
Goby Underwater Autonomy Project

User Manual for Version 2.0
<https://launchpad.net/goby>

Contents

Contents 1

1 Introduction 3
1.1 What is Goby? . 3
1.2 Why Goby? . 3
1.3 Structure of this Manual . 4
1.4 How to get help . 4

2 The Hello World example 5
2.1 Meeting goby::core::ApplicationBase 6
2.2 Creating a simple Google Protocol Buffers Message: HelloWorldMsg . 7
2.3 Learning how to publish: HelloWorld1 9
2.4 Learning how to subscribe: HelloWorld2 11
2.5 Compiling our applications using CMake 12
2.6 Trying it all out: running from the command line 13
2.7 Code . 14

3 The GPS Driver example 18
3.1 Reading configuration from files and command line: DepthSimulator 18

1

https://launchpad.net/goby

CONTENTS 2

3.2 Our first useful application: GPSDriver 23
3.3 Subscribing for multiple types: NodeReporter 25
3.4 Putting it all together . 25
3.5 Reading the log files (SQLite3) . 26
3.6 Code . 27

4 Goby Underpinnings 43
4.1 Design Considerations . 43

5 What’s next 44

Glossary 45

Bibliography 47

1Introduction
Il semble que la perfection soit atteinte non quand
il n’y a plus rien à ajouter, mais quand il n’y a plus
rien à retrancher. (Perfection is achieved, not
when there is nothing more to add, but when
there is nothing left to take away.)

Antoine de Saint-Exupéry, Terre des Hommes
(1939)

1.1 What is Goby?

The Goby Underwater Autonomy Project allows your robotics software to commu-
nicate:

• between applications on a single robot.

• between robots (over common links, e.g. ethernet or more exotic links, e.g.
acoustic modems)

• between software written by collaborators in a different autonomy architec-
ture, like the MOOS [1] or LCM [2].

In Goby, you are free to design your applications as you like from scratch in your
choice of programming language, or take advantage of the rich base applications
provided in C++.

1.2 Why Goby?

Goby is designed to be easy to approach but not to limit you once you comprehend
it.

• It leverages a handful of open source projects to give reliable results when
you need them on your expensive robots.

• It gives you the tools to do your work without selling your soul to a particular
“right way” of doing things.

3

CHAPTER 1. INTRODUCTION 4

1.3 Structure of this Manual

Thismanual is structuredwith the beginnermaterial towards the beginning and the
advanced material at the back. In the beginning we will guide you but by the end
you are free to design your own systems, accepting or rejecting our advice. Please
read as far as you wish and then as soon as possible get your feet wet. In fact, you
may want to go download and install Goby now before reading further from the
Goby home page at https://launchpad.net/goby. Once you are familiar with
the workings of Goby, you will be interested in reading the separate Developers’
manual available at [3].
If you are already familiar with other autonomy architectures and want to see

what advantages Goby can add to your project, youmaywant to skip ahead to Chap-
ter 4 where we explain the workings of Goby from the bottom up.

1.4 How to get help

The Goby community is here to support you. This is an open source project so we
have limited time and resources, but you will find that many are willing to con-
tribute their help, with the hope that you will do the same as you gain experience.
Please consult these resources and people:

• The Goby Wiki: http://gobysoft.com/wiki.

• Questions andAnswers onLaunchpad: https://answers.launchpad.net/
goby.

• The developers’ documentation: http://gobysoft.com/doc.

• Email the listserver goby@mit.edu. Please sign up first: http://mailman.
mit.edu/mailman/listinfo/goby.

• Email the lead developer (T. Schneider): tes@mit.edu.

https://launchpad.net/goby
http://gobysoft.com/wiki
https://answers.launchpad.net/goby
https://answers.launchpad.net/goby
http://gobysoft.com/doc
mailto:goby@mit.edu
http://mailman.mit.edu/mailman/listinfo/goby
http://mailman.mit.edu/mailman/listinfo/goby
mailto:tes@mit.edu

2The Hello World example
“It’s a dangerous business, Frodo, going out of
your door,” he used to say. “You step into the
Road, and if you don’t keep your feet, there is no
knowing where you might be swept off to.”

J.R.R. Tolkien, The Fellowship of the Ring (1954)

As well as defining a wire protocol for information exchange in different mar-
shalling schemes, Goby provides a number of useful classes and applications that
are written in C++. We feel that C++ is a good blend of elegance, speed, and expres-
siveness, and we hope that you will come to agree. For next few chapters we will
cover these tools. If you are eager to learn about the Goby wire protocol or wish to
use Goby with another programming language, please refer to Chapter 4.
While the core of Goby is based on a number of advanced C++ techniques, you

only need a small amount of C++ knowledge to get startedwriting your ownGoby ap-
plication. If you are new to programming and C++, we recommend Prata’s C++ Primer
Plus [4]. If you are experienced in programming but new to C++, we recommend
Stroustrup’s The C++ Programming Language [5]. The website www.cplusplus.com is
an excellent online reference.
This complete example is located at the end of this chapter in section 2.7. It’s

probably a good idea to download and install Goby now so you can try this out for
yourself: https://launchpad.net/goby. There’s really no substitute for trying
(and breaking) things yourself.
This example involves passing a single type of message (class HelloWorldMsg)

from one Goby application (hello_world1_g1) to another (hello_world2_g). See Fig.
2.1 for a sketch of the components in this example. Since the default configuration
for Goby uses multicast communications, there is no daemon or server to concern
ourselves with. A good analogy to this multicast group is a meeting amongst peers.
Everyone is in the same room, but no one explicitly controls the conversation. Peo-
ple tune in (subscribe) for topics (messages) that interest them and ignore those
that do not.

hello_world1_g and hello_world2_g reside on the same platform, which for now
we will assume is the same computer. We will learn about inter-platform commu-
nication later on.

1you can name your applications whatever you want, but we like appending “ g” to the end to
indicate that this is a Goby application.

5

www.cplusplus.com
https://launchpad.net/goby

CHAPTER 2. THE HELLO WORLD EXAMPLE 6

hello_world1_g

class HelloWorld1
 extends goby::core::ApplicationBase

hello_world2_g

class HelloWorld2
 extends goby::core::ApplicationBase

class HelloWorldMsg
 extends google::protobuf::Message

Figure 2.1: In this example hello world1 g publishes messages of type
HelloWorldMsg to the subscriber hello world2 g.

2.1 Meeting goby::core::ApplicationBase

goby::core::ApplicationBase is the building block (base class) upon which we will
makeourGoby applications (whichwill be derived classes ofApplicationBase). ApplicationBase
provides us with a number of tools; the main ones are:

• a constructor ApplicationBase() that reads the command line parameters and
the configuration file (we will learn about this in Chapter 3) and connects to
the multicast group for us.

