do breakpoints.
Everything else is unnecessary for the proper operation of the debugger/stub.

From reading the stub, it’s probably not obvious how breakpoints work. They are simply
done by deposit/examine operations from gdb.

13.2.3 ROM Monitor Interface

13.2.4 Custom Protocols

13.2.5 Transport Layer

13.2.6 Builtin Simulator

Chapter 14: Native Debugging 71

14 Native Debugging

Several files control gdb’s configuration for native support:

‘gdb/config/arch/xyz.mh’
Specifies Makefile fragments needed by a native configuration on machine
xyz. In particular, this lists the required native-dependent object files,
by defining ‘NATDEPFILES=...’. Also specifies the header file which
describes native support on xyz, by defining ‘NAT_FILE= nm-xyz.h’. You
can also define ‘NAT_CFLAGS’, ‘NAT_ADD_FILES’, ‘NAT_CLIBS’, ‘NAT_CDEPS’,
‘NAT_GENERATED_FILES’, etc.; see ‘Makefile.in’.
Maintainer’s note: The ‘.mh’ suffix is because this file originally contained
‘Makefile’ fragments for hosting gdb on machine xyz. While the file is no
longer used for this purpose, the ‘.mh’ suffix remains. Perhaps someone will
eventually rename these fragments so that they have a ‘.mn’ suffix.

‘gdb/config/arch/nm-xyz.h’
(‘nm.h’ is a link to this file, created by configure). Contains C macro defini-
tions describing the native system environment, such as child process control
and core file support.

‘gdb/xyz-nat.c’
Contains any miscellaneous C code required for this native support of this
machine. On some machines it doesn’t exist at all.

There are some “generic” versions of routines that can be used by various systems.
These can be customized in various ways by macros defined in your ‘nm-xyz.h’ file. If these
routines work for the xyz host, you can just include the generic file’s name (with ‘.o’, not
‘.c’) in NATDEPFILES.

Otherwise, if your machine needs custom support routines, you will need to write routines
that perform the same functions as the generic file. Put them into ‘xyz-nat.c’, and put
‘xyz-nat.o’ into NATDEPFILES.

‘inftarg.c’
This contains the target ops vector that supports Unix child processes on sys-
tems which use ptrace and wait to control the child.

‘procfs.c’
This contains the target ops vector that supports Unix child processes on sys-
tems which use /proc to control the child.

‘fork-child.c’
This does the low-level grunge that uses Unix system calls to do a “fork and
exec” to start up a child process.

‘infptrace.c’
This is the low level interface to inferior processes for systems using the Unix
ptrace call in a vanilla way.

14.1 ptrace

Chapter 15: Support Libraries 72

14.2 /proc

14.3 win32

14.4 shared libraries

14.5 Native Conditionals

When gdb is configured and compiled, various macros are defined or left undefined, to
control compilation when the host and target systems are the same. These macros should
be defined (or left undefined) in ‘nm-system.h’.

I386_USE_GENERIC_WATCHPOINTS
An x86-based machine can define this to use the generic x86 watchpoint support;
see Chapter 3 [Algorithms], page 4.

SOLIB_ADD (filename, from_tty, targ, readsyms)
Define this to expand into an expression that will cause the symbols in filename
to be added to gdb’s symbol table. If readsyms is zero symbols are not read
but any necessary low level processing for filename is still done.

SOLIB_CREATE_INFERIOR_HOOK
Define this to expand into any shared-library-relocation code that you want to
be run just after the child process has been forked.

START_INFERIOR_TRAPS_EXPECTED
When starting an inferior, gdb normally expects to trap twice; once when the
shell execs, and once when the program itself execs. If the actual number of
traps is something other than 2, then define this macro to expand into the
number expected.

15 Support Libraries

15.1 BFD

BFD provides support for gdb in several ways:

identifying executable and core files
BFD will identify a variety of file types, including a.out, coff, and several vari-
ants thereof, as well as several kinds of core files.

access to sections of files
BFD parses the file headers to determine the names, virtual addresses, sizes,
and file locations of all the various named sections in files (such as the text
section or the data section). gdb simply calls BFD to read or write section x
at byte offset y for length z.

specialized core file support
BFD provides routines to determine the failing command name stored in a core
file, the signal with which the program failed, and whether a core file matches
(i.e. could be a core dump of) a particular executable file.

Chapter 15: Support Libraries 73

locating the symbol information
gdb uses an internal interface of BFD to determine where to find the symbol
information in an executable file or symbol-file. gdb itself handles the reading
of symbols, since BFD does not “understand” debug symbols, but gdb uses
BFD’s cached information to find the symbols, string table, etc.

15.2 opcodes

The opcodes library provides gdb’s disassembler. (It’s a separate library because it’s also
used in binutils, for ‘objdump’).

15.3 readline

The readline library provides a set of functions for use by applications that allow users to
edit command lines as they are typed in.

15.4 libiberty

The libiberty library provides a set of functions and features that integrate and improve
on functionality found in modern operating systems. Broadly speaking, such features can
be divided into three groups: supplemental functions (functions that may be missing in
some environments and operating systems), replacement functions (providing a uniform
and easier to use interface for commonly used standard functions), and extensions (which
provide additional functionality beyond standard functions).

gdb uses various features provided by the libiberty library, for instance the C++ de-
mangler, the IEEE floating format support functions, the input options parser ‘getopt’, the
‘obstack’ extension, and other functions.

15.4.1 obstacks in gdb

The obstack mechanism provides a convenient way to allocate and free chunks of memory.
Each obstack is a pool of memory that is managed like a stack. Objects (of any nature, size
and alignment) are allocated and freed in a LIFO fashion on an obstack (see libiberty’s
documentation for a more detailed explanation of obstacks).

The most noticeable use of the obstacks in gdb is in object files. There is an obstack
associated with each internal representation of an object file. Lots of things get allocated
on these obstacks: dictionary entries, blocks, blockvectors, symbols, minimal symbols,
types, vectors of fundamental types, class fields of types, object files section lists, object
files section offset lists, line tables, symbol tables, partial symbol tables, string tables,
symbol table private data, macros tables, debug information sections and entries, import
and export lists (som), unwind information (hppa), dwarf2 location expressions data. Plus
various strings such as directory names strings, debug format strings, names of types.

An essential and convenient property of all data on obstacks is that memory for it
gets allocated (with obstack_alloc) at various times during a debugging session, but it is
released all at once using the obstack_free function. The obstack_free function takes a
pointer to where in the stack it must start the deletion from (much like the cleanup chains
have a pointer to where to start the cleanups). Because of the stack like structure of the
obstacks, this allows to free only a top portion of the obstack. There are a few instances

Chapter 15: Support Libraries 74

in gdb where such thing happens. Calls to obstack_free are done after some local data
is allocated to the obstack. Only the local data is deleted from the obstack. Of course
this assumes that nothing between the obstack_alloc and the obstack_free allocates
anything else on the same obstack. For this reason it is best and safest to use temporary
obstacks.

Releasing the whole obstack is also not safe per se. It is safe only under the condition
that we know the obstacks memory is no longer needed. In gdb we get rid of the obstacks
only when we get rid of the whole objfile(s), for instance upon reading a new symbol file.

15.5 gnu-regex

Regex conditionals.

C_ALLOCA

NFAILURES
RE_NREGS

SIGN_EXTEND_CHAR
SWITCH_ENUM_BUG
SYNTAX_TABLE
Sword

sparc

15.6 Array Containers

Often it is necessary to manipulate a dynamic array of a set of objects. C forces some
bookkeeping on this, which can get cumbersome and repetitive. The ‘vec.h’ file contains
macros for defining and using a typesafe vector type. The functions defined will be inlined
when compiling, and so the abstraction cost should be zero. Domain checks are added to
detect programming errors.

An example use would be an array of symbols or section information. The array can be
grown as symbols are read in (or preallocated), and the accessor macros provided keep care
of all the necessary bookkeeping. Because the arrays are type safe, there is no danger of
accidentally mixing up the contents. Think of these as C++ templates, but implemented in
C.

Because of the different behavior of structure objects, scalar objects and of pointers,
there are three flavors of vector, one for each of these variants. Both the structure object
and pointer variants pass pointers to objects around — in the former case the pointers are
stored into the vector and in the latter case the pointers are dereferenced and the objects
copied into the vector. The scalar object variant is suitable for int-like objects, and the
vector elements are returned by value.

There are both index and iterate accessors. The iterator returns a boolean iteration
condition and updates the iteration variable passed by reference. Because the iterator will
be inlined, the address-of can be optimized away.

The vectors are implemented using the trailing array idiom, thus they are not resizeable
without changing the address of the vector object itself. This means you cannot have
variables or fields of vector type — always use a pointer to a vector. The one exception

Chapter 15: Support Libraries 75

is the final field of a structure, which could be a vector type. You will have to use the
embedded_size & embedded_init calls to create such objects, and they will probably not
be resizeable (so don’t use the safe allocation variants). The trailing array idiom is used
(rather than a pointer to an array of data), because, if we allow NULL to also represent an
empty vector, empty vectors occupy minimal space in the structure containing them.

Each operation that increases the number of active elements is available in quick and safe
variants. The former presumes that there is sufficient allocated space for the operation to
succeed (it dies if there is not). The latter will reallocate the vector, if needed. Reallocation
causes an exponential increase in vector size. If you know you will be adding N elements,
it would be more efficient to use the reserve operation before adding the elements with the
quick operation. This will ensure there are at least as many elements as you ask for, it will
exponentially increase if there are too few spare slots. If you want reserve a specific number
of slots, but do not want the exponential increase (for instance, you know this is the last
allocation), use a negative number for reservation. You can also create a vector of a specific
size from the get go.

You should prefer the push and pop operations, as they append and remove from the end
of the vector. If you need to remove several items in one go, use the truncate operation. The
insert and remove operations allow you to change elements in the middle of the vector. There
are two remove operations, one which preserves the element ordering ordered_remove, and
one which does not unordered_remove. The latter function copies the end element into the
removed slot, rather than invoke a memmove operation. The lower_bound function will
determine where to place an item in the array using insert that will maintain sorted order.

If you need to directly manipulate a vector, then the address accessor will return the
address of the start of the vector. Also the space predicate will tell you whether there is
spare capacity in the vector. You will not normally need to use these two functions.

Vector types are defined using a DEF_VEC_{O,P,I}(typename) macro. Variables of
vector type are declared using a VEC(typename) macro. The characters O, P and I indicate
whether typename is an object (O), pointer (P) or integral (I) type. Be careful to pick the
correct one, as you’ll get an awkward and inefficient API if you use the wrong one. There
is a check, which results in a compile-time warning, for the P and I versions, but there is
no check for the O versions, as that is not possible in plain C.

An example of their use would be,
DEF_VEC_P(tree); // non-managed tree vector.

struct my_struct {

VEC(tree) *v; // A (pointer to) a vector of tree pointers.

};

struct my_struct *s;

if (VEC_length(tree, s->v)) { we have some contents }

VEC_safe_push(tree, s->v, decl); // append some decl onto the end

for (ix = 0; VEC_iterate(tree, s->v, ix, elt); ix++)

{ do something with elt }

The ‘vec.h’ file provides details on how to invoke the various accessors provided. They
are enumerated here:

Chapter 15: Support Libraries 76

VEC_length
Return the number of items in the array,

VEC_empty
Return true if the array has no elements.

VEC_last
VEC_index

Return the last or arbitrary item in the array.

VEC_iterate
Access an array element and indicate whether the array has been traversed.

VEC_alloc
VEC_free Create and destroy an array.

VEC_embedded_size
VEC_embedded_init

Helpers for embedding an array as the final element of another struct.

VEC_copy Duplicate an array.

VEC_space
Return the amount of free space in an array.

VEC_reserve
Ensure a certain amount of free space.

VEC_quick_push
VEC_safe_push

Append to an array, either assuming the space is available, or making sure that
it is.

VEC_pop Remove the last item from an array.

VEC_truncate
Remove several items from the end of an array.

VEC_safe_grow
Add several items to the end of an array.

VEC_replace
Overwrite an item in the array.

VEC_quick_insert
VEC_safe_insert

Insert an item into the middle of the array. Either the space must already exist,
or the space is created.

VEC_ordered_remove
VEC_unordered_remove

Remove an item from the array, preserving order or not.

VEC_block_remove
Remove a set of items from the array.

Chapter 16: Coding Standards 77

VEC_address
Provide the address of the first element.

VEC_lower_bound
Binary search the array.

15.7 include

16 Coding Standards

16.1 gdb C Coding Standards

gdb follows the GNU coding standards, as described in ‘etc/standards.texi’. This file is
also available for anonymous FTP from GNU archive sites. gdb takes a strict interpretation
of the standard; in general, when the GNU standard recommends a practice but does not
require it, gdb requires it.

gdb follows an additional set of coding standards specific to gdb, as described in the
following sections.

16.1.1 ISO C

gdb assumes an ISO/IEC 9899:1990 (a.k.a. ISO C90) compliant compiler.
gdb does not assume an ISO C or POSIX compliant C library.

16.1.2 Formatting

The standard GNU recommendations for formatting must be followed strictly. Any gdb-
specific deviation from GNU recomendations is described below.

A function declaration should not have its name in column zero. A function definition
should have its name in column zero.

/* Declaration */

static void foo (void);

/* Definition */

void

foo (void)

{

}

Pragmatics: This simplifies scripting. Function definitions can be found using
‘^function-name’.

There must be a space between a function or macro name and the opening parenthesis
of its argument list (except for macro definitions, as required by C). There must not be a
space after an open paren/bracket or before a close paren/bracket.