• a virtual method loop() that is called at a regular frequency (10 Hertz by de-
fault).

• a method subscribe() which tells gobyd that we wish to receive all messages
of this type.

• a method newest() which returns the newest (latest received) message of a
given type that we have previously called subscribe() for. We will learn how
to filter the subscriptions later.

• a method publish() allowing us to publish messages to the multicast group
and thereby to any subscribers of that type.

• an object goby::glog which acts just like std::cout and lets us write to our
choice of debug logs (terminal window / text file) with fine grained control
over the verbosity of the output.

CHAPTER 2. THE HELLO WORLD EXAMPLE 7

2.2 Creating a simple Google Protocol Buffers Message:
HelloWorldMsg

Google Protocol Buffers (protobuf) allows us to create custommessages for holding
and transmitting data in a structured (object-based) fashion. These protobuf mes-
sages are similar to data structures (structs) available in many languages. Trans-
mitting data typically is done in a long string of bytes. However, humans do not
view the world as a string of bytes. We think and communicate using tangible and
intangible objects. For example, a ball might be described by its diameter, color,
and weight. A message describing a baseball might be written in protobuf as such:

1 // ball.proto
2 message Ball
3 {
4 required double diameter = 1;
5 enum Color { WHITE = 1; BLACK = 2; SPOTTED = 3 }
6 optional Color color = 2;
7 optional double weight = 3;
8 }

We will learn the meaning of required, optional and the sequence numbers (=1, =2,
etc.) shortly.
Similarly, a sample from a CTD2 sensor can be thought of as an object containing

a number of floating point values representing salinity, temperature, pressure, etc.
In the protobuf language:

1 import "units_extensions.proto"
2 // ctd_sample.proto
3 message CTDSample
4 {
5 required double salinity = 1 [(units)="none"];
6 required double temperature = 2 [(units)="degC"];
7 required double depth = 3 [(units)="m"];
8 }

Goby (using protobuf objects) allowsmessages to be formed using thismore natural
object-based representation.
As you may have noticed from these examples, the protobuf language is simple

with a syntax similar to that of C. Protobuf messages are written in .proto files and
2Conductivity-Temperature-Depth

CHAPTER 2. THE HELLO WORLD EXAMPLE 8

hello_world.proto

hello_world.pb.h hello_world.pb.cc hello_world1.cpp

hello_world1_g

protoc (Protobuf Compiler)

c++ (C++ Compiler)

Protobuf Message file

C++ Source Code files

Executable application (binary)

Figure 2.2: The steps of compiling hello world1 g. We write the files
hello world.proto and hello world1.cpp and the rest are generated by tools
(protoc and c++.

passed to the protobuf compiler (protoc) which generates C++ code to pass to the
C++ compiler (c++, gcc on Linux). See Fig. 2.2 for a graphical representation of this
compilation process.
Protobuf messages can contain a number of basic types (or vectors of these

types) as well as nested messages. Fields are labeled as required, optional or re-
peated (essentially a vector). Required fields must be filled in; clearly, optional
fields can be omitted. This might be a good time to read the excellent Protocol
Buffers tutorial [6] to get a feel for the language and usage.
As you become familiarwith using protobuf, the language reference [7]will help

you in creating .proto files and the generated code reference [8] will assist you in
accessing the C++ classes created by the .proto files when passed through protoc.
For this example, we wish to send “hello world” (of course) so we need a string

to hold our message that we will call ‘telegram’:
required string telegram = 1;

The = 1 simply indicates that ‘telegram’ is the first field in themessage HelloWorldMsg.
Furthermore, we want to keep track of how many times we’ve said “hello” so we’ll
add an unsigned integer called ‘count’
required uint32 count = 2;

The resulting .proto file is given in section 2.7.1.
We chose ‘required’ to prefix both fields becausewe feel that a valid HelloWorldMsg

must contain both a ‘telegram’ and a ‘count.’ uint32 is an unsigned (non-negative)

CHAPTER 2. THE HELLO WORLD EXAMPLE 9

32 bit integer. The numbers following the “=” sign are unique identifiers for each
field. These numbers can be chosen however one likes as long as they are unique
within a given protobuf message. Ascending numbers in the order fields are de-
clared in the file is a reasonable choice.
This .proto file is “compiled” into a class with the same name as the message

(HelloWorldMsg). This class is accessed by including a header filewith the samename
as the .proto file, but with “.proto” replaced with “.pb.h”. Furthermore, we can set
the contents of this class using calls (“mutators” or “setters”) that are the same as
the field name (i.e. ‘telegram’ or ‘count’) prepended with “set ”:

1 // C++
2 #include "hello_world.pb.h"
3
4 // create and populate a ``HelloWorldMsg'' called `msg'
5 HelloWorldMsg msg;
6 msg.set_telegram("hello world");
7 msg.set_count(3);

and access them using these methods (“accessors” or “getters”) that have the
same function name as the field name:

1 // C++
2 // print information about `msg' to the screen
3 std::cout << msg.telegram() << ": " << msg.count() << std::endl;

2.3 Learning how to publish: HelloWorld1

To create a Goby application, one needs to

• create a derived class of goby::core::ApplicationBase. We also must include
the goby core header (#include "goby/core.h").

• create an overloaded loop()method (which can do nothing).

• run the applicationusing the goby::run() function. Because goby::core::ApplicationBase
reads our configuration (including command line options) for us, we also pass
argv and argc to run().

That is all one needs to create a valid working Goby application. All together
the “bare-bones” Goby application looks like:

CHAPTER 2. THE HELLO WORLD EXAMPLE 10

1 #include "goby/core.h"
2
3 class DoNothingApplication : public goby::core::ApplicationBase
4 {
5 void loop() {}
6 };
7
8 int main(int argc, char* argv[])
9 {
10 return goby::run<DoNothingApplication>(argc, argv);
11 }

However, we would like our application to do a little bit more.
ApplicationBase provides a pure virtual method called loop() that is called on

some regular interval (it is the synchronous event in Goby), by default 10 Hertz. By
overloading loop() in our derived class HelloWorld1, we can do any kind of syn-
chronous work that needs to be done without tying up the CPU all the time3. In
this example, we will create a simple message (of type HelloWorldMsgwhich we pre-
viously designed in section 2.2) and publish it to all subscribers (we create a sub-
scriber in section 2.4).
Let’s walk through each line of our loop()method:

1 void loop()
2 {
3 static int i = 0;
4 HelloWorldMsg msg;
5 msg.set_telegram("hello world!");
6 msg.set_count(++i);
7 goby::glog << "sending: " << msg << std::endl;
8 publish(msg);
9 }

• Line 1: loop() takes no arguments and returns nothing (void).