While additional whitespace is generally helpful for reading, do not use more than one
blank line to separate blocks, and avoid adding whitespace after the end of a program line
(as of 1/99, some 600 lines had whitespace after the semicolon). Excess whitespace causes
difficulties for diff and patch utilities.

Pointers are declared using the traditional K&R C style:

Chapter 16: Coding Standards 78

void *foo;

and not:
void * foo;

void* foo;

In addition, whitespace around casts and unary operators should follow the following
guidelines:
Use... ...instead of
!x ! x
~x ~ x
-x - x (unary minus)
(foo) x (foo)x (cast)
*x * x (pointer dereference)

Any two or more lines in code should be wrapped in braces, even if they are comments,
as they look like separate statements:

if (i)

{

/* Return success. */

return 0;

}

and not:
if (i)

/* Return success. */

return 0;

16.1.3 Comments

The standard GNU requirements on comments must be followed strictly.
Block comments must appear in the following form, with no /*- or */-only lines, and no

leading *:
/* Wait for control to return from inferior to debugger. If inferior

gets a signal, we may decide to start it up again instead of

returning. That is why there is a loop in this function. When

this function actually returns it means the inferior should be left

stopped and gdb should read more commands. */

(Note that this format is encouraged by Emacs; tabbing for a multi-line comment works
correctly, and M-q fills the block consistently.)

Put a blank line between the block comments preceding function or variable definitions,
and the definition itself.

In general, put function-body comments on lines by themselves, rather than trying to fit
them into the 20 characters left at the end of a line, since either the comment or the code
will inevitably get longer than will fit, and then somebody will have to move it anyhow.

16.1.4 C Usage

Code must not depend on the sizes of C data types, the format of the host’s floating point
numbers, the alignment of anything, or the order of evaluation of expressions.

Use functions freely. There are only a handful of compute-bound areas in gdb that
might be affected by the overhead of a function call, mainly in symbol reading. Most of
gdb’s performance is limited by the target interface (whether serial line or system call).

Chapter 16: Coding Standards 79

However, use functions with moderation. A thousand one-line functions are just as hard
to understand as a single thousand-line function.

Macros are bad, M’kay. (But if you have to use a macro, make sure that the macro
arguments are protected with parentheses.)

Declarations like ‘struct foo *’ should be used in preference to declarations like
‘typedef struct foo { ... } *foo_ptr’.

Zero constant (0) is not interchangeable with a null pointer constant (NULL) anywhere.
gcc does not give a warning for such interchange. Specifically:
incorrect if (pointervar) {}
incorrect if (!pointervar) {}
incorrect if (pointervar != 0) {}
incorrect if (pointervar == 0) {}
correct if (pointervar != NULL) {}
correct if (pointervar == NULL) {}

16.1.5 Function Prototypes

Prototypes must be used when both declaring and defining a function. Prototypes for gdb
functions must include both the argument type and name, with the name matching that
used in the actual function definition.

All external functions should have a declaration in a header file that callers include, that
declaration should use the extern modifier. The only exception concerns _initialize_*
functions, which must be external so that ‘init.c’ construction works, but shouldn’t be
visible to random source files.

Where a source file needs a forward declaration of a static function, that declaration
must appear in a block near the top of the source file.

16.1.6 File Names

Any file used when building the core of gdb must be in lower case. Any file used when
building the core of gdb must be 8.3 unique. These requirements apply to both source and
generated files.

Pragmatics: The core of gdb must be buildable on many platforms including DJGPP
and MacOS/HFS. Every time an unfriendly file is introduced to the build process both
‘Makefile.in’ and ‘configure.in’ need to be modified accordingly. Compare the convo-
luted conversion process needed to transform ‘COPYING’ into ‘copying.c’ with the conversion
needed to transform ‘version.in’ into ‘version.c’.

Any file non 8.3 compliant file (that is not used when building the core of gdb) must be
added to ‘gdb/config/djgpp/fnchange.lst’.

Pragmatics: This is clearly a compromise.
When gdb has a local version of a system header file (ex ‘string.h’) the file name based

on the POSIX header prefixed with ‘gdb_’ (‘gdb_string.h’). These headers should be
relatively independent: they should use only macros defined by ‘configure’, the compiler,
or the host; they should include only system headers; they should refer only to system types.
They may be shared between multiple programs, e.g. gdb and gdbserver.

For other files ‘-’ is used as the separator.

Chapter 17: Misc Guidelines 80

16.1.7 Include Files

A ‘.c’ file should include ‘defs.h’ first.
A ‘.c’ file should directly include the .h file of every declaration and/or definition it

directly refers to. It cannot rely on indirect inclusion.
A ‘.h’ file should directly include the .h file of every declaration and/or definition it

directly refers to. It cannot rely on indirect inclusion. Exception: The file ‘defs.h’ does
not need to be directly included.

An external declaration should only appear in one include file.
An external declaration should never appear in a .c file. Exception: a declaration for

the _initialize function that pacifies ‘-Wmissing-declaration’.
A typedef definition should only appear in one include file.
An opaque struct declaration can appear in multiple ‘.h’ files. Where possible, a ‘.h’

file should use an opaque struct declaration instead of an include.
All ‘.h’ files should be wrapped in:

#ifndef INCLUDE_FILE_NAME_H

#define INCLUDE_FILE_NAME_H

header body

#endif

16.2 gdb Python Coding Standards

gdb follows the published Python coding standards in PEP008.
In addition, the guidelines in the Google Python Style Guide are also followed where

they do not conflict with PEP008.

16.2.1 gdb-specific exceptions

There are a few exceptions to the published standards. They exist mainly for consistency
with the C standards.
• Use FIXME instead of TODO.

17 Misc Guidelines

This chapter covers topics that are lower-level than the major algorithms of gdb.

17.1 Cleanups

Cleanups are a structured way to deal with things that need to be done later.
When your code does something (e.g., xmalloc some memory, or open a file) that needs

to be undone later (e.g., xfree the memory or close the file), it can make a cleanup.
The cleanup will be done at some future point: when the command is finished and control
returns to the top level; when an error occurs and the stack is unwound; or when your code
decides it’s time to explicitly perform cleanups. Alternatively you can elect to discard the
cleanups you created.

Syntax:

http://www.python.org/dev/peps/pep-0008/
http://google-styleguide.googlecode.com/svn/trunk/pyguide.html

Chapter 17: Misc Guidelines 81

struct cleanup *old_chain;
Declare a variable which will hold a cleanup chain handle.

old_chain = make_cleanup (function, arg);
Make a cleanup which will cause function to be called with arg (a char *) later.
The result, old chain, is a handle that can later be passed to do_cleanups or
discard_cleanups. Unless you are going to call do_cleanups or discard_
cleanups, you can ignore the result from make_cleanup.

do_cleanups (old_chain);
Do all cleanups added to the chain since the corresponding make_cleanup call
was made.

discard_cleanups (old_chain);
Same as do_cleanups except that it just removes the cleanups from the chain
and does not call the specified functions.

Cleanups are implemented as a chain. The handle returned by make_cleanups includes
the cleanup passed to the call and any later cleanups appended to the chain (but not yet
discarded or performed). E.g.:

make_cleanup (a, 0);

{

struct cleanup *old = make_cleanup (b, 0);

make_cleanup (c, 0)

...

do_cleanups (old);

}

will call c() and b() but will not call a(). The cleanup that calls a() will remain in the
cleanup chain, and will be done later unless otherwise discarded.

Your function should explicitly do or discard the cleanups it creates. Failing to do
this leads to non-deterministic behavior since the caller will arbitrarily do or discard your
functions cleanups. This need leads to two common cleanup styles.

The first style is try/finally. Before it exits, your code-block calls do_cleanups with the
old cleanup chain and thus ensures that your code-block’s cleanups are always performed.
For instance, the following code-segment avoids a memory leak problem (even when error
is called and a forced stack unwind occurs) by ensuring that the xfree will always be called:

struct cleanup *old = make_cleanup (null_cleanup, 0);

data = xmalloc (sizeof blah);

make_cleanup (xfree, data);

... blah blah ...

do_cleanups (old);

The second style is try/except. Before it exits, your code-block calls discard_cleanups
with the old cleanup chain and thus ensures that any created cleanups are not performed.
For instance, the following code segment, ensures that the file will be closed but only if
there is an error:

FILE *file = fopen ("afile", "r");

struct cleanup *old = make_cleanup (close_file, file);

... blah blah ...

discard_cleanups (old);

return file;

Chapter 17: Misc Guidelines 82

Some functions, e.g., fputs_filtered() or error(), specify that they “should not be
called when cleanups are not in place”. This means that any actions you need to reverse
in the case of an error or interruption must be on the cleanup chain before you call these
functions, since they might never return to your code (they ‘longjmp’ instead).

17.2 Per-architecture module data

The multi-arch framework includes a mechanism for adding module specific per-architecture
data-pointers to the struct gdbarch architecture object.

A module registers one or more per-architecture data-pointers using:

[Architecture Function]struct gdbarch_data *
gdbarch_data_register_pre_init (gdbarch data pre init ftype
*pre_init)

pre init is used to, on-demand, allocate an initial value for a per-architecture data-
pointer using the architecture’s obstack (passed in as a parameter). Since pre init can
be called during architecture creation, it is not parameterized with the architecture.
and must not call modules that use per-architecture data.

[Architecture Function]struct gdbarch_data *
gdbarch_data_register_post_init (gdbarch data post init ftype
*post_init)

post init is used to obtain an initial value for a per-architecture data-pointer after.
Since post init is always called after architecture creation, it both receives the fully
initialized architecture and is free to call modules that use per-architecture data (care
needs to be taken to ensure that those other modules do not try to call back to this
module as that will create in cycles in the initialization call graph).

These functions return a struct gdbarch_data that is used to identify the
per-architecture data-pointer added for that module.

The per-architecture data-pointer is accessed using the function:

[Architecture Function]void * gdbarch_data (struct gdbarch *gdbarch, struct
gdbarch data *data_handle)

Given the architecture arch and module data handle data handle (returned by
gdbarch_data_register_pre_init or gdbarch_data_register_post_init), this
function returns the current value of the per-architecture data-pointer. If the data
pointer is NULL, it is first initialized by calling the corresponding pre init or post init
method.

The examples below assume the following definitions:
struct nozel { int total; };

static struct gdbarch_data *nozel_handle;

A module can extend the architecture vector, adding additional per-architecture data,
using the pre init method. The module’s per-architecture data is then initialized during
architecture creation.

In the below, the module’s per-architecture nozel is added. An architecture can specify
its nozel by calling set_gdbarch_nozel from gdbarch_init.

Chapter 17: Misc Guidelines 83

static void *

nozel_pre_init (struct obstack *obstack)

{

struct nozel *data = OBSTACK_ZALLOC (obstack, struct nozel);

return data;

}

extern void

set_gdbarch_nozel (struct gdbarch *gdbarch, int total)

{

struct nozel *data = gdbarch_data (gdbarch, nozel_handle);

data->total = nozel;

}

A module can on-demand create architecture dependent data structures using post_
init.

In the below, the nozel’s total is computed on-demand by nozel_post_init using in-
formation obtained from the architecture.

static void *

nozel_post_init (struct gdbarch *gdbarch)

{

struct nozel *data = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct nozel);

nozel->total = gdbarch... (gdbarch);

return data;

}

extern int

nozel_total (struct gdbarch *gdbarch)

{

struct nozel *data = gdbarch_data (gdbarch, nozel_handle);

return data->total;

}

17.3 Wrapping Output Lines

Output that goes through printf_filtered or fputs_filtered or fputs_demangled
needs only to have calls to wrap_here added in places that would be good breaking points.
The utility routines will take care of actually wrapping if the line width is exceeded.

The argument to wrap_here is an indentation string which is printed only if the line
breaks there. This argument is saved away and used later. It must remain valid until
the next call to wrap_here or until a newline has been printed through the *_filtered
functions. Don’t pass in a local variable and then return!

It is usually best to call wrap_here after printing a comma or space. If you call it before
printing a space, make sure that your indentation properly accounts for the leading space
that will print if the line wraps there.

Any function or set of functions that produce filtered output must finish by printing a
newline, to flush the wrap buffer, before switching to unfiltered (printf) output. Symbol
reading routines that print warnings are a good example.

17.4 Memory Management

gdb does not use the functions malloc, realloc, calloc, free and asprintf.
gdb uses the functions xmalloc, xrealloc and xcalloc when allocating memory. Unlike

malloc et.al. these functions do not return when the memory pool is empty. Instead, they

Chapter 17: Misc Guidelines 84

unwind the stack using cleanups. These functions return NULL when requested to allocate
a chunk of memory of size zero.

Pragmatics: By using these functions, the need to check every memory allocation is
removed. These functions provide portable behavior.

gdb does not use the function free.
gdb uses the function xfree to return memory to the memory pool. Consistent with

ISO-C, this function ignores a request to free a NULL pointer.
Pragmatics: On some systems free fails when passed a NULL pointer.
gdb can use the non-portable function alloca for the allocation of small temporary

values (such as strings).
Pragmatics: This function is very non-portable. Some systems restrict the memory being

allocated to no more than a few kilobytes.
gdb uses the string function xstrdup and the print function xstrprintf.
Pragmatics: asprintf and strdup can fail. Print functions such as sprintf are very

prone to buffer overflow errors.

17.5 Compiler Warnings

With few exceptions, developers should avoid the configuration option ‘--disable-werror’
when building gdb. The exceptions are listed in the file ‘gdb/MAINTAINERS’. The default,
when building with gcc, is ‘--enable-werror’.