• Line 3: We declare a static integer4 to keep track of how many times we have
looped and thus print an increasing integer value.

• Line 4: We create an instantiation of HelloWorldMsg called msg.
3in between calls to loop(), ApplicationBase handles incoming subscribed messages
4static in this context means that the variable will keep its value across calls to the function

loop().

CHAPTER 2. THE HELLO WORLD EXAMPLE 11

• Line 5: We set the ‘telegram‘ field of the HelloWorldMsg named msg

• Line 6: We set the ‘count‘ field of msg and increment i.

• Line 7: We publish a human debugging logmessage using goby::glog (just like
std::cout or other std::ostreams), which will be put to the terminal window in
verbose mode5.

• Line 8: Finally, wepublish ourmessage. The entirety of the code for hello_world1_g
is listed in section 2.7.2.

2.4 Learning how to subscribe: HelloWorld2

Now that our hello_world1_g application is publishing a message, we would like to
create an application that subscribes for it. To subscribe for a message, we typically
provide two things:

• The type of the message we want to subscribe for (e.g. HelloWorldMsg).

• Amethod or function that should be calledwhenwe receive amessage of that
type (a callback).

Subscriptions typically takeplace in the constructor (here, HelloWorld2::HelloWorld2()),
but can happen at any time as needed (within loop(), for example). You subscribe
for a type once, and then you will continue to receive all other applications’ pub-
lishes to that type.
We subscribe for a type using a call to subscribe() that looks like this:

1 subscribe<HelloWorldMsg>(&HelloWorld2::receive_msg, this);

While a bit complicated at first, this call should make sense shortly. It reads
“subscribe for all messages of type HelloWorldMsg andwhen you receive one, call the
method HelloWorld2::receive_msg which is a member of this class (HelloWorld2).”6.
The method provided as a callback (here receive_msg()) must have the signature

5goby provides operator« for google::protobuf::Message objects as a wrapper for
google::protobuf::Message::DebugString()

6You can call a member function (method) of another class by passing the pointer to the desired
class instantiation instead of this. Alternatively, you can call a non-class function by just giving its
pointer, e.g. subscribe(&receive msg).

CHAPTER 2. THE HELLO WORLD EXAMPLE 12

1 void func(const ProtoBufMessage&);

where ProtoBufMessage is the type subscribed for (here, HelloWorldMsg). receive_msg()
has that signature

1 void HelloWorld2::receive_msg(const HelloWorldMsg& msg);

and thus is a valid callback for this subscription. After subscribing, receive_msg()
will be called immediately (an asynchronous event) upon receipt of a message of
type HelloWorldMsg unless

• loop() is in the process of being called or

• another message callback (for another subscribed type) is in the process of
being called.

In these cases, receive_msg() is called as soon as the blockingmethod returns. These
conditions allow Goby applications to be single threaded. Parallelism is gained
via multiple applications that communicate via messages, avoiding the extremely
tricky task of data access control (using ugly things like mutexes, semaphores, etc.)
For this example, inside of receive_msg() we simply post the message to the

debug log (goby:glog):

1 void receive_msg(const HelloWorldMsg& msg)
2 {
3 goby::glog << "received: " << msg << std::endl;
4 }

The full source listing for hello_world2_g can be found in section 2.7.3.

2.5 Compiling our applications using CMake

CMake [9], while still lacking in documentation, is probably the easiest way to build
software these days, especially for cross platformsupport. Iwill brieflywalk through
building a Goby application using CMakewithin the larger Goby examples configura-
tion (dependingonhowyou installedGoby, goby/share/examplesor /usr/share/goby/examples).
If you look at the CMakeLists.txt file in 2.7.4, you can see the steps needed to add
our new applications to the project:

CHAPTER 2. THE HELLO WORLD EXAMPLE 13

1 protobuf_generate_cpp(PROTO_SRCS PROTO_HDRS hello_world.proto)
2 add_executable(hello_world1_g hello_world1.cpp ${PROTO_SRCS} ${PROTO_HDRS})
3 target_link_libraries(hello_world1_g goby_core)

Line 1 tells CMake to add “hello world.proto” to the files needed to bepre-compiled
by the Google Protocol Buffers compiler protoc. protobuf generate cpp is provided
by the CMake module goby/cmake modules/FindProtobufGoby.cmake. Line 2 adds
our application hello_world1_g to the list to be compiled by the C++ compiler, using
the sources hello_world1.cpp and the generated Protocol Buffers code. We append
“ g” as a convention to quickly recognize Goby applications. Line 3 links our appli-
cation against the goby core library, which provides goby::core::ApplicationBase,
our base class. The process of steps CMake is using to compile our code is illustrated
in Fig. 2.2.
Adding hello_world2_g is directly analogous.

2.6 Trying it all out: running from the command line

Now, assuming you’ve compiled everything, we can run the example.
You’ll need two terminal windows, one for each of our “hello world” applica-

tions. Now we can launch our two applications (we can launch in either order but
if we start the publisher hello_world1_g after the subscriber hello_world2g, we will
miss the first few messages.). We add the “-v” flag to indicate we want verbose ter-
minal output and the “–no db” flag to indicate that we aren’t logging data to the
goby_database. You can always use “-h” to get help on the command line parame-
ters.

1 > hello_world2_g -v --no_db
2 > hello_world1_g -v --no_db

You should see hello_world1_g passingmessages to hello_world2_g every 1/10th
second.

2.6.1 hello world1 g output

1 hello_world1_g (20110421T123431.832807): (Warning): Not using
2 `goby_database`. You will want to ensure you are logging your

http://bazaar.launchpad.net/~goby-dev/goby/trunk/annotate/head:/cmake_modules/FindProtobufGoby.cmake

CHAPTER 2. THE HELLO WORLD EXAMPLE 14

3 runtime data somehow
4 hello_world1_g (20110421T123432.000169): sending: ### HelloWorldMsg ###
5 hello_world1_g (20110421T123432.000309): telegram: "hello world!"
6 hello_world1_g (20110421T123432.000382): count: 1
7 hello_world1_g (20110421T123432.000448):
8 hello_world1_g (20110421T123432.099503): sending: ### HelloWorldMsg ###
9 hello_world1_g (20110421T123432.099638): telegram: "hello world!"
10 hello_world1_g (20110421T123432.099707): count: 2
11 hello_world1_g (20110421T123432.099770):
12 hello_world1_g (20110421T123432.199695): sending: ### HelloWorldMsg ###
13 hello_world1_g (20110421T123432.199829): telegram: "hello world!"
14 hello_world1_g (20110421T123432.199898): count: 3
15 hello_world1_g (20110421T123432.199960):

The warning is emitted because of the “–no db” flag. That’s ok for now.