This option causes gdb (when built using GCC) to be compiled with a carefully selected
list of compiler warning flags. Any warnings from those flags are treated as errors.

The current list of warning flags includes:

‘-Wall’ Recommended gcc warnings.

‘-Wdeclaration-after-statement’
gcc 3.x (and later) and c99 allow declarations mixed with code, but gcc 2.x
and c89 do not.

‘-Wpointer-arith’
‘-Wformat-nonliteral’

Non-literal format strings, with a few exceptions, are bugs - they might contain
unintended user-supplied format specifiers. Since gdb uses the format printf
attribute on all printf like functions this checks not just printf calls but also
calls to functions such as fprintf_unfiltered.

‘-Wno-pointer-sign’
In version 4.0, GCC began warning about pointer argument passing or assign-
ment even when the source and destination differed only in signedness. How-
ever, most gdb code doesn’t distinguish carefully between char and unsigned
char. In early 2006 the gdb developers decided correcting these warnings
wasn’t worth the time it would take.

‘-Wno-unused-parameter’
Due to the way that gdb is implemented many functions have unused param-
eters. Consequently this warning is avoided. The macro ATTRIBUTE_UNUSED is

Chapter 17: Misc Guidelines 85

not used as it leads to false negatives — it is not an error to have ATTRIBUTE_
UNUSED on a parameter that is being used.

‘-Wno-unused’
‘-Wno-switch’
‘-Wno-char-subscripts’

These are warnings which might be useful for gdb, but are currently too noisy
to enable with ‘-Werror’.

17.6 Internal Error Recovery

During its execution, gdb can encounter two types of errors. User errors and internal errors.
User errors include not only a user entering an incorrect command but also problems arising
from corrupt object files and system errors when interacting with the target. Internal errors
include situations where gdb has detected, at run time, a corrupt or erroneous situation.

When reporting an internal error, gdb uses internal_error and gdb_assert.

gdb must not call abort or assert.

Pragmatics: There is no internal_warning function. Either the code detected a user
error, recovered from it and issued a warning or the code failed to correctly recover from
the user error and issued an internal_error.

17.7 Command Names

GDB U/I commands are written ‘foo-bar’, not ‘foo_bar’.

17.8 Clean Design and Portable Implementation

In addition to getting the syntax right, there’s the little question of semantics. Some things
are done in certain ways in gdb because long experience has shown that the more obvious
ways caused various kinds of trouble.

You can’t assume the byte order of anything that comes from a target (including values,
object files, and instructions). Such things must be byte-swapped using SWAP_TARGET_AND_
HOST in gdb, or one of the swap routines defined in ‘bfd.h’, such as bfd_get_32.

You can’t assume that you know what interface is being used to talk to the target system.
All references to the target must go through the current target_ops vector.

You can’t assume that the host and target machines are the same machine (except in
the “native” support modules). In particular, you can’t assume that the target machine’s
header files will be available on the host machine. Target code must bring along its own
header files – written from scratch or explicitly donated by their owner, to avoid copyright
problems.

Insertion of new #ifdef’s will be frowned upon. It’s much better to write the code
portably than to conditionalize it for various systems.

New #ifdef’s which test for specific compilers or manufacturers or operating systems are
unacceptable. All #ifdef’s should test for features. The information about which configu-
rations contain which features should be segregated into the configuration files. Experience
has proven far too often that a feature unique to one particular system often creeps into

Chapter 17: Misc Guidelines 86

other systems; and that a conditional based on some predefined macro for your current sys-
tem will become worthless over time, as new versions of your system come out that behave
differently with regard to this feature.

Adding code that handles specific architectures, operating systems, target interfaces, or
hosts, is not acceptable in generic code.

One particularly notorious area where system dependencies tend to creep in is handling
of file names. The mainline gdb code assumes Posix semantics of file names: absolute
file names begin with a forward slash ‘/’, slashes are used to separate leading directories,
case-sensitive file names. These assumptions are not necessarily true on non-Posix systems
such as MS-Windows. To avoid system-dependent code where you need to take apart or
construct a file name, use the following portable macros:

HAVE_DOS_BASED_FILE_SYSTEM
This preprocessing symbol is defined to a non-zero value on hosts whose filesys-
tems belong to the MS-DOS/MS-Windows family. Use this symbol to write
conditional code which should only be compiled for such hosts.

IS_DIR_SEPARATOR (c)
Evaluates to a non-zero value if c is a directory separator character. On Unix
and GNU/Linux systems, only a slash ‘/’ is such a character, but on Windows,
both ‘/’ and ‘\’ will pass.

IS_ABSOLUTE_PATH (file)
Evaluates to a non-zero value if file is an absolute file name. For Unix and
GNU/Linux hosts, a name which begins with a slash ‘/’ is absolute. On DOS
and Windows, ‘d:/foo’ and ‘x:\bar’ are also absolute file names.

FILENAME_CMP (f1, f2)
Calls a function which compares file names f1 and f2 as appropriate for the
underlying host filesystem. For Posix systems, this simply calls strcmp; on
case-insensitive filesystems it will call strcasecmp instead.

DIRNAME_SEPARATOR
Evaluates to a character which separates directories in PATH-style lists, typically
held in environment variables. This character is ‘:’ on Unix, ‘;’ on DOS and
Windows.

SLASH_STRING
This evaluates to a constant string you should use to produce an absolute
filename from leading directories and the file’s basename. SLASH_STRING is "/"
on most systems, but might be "\\" for some Windows-based ports.

In addition to using these macros, be sure to use portable library functions whenever
possible. For example, to extract a directory or a basename part from a file name, use the
dirname and basename library functions (available in libiberty for platforms which don’t
provide them), instead of searching for a slash with strrchr.

Another way to generalize gdb along a particular interface is with an attribute struct.
For example, gdb has been generalized to handle multiple kinds of remote interfaces—not
by #ifdefs everywhere, but by defining the target_ops structure and having a current
target (as well as a stack of targets below it, for memory references). Whenever something

Chapter 18: Porting gdb 87

needs to be done that depends on which remote interface we are using, a flag in the current
target ops structure is tested (e.g., target_has_stack), or a function is called through a
pointer in the current target ops structure. In this way, when a new remote interface is
added, only one module needs to be touched—the one that actually implements the new
remote interface. Other examples of attribute-structs are BFD access to multiple kinds of
object file formats, or gdb’s access to multiple source languages.

Please avoid duplicating code. For example, in gdb 3.x all the code interfacing between
ptrace and the rest of gdb was duplicated in ‘*-dep.c’, and so changing something was very
painful. In gdb 4.x, these have all been consolidated into ‘infptrace.c’. ‘infptrace.c’
can deal with variations between systems the same way any system-independent file would
(hooks, #if defined, etc.), and machines which are radically different don’t need to use
‘infptrace.c’ at all.

All debugging code must be controllable using the ‘set debug module ’ command. Do
not use printf to print trace messages. Use fprintf_unfiltered(gdb_stdlog, Do
not use #ifdef DEBUG.

18 Porting gdb

Most of the work in making gdb compile on a new machine is in specifying the configuration
of the machine. Porting a new architecture to gdb can be broken into a number of steps.

• Ensure a bfd exists for executables of the target architecture in the ‘bfd’ directory. If
one does not exist, create one by modifying an existing similar one.

• Implement a disassembler for the target architecture in the ‘opcodes’ directory.

• Define the target architecture in the ‘gdb’ directory (see Section 11.11 [Adding a New
Target], page 67). Add the pattern for the new target to ‘configure.tgt’ with the
names of the files that contain the code. By convention the target architecture definition
for an architecture arch is placed in ‘arch-tdep.c’.

Within ‘arch-tdep.c’ define the function _initialize_arch_tdep which calls
gdbarch_register to create the new struct gdbarch for the architecture.

• If a new remote target is needed, consider adding a new remote target by defining a
function _initialize_remote_arch . However if at all possible use the gdb Remote
Serial Protocol for this and implement the server side protocol independently with the
target.

• If desired implement a simulator in the ‘sim’ directory. This should create the library
‘libsim.a’ implementing the interface in ‘remote-sim.h’ (found in the ‘include’ di-
rectory).

• Build and test. If desired, lobby the gdb steering group to have the new port included
in the main distribution!

• Add a description of the new architecture to the main gdb user guide (see Section
“Configuration Specific Information” in Debugging with gdb).

Chapter 19: Versions and Branches 88

19 Versions and Branches

19.1 Versions

gdb’s version is determined by the file ‘gdb/version.in’ and takes one of the following
forms:

major.minor
major.minor.patchlevel

an official release (e.g., 6.2 or 6.2.1)

major.minor.patchlevel.YYYYMMDD
a snapshot taken at YYYY-MM-DD-gmt (e.g., 6.1.50.20020302,
6.1.90.20020304, or 6.1.0.20020308)

major.minor.patchlevel.YYYYMMDD-cvs
a cvs check out drawn on YYYY-MM-DD (e.g., 6.1.50.20020302-cvs,
6.1.90.20020304-cvs, or 6.1.0.20020308-cvs)

major.minor.patchlevel.YYYYMMDD (vendor)
a vendor specific release of gdb, that while based on
major.minor.patchlevel.YYYYMMDD, may include additional changes

gdb’s mainline uses the major and minor version numbers from the most recent release
branch, with a patchlevel of 50. At the time each new release branch is created, the
mainline’s major and minor version numbers are updated.

gdb’s release branch is similar. When the branch is cut, the patchlevel is changed from
50 to 90. As draft releases are drawn from the branch, the patchlevel is incremented. Once
the first release (major.minor) has been made, the patchlevel is set to 0 and updates have
an incremented patchlevel.

For snapshots, and cvs check outs, it is also possible to identify the cvs origin:

major.minor.50.YYYYMMDD
drawn from the head of mainline cvs (e.g., 6.1.50.20020302)

major.minor.90.YYYYMMDD
major.minor.91.YYYYMMDD . . .

drawn from a release branch prior to the release (e.g., 6.1.90.20020304)

major.minor.0.YYYYMMDD
major.minor.1.YYYYMMDD . . .

drawn from a release branch after the release (e.g., 6.2.0.20020308)

If the previous gdb version is 6.1 and the current version is 6.2, then, substituting 6 for
major and 1 or 2 for minor, here’s an illustration of a typical sequence:

<HEAD>

|

6.1.50.20020302-cvs

|

+--------------------------.

| <gdb_6_2-branch>

| |

Chapter 19: Versions and Branches 89

6.2.50.20020303-cvs 6.1.90 (draft #1)

| |

6.2.50.20020304-cvs 6.1.90.20020304-cvs

| |

6.2.50.20020305-cvs 6.1.91 (draft #2)

| |

6.2.50.20020306-cvs 6.1.91.20020306-cvs

| |

6.2.50.20020307-cvs 6.2 (release)

| |

6.2.50.20020308-cvs 6.2.0.20020308-cvs

| |

6.2.50.20020309-cvs 6.2.1 (update)

| |

6.2.50.20020310-cvs <branch closed>

|

6.2.50.20020311-cvs

|

+--------------------------.

| <gdb_6_3-branch>

| |

6.3.50.20020312-cvs 6.2.90 (draft #1)

| |

19.2 Release Branches

gdb draws a release series (6.2, 6.2.1, . . .) from a single release branch, and identifies that
branch using the cvs branch tags:

gdb_major_minor-YYYYMMDD-branchpoint

gdb_major_minor-branch

gdb_major_minor-YYYYMMDD-release

Pragmatics: To help identify the date at which a branch or release is made, both the
branchpoint and release tags include the date that they are cut (YYYYMMDD) in the tag.
The branch tag, denoting the head of the branch, does not need this.

19.3 Vendor Branches

To avoid version conflicts, vendors are expected to modify the file ‘gdb/version.in’ to
include a vendor unique alphabetic identifier (an official gdb release never uses alphabetic
characters in its version identifier). E.g., ‘6.2widgit2’, or ‘6.2 (Widgit Inc Patch 2)’.

19.4 Experimental Branches

19.4.1 Guidelines

gdb permits the creation of branches, cut from the cvs repository, for experimental develop-
ment. Branches make it possible for developers to share preliminary work, and maintainers
to examine significant new developments.

The following are a set of guidelines for creating such branches:

a branch has an owner
The owner can set further policy for a branch, but may not change the ground
rules. In particular, they can set a policy for commits (be it adding more
reviewers or deciding who can commit).

Chapter 19: Versions and Branches 90

all commits are posted
All changes committed to a branch shall also be posted to the gdb patches
mailing list. While commentary on such changes are encouraged, people should
remember that the changes only apply to a branch.

all commits are covered by an assignment
This ensures that all changes belong to the Free Software Foundation, and
avoids the possibility that the branch may become contaminated.

a branch is focused
A focused branch has a single objective or goal, and does not contain unnec-
essary or irrelevant changes. Cleanups, where identified, being be pushed into
the mainline as soon as possible.

a branch tracks mainline
This keeps the level of divergence under control. It also keeps the pressure on
developers to push cleanups and other stuff into the mainline.

a branch shall contain the entire gdb module
The gdb module gdb should be specified when creating a branch (branches of
individual files should be avoided). See [Tags], page 90.

a branch shall be branded using ‘version.in’
The file ‘gdb/version.in’ shall be modified so that it identifies the branch
owner and branch name, e.g., ‘6.2.50.20030303_owner_name’ or ‘6.2 (Owner
Name)’.