2.6.2 hello world2 g output

1 hello_world2_g (20110421T123524.001344): received: ### HelloWorldMsg ###
2 hello_world2_g (20110421T123524.001899): telegram: "hello world!"
3 hello_world2_g (20110421T123524.001959): count: 1
4 hello_world2_g (20110421T123524.002012):
5 hello_world2_g (20110421T123524.100828): received: ### HelloWorldMsg ###
6 hello_world2_g (20110421T123524.100916): telegram: "hello world!"
7 hello_world2_g (20110421T123524.100970): count: 2
8 hello_world2_g (20110421T123524.101021):
9 hello_world2_g (20110421T123524.201065): received: ### HelloWorldMsg ###
10 hello_world2_g (20110421T123524.201161): telegram: "hello world!"
11 hello_world2_g (20110421T123524.201215): count: 3
12 hello_world2_g (20110421T123524.201264):

2.7 Code

This entire example can be browsed online at http://bazaar.launchpad.net/
~goby-dev/goby/1.0/files/head:/share/examples/core/ex1_hello_world.

2.7.1 goby/share/examples/core/ex1 hello world/hello world.proto

1 // see http://code.google.com/apis/protocolbuffers/docs/cpptutorial.html
2 // http://code.google.com/apis/protocolbuffers/docs/proto.html
3

http://bazaar.launchpad.net/~goby-dev/goby/1.0/files/head:/share/examples/core/ex1_hello_world
http://bazaar.launchpad.net/~goby-dev/goby/1.0/files/head:/share/examples/core/ex1_hello_world

CHAPTER 2. THE HELLO WORLD EXAMPLE 15

4 message HelloWorldMsg
5 {
6 required string telegram = 1;
7 required uint32 count = 2;
8 }
9

2.7.2 goby/share/examples/core/ex1 hello world/hello world1.cpp

1 // for goby::core::ApplicationBase
2 #include "goby/core.h"
3
4 // autogenerated Protocol Buffers header
5 #include "hello_world.pb.h"
6
7 // allows us to directly output protobuf messages to streams
8 using goby::core::operator<<;
9
10 // create our Goby Application with ApplicationBase as a public base
11 class HelloWorld1 : public goby::core::ApplicationBase
12 {
13 private:
14 // loop() is a virtual method of ApplicationBase that is called
15 // at 10 Hz (by default)
16 void loop()
17 {
18 static int i = 0;
19 // create a message of type HelloWorldMsg (defined in
20 // hello_world.proto)
21 HelloWorldMsg msg;
22 // set the fields we need
23 msg.set_telegram("hello world!");
24 msg.set_count(++i);
25
26 goby::glog << "sending: " << msg << std::endl;
27
28 // publish it to `gobyd` who will send to all subscribers
29 publish(msg);
30
31 }
32 };
33
34 int main(int argc, char* argv[])
35 {

CHAPTER 2. THE HELLO WORLD EXAMPLE 16

36 // start up our application (ApplicationBase will read argc and
37 // argv for us)
38 return goby::run<HelloWorld1>(argc, argv);
39 }

2.7.3 goby/share/examples/core/ex1 hello world/hello world2.cpp

1 #include "goby/core.h"
2 #include "hello_world.pb.h"
3
4 using goby::core::operator<<;
5
6 class HelloWorld2 : public goby::core::ApplicationBase
7 {
8 public:
9 HelloWorld2()
10 {
11 // subscribe for all messages of type HelloWorldMsg
12 subscribe<HelloWorldMsg>(&HelloWorld2::receive_msg, this);
13 }
14
15 private:
16 void receive_msg(const HelloWorldMsg& msg)
17 {
18 // print to the log the newest received "HelloWorldMsg"
19 goby::glog << "received: " << msg << std::endl;
20 }
21
22 void loop()
23 { }
24 };
25
26 int main(int argc, char* argv[])
27 {
28 return goby::run<HelloWorld2>(argc, argv);
29 }

2.7.4 goby/share/examples/core/ex1 hello world/CMakeLists.txt

1 # tells CMake to generate the *.pb.h and *.pb.cc files from the *.proto
2 protobuf_generate_cpp(PROTO_SRCS PROTO_HDRS hello_world.proto)
3 include_directories(${CMAKE_CURRENT_BINARY_DIR})

CHAPTER 2. THE HELLO WORLD EXAMPLE 17

4
5
6 # add these executables to the project
7 add_executable(hello_world1_g hello_world1.cpp ${PROTO_SRCS} ${PROTO_HDRS})
8 add_executable(hello_world2_g hello_world2.cpp ${PROTO_SRCS} ${PROTO_HDRS})
9
10 # and link in the goby_core library
11 target_link_libraries(hello_world1_g goby_core)
12 target_link_libraries(hello_world2_g goby_core)
13

3The GPS Driver example
Man is the best computer we can put aboard a
spacecraft, and the only one that can be mass
produced with unskilled labor.

Werner von Braun

Robots, like people, need to know where they are. The simplest way now is
to use a GPS receiver. While this works only when the robot is on the surface of
the ocean, it is one of the most accurate forms of positioning available and thus
used as a starting point for undersea dead reckoning using Doppler Velocity Loggers
(DVLs) or Inertial Measurement Units (IMUs). Therefore, reading a GPS receiver’s
output into a usable form for decision making is a useful and necessary ability for
our marine robot. This example shows howwemight do this using Goby bymaking
an application gps_driver_g.
Typically we might also need to know the depth of our vehicle. This is often

determined by measuring the ambient pressure. In this example, we will simulate
the scalar depth reading of such a pressure sensor in depth_simulator_g.
Finally, it is often useful to have an aggregate of the vehicle’s status that includes

a snapshot of the vehicle’s location, orientation, speed, heading, and perhaps other
factors such as battery life and health. For this example, we call such a message
a NodeReport and provide an application node_reporter_g that compiles the reports
from the GPS and the depth sensor into a single message. To extend this example,
we could add data from other sources, such as an inertial measurement unit (IMU)
or Doppler Velocity Logger (DVL).
As the first example, the files for this example are located at the end of the

chapter in section 3.6.