19.4.2 Tags

To simplify the identification of gdb branches, the following branch tagging convention is
strongly recommended:

owner_name-YYYYMMDD-branchpoint
owner_name-YYYYMMDD-branch

The branch point and corresponding branch tag. YYYYMMDD is the date
that the branch was created. A branch is created using the sequence:

cvs rtag owner_name-YYYYMMDD-branchpoint gdb

cvs rtag -b -r owner_name-YYYYMMDD-branchpoint \

owner_name-YYYYMMDD-branch gdb

owner_name-yyyymmdd-mergepoint
The tagged point, on the mainline, that was used when merging the branch on
yyyymmdd. To merge in all changes since the branch was cut, use a command
sequence like:

cvs rtag owner_name-yyyymmdd-mergepoint gdb

cvs update \

-jowner_name-YYYYMMDD-branchpoint

-jowner_name-yyyymmdd-mergepoint

Similar sequences can be used to just merge in changes since the last merge.

For further information on cvs, see Concurrent Versions System.

mailto:gdb-patches@sourceware.org
mailto:gdb-patches@sourceware.org
http://www.gnu.org/software/cvs/

Chapter 21: Releasing gdb 91

20 Start of New Year Procedure

At the start of each new year, the following actions should be performed:
• Rotate the ChangeLog file

The current ‘ChangeLog’ file should be renamed into ‘ChangeLog-YYYY’ where YYYY
is the year that has just passed. A new ‘ChangeLog’ file should be created, and its
contents should contain a reference to the previous ChangeLog. The following should
also be preserved at the end of the new ChangeLog, in order to provide the appropriate
settings when editing this file with Emacs:

Local Variables:

mode: change-log

left-margin: 8

fill-column: 74

version-control: never

coding: utf-8

End:

• Add an entry for the newly created ChangeLog file (‘ChangeLog-YYYY’) in
‘gdb/config/djgpp/fnchange.lst’.

• Update the copyright year in the startup message
Update the copyright year in:
• file ‘top.c’, function print_gdb_version

• file ‘gdbserver/server.c’, function gdbserver_version

• file ‘gdbserver/gdbreplay.c’, function gdbreplay_version

• Run the ‘copyright.py’ Python script to add the new year in the copyright notices of
most source files. This script has been tested with Python 2.6 and 2.7.

21 Releasing gdb

21.1 Branch Commit Policy

The branch commit policy is pretty slack. gdb releases 5.0, 5.1 and 5.2 all used the below:
• The ‘gdb/MAINTAINERS’ file still holds.
• Don’t fix something on the branch unless/until it is also fixed in the trunk. If this isn’t

possible, mentioning it in the ‘gdb/PROBLEMS’ file is better than committing a hack.
• When considering a patch for the branch, suggested criteria include: Does it fix a build?

Does it fix the sequence break main; run when debugging a static binary?
• The further a change is from the core of gdb, the less likely the change will worry

anyone (e.g., target specific code).
• Only post a proposal to change the core of gdb after you’ve sent individual bribes to

all the people listed in the ‘MAINTAINERS’ file ;-)

Pragmatics: Provided updates are restricted to non-core functionality there is little chance
that a broken change will be fatal. This means that changes such as adding a new architec-
tures or (within reason) support for a new host are considered acceptable.

Chapter 21: Releasing gdb 92

21.2 Obsoleting code

Before anything else, poke the other developers (and around the source code) to see if there
is anything that can be removed from gdb (an old target, an unused file).

Obsolete code is identified by adding an OBSOLETE prefix to every line. Doing this means
that it is easy to identify something that has been obsoleted when greping through the
sources.

The process is done in stages — this is mainly to ensure that the wider gdb community
has a reasonable opportunity to respond. Remember, everything on the Internet takes a
week.
1. Post the proposal on the GDB mailing list Creating a bug report to track the task’s

state, is also highly recommended.
2. Wait a week or so.
3. Post the proposal on the GDB Announcement mailing list.
4. Wait a week or so.
5. Go through and edit all relevant files and lines so that they are prefixed with the word

OBSOLETE.
6. Wait until the next GDB version, containing this obsolete code, has been released.
7. Remove the obsolete code.

Maintainer note: While removing old code is regrettable it is hopefully better for gdb’s long
term development. Firstly it helps the developers by removing code that is either no longer
relevant or simply wrong. Secondly since it removes any history associated with the file
(effectively clearing the slate) the developer has a much freer hand when it comes to fixing
broken files.

21.3 Before the Branch

The most important objective at this stage is to find and fix simple changes that become a
pain to track once the branch is created. For instance, configuration problems that stop gdb
from even building. If you can’t get the problem fixed, document it in the ‘gdb/PROBLEMS’
file.

Prompt for ‘gdb/NEWS’

People always forget. Send a post reminding them but also if you know something interesting
happened add it yourself. The schedule script will mention this in its e-mail.

Review ‘gdb/README’

Grab one of the nightly snapshots and then walk through the ‘gdb/README’ looking for
anything that can be improved. The schedule script will mention this in its e-mail.

Refresh any imported files.

A number of files are taken from external repositories. They include:
• ‘texinfo/texinfo.tex’
• ‘config.guess’ et. al. (see the top-level ‘MAINTAINERS’ file)
• ‘etc/standards.texi’, ‘etc/make-stds.texi’

mailto:gdb@sourceware.org
mailto:gdb-announce@sourceware.org

Chapter 21: Releasing gdb 93

Check the ARI

A.R.I. is an awk script (Awk Regression Index ;-) that checks for a number of errors and
coding conventions. The checks include things like using malloc instead of xmalloc and
file naming problems. There shouldn’t be any regressions.

21.3.1 Review the bug data base

Close anything obviously fixed.

21.3.2 Check all cross targets build

The targets are listed in ‘gdb/MAINTAINERS’.

21.4 Cut the Branch

Create the branch
$ u=5.1

$ v=5.2

$ V=‘echo $v | sed ’s/\./_/g’‘

$ D=‘date -u +%Y-%m-%d‘

$ echo $u $V $D

5.1 5_2 2002-03-03

$ echo cvs -f -d :ext:sourceware.org:/cvs/src rtag \

-D $D-gmt gdb_$V-$D-branchpoint insight

cvs -f -d :ext:sourceware.org:/cvs/src rtag

-D 2002-03-03-gmt gdb_5_2-2002-03-03-branchpoint insight

$ ^echo ^^

...

$ echo cvs -f -d :ext:sourceware.org:/cvs/src rtag \

-b -r gdb_$V-$D-branchpoint gdb_$V-branch insight

cvs -f -d :ext:sourceware.org:/cvs/src rtag \

-b -r gdb_5_2-2002-03-03-branchpoint gdb_5_2-branch insight

$ ^echo ^^

...

$

• By using -D YYYY-MM-DD-gmt, the branch is forced to an exact date/time.
• The trunk is first tagged so that the branch point can easily be found.
• Insight, which includes gdb, is tagged at the same time.
• ‘version.in’ gets bumped to avoid version number conflicts.
• The reading of ‘.cvsrc’ is disabled using ‘-f’.

Update ‘version.in’
$ u=5.1

$ v=5.2

$ V=‘echo $v | sed ’s/\./_/g’‘

$ echo $u vV

5.1 5_2

$ cd /tmp

$ echo cvs -f -d :ext:sourceware.org:/cvs/src co \

-r gdb_$V-branch src/gdb/version.in

cvs -f -d :ext:sourceware.org:/cvs/src co

-r gdb_5_2-branch src/gdb/version.in

$ ^echo ^^

http://sourceware.org/gdb/ari

Chapter 21: Releasing gdb 94

U src/gdb/version.in

$ cd src/gdb

$ echo $u.90-0000-00-00-cvs > version.in

$ cat version.in

5.1.90-0000-00-00-cvs

$ cvs -f commit version.in

• ‘0000-00-00’ is used as a date to pump prime the version.in update mechanism.

• ‘.90’ and the previous branch version are used as fairly arbitrary initial branch version
number.

Update the web and news pages

Something?

Tweak cron to track the new branch

The file ‘gdbadmin/cron/crontab’ contains gdbadmin’s cron table. This file needs to be
updated so that:

• A daily timestamp is added to the file ‘version.in’.

• The new branch is included in the snapshot process.

See the file ‘gdbadmin/cron/README’ for how to install the updated cron table.

The file ‘gdbadmin/ss/README’ should also be reviewed to reflect any changes. That file
is copied to both the branch/ and current/ snapshot directories.

Update the NEWS and README files

The ‘NEWS’ file needs to be updated so that on the branch it refers to changes in the current
release while on the trunk it also refers to changes since the current release.

The ‘README’ file needs to be updated so that it refers to the current release.

Post the branch info

Send an announcement to the mailing lists:

• GDB Announcement mailing list

• GDB Discussion mailing list and GDB Testers mailing list

Pragmatics: The branch creation is sent to the announce list to ensure that people people
not subscribed to the higher volume discussion list are alerted.

The announcement should include:

• The branch tag.

• How to check out the branch using CVS.

• The date/number of weeks until the release.

• The branch commit policy still holds.

21.5 Stabilize the branch

Something goes here.

mailto:gdb-announce@sourceware.org
mailto:gdb@sourceware.org
mailto:gdb-testers@sourceware.org

Chapter 21: Releasing gdb 95

21.6 Create a Release

The process of creating and then making available a release is broken down into a number
of stages. The first part addresses the technical process of creating a releasable tar ball.
The later stages address the process of releasing that tar ball.

When making a release candidate just the first section is needed.

21.6.1 Create a release candidate

The objective at this stage is to create a set of tar balls that can be made available as a
formal release (or as a less formal release candidate).

Freeze the branch

Send out an e-mail notifying everyone that the branch is frozen to gdb-patches@sourceware.org.

Establish a few defaults.
$ b=gdb_5_2-branch

$ v=5.2

$ t=/sourceware/snapshot-tmp/gdbadmin-tmp

$ echo $t/$b/$v

/sourceware/snapshot-tmp/gdbadmin-tmp/gdb_5_2-branch/5.2

$ mkdir -p $t/$b/$v

$ cd $t/$b/$v

$ pwd

/sourceware/snapshot-tmp/gdbadmin-tmp/gdb_5_2-branch/5.2

$ which autoconf

/home/gdbadmin/bin/autoconf

$

Notes:
• Check the autoconf version carefully. You want to be using the version documented

in the toplevel ‘README-maintainer-mode’ file. It is very unlikely that the version of
autoconf installed in system directories (e.g., ‘/usr/bin/autoconf’) is correct.

Check out the relevant modules:
$ for m in gdb insight

do

(mkdir -p $m && cd $m && cvs -q -f -d /cvs/src co -P -r $b $m)

done

$

Note:
• The reading of ‘.cvsrc’ is disabled (‘-f’) so that there isn’t any confusion between

what is written here and what your local cvs really does.

Update relevant files.

‘gdb/NEWS’
Major releases get their comments added as part of the mainline. Minor releases
should probably mention any significant bugs that were fixed.
Don’t forget to include the ‘ChangeLog’ entry.

$ emacs gdb/src/gdb/NEWS

...

mailto:gdb-patches@sourceware.org

Chapter 21: Releasing gdb 96

c-x 4 a

...

c-x c-s c-x c-c

$ cp gdb/src/gdb/NEWS insight/src/gdb/NEWS

$ cp gdb/src/gdb/ChangeLog insight/src/gdb/ChangeLog

‘gdb/README’
You’ll need to update:
• The version.
• The update date.
• Who did it.

$ emacs gdb/src/gdb/README

...

c-x 4 a

...

c-x c-s c-x c-c

$ cp gdb/src/gdb/README insight/src/gdb/README

$ cp gdb/src/gdb/ChangeLog insight/src/gdb/ChangeLog

Maintainer note: Hopefully the ‘README’ file was reviewed before the initial
branch was cut so just a simple substitute is needed to get it updated.
Maintainer note: Other projects generate ‘README’ and ‘INSTALL’ from the core
documentation. This might be worth pursuing.

‘gdb/version.in’
$ echo $v > gdb/src/gdb/version.in

$ cat gdb/src/gdb/version.in

5.2

$ emacs gdb/src/gdb/version.in

...

c-x 4 a

... Bump to version ...

c-x c-s c-x c-c

$ cp gdb/src/gdb/version.in insight/src/gdb/version.in

$ cp gdb/src/gdb/ChangeLog insight/src/gdb/ChangeLog

Do the dirty work

This is identical to the process used to create the daily snapshot.
$ for m in gdb insight

do

(cd $m/src && gmake -f src-release $m.tar)

done

If the top level source directory does not have ‘src-release’ (gdb version 5.3.1 or
earlier), try these commands instead:

$ for m in gdb insight

do

(cd $m/src && gmake -f Makefile.in $m.tar)

done

Check the source files

You’re looking for files that have mysteriously disappeared. distclean has the habit of
deleting files it shouldn’t. Watch out for the ‘version.in’ update cronjob.

Chapter 21: Releasing gdb 97

$ (cd gdb/src && cvs -f -q -n update)

M djunpack.bat

? gdb-5.1.91.tar

? proto-toplev

... lots of generated files ...

M gdb/ChangeLog

M gdb/NEWS

M gdb/README

M gdb/version.in

... lots of generated files ...

$

Don’t worry about the ‘gdb.info-??’ or ‘gdb/p-exp.tab.c’. They were generated (and yes
‘gdb.info-1’ was also generated only something strange with CVS means that they didn’t
get suppressed). Fixing it would be nice though.

Create compressed versions of the release
$ cp */src/*.tar .

$ cp */src/*.bz2 .