3.1 Reading configuration from files and command line:
DepthSimulator

DepthSimulator reads a starting depth value from a configuration file and reports
that value as the current depth, perturbed slightly by a random value. It’s a prim-
itive constant depth simulator, but allows us to illustrate another feature of Goby,
the configuration file reader.
Goby reads configuration text files and the command line using protobuf, in a

similar manner messages are defined for passing between applications. The Goby
application author provides a .proto file containing a protobuf message that de-

18

CHAPTER 3. THE GPS DRIVER EXAMPLE 19

fines all possible valid configuration values for the given application in the form
of a protobuf message. Then the application instantiates a copy of this configu-
ration message and passes it to the goby::core::ApplicationBase constructor with
reads the configuration text file and/or command line options. If the configura-
tion text file and/or command line options properly populate the provided proper
configuration protobuf message, the message is returned to the derived class (the
Goby application). Otherwise, execution of the application ends with a useful error
message for the user explaining the errors involved with the passed configuration.
Thus, for the DepthSimulatorwedefine aprotobufmessage called DepthSimulatorConfig:

1 message DepthSimulatorConfig
2 {
3 required AppBaseConfig base = 1;
4 required double depth = 2;
5 }

An embeddedmessage of type AppBaseConfig is always provided for configuring
parameters common for all Goby applications, such as the frequency that the virtual
method loop() is called, the name (alias) that the application is to use to communi-
cate (if different from the compiled name), and the connection details (IP addresses,
ports, etc.). The AppBaseConfigmessage is defined in goby/src/core/proto/app base config.proto.
Specifically, for our DepthSimulator, we only have one other configuration pa-

rameter, a double called ‘depth’. It is required, so our application will fail to run
without a depth provided.
Touse theGoby configuration reader, we create an instantationof our DepthSimulatorConfig

1 class DepthSimulator : public goby::core::ApplicationBase
2 {
3 ...
4 static DepthSimulatorConfig cfg_;
5 };

which must either be a global object or a static member of our class1.
Then, all we must do is pass a pointer to that object to the constructor of the

base class:
1The configuration object must be a static member so that it is instantiated before the

goby::core::ApplicationBase since normal members of our DepthSimulator class would be
instantiated after ApplicationBase, which would lead to trouble when ApplicationBase tried to
use the object.

CHAPTER 3. THE GPS DRIVER EXAMPLE 20

1 DepthSimulator()
2 : goby::core::ApplicationBase(&cfg_)

goby::core::ApplicationBase will take of the rest. To see what configuration values
(with the correct syntax) can be used in our compiled depth_simulator_g, we can
run it with the -e flag:

1 > depth_simulator_g -e

which gives us a good list of options to choose from. For many of these, the
defaults will be fine for now.

1 base { # (req)
2 ethernet_address: "127.0.0.1" # primary IP address of the
3 # interface to multicast over
4 # (opt) (default="127.0.0.1")
5 multicast_address: "239.255.7.15" # multicast IP address to
6 # use;
7 # 239.252.0.0-239.255.255.255
8 # is recommended (site-local).
9 # See also
10 # http://www.iana.org/assignmen
11 # ts/multicast-addresses/multic
12 # ast-addresses.xml (opt)
13 # (default="239.255.7.15")
14 ethernet_port: 11142 # (opt) (default=11142)
15 platform_name: "unnamed_goby_platform" # same as self.name for
16 # gobyd cfg (opt)
17 # (default="unnamed_goby_p
18 # latform")
19 app_name: "myapp_g" # default is compiled name - change this
20 # to run multiple instances (opt)
21 verbosity: QUIET # Terminal verbosity (QUIET, WARN, VERBOSE,
22 # GUI, DEBUG1, DEBUG2, DEBUG3) (opt)
23 # (default=QUIET)
24 using_database: true # True if using goby_database, false if
25 # no database is to be run (opt)
26 # (default=true)
27 database_address: "127.0.0.1" # TCP address to send database
28 # requests on. If omitted and
29 # using_database==true,

CHAPTER 3. THE GPS DRIVER EXAMPLE 21

30 # `ethernet_address` is used (opt)
31 database_port: 11142 # TCP port to send database requests on.
32 # If omitted and using_database==true,
33 # `ethernet_port` is used (opt)
34 loop_freq: 10 # the frequency (Hz) used to run loop() (opt)
35 # (default=10)
36 }
37 depth: # (req)

Similarly, to see the allowed command line parameters we can run it with the
-h (or equivalently, --help) flag:

1 > depth_simulator_g --help

which should provides output2:

1 Allowed options:
2
3 Typically given in depth_simulator_g configuration file,
4 but may be specified on the command line:
5 --depth arg (req)
6
7 Given on command line only:
8 -c [--cfg_path] arg path to depth_simulator_g configuration file
9 (typically depth_simulator_g.cfg)
10 -h [--help] writes this help message
11 -a [--app_name] arg name to use while communicating in goby (default:
12 ./depth_simulator_g)
13 -e [--example_config] writes an example .pb.cfg file
14 -v [--verbose] arg output useful information to std::cout. -v is
15 verbosity: verbose, -vv is verbosity: debug1, -vvv
16 is verbosity: debug2, -vvvv is verbosity: debug3
17 -n [--ncurses] output useful information to an NCurses GUI instead
18 of stdout. If set, this parameter overrides
19 --verbose settings.
20 -d [--no_db] disables the check for goby_database before
21 publishing. You must set this if not running the
22 goby_database.

Thus, to configure depth_simulator_g I could create a text file (let’s say depth simulator.cfg)
with values like

2Some of the options are removed for brevity

CHAPTER 3. THE GPS DRIVER EXAMPLE 22

1 # depth_simulator.cfg
2 base
3 {
4 platform_name: "AUV-1"
5 loop_freq: 1
6 }
7
8 depth: 10.4

Then, when we run depth_simulator_gwe pass the path to the configuration file
as the first command line option:

1 > depth_simulator_g depth_simulator.cfg

If we didn’t want to use a configuration file, we could pass the same contents of
the depth simulator.cfg file given above on the command line instead:

1 > depth_simulator_g --base 'platform_name: "AUV-1" loop_freq: 1' --depth 10.4

If the same configuration values are provided in both the configuration file and
on the command line, they are merged for “repeat” fields. For “required” or “op-
tional” fields, the command line value overwrites the configuration file value.
Thus, if we run

1 > depth_simulator_g depth_simulator.cfg --depth 20.5

cfg_.depth() is 20.5 since the command line provided value takes precedence.
Some commonly used configuration values have shortcuts for the command

line. For example, the following two commands are equivalent ways to set the plat-
form name:

1 > depth_simulator_g --base 'platform_name: "AUV-1"'
2 > depth_simulator_g -p "AUV-1"

Other than reading a configuration file, all DepthSimulator does is repeatedly
write a message of type DepthReading (see section 3.6.2) based off a random offset to
the configuration value “depth”:

CHAPTER 3. THE GPS DRIVER EXAMPLE 23

1 void loop()
2 {
3 DepthReading reading;
4 // just post the depth given in the configuration file plus a small random offset
5 reading.set_depth(cfg_.depth() + (rand() % 10) / 10.0);
6
7 glogger() << reading << std::flush;
8 publish(reading);
9 }

Youwill note that depth reading.proto contains an import command and a field
of type ‘Header’:

1 import "goby/core/proto/header.proto";
2
3 message DepthReading
4 {
5 // time is in header
6 required Header header = 1;
7 required double depth = 2;
8 }

‘Header’ (defined in goby/src/core/proto/header.proto) provides commonlyused
fields such as time and source / destination addressing. It is highly recommended to
include this inmessages sent throughGoby, but not required. goby::core::ApplicationBase
will populate any required fields in ‘Header’ not given by DepthSimulator. For ex-
ample, if the ‘time’ is not set, goby::core::ApplicationBase will set the time based
on the time publish() was called. However ‘time’ should be set if the calling appli-
cation has a better time stamp for the message than the publish time (for example,
the time a sensor’s sample was taken).