$ ls -F

gdb/ gdb-5.2.tar insight/ insight-5.2.tar

$ for m in gdb insight

do

bzip2 -v -9 -c $m-$v.tar > $m-$v.tar.bz2

gzip -v -9 -c $m-$v.tar > $m-$v.tar.gz

done

$

Note:
• A pipe such as bunzip2 < xxx.bz2 | gzip -9 > xxx.gz is not since, in that mode, gzip

does not know the name of the file and, hence, can not include it in the compressed
file. This is also why the release process runs tar and bzip2 as separate passes.

21.6.2 Sanity check the tar ball

Pick a popular machine (Solaris/PPC?) and try the build on that.
$ bunzip2 < gdb-5.2.tar.bz2 | tar xpf -

$ cd gdb-5.2

$./configure

$ make

...

$./gdb/gdb ./gdb/gdb

GNU gdb 5.2

...

(gdb) b main

Breakpoint 1 at 0x80732bc: file main.c, line 734.

(gdb) run

Starting program: /tmp/gdb-5.2/gdb/gdb

Breakpoint 1, main (argc=1, argv=0xbffff8b4) at main.c:734

734 catch_errors (captured_main, &args, "", RETURN_MASK_ALL);

(gdb) print args

$1 = {argc = 136426532, argv = 0x821b7f0}

(gdb)

21.6.3 Make a release candidate available

If this is a release candidate then the only remaining steps are:

Chapter 21: Releasing gdb 98

1. Commit ‘version.in’ and ‘ChangeLog’

2. Tweak ‘version.in’ (and ‘ChangeLog’ to read L.M.N-0000-00-00-cvs so that the ver-
sion update process can restart.

3. Make the release candidate available in ftp://sourceware.org/pub/gdb/snapshots/branch

4. Notify the relevant mailing lists (gdb@sourceware.org and gdb-testers@sourceware.org
that the candidate is available.

21.6.4 Make a formal release available

(And you thought all that was required was to post an e-mail.)

Install on sware

Copy the new files to both the release and the old release directory:
$ cp *.bz2 *.gz ~ftp/pub/gdb/old-releases/

$ cp *.bz2 *.gz ~ftp/pub/gdb/releases

Clean up the releases directory so that only the most recent releases are available (e.g. keep
5.2 and 5.2.1 but remove 5.1):

$ cd ~ftp/pub/gdb/releases

$ rm ...

Update the file ‘README’ and ‘.message’ in the releases directory:
$ vi README

...

$ rm -f .message

$ ln README .message

Update the web pages.

‘htdocs/download/ANNOUNCEMENT’
This file, which is posted as the official announcement, includes:

• General announcement.

• News. If making an M.N.1 release, retain the news from earlier M.N release.

• Errata.

‘htdocs/index.html’
‘htdocs/news/index.html’
‘htdocs/download/index.html’

These files include:

• Announcement of the most recent release.

• News entry (remember to update both the top level and the news direc-
tory).

These pages also need to be regenerate using index.sh.

‘download/onlinedocs/’
You need to find the magic command that is used to generate the online docs
from the ‘.tar.bz2’. The best way is to look in the output from one of the
nightly cron jobs and then just edit accordingly. Something like:

ftp://sourceware.org/pub/gdb/snapshots/branch
mailto:gdb@sourceware.org
mailto:gdb-testers@sourceware.org

Chapter 21: Releasing gdb 99

$ ~/ss/update-web-docs \

~ftp/pub/gdb/releases/gdb-5.2.tar.bz2 \

$PWD/www \

/www/sourceware/htdocs/gdb/download/onlinedocs \

gdb

‘download/ari/’
Just like the online documentation. Something like:

$ /bin/sh ~/ss/update-web-ari \

~ftp/pub/gdb/releases/gdb-5.2.tar.bz2 \

$PWD/www \

/www/sourceware/htdocs/gdb/download/ari \

gdb

Shadow the pages onto gnu

Something goes here.

Install the gdb tar ball on GNU

At the time of writing, the GNU machine was gnudist.gnu.org in ‘~ftp/gnu/gdb’.

Make the ‘ANNOUNCEMENT’

Post the ‘ANNOUNCEMENT’ file you created above to:
• GDB Announcement mailing list
• General GNU Announcement list (but delay it a day or so to let things get out)
• GDB Bug Report mailing list

21.6.5 Cleanup

The release is out but you’re still not finished.

Commit outstanding changes

In particular you’ll need to commit any changes to:
• ‘gdb/ChangeLog’
• ‘gdb/version.in’
• ‘gdb/NEWS’
• ‘gdb/README’

Tag the release

Something like:
$ d=‘date -u +%Y-%m-%d‘

$ echo $d

2002-01-24

$ (cd insight/src/gdb && cvs -f -q update)

$ (cd insight/src && cvs -f -q tag gdb_5_2-$d-release)

Insight is used since that contains more of the release than gdb.

Mention the release on the trunk

Just put something in the ‘ChangeLog’ so that the trunk also indicates when the release
was made.

mailto:gdb-announce@sourceware.org
mailto:info-gnu@gnu.org
mailto:bug-gdb@gnu.org

Chapter 22: Testsuite 100

Restart ‘gdb/version.in’

If ‘gdb/version.in’ does not contain an ISO date such as 2002-01-24 then the daily
cronjob won’t update it. Having committed all the release changes it can be set to
‘5.2.0_0000-00-00-cvs’ which will restart things (yes the _ is important - it affects the
snapshot process).

Don’t forget the ‘ChangeLog’.

Merge into trunk

The files committed to the branch may also need changes merged into the trunk.

Revise the release schedule

Post a revised release schedule to GDB Discussion List with an updated announcement.
The schedule can be generated by running:

$ ~/ss/schedule ‘date +%s‘ schedule

The first parameter is approximate date/time in seconds (from the epoch) of the most recent
release.

Also update the schedule cronjob.

21.7 Post release

Remove any OBSOLETE code.

22 Testsuite

The testsuite is an important component of the gdb package. While it is always worthwhile
to encourage user testing, in practice this is rarely sufficient; users typically use only a small
subset of the available commands, and it has proven all too common for a change to cause
a significant regression that went unnoticed for some time.

The gdb testsuite uses the DejaGNU testing framework. The tests themselves are calls
to various Tcl procs; the framework runs all the procs and summarizes the passes and fails.

22.1 Using the Testsuite

To run the testsuite, simply go to the gdb object directory (or to the testsuite’s objdir) and
type make check. This just sets up some environment variables and invokes DejaGNU’s
runtest script. While the testsuite is running, you’ll get mentions of which test file is in
use, and a mention of any unexpected passes or fails. When the testsuite is finished, you’ll
get a summary that looks like this:

=== gdb Summary ===

of expected passes 6016

of unexpected failures 58

of unexpected successes 5

of expected failures 183

of unresolved testcases 3

of untested testcases 5

To run a specific test script, type:

mailto:gdb@sourceware.org

Chapter 22: Testsuite 101

make check RUNTESTFLAGS=’tests’

where tests is a list of test script file names, separated by spaces.
If you use GNU make, you can use its ‘-j’ option to run the testsuite in parallel. This

can greatly reduce the amount of time it takes for the testsuite to run. In this case, if
you set RUNTESTFLAGS then, by default, the tests will be run serially even under ‘-j’. You
can override this and force a parallel run by setting the make variable FORCE_PARALLEL to
any non-empty value. Note that the parallel make check assumes that you want to run the
entire testsuite, so it is not compatible with some dejagnu options, like ‘--directory’.

The ideal test run consists of expected passes only; however, reality conspires to keep
us from this ideal. Unexpected failures indicate real problems, whether in gdb or in the
testsuite. Expected failures are still failures, but ones which have been decided are too hard
to deal with at the time; for instance, a test case might work everywhere except on AIX,
and there is no prospect of the AIX case being fixed in the near future. Expected failures
should not be added lightly, since you may be masking serious bugs in gdb. Unexpected
successes are expected fails that are passing for some reason, while unresolved and untested
cases often indicate some minor catastrophe, such as the compiler being unable to deal with
a test program.

When making any significant change to gdb, you should run the testsuite before and
after the change, to confirm that there are no regressions. Note that truly complete testing
would require that you run the testsuite with all supported configurations and a variety of
compilers; however this is more than really necessary. In many cases testing with a single
configuration is sufficient. Other useful options are to test one big-endian (Sparc) and one
little-endian (x86) host, a cross config with a builtin simulator (powerpc-eabi, mips-elf), or
a 64-bit host (Alpha).

If you add new functionality to gdb, please consider adding tests for it as well; this way
future gdb hackers can detect and fix their changes that break the functionality you added.
Similarly, if you fix a bug that was not previously reported as a test failure, please add a
test case for it. Some cases are extremely difficult to test, such as code that handles host
OS failures or bugs in particular versions of compilers, and it’s OK not to try to write tests
for all of those.

DejaGNU supports separate build, host, and target machines. However, some gdb test
scripts do not work if the build machine and the host machine are not the same. In such
an environment, these scripts will give a result of “UNRESOLVED”, like this:

UNRESOLVED: gdb.base/example.exp: This test script does not work on a remote host.

22.2 Testsuite Parameters

Several variables exist to modify the behavior of the testsuite.
• TRANSCRIPT

Sometimes it is convenient to get a transcript of the commands which the testsuite
sends to gdb. For example, if gdb crashes during testing, a transcript can be used to
more easily reconstruct the failure when running gdb under gdb.
You can instruct the gdb testsuite to write transcripts by setting the DejaGNU variable
TRANSCRIPT (to any value) before invoking runtest or make check. The transcripts
will be written into DejaGNU’s output directory. One transcript will be made for each

Chapter 22: Testsuite 102

invocation of gdb; they will be named ‘transcript.n ’, where n is an integer. The
first line of the transcript file will show how gdb was invoked; each subsequent line is
a command sent as input to gdb.

make check RUNTESTFLAGS=TRANSCRIPT=y

Note that the transcript is not always complete. In particular, tests of completion can
yield partial command lines.

• GDB

Sometimes one wishes to test a different gdb than the one in the build directory. For
example, one may wish to run the testsuite on ‘/usr/bin/gdb’.

make check RUNTESTFLAGS=GDB=/usr/bin/gdb

• GDBSERVER

When testing a different gdb, it is often useful to also test a different gdbserver.
make check RUNTESTFLAGS="GDB=/usr/bin/gdb GDBSERVER=/usr/bin/gdbserver"

• INTERNAL_GDBFLAGS

When running the testsuite normally one doesn’t want whatever is in ‘~/.gdbinit’
to interfere with the tests, therefore the test harness passes ‘-nx’ to gdb. One also
doesn’t want any windowed version of gdb, e.g., ‘gdb -tui’, to run. This is achieved
via INTERNAL_GDBFLAGS.

set INTERNAL_GDBFLAGS "-nw -nx"

This is all well and good, except when testing an installed gdb that has been configured
with ‘--with-system-gdbinit’. Here one does not want ‘~/.gdbinit’ loaded but one
may want the system ‘.gdbinit’ file loaded. This can be achieved by pointing $HOME at
a directory without a ‘.gdbinit’ and by overriding INTERNAL_GDBFLAGS and removing
‘-nx’.

cd testsuite

HOME=‘pwd‘ runtest \

GDB=/usr/bin/gdb \

GDBSERVER=/usr/bin/gdbserver \

INTERNAL_GDBFLAGS=-nw

There are two ways to run the testsuite and pass additional parameters to DejaGnu.
The first is with make check and specifying the makefile variable ‘RUNTESTFLAGS’.

make check RUNTESTFLAGS=TRANSCRIPT=y

The second is to cd to the ‘testsuite’ directory and invoke the DejaGnu runtest
command directly.

cd testsuite

make site.exp

runtest TRANSCRIPT=y

22.3 Testsuite Configuration

It is possible to adjust the behavior of the testsuite by defining the global variables listed
below, either in a ‘site.exp’ file, or in a board file.

• gdb_test_timeout

Defining this variable changes the default timeout duration used during communication
with gdb. More specifically, the global variable used during testing is timeout, but

Chapter 22: Testsuite 103

this variable gets reset to gdb_test_timeout at the beginning of each testcase, making
sure that any local change to timeout in a testcase does not affect subsequent testcases.

This global variable comes in handy when the debugger is slower than normal due to
the testing environment, triggering unexpected TIMEOUT test failures. Examples include
when testing on a remote machine, or against a system where communications are slow.

If not specifically defined, this variable gets automatically defined to the same value as
timeout during the testsuite initialization. The default value of the timeout is defined
in the file ‘gdb/testsuite/config/unix.exp’ that is part of the gdb test suite7.

22.4 Testsuite Organization

The testsuite is entirely contained in ‘gdb/testsuite’. While the testsuite includes some
makefiles and configury, these are very minimal, and used for little besides cleaning up,
since the tests themselves handle the compilation of the programs that gdb will run. The
file ‘testsuite/lib/gdb.exp’ contains common utility procs useful for all gdb tests, while
the directory ‘testsuite/config’ contains configuration-specific files, typically used for
special-purpose definitions of procs like gdb_load and gdb_start.

The tests themselves are to be found in ‘testsuite/gdb.*’ and subdirectories of those.
The names of the test files must always end with ‘.exp’. DejaGNU collects the test files
by wildcarding in the test directories, so both subdirectories and individual files get chosen
and run in alphabetical order.

The following table lists the main types of subdirectories and what they are for. Since
DejaGNU finds test files no matter where they are located, and since each test file sets up
its own compilation and execution environment, this organization is simply for convenience
and intelligibility.