3.2 Our first useful application: GPSDriver

GPSDriver doesn’t introduce any new features of Goby, but it attempts to be the first
non-trivial application we have seen thus far. GPSDriver connects to a NMEA-0183
compatible GPS receiver over a serial port, reads all the messages and parses the
GGA sentence into a useful protobuf message for posting to the database.

CHAPTER 3. THE GPS DRIVER EXAMPLE 24

3.2.1 Configuration

The configuration needed for GPSDriver all pertains to how the serial GPS receiver
is connected and how it communicates:

1 message GPSDriverConfig
2 {
3 required AppBaseConfig base = 1;
4
5 required string serial_port = 2;
6 optional uint32 serial_baud = 3 [default = 4800];
7 optional string end_line = 4 [default = "\r\n"];
8 }

Note the use of defaults when they are meaningful (the NMEA-0183 specifica-
tion requires carriage return (\r) and new line (\n) to signify the end of a line so this
default will likely often be precisely what our users want, saving them the effort of
specifying it every time).

3.2.2 Protobuf Messages

GPSDriver uses two protobuf messages both defined in gps nmea.proto (see section
3.6.7). The first (NMEASentence) is a parsed version of a generic NMEA-0183 message.
The second (GPSSentenceGGA) contains a NMEASentence but also the parsed fields of
the GGA positionmessage. Providing the GPSSentenceGGA gives all subscribers of this
message rapid access to useful data without parsing the original NMEA string again.

3.2.3 Body

GPSDriver should be straightforward to understand given what we have learned to
this point. It makes use of some utilities in the goby::util libraries, especially the
goby::util::SerialClient used for reading the serial port. These utilities are docu-
mented along with all the other Goby classes at http://gobysoft.com/doc.
Goby makes heavy use of the Boost libraries (http://www.boost.org). While

you are not required to use any of Boost when developing Goby applications, it
would beworth yourwhile becoming acquaintedwith them. For example, the Boost
Date-Time library gives a handy object oriented way to handle dates and times that
far exceeds the abilities of ctime (i.e. time.h).

http://gobysoft.com/doc
http://www.boost.org

CHAPTER 3. THE GPS DRIVER EXAMPLE 25

3.3 Subscribing for multiple types: NodeReporter

NodeReporter subscribes to both the output of DepthSimulator (DepthReading) and
GPSDriver (GPSSentenceGGA). Whenever either is published, a new NodeReport mes-
sage is created as the aggregate of pieces of bothmessages. The NodeReport (defined
in node report.proto in section 3.6.4) is a useful summation of the status of a given
node (synonomously, platform). Because DepthReading and GPSSentenceGGA are pub-
lished asynchronously, we also keep track of the delays between different parts of
the NodeReport message (the *_lag fields).
The NodeReport provides

1. Name of the platform

2. Type of the platform (e.g. AUV, buoy)

3. The global position of the vehicle in geodetic coordinates (latitude, longitude,
depth)

4. The local position of the vehicle in a local cartesian coordinate system (x, y,
z) based off the datum defined in the configuration. This is generally more
useful for vehicle operators than the global fix.

5. The Euler angles of the current vehicle pose: roll, pitch, yaw (heading).

6. The speed of the vehicle.

In this example, we only set the first three fields given above. The others would
require further sensing capability than we have in this example.

3.4 Putting it all together

First, we either need a real GPS unit or simulate one somehow. If you have a real
NMEA-0183 GPS handy, by all means use it. Otherwise, I’ve made a fake GPS using
socat and a log file of a real GPS (nmea.txt). This fake GPS can be run using

./fake_gps.sh nmea.txt

which writes a line from nmea.txt every second to the fake serial port /tmp/ttyFAKE.
This should be good enough for us here. If you don’t have socat, you should be able
to find it in thepackagemanager for your Linuxdistribution (sudo apt-get install socat
in Debian or Ubuntu).
Next we need to launch everything. The list is beginning to grow

CHAPTER 3. THE GPS DRIVER EXAMPLE 26

1 ./fake_gps.sh nmea.txt
2 ./gps_driver_g gps_driver_g.cfg -v
3 ./depth_simulator_g depth_simulator_g.cfg -v
4 ./node_reporter_g node_reporter_g.cfg -v
5 goby_database goby_database.cfg -vvv
6

but fortunatelywe’ve provided a script that launches everything for you in separate
terminal windows. So all you need to do is type

1 ./launch.sh

and enjoy the magic unfold. Should you wish to modify how things are launched,
just edit launch list.txt in goby/share/examples/core/ex2 gps driver.

3.5 Reading the log files (SQLite3)

Youmayhavenoticed that everytimeyou run gobyd it creates a log file called AUV-1_YYYYMMDDTHHMMSS_goby.db.
This is an SQLite3 [10] Structured Query Language (SQL) database. Every variable
published in Goby is written to this database. To read it, you need a tool capable
of reading SQLite3 databases. One candidate is the sqlite3 command line tool. The
followingwill dump to your screen all the DepthReading values recorded. Using the
interactive mode:

1 sqlite3 AUV-1_20110304T212549_goby.db
2 sqlite> .mode column
3 sqlite> .headers ON
4 sqlite> SELECT * FROM DepthReading;

or similarly on the command line only

1 sqlite3 -header -column AUV-1_20110304T212549_goby.db "SELECT * FROM DepthReading"

If a Graphical User Interface (GUI) is more your style, http://www.sqlite.
org/cvstrac/wiki?p=ManagementToolshas awhole list. Mypreference is Sqlite-
man, accessible in Ubuntu with sudo apt-get install sqliteman. Then it’s just a
matter of loading up the database and away you go:

http://www.sqlite.org/cvstrac/wiki?p=ManagementTools
http://www.sqlite.org/cvstrac/wiki?p=ManagementTools

CHAPTER 3. THE GPS DRIVER EXAMPLE 27

1 sqliteman AUV-1_20110304T212549_goby.db

3.6 Code

This entire example can be browsed online at http://bazaar.launchpad.net/
~goby-dev/goby/1.0/files/head:/share/examples/core/ex2_gps_driver.