‘gdb.base’
This is the base testsuite. The tests in it should apply to all configurations of
gdb (but generic native-only tests may live here). The test programs should be
in the subset of C that is valid K&R, ANSI/ISO, and C++ (#ifdefs are allowed
if necessary, for instance for prototypes).

‘gdb.lang ’
Language-specific tests for any language lang besides C. Examples are ‘gdb.cp’
and ‘gdb.java’.

‘gdb.platform ’
Non-portable tests. The tests are specific to a specific configuration (host or
target), such as HP-UX or eCos. Example is ‘gdb.hp’, for HP-UX.

‘gdb.compiler ’
Tests specific to a particular compiler. As of this writing (June 1999), there
aren’t currently any groups of tests in this category that couldn’t just as sensibly
be made platform-specific, but one could imagine a ‘gdb.gcc’, for tests of gdb’s
handling of GCC extensions.

7 If you are using a board file, it could override the test-suite default; search the board file for "timeout".

Chapter 22: Testsuite 104

‘gdb.subsystem ’
Tests that exercise a specific gdb subsystem in more depth. For instance,
‘gdb.disasm’ exercises various disassemblers, while ‘gdb.stabs’ tests pathways
through the stabs symbol reader.

22.5 Writing Tests

In many areas, the gdb tests are already quite comprehensive; you should be able to copy
existing tests to handle new cases.

You should try to use gdb_test whenever possible, since it includes cases to handle all
the unexpected errors that might happen. However, it doesn’t cost anything to add new test
procedures; for instance, ‘gdb.base/exprs.exp’ defines a test_expr that calls gdb_test
multiple times.

Only use send_gdb and gdb_expect when absolutely necessary. Even if gdb has several
valid responses to a command, you can use gdb_test_multiple. Like gdb_test, gdb_
test_multiple recognizes internal errors and unexpected prompts.

Do not write tests which expect a literal tab character from gdb. On some operating
systems (e.g. OpenBSD) the TTY layer expands tabs to spaces, so by the time gdb’s output
reaches expect the tab is gone.

The source language programs do not need to be in a consistent style. Since gdb is used
to debug programs written in many different styles, it’s worth having a mix of styles in
the testsuite; for instance, some gdb bugs involving the display of source lines would never
manifest themselves if the programs used GNU coding style uniformly.

Some testcase results need more detailed explanation:

KFAIL Known problem of gdb itself. You must specify the gdb bug report number
like in these sample tests:

kfail "gdb/13392" "continue to marker 2"

or
setup_kfail gdb/13392 "*-*-*"

kfail "continue to marker 2"

XFAIL Known problem of environment. This typically includes gcc but it includes
also many other system components which cannot be fixed in the gdb project.
Sample test with sanity check not knowing the specific cause of the problem:

On x86_64 it is commonly about 4MB.

if {$stub_size > 25000000} {

xfail "stub size $stub_size is too large"

return

}

You should provide bug report number for the failing component of the envi-
ronment, if such bug report is available:

if {[test_compiler_info {gcc-[0-3]-*}]

|| [test_compiler_info {gcc-4-[0-5]-*}]} {

setup_xfail "gcc/46955" *-*-*

}

gdb_test "python print ttype.template_argument(2)" "&C::c"

Chapter 22: Testsuite 105

22.6 Board settings

In gdb testsuite, the tests can be configured or customized in the board file by means
of Board Settings. Each setting should be consulted by test cases that depend on the
corresponding feature.

Here are the supported board settings:

gdb,cannot_call_functions
The board does not support inferior call, that is, invoking inferior functions in
gdb.

gdb,can_reverse
The board supports reverse execution.

gdb,no_hardware_watchpoints
The board does not support hardware watchpoints.

gdb,nofileio
gdb is unable to intercept target file operations in remote and perform them
on the host.

gdb,noinferiorio
The board is unable to provide I/O capability to the inferior.

gdb,nosignals
The board does not support signals.

gdb,skip_huge_test
Skip time-consuming tests on the board with slow connection.

gdb,skip_float_tests
Skip tests related to float points on target board.

gdb,use_precord
The board supports process record.

gdb_server_prog
The location of GDBserver. If GDBserver somewhere other than its default
location is used in test, specify the location of GDBserver in this variable. The
location is a file name of GDBserver that can be either absolute or relative to
testsuite subdirectory in build directory.

in_proc_agent
The location of in-process agent. If in-process agent other than its default
location is used in test, specify the location of in-process agent in this variable.
The location is a file name of in-process agent that can be either absolute or
relative to testsuite subdirectory in build directory.

noargs gdb does not support argument passing for inferior.

no_long_long
The board does not support type long long.

use_gdb_stub
The tests are running with gdb stub.

Chapter 23: Hints 106

23 Hints

Check the ‘README’ file, it often has useful information that does not appear anywhere else
in the directory.

23.1 Getting Started

gdb is a large and complicated program, and if you first starting to work on it, it can be
hard to know where to start. Fortunately, if you know how to go about it, there are ways
to figure out what is going on.

This manual, the gdb Internals manual, has information which applies generally to many
parts of gdb.

Information about particular functions or data structures are located in comments with
those functions or data structures. If you run across a function or a global variable which
does not have a comment correctly explaining what is does, this can be thought of as a bug
in gdb; feel free to submit a bug report, with a suggested comment if you can figure out
what the comment should say. If you find a comment which is actually wrong, be especially
sure to report that.

Comments explaining the function of macros defined in host, target, or native dependent
files can be in several places. Sometimes they are repeated every place the macro is defined.
Sometimes they are where the macro is used. Sometimes there is a header file which supplies
a default definition of the macro, and the comment is there. This manual also documents
all the available macros.

Start with the header files. Once you have some idea of how gdb’s internal symbol tables
are stored (see ‘symtab.h’, ‘gdbtypes.h’), you will find it much easier to understand the
code which uses and creates those symbol tables.

You may wish to process the information you are getting somehow, to enhance your
understanding of it. Summarize it, translate it to another language, add some (perhaps
trivial or non-useful) feature to gdb, use the code to predict what a test case would do and
write the test case and verify your prediction, etc. If you are reading code and your eyes
are starting to glaze over, this is a sign you need to use a more active approach.

Once you have a part of gdb to start with, you can find more specifically the part you
are looking for by stepping through each function with the next command. Do not use step
or you will quickly get distracted; when the function you are stepping through calls another
function try only to get a big-picture understanding (perhaps using the comment at the
beginning of the function being called) of what it does. This way you can identify which of
the functions being called by the function you are stepping through is the one which you
are interested in. You may need to examine the data structures generated at each stage,
with reference to the comments in the header files explaining what the data structures are
supposed to look like.

Of course, this same technique can be used if you are just reading the code, rather than
actually stepping through it. The same general principle applies—when the code you are
looking at calls something else, just try to understand generally what the code being called
does, rather than worrying about all its details.

A good place to start when tracking down some particular area is with a command which
invokes that feature. Suppose you want to know how single-stepping works. As a gdb user,

Chapter 23: Hints 107

you know that the step command invokes single-stepping. The command is invoked via
command tables (see ‘command.h’); by convention the function which actually performs
the command is formed by taking the name of the command and adding ‘_command’, or
in the case of an info subcommand, ‘_info’. For example, the step command invokes
the step_command function and the info display command invokes display_info. When
this convention is not followed, you might have to use grep or M-x tags-search in emacs,
or run gdb on itself and set a breakpoint in execute_command.

If all of the above fail, it may be appropriate to ask for information on bug-gdb. But
never post a generic question like “I was wondering if anyone could give me some tips
about understanding gdb”—if we had some magic secret we would put it in this manual.
Suggestions for improving the manual are always welcome, of course.

23.2 Debugging gdb with itself

If gdb is limping on your machine, this is the preferred way to get it fully functional. Be
warned that in some ancient Unix systems, like Ultrix 4.2, a program can’t be running
in one process while it is being debugged in another. Rather than typing the command
./gdb ./gdb, which works on Suns and such, you can copy ‘gdb’ to ‘gdb2’ and then type
./gdb ./gdb2.

When you run gdb in the gdb source directory, it will read ‘gdb-gdb.gdb’ file (plus
possibly ‘gdb-gdb.py’ file) that sets up some simple things to make debugging gdb easier.
The info command, when executed without a subcommand in a gdb being debugged by
gdb, will pop you back up to the top level gdb. See ‘gdb-gdb.gdb’ for details.

If you use emacs, you will probably want to do a make TAGS after you configure your
distribution; this will put the machine dependent routines for your local machine where
they will be accessed first by M-.

Also, make sure that you’ve either compiled gdb with your local cc, or have run
fixincludes if you are compiling with gcc.

23.3 Submitting Patches

Thanks for thinking of offering your changes back to the community of gdb users. In general
we like to get well designed enhancements. Thanks also for checking in advance about the
best way to transfer the changes.

The gdb maintainers will only install “cleanly designed” patches. This manual summa-
rizes what we believe to be clean design for gdb.

If the maintainers don’t have time to put the patch in when it arrives, or if there is any
question about a patch, it goes into a large queue with everyone else’s patches and bug
reports.

The legal issue is that to incorporate substantial changes requires a copyright assign-
ment from you and/or your employer, granting ownership of the changes to the Free Soft-
ware Foundation. You can get the standard documents for doing this by sending mail to
gnu@gnu.org and asking for it. We recommend that people write in "All programs owned
by the Free Software Foundation" as "NAME OF PROGRAM", so that changes in many
programs (not just gdb, but GAS, Emacs, GCC, etc) can be contributed with only one
piece of legalese pushed through the bureaucracy and filed with the FSF. We can’t start

Appendix A: gdb Currently available observers 108

merging changes until this paperwork is received by the FSF (their rules, which we follow
since we maintain it for them).

Technically, the easiest way to receive changes is to receive each feature as a small
context diff or unidiff, suitable for patch. Each message sent to me should include the
changes to C code and header files for a single feature, plus ‘ChangeLog’ entries for each
directory where files were modified, and diffs for any changes needed to the manuals
(‘gdb/doc/gdb.texinfo’ or ‘gdb/doc/gdbint.texinfo’). If there are a lot of changes for
a single feature, they can be split down into multiple messages.

In this way, if we read and like the feature, we can add it to the sources with a single
patch command, do some testing, and check it in. If you leave out the ‘ChangeLog’, we
have to write one. If you leave out the doc, we have to puzzle out what needs documenting.
Etc., etc.

The reason to send each change in a separate message is that we will not install some
of the changes. They’ll be returned to you with questions or comments. If we’re doing our
job correctly, the message back to you will say what you have to fix in order to make the
change acceptable. The reason to have separate messages for separate features is so that
the acceptable changes can be installed while one or more changes are being reworked. If
multiple features are sent in a single message, we tend to not put in the effort to sort out
the acceptable changes from the unacceptable, so none of the features get installed until all
are acceptable.

If this sounds painful or authoritarian, well, it is. But we get a lot of bug reports and
a lot of patches, and many of them don’t get installed because we don’t have the time to
finish the job that the bug reporter or the contributor could have done. Patches that arrive
complete, working, and well designed, tend to get installed on the day they arrive. The
others go into a queue and get installed as time permits, which, since the maintainers have
many demands to meet, may not be for quite some time.

Please send patches directly to the gdb maintainers.

23.4 Build Script

The script ‘gdb_buildall.sh’ builds gdb with flag ‘--enable-targets=all’ set. This
builds gdb with all supported targets activated. This helps testing gdb when doing changes
that affect more than one architecture and is much faster than using ‘gdb_mbuild.sh’.

After building gdb the script checks which architectures are supported and then switches
the current architecture to each of those to get information about the architecture. The
test results are stored in log files in the directory the script was called from.

Appendix A gdb Currently available observers

A.1 Implementation rationale

An observer is an entity which is interested in being notified when GDB reaches certain
states, or certain events occur in GDB. The entity being observed is called the subject. To
receive notifications, the observer attaches a callback to the subject. One subject can have
several observers.

mailto:gdb-patches@sourceware.org

Appendix A: gdb Currently available observers 109

‘observer.c’ implements an internal generic low-level event notification mechanism.
This generic event notification mechanism is then re-used to implement the exported high-
level notification management routines for all possible notifications.

The current implementation of the generic observer provides support for contextual data.
This contextual data is given to the subject when attaching the callback. In return, the
subject will provide this contextual data back to the observer as a parameter of the callback.

Note that the current support for the contextual data is only partial, as it lacks a
mechanism that would deallocate this data when the callback is detached. This is not a
problem so far, as this contextual data is only used internally to hold a function pointer.
Later on, if a certain observer needs to provide support for user-level contextual data, then
the generic notification mechanism will need to be enhanced to allow the observer to provide
a routine to deallocate the data when attaching the callback.

The observer implementation is also currently not reentrant. In particular, it is therefore
not possible to call the attach or detach routines during a notification.

A.2 Debugging

Observer notifications can be traced using the command ‘set debug observer 1’ (see
Section “Optional messages about internal happenings” in Debugging with GDBN).

A.3 normal_stop Notifications

gdb notifies all normal_stop observers when the inferior execution has just stopped, the
associated messages and annotations have been printed, and the control is about to be
returned to the user.

Note that the normal_stop notification is not emitted when the execution stops due to
a breakpoint, and this breakpoint has a condition that is not met. If the breakpoint has
any associated commands list, the commands are executed after the notification is emitted.

The following interfaces are available to manage observers:

[Function]extern struct observer *observer attach event (observer event ftype
*f)

Using the function f, create an observer that is notified when ever event occurs, return
the observer.