3.6.1 goby/share/examples/core/ex2 gps driver/config.proto

1 import "goby/protobuf/option_extensions.proto";
2 import "goby/protobuf/app_base_config.proto";
3
4 message GPSDriverConfig
5 {
6 required AppBaseConfig base = 1;
7
8 required string serial_port = 2;
9 optional uint32 serial_baud = 3 [default = 4800];
10 optional string end_line = 4 [default = "\r\n"];
11 }
12
13 message NodeReporterConfig
14 {
15 required AppBaseConfig base = 1;
16 }
17
18 message DepthSimulatorConfig
19 {
20 required AppBaseConfig base = 1;
21 required double depth = 2;
22 }

3.6.2 goby/share/examples/core/ex2 gps driver/depth reading.proto

1 import "goby/protobuf/header.proto";
2
3 message DepthReading
4 {
5 // time is in header
6 required Header header = 1;

http://bazaar.launchpad.net/~goby-dev/goby/1.0/files/head:/share/examples/core/ex2_gps_driver
http://bazaar.launchpad.net/~goby-dev/goby/1.0/files/head:/share/examples/core/ex2_gps_driver

CHAPTER 3. THE GPS DRIVER EXAMPLE 28

7 required double depth = 2;
8 }

3.6.3 goby/share/examples/core/ex2 gps driver/depth simulator.cpp

1 #include <cstdlib> // for rand
2
3 #include "goby/core.h"
4
5 #include "config.pb.h"
6 #include "depth_reading.pb.h"
7
8 using goby::core::operator<<;
9
10 class DepthSimulator : public goby::core::ApplicationBase
11 {
12 public:
13 DepthSimulator()
14 : goby::core::ApplicationBase(&cfg_)
15 { }
16
17 void loop()
18 {
19 DepthReading reading;
20 // just post the depth given in the configuration file plus a
21 // small random offset
22 reading.set_depth(cfg_.depth() + (rand() % 10) / 10.0);
23
24 goby::glog << reading << std::flush;
25 publish(reading);
26 }
27
28 static DepthSimulatorConfig cfg_;
29 };
30
31 DepthSimulatorConfig DepthSimulator::cfg_;
32
33 int main(int argc, char* argv[])
34 {
35 return goby::run<DepthSimulator>(argc, argv);
36 }
37

CHAPTER 3. THE GPS DRIVER EXAMPLE 29

3.6.4 goby/share/examples/core/ex2 gps driver/node report.proto

1 import "goby/protobuf/header.proto";
2 import "goby/protobuf/app_base_config.proto";
3 import "goby/protobuf/config.proto";
4
5 message NodeReport
6 {
7 required Header header = 1;
8 required string name = 2;
9
10 // defined in goby/core/proto/config.proto
11 optional goby.core.proto.VehicleType type = 3;
12
13 // lat, lon, depth
14 required GeodeticCoordinate global_fix = 4;
15 // x, y, z on local cartesian grid
16 optional CartesianCoordinate local_fix = 5;
17
18 // roll, pitch, yaw
19 optional EulerAngles pose = 7;
20
21 // speed over ground (not relative to water or surface)
22 optional double speed = 8;
23 optional SourceSensor speed_source = 9;
24 optional double speed_time_lag = 11;
25
26 }
27
28 enum SourceSensor { GPS = 1;
29 DEAD_RECKONING = 2;
30 INERTIAL_MEASUREMENT_UNIT = 3;
31 PRESSURE_SENSOR = 4;
32 COMPASS = 5;
33 SIMULATION = 6;}
34
35 message GeodeticCoordinate
36 {
37 required double lat = 1;
38 required double lon = 2;
39 optional double depth = 3 [default = 0]; // negative of "height"
40 optional double altitude = 4;
41
42 optional SourceSensor lat_source = 5;
43 optional SourceSensor lon_source = 6;
44 optional SourceSensor depth_source = 7;
45 optional SourceSensor altitude_source = 8;

CHAPTER 3. THE GPS DRIVER EXAMPLE 30

46
47 // time lags (in seconds) from the message Header time
48 optional double lat_time_lag = 9;
49 optional double lon_time_lag = 10;
50 optional double depth_time_lag = 11;
51 optional double altitude_time_lag = 12;
52 }
53
54 // computed from GeodeticCoordinate
55 message CartesianCoordinate
56 {
57 required double x = 1;
58 required double y = 2;
59 optional double z = 3 [default = 0]; // negative of "depth"
60 }
61
62 // all in degrees
63 message EulerAngles
64 {
65 optional double roll = 1;
66 optional double pitch = 2;
67 optional double yaw = 3; // also known as "heading"
68
69 optional SourceSensor roll_source = 4;
70 optional SourceSensor pitch_source = 5;
71 optional SourceSensor yaw_source = 6;
72
73 // time lags (in seconds) from the message Header time
74 optional double roll_time_lag = 7;
75 optional double pitch_time_lag = 8;
76 optional double yaw_time_lag = 9;
77 }
78

3.6.5 goby/share/examples/core/ex2 gps driver/node reporter.h

1 #ifndef NODEREPORTER20101225H
2 #define NODEREPORTER20101225H
3
4 #include "goby/core.h"
5 #include "config.pb.h"
6
7 #include "gps_nmea.pb.h"
8 #include "depth_reading.pb.h"

CHAPTER 3. THE GPS DRIVER EXAMPLE 31

9
10 class NodeReporter : public goby::core::ApplicationBase
11 {
12 public:
13 NodeReporter();
14 ~NodeReporter();
15
16
17 private:
18 void create_node_report(const GPSSentenceGGA& gga,
19 const DepthReading& depth);
20
21 void handle_depth(const DepthReading& reading)
22 {
23 create_node_report(newest<GPSSentenceGGA>(), reading);
24 }
25
26 void handle_gps(const GPSSentenceGGA& gga)
27 {
28 create_node_report(gga, newest<DepthReading>());
29 }
30
31 void loop() {}
32
33 static NodeReporterConfig cfg_;
34 };
35
36 #endif

3.6.6 goby/share/examples/core/ex2 gps driver/node reporter.cpp

1
2 #include "node_reporter.h"
3
4 #include "node_report.pb.h"
5
6 using goby::core::operator<<;
7
8 NodeReporterConfig NodeReporter::cfg_;
9
10 int main(int argc, char* argv[])
11 {
12 return goby::run<NodeReporter>(argc, argv);
13 }