[Function]extern void observer detach event (struct observer *observer);
Remove observer from the list of observers to be notified when event occurs.

[Function]extern void observer notify event (void);
Send a notification to all event observers.

The following observable events are defined:

[Function]void normal_stop (struct bpstats *bs, int print_frame)
The inferior has stopped for real. The bs argument describes the breakpoints were are
stopped at, if any. Second argument print frame non-zero means display the location
where the inferior has stopped.

Appendix A: gdb Currently available observers 110

[Function]void target_changed (struct target ops *target)
The target’s register contents have changed.

[Function]void executable_changed (void)
The executable being debugged by GDB has changed: The user decided to debug a
different program, or the program he was debugging has been modified since being
loaded by the debugger (by being recompiled, for instance).

[Function]void inferior_created (struct target ops *objfile, int from_tty)
gdb has just connected to an inferior. For ‘run’, gdb calls this observer while the infe-
rior is still stopped at the entry-point instruction. For ‘attach’ and ‘core’, gdb calls
this observer immediately after connecting to the inferior, and before any information
on the inferior has been printed.

[Function]void record_changed (struct inferior *inferior, int started)
The status of process record for inferior inferior in gdb has changed. The process
record is started if started is true, and the process record is stopped if started is false.

[Function]void solib_loaded (struct so list *solib)
The shared library specified by solib has been loaded. Note that when gdb calls this
observer, the library’s symbols probably haven’t been loaded yet.

[Function]void solib_unloaded (struct so list *solib)
The shared library specified by solib has been unloaded. Note that when gdb calls
this observer, the library’s symbols have not been unloaded yet, and thus are still
available.

[Function]void new_objfile (struct objfile *objfile)
The symbol file specified by objfile has been loaded. Called with objfile equal to NULL
to indicate previously loaded symbol table data has now been invalidated.

[Function]void new_thread (struct thread info *t)
The thread specified by t has been created.

[Function]void thread_exit (struct thread info *t, int silent)
The thread specified by t has exited. The silent argument indicates that gdb is
removing the thread from its tables without wanting to notify the user about it.

[Function]void thread_stop_requested (ptid t ptid)
An explicit stop request was issued to ptid. If ptid equals minus one ptid, the request
applied to all threads. If ptid_is_pid(ptid) returns true, the request applied to all
threads of the process pointed at by ptid. Otherwise, the request applied to the single
thread pointed at by ptid.

[Function]void target_resumed (ptid t ptid)
The target was resumed. The ptid parameter specifies which thread was resume, and
may be RESUME ALL if all threads are resumed.

[Function]void about_to_proceed (void)
The target is about to be proceeded.

Appendix A: gdb Currently available observers 111

[Function]void breakpoint_created (struct breakpoint *b)
A new breakpoint b has been created.

[Function]void breakpoint_deleted (struct breakpoint *b)
A breakpoint has been destroyed. The argument b is the pointer to the destroyed
breakpoint.

[Function]void breakpoint_modified (struct breakpoint *b)
A breakpoint has been modified in some way. The argument b is the modified break-
point.

[Function]void traceframe_changed (int tfnum, int tpnum)
The trace frame is changed to tfnum (e.g., by using the tfind command). If tfnum
is negative, it means gdb resumes live debugging. The number of the tracepoint
associated with this traceframe is tpnum.

[Function]void architecture_changed (struct gdbarch *newarch)
The current architecture has changed. The argument newarch is a pointer to the new
architecture.

[Function]void thread_ptid_changed (ptid t old_ptid, ptid t new_ptid)
The thread’s ptid has changed. The old ptid parameter specifies the old value, and
new ptid specifies the new value.

[Function]void inferior_added (struct inferior *inf)
The inferior inf has been added to the list of inferiors. At this point, it might not be
associated with any process.

[Function]void inferior_appeared (struct inferior *inf)
The inferior identified by inf has been attached to a process.

[Function]void inferior_exit (struct inferior *inf)
Either the inferior associated with inf has been detached from the process, or the
process has exited.

[Function]void inferior_removed (struct inferior *inf)
The inferior inf has been removed from the list of inferiors. This method is called
immediately before freeing inf.

[Function]void memory_changed (struct inferior *inferior, CORE ADDR addr,
ssize t len, const bfd byte *data)

Bytes from data to data + len have been written to the inferior at addr.

[Function]void before_prompt (const char *current_prompt)
Called before a top-level prompt is displayed. current prompt is the current top-level
prompt.

[Function]void gdb_datadir_changed (void)
Variable gdb datadir has been set. The value may not necessarily change.

Appendix B: GNU Free Documentation License 112

[Function]void command_param_changed (const char *param, const char *value)
The parameter of some set commands in console are changed. This method is called
after a command set param value . param is the parameter of set command, and
value is the value of changed parameter.

[Function]void tsv_created (const struct trace state variable *tsv)
The new trace state variable tsv is created.

[Function]void tsv_deleted (const struct trace state variable *tsv)
The trace state variable tsv is deleted. If tsv is NULL, all trace state variables are
deleted.

[Function]void tsv_modified (const struct trace state variable *tsv)
The trace state value tsv is modified.

[Function]void test_notification (int somearg)
This observer is used for internal testing. Do not use. See test-
suite/gdb.gdb/observer.exp.

Appendix B GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms

http://fsf.org/

Appendix B: GNU Free Documentation License 113

of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the

Appendix B: GNU Free Documentation License 114

title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
The “publisher” means any person or entity that distributes copies of the Document
to the public.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network

Appendix B: GNU Free Documentation License 115

protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published

Appendix B: GNU Free Documentation License 116

at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment

Appendix B: GNU Free Documentation License 117

to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

Appendix B: GNU Free Documentation License 118

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.
However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.
Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.
“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.
An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and

http://www.gnu.org/copyleft/

Appendix B: GNU Free Documentation License 119

subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

Concept Index 120

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Concept Index

$
$fp . 47
$pc . 46
$ps . 46
$sp . 46

A
a.out format . 31
abstract interpretation of function prologues 4
adding a new host . 36
adding a symbol-reading module 28
adding a target . 67
adding debugging info reader 33
adding source language . 34
address classes . 44
address representation . 42
address spaces, separate data and code 42
algorithms . 4
‘arch-tdep.c’ . 40
architecture representation . 40
Array Containers . 74
assumptions about targets . 85

B
base of a frame . 52

BFD library . 72
breakpoint address adjusted 60
breakpoints . 6
bug-gdb mailing list . 107
build script . 108

C
C data types . 78
call frame information . 4
call stack frame . 26
calls to the inferior . 56
CFI (call frame information) . 4
checkpoints . 13
cleanups . 80
CLI . 14
code pointers, word-addressed 42
coding standards . 77
COFF debugging info . 32
COFF format . 31
command implementation . 106
command interpreter . 14
comment formatting . 78
compiler warnings . 84
Compressed DWARF 2 debugging info 33
computed values . 25
‘configure.tgt’ . 40
converting between pointers and addresses 42

Concept Index 121

converting integers to addresses 62
cooked register representation 45
core files . 58

D
D10V addresses . 42
data output . 17
data-pointer, per-architecture/per-module 82
debugging gdb . 107
deprecating commands . 14
design . 85
DOS text files . 37
dummy frames . 56
DW AT address class . 44
DW AT byte size . 44
DWARF 2 debugging info . 33
DWARF 3 debugging info . 33

E
ECOFF debugging info . 33
ECOFF format . 32
ELF format . 32
execution state . 69
experimental branches . 89
expression evaluation routines 35
expression parser . 34

F
field output functions . 17
file names, portability . 86
finding a symbol . 30
fine-tuning gdbarch structure 38
first floating point register . 46
frame . 26
frame ID . 27
frame pointer . 47
frame, definition of base of a frame 52
frame, definition of innermost frame 52
frame, definition of NEXT frame 52
frame, definition of PREVIOUS frame 52
frame, definition of sentinel frame 52
frame, definition of sniffing . 52
frame, definition of THIS frame 52
frame, definition of unwinding 52
frame_base . 56
frame_unwind . 55
full symbol table . 29
function prologue . 52
function prototypes . 79
function usage . 78
fundamental types . 31

G
gdb source tree structure . 3

gdb_byte . 50
gdbarch . 40
gdbarch accessor functions . 41
gdbarch lookup . 40
gdbarch register architecture functions 45
gdbarch register information functions 47
gdbarch_info . 40
gdbarch_tdep definition . 41
gdbarch_tdep when allocating new gdbarch 41
generic host support . 36

H
hardware breakpoints . 6
hardware watchpoints . 8
host . 2
host, adding . 36

I
innermost frame . 52
insert or remove hardware breakpoint 7
insert or remove hardware watchpoint 9
insert or remove software breakpoint 7
item output functions . 17

L
language parser . 34
language support . 34
legal papers for code contributions 107
libgdb . 23
libiberty library . 73
line wrap in output . 83
list output functions . 15
longjmp debugging . 7
lookup symbol . 30
lval_type enumeration, for values. 25

M
making a new release of gdb 91
memory representation . 48
minimal symbol table . 29
minsymtabs . 29
multi-arch data . 82

N
native conditionals . 72
native debugging . 71
nesting level in ui_out functions 16
new year procedure . 91
NEXT frame . 52
normal_stop observer . 109
notification about inferior execution stop 109
notifications about changes in internals 13

Concept Index 122

O
object file formats . 31
observer pattern interface . 13
observers implementation rationale 108
obstacks . 73
opcodes library . 73
OS ABI variants . 37

P
partial symbol table . 30
PE-COFF format . 32
per-architecture module data 82
pointer representation . 42
portability . 85
portable file name handling . 86
porting to new machines . 87
PREVIOUS frame . 52
processor status register . 46
program counter . 6, 46
prologue analysis . 4
prologue cache . 52
prologue of a function . 52
‘prologue-value.c’ . 4
prompt . 37
pseudo-evaluation of function prologues 4
psymtabs . 29

R
raw register representation . 45
reading of symbols . 28
readline library . 73
register caching . 49
register data formats, converting 48
register representation . 48
regular expressions library . 74
Release Branches . 89
remote debugging support . 36
representation of architecture 40
representations, raw and cooked registers 45
representations, register and memory 48
requirements for gdb . 1
restart . 13
running the test suite . 100

S
secondary symbol file . 28
sentinel frame . 26, 52
separate data and code address spaces 42
serial line support . 36
set_gdbarch functions . 41
sniffing . 52
software breakpoints . 6
software watchpoints . 8
SOM debugging info . 33
SOM format . 32

source code formatting . 77
spaces, separate data and code address 42
stabs debugging info . 32
stack frame, definition of base of a frame 52
stack frame, definition of innermost frame 52
stack frame, definition of NEXT frame 52
stack frame, definition of PREVIOUS frame 52
stack frame, definition of sentinel frame 52
stack frame, definition of sniffing 52
stack frame, definition of THIS frame 52
stack frame, definition of unwinding 52
stack pointer . 46
status register . 46
struct gdbarch creation . 41
struct regcache . 49
struct value, converting register contents to . . 48
submitting patches . 107
sym_fns structure . 28
symbol files . 28
symbol lookup . 30
symbol reading . 28
symtabs . 29
system dependencies . 85

T
table output functions . 15
target . 2
target architecture definition 37
target dependent files . 67
target descriptions . 68
target descriptions, adding register support 68
target descriptions, implementation 68
target vector . 69
targets . 70
TCP remote support . 36
terminal device . 37
test suite . 100
test suite organization . 103
Testsuite Configuration . 102
THIS frame . 52
tuple output functions . 15
type codes . 31
types . 79

U
ui_out functions . 14
ui_out functions, usage examples 20
unwind frame . 26
unwinding . 52
using ui_out functions . 20

V
value structure . 25
values . 25
VEC . 74

Function and Variable Index 123

vendor branches . 89

W
watchpoints . 8
watchpoints, on x86 . 10
watchpoints, with threads . 10

word-addressed machines . 42
writing tests . 104

X
x86 debug registers . 10
XCOFF format . 32

Function and Variable Index

_initialize_arch_tdep 40, 67
_initialize_language . 35

A
about_to_proceed . 110
add_cmd . 14
add_com . 14
add_setshow_cmd . 14
add_setshow_cmd_full . 14
add_symtab_fns . 28
address_class_name_to_type_flags 58
address_class_name_to_type_flags_p 58
align_down . 53
align_up . 53
allocate_symtab . 35
architecture_changed . 111

B
before_prompt . 111
bfd_arch_info . 41
BIG_BREAKPOINT . 59
BPT_VECTOR . 66
BREAKPOINT . 59
breakpoint_created . 111
breakpoint_deleted . 111
breakpoint_modified . 111

C
command_param_changed . 112
core_addr_greaterthan . 53
core_addr_lessthan . 53
CRLF_SOURCE_FILES . 37
current_language . 35

D
DEFAULT_PROMPT . 37
deprecate_cmd . 14
DEPRECATED_IBM6000_TARGET 62
DEV_TTY . 37

DIRNAME_SEPARATOR . 86
DISABLE_UNSETTABLE_BREAK 61
discard_cleanups . 81
do_cleanups . 81

E
evaluate_subexp . 35
executable_changed . 110
extract_typed_address . 43

F
FILENAME_CMP . 86
find_pc_function . 30
find_pc_line . 30
find_sym_fns . 28
FOPEN_RB . 37
fp0_regnum . 46
frame_align . 53
frame_base_append_sniffer 55
frame_base_set_default . 55
frame_num_args . 54
frame_red_zone_size . 54
frame_register_unwind . 26
frame_unwind_append_sniffer 55
frame_unwind_append_unwinder 26
frame_unwind_got_address 28
frame_unwind_got_constant 28
frame_unwind_got_memory . 28
frame_unwind_got_optimized 27
frame_unwind_got_register 27
frame_unwind_prepend_unwinder 26

G
GCC_COMPILED_FLAG_SYMBOL 61
GCC2_COMPILED_FLAG_SYMBOL 61
gdb_datadir_changed . 111
GDB_OSABI_AIX . 39
GDB_OSABI_CYGWIN . 39
GDB_OSABI_FREEBSD_AOUT . 38
GDB_OSABI_FREEBSD_ELF . 38
GDB_OSABI_GO32 . 38

Function and Variable Index 124

GDB_OSABI_HPUX_ELF . 38
GDB_OSABI_HPUX_SOM . 38
GDB_OSABI_HURD . 38
GDB_OSABI_INTERIX . 38
GDB_OSABI_IRIX . 38
GDB_OSABI_LINUX . 38
GDB_OSABI_NETBSD_AOUT . 38
GDB_OSABI_NETBSD_ELF . 38
GDB_OSABI_OPENBSD_ELF . 38
GDB_OSABI_OSF1 . 38
GDB_OSABI_QNXNTO . 39
GDB_OSABI_SOLARIS . 38
GDB_OSABI_SVR4 . 38
GDB_OSABI_UNINITIALIZED . 38
GDB_OSABI_UNKNOWN . 38
GDB_OSABI_WINCE . 38
gdbarch_addr_bits_remove 58
gdbarch_address_class_name_to_type_flags

. 44
gdbarch_address_class_type_flags 44, 58
gdbarch_address_class_type_flags_p 59
gdbarch_address_class_type_flags_to_name

. 44, 59
gdbarch_address_class_type_flags_to_name_p

. 59
gdbarch_address_to_pointer 44, 59
gdbarch_adjust_breakpoint_address 60
gdbarch_alloc . 41
gdbarch_believe_pcc_promotion 59
gdbarch_bits_big_endian . 59
gdbarch_breakpoint_from_pc 59
gdbarch_call_dummy_location 61
gdbarch_cannot_fetch_register 61
gdbarch_cannot_store_register 61
gdbarch_char_signed . 65
gdbarch_convert_register_p 49, 61
gdbarch_data . 82
gdbarch_data_register_post_init 82
gdbarch_data_register_pre_init 82
gdbarch_decr_pc_after_break 61
gdbarch_deprecated_fp_regnum 65
gdbarch_double_bit . 66
gdbarch_dummy_id . 66
gdbarch_dwarf2_reg_to_regnum 61
gdbarch_ecoff_reg_to_regnum 61
gdbarch_float_bit . 66
gdbarch_fp0_regnum . 61
gdbarch_get_longjmp_target 7, 62
gdbarch_have_nonsteppable_watchpoint 9
gdbarch_in_function_epilogue_p 62
gdbarch_in_solib_return_trampoline 62
gdbarch_init_osabi . 39
gdbarch_int_bit . 66
gdbarch_integer_to_address 62
gdbarch_list_lookup_by_info 40
gdbarch_long_bit . 66
gdbarch_long_double_bit . 66
gdbarch_long_long_bit . 66

gdbarch_lookup_osabi . 39
gdbarch_memory_insert_breakpoint 60
gdbarch_memory_remove_breakpoint 60
gdbarch_osabi_name . 39
gdbarch_pointer_to_address 43, 63
gdbarch_print_insn . 66
gdbarch_ptr_bit . 66
gdbarch_push_dummy_call . 64
gdbarch_push_dummy_code . 64
gdbarch_register . 40, 67
gdbarch_register_osabi . 39
gdbarch_register_osabi_sniffer 39
gdbarch_register_to_value 49, 63
gdbarch_return_value . 64
gdbarch_sdb_reg_to_regnum 64
gdbarch_short_bit . 66
gdbarch_skip_permanent_breakpoint 65
gdbarch_skip_trampoline_code 65
gdbarch_stab_reg_to_regnum 65
gdbarch_stabs_argument_has_addr 64
gdbarch_value_to_register 49, 66
gdbarch_virtual_frame_pointer 66
gdbINIT_FILENAME . 37
generic_elf_osabi_sniff_abi_tag_sections

. 39
get_frame_register . 26
get_frame_type . 26

H
HAVE_CONTINUABLE_WATCHPOINT 10
HAVE_DOS_BASED_FILE_SYSTEM 86
HAVE_STEPPABLE_WATCHPOINT 9

I
i386_cleanup_dregs . 12
I386_DR_LOW_GET_STATUS . 11
I386_DR_LOW_RESET_ADDR . 11
I386_DR_LOW_SET_ADDR . 11
I386_DR_LOW_SET_CONTROL . 11
i386_insert_hw_breakpoint 12
i386_insert_watchpoint . 12
i386_region_ok_for_watchpoint 11
i386_remove_hw_breakpoint 12
i386_remove_watchpoint . 12
i386_stopped_by_watchpoint 12
i386_stopped_data_address 11
I386_USE_GENERIC_WATCHPOINTS 11
in_dynsym_resolve_code . 62
inferior_added . 111
inferior_appeared . 111
inferior_created . 110
inferior_exit . 111
inferior_removed . 111
inner_than . 53
IS_ABSOLUTE_PATH . 86
IS_DIR_SEPARATOR . 86

Function and Variable Index 125

ISATTY . 37

L
length_of_subexp . 35
lint . 37
LITTLE_BREAKPOINT . 59
LSEEK_NOT_LINEAR . 37

M
make_cleanup . 81
make_cleanup_ui_out_list_begin_end 17
make_cleanup_ui_out_tuple_begin_end 17
memory_changed . 111

N
NATDEPFILES . 71
new_objfile . 110
new_thread . 110
normal_stop . 109

O
op_print_tab . 35

P
parse_exp_1 . 35
pc_regnum . 46
prefixify_subexp . 35
print_float_info . 48
print_registers_info . 47
print_subexp . 35
print_vector_info . 48
PRINTF_HAS_LONG_LONG . 37
ps_regnum . 46
pseudo_register_read . 46
pseudo_register_write . 46
push_dummy_call . 57
push_dummy_code . 57

R
read_pc . 46
record_changed . 110
regcache_cooked_read . 50
regcache_cooked_read_signed 50
regcache_cooked_read_unsigned 50
regcache_cooked_write . 50
regcache_cooked_write_signed 50
regcache_cooked_write_unsigned 50
REGISTER_CONVERT_TO_RAW . 63
REGISTER_CONVERT_TO_VIRTUAL 63
register_name . 47
register_reggroup_p . 48

register_type . 47
regset_from_core_section 63
REMOTE_BPT_VECTOR . 67

S
SENTINEL_FRAME . 26
set_gdbarch_bits_big_endian 59
set_gdbarch_sofun_address_maybe_missing . . 63
skip_prologue . 53
SKIP_SOLIB_RESOLVER . 62
SLASH_STRING . 86
SOFTWARE_SINGLE_STEP . 63
SOFTWARE_SINGLE_STEP_P . 63
SOLIB_ADD . 72
SOLIB_CREATE_INFERIOR_HOOK 72
solib_loaded . 110
solib_unloaded . 110
sp_regnum . 46
START_INFERIOR_TRAPS_EXPECTED 72
STOPPED_BY_WATCHPOINT . 10
store_typed_address . 43
struct . 109

T
TARGET_CAN_USE_HARDWARE_WATCHPOINT 9
target_changed . 110
TARGET_CHAR_BIT . 65
target_insert_breakpoint . 7
target_insert_hw_breakpoint 7
target_insert_watchpoint . 9
TARGET_REGION_OK_FOR_HW_WATCHPOINT 9
target_remove_breakpoint . 7
target_remove_hw_breakpoint 7
target_remove_watchpoint . 9
target_resumed . 110
target_stopped_data_address 9
target_watchpoint_addr_within_range 9
test_notification . 112
thread_exit . 110
thread_ptid_changed . 111
thread_stop_requested . 110
traceframe_changed . 111
tsv_created . 112
tsv_deleted . 112
tsv_modified . 112

U
ui_out_field_core_addr . 18
ui_out_field_fmt . 18
ui_out_field_fmt_int . 18
ui_out_field_int . 18
ui_out_field_skip . 19
ui_out_field_stream . 18
ui_out_field_string . 18
ui_out_flush . 20

Function and Variable Index 126

ui_out_list_begin . 17
ui_out_list_end . 17
ui_out_message . 19
ui_out_spaces . 19
ui_out_stream_delete . 18
ui_out_stream_new . 18
ui_out_table_begin . 16
ui_out_table_body . 16
ui_out_table_end . 16
ui_out_table_header . 16
ui_out_text . 19
ui_out_tuple_begin . 17
ui_out_tuple_end . 17
ui_out_wrap_hint . 20
unwind_dummy_id . 57

unwind_pc . 54
unwind_sp . 54

V
value_as_address . 43
value_from_pointer . 43
void . 109
volatile . 37

W
wrap_here . 83
write_pc . 46

	Scope of this Document
	Summary
	Requirements
	Contributors

	Overall Structure
	The Symbol Side
	The Target Side
	Configurations
	Source Tree Structure

	Algorithms
	Prologue Analysis
	Breakpoint Handling
	Single Stepping
	Signal Handling
	Thread Handling
	Inferior Function Calls
	Longjmp Support
	Watchpoints
	Watchpoints and Threads
	x86 Watchpoints

	Checkpoints
	Observing changes in gdb internals

	User Interface
	Command Interpreter
	UI-Independent Output---the ui_out Functions
	Overview and Terminology
	General Conventions
	Table, Tuple and List Functions
	Item Output Functions
	Utility Output Functions
	Examples of Use of ui_out functions

	Console Printing
	TUI

	libgdb
	libgdb 1.0
	libgdb 2.0
	The libgdb Model
	CLI support
	libgdb components

	Values
	Values

	Stack Frames
	Selecting an Unwinder
	Unwinding the Frame ID
	Unwinding Registers

	Symbol Handling
	Symbol Reading
	Partial Symbol Tables
	Types
	Fundamental Types (e.g., FT_VOID, FT_BOOLEAN).
	Type Codes (e.g., TYPE_CODE_PTR, TYPE_CODE_ARRAY).
	Builtin Types (e.g., builtin_type_void, builtin_type_char).

	Object File Formats
	a.out
	COFF
	ECOFF
	XCOFF
	PE
	ELF
	SOM

	Debugging File Formats
	stabs
	COFF
	Mips debug (Third Eye)
	DWARF 2
	Compressed DWARF 2
	DWARF 3
	SOM

	Adding a New Symbol Reader to gdb
	Memory Management for Symbol Files

	Language Support
	Adding a Source Language to gdb

	Host Definition
	Adding a New Host
	Host Conditionals

	Target Architecture Definition
	Operating System ABI Variant Handling
	Initializing a New Architecture
	How an Architecture is Represented
	Looking Up an Existing Architecture
	Creating a New Architecture

	Registers and Memory
	Pointers Are Not Always Addresses
	Address Classes
	Register Representation
	Raw and Cooked Registers
	Functions and Variables Specifying the Register Architecture
	Functions Giving Register Information
	Using Different Register and Memory Data Representations
	Register Caching

	Frame Interpretation
	All About Stack Frames
	Frame Handling Terminology
	Prologue Caches
	Functions and Variable to Analyze Frames
	Functions to Access Frame Data
	Analyzing Stacks---Frame Sniffers

	Inferior Call Setup
	About Dummy Frames
	Functions Creating Dummy Frames

	Adding support for debugging core files
	Defining Other Architecture Features
	Adding a New Target

	Target Descriptions
	Target Descriptions Implementation
	Adding Target Described Register Support

	Target Vector Definition
	Managing Execution State
	Existing Targets
	File Targets
	Standard Protocol and Remote Stubs
	ROM Monitor Interface
	Custom Protocols
	Transport Layer
	Builtin Simulator

	Native Debugging
	ptrace
	/proc
	win32
	shared libraries
	Native Conditionals

	Support Libraries
	BFD
	opcodes
	readline
	libiberty
	obstacks in gdb

	gnu-regex
	Array Containers
	include

	Coding Standards
	gdb C Coding Standards
	ISO C
	Formatting
	Comments
	C Usage
	Function Prototypes
	File Names
	Include Files

	gdb Python Coding Standards
	gdb-specific exceptions

	Misc Guidelines
	Cleanups
	Per-architecture module data
	Wrapping Output Lines
	Memory Management
	Compiler Warnings
	Internal Error Recovery
	Command Names
	Clean Design and Portable Implementation

	Porting gdb
	Versions and Branches
	Versions
	Release Branches
	Vendor Branches
	Experimental Branches
	Guidelines
	Tags

	Start of New Year Procedure
	Releasing gdb
	Branch Commit Policy
	Obsoleting code
	Before the Branch
	Review the bug data base
	Check all cross targets build

	Cut the Branch
	Stabilize the branch
	Create a Release
	Create a release candidate
	Sanity check the tar ball
	Make a release candidate available
	Make a formal release available
	Cleanup

	Post release

	Testsuite
	Using the Testsuite
	Testsuite Parameters
	Testsuite Configuration
	Testsuite Organization
	Writing Tests
	Board settings

	Hints
	Getting Started
	Debugging gdb with itself
	Submitting Patches
	Build Script

	gdb Currently available observers
	Implementation rationale
	Debugging
	normal_stop Notifications

	GNU Free Documentation License
	Concept Index
	Function and Variable Index