CHAPTER 3. THE GPS DRIVER EXAMPLE 32

14
15 NodeReporter::NodeReporter()
16 : goby::core::ApplicationBase(&cfg_)
17 {
18 // from Pressure Sensor Simulator
19 subscribe<DepthReading>(&NodeReporter::handle_depth, this);
20
21 // from GPS Driver
22 subscribe<GPSSentenceGGA>(&NodeReporter::handle_gps, this);
23 }
24
25 NodeReporter::~NodeReporter()
26 { }
27
28
29 void NodeReporter::create_node_report(const GPSSentenceGGA& gga,
30 const DepthReading& depth_reading)
31 {
32 if(!(gga.IsInitialized() && depth_reading.IsInitialized()))
33 {
34 goby::glog << warn << "need both GPSSentenceGGA and DepthReading "
35 << "message to proceed" << std::endl;
36 return;
37 }
38
39 goby::glog << gga << "\n" << depth_reading << std::endl;
40
41
42 // make an abstracted position and pose aggregate from the newest
43 // readings for consumption by other processes
44 NodeReport report;
45
46 // use the time from the GGA message as the base message time
47 report.mutable_header()->set_time(gga.header().time());
48 report.set_name(cfg_.base().platform_name());
49 // report.set_type(global_cfg().self().type());
50
51 GeodeticCoordinate* global_fix = report.mutable_global_fix();
52 global_fix->set_lat(gga.lat());
53 global_fix->set_lon(gga.lon());
54
55 // we set message time from GPS GGA, so no lag
56 global_fix->set_lat_time_lag(0);
57 global_fix->set_lon_time_lag(0);
58
59 global_fix->set_lat_source(GPS);

CHAPTER 3. THE GPS DRIVER EXAMPLE 33

60 global_fix->set_lon_source(GPS);
61
62 // set the depth sensor data
63 global_fix->set_depth(depth_reading.depth());
64 global_fix->set_depth_source(SIMULATION);
65
66 using namespace boost::posix_time;
67 using goby::util::as;
68 time_duration lag = as<ptime>(gga.header().time())-as<ptime>(depth_reading.header().time());
69
70 global_fix->set_depth_time_lag(lag.total_nanoseconds()/1.0e9);
71
72 // TODO(tes): compute the local coordinates
73
74 // in a better world we would want data for altitude, speed and
75 // Euler angles too!
76 goby::glog << report << std::flush;
77
78 publish(report);
79
80 }

3.6.7 goby/share/examples/core/ex2 gps driver/gps nmea.proto

1 import "goby/protobuf/header.proto";
2
3 message NMEASentence
4 {
5 // e.g. "GP"
6 required string talker_id = 1;
7 // e.g. "GGA"
8 required string sentence_id = 2;
9 // e.g. 71
10 required uint32 checksum = 3;
11 // e.g. part[0] = $GPGGA
12 // part[1] = 123519
13 // part[2] = 4807.038
14 // part[3] = N
15 // and so on
16 repeated string part = 4;
17 }
18
19 message GPSSentenceGGA
20 {

CHAPTER 3. THE GPS DRIVER EXAMPLE 34

21 // time is in header
22 required Header header = 1;
23 required NMEASentence nmea = 2;
24
25 // decimal degrees
26 required double lat = 3;
27 required double lon = 4;
28
29 enum FixQuality
30 {
31 INVALID = 0;
32 GPS_FIX = 1;
33 DGPS_FIX = 2;
34 PPS_FIX = 3;
35 REAL_TIME_KINEMATIC = 4;
36 FLOAT_RTK = 5;
37 ESTIMATED = 6;
38 MANUAL_MODE = 7;
39 SIMULATION_MODE = 8;
40 }
41 required FixQuality fix_quality = 5;
42 required uint32 num_satellites = 6;
43 required float horiz_dilution = 7;
44 required double altitude = 8;
45 required double geoid_height = 9;
46 }

3.6.8 goby/share/examples/core/ex2 gps driver/gps driver.h

1 #ifndef GPSDRIVER20101014H
2 #define GPSDRIVER20101014H
3
4 #include "goby/core.h"
5 #include "goby/util/time.h"
6 // for serial driver
7 #include "goby/util/linebasedcomms.h"
8 #include "config.pb.h"
9
10 // forward declare (from gps_nmea.proto)
11 class NMEASentence;
12 class GPSSentenceGGA;
13
14 class GPSDriver : public goby::core::ApplicationBase
15 {

CHAPTER 3. THE GPS DRIVER EXAMPLE 35

16 public:
17 GPSDriver();
18 ~GPSDriver();
19
20
21 private:
22 void loop();
23 boost::posix_time::ptime nmea_time2ptime(const std::string& nmea_time);
24 void string2nmea_sentence(std::string in, NMEASentence* out);
25 void set_gga_specific_fields(GPSSentenceGGA* gga);
26
27 goby::util::SerialClient serial_;
28 static GPSDriverConfig cfg_;
29 };
30
31 // very simple exception classes
32 class bad_nmea_sentence : public std::runtime_error
33 {
34 public:
35 bad_nmea_sentence(const std::string& s)
36 : std::runtime_error(s)
37 { }
38 };
39
40 class bad_gga_sentence : public std::runtime_error
41 {
42 public:
43 bad_gga_sentence(const std::string& s)
44 : std::runtime_error(s)
45 { }
46 };
47
48
49 #endif

3.6.9 goby/share/examples/core/ex2 gps driver/gps driver.cpp

1 #include "gps_driver.h"
2
3 #include "gps_nmea.pb.h"
4
5 #include "goby/util/binary.h" // for goby::util::hex_string2number
6 #include "goby/util/string.h" // for goby::util::as
7

CHAPTER 3. THE GPS DRIVER EXAMPLE 36

8 using goby::core::operator<<;
9
10 GPSDriverConfig GPSDriver::cfg_;
11
12 int main(int argc, char* argv[])
13 {
14 return goby::run<GPSDriver>(argc, argv);
15 }
16
17 GPSDriver::GPSDriver()
18 : goby::core::ApplicationBase(&cfg_),
19 serial_(cfg_.serial_port(), cfg_.serial_baud(), cfg_.end_line())
20 {
21 serial_.start();
22 }
23
24 GPSDriver::~GPSDriver()
25 {
26 serial_.close();
27 }
28
29 void GPSDriver::loop()
30 {
31 std::string in;
32 while(serial_.readline(&in))
33 {
34 goby::glog << "raw NMEA: " << in << std::flush;
35
36 // parse
37 NMEASentence nmea;
38 try
39 {
40 string2nmea_sentence(in, &nmea);
41 }
42 catch (bad_nmea_sentence& e)
43 {
44 goby::glog << warn << "bad NMEA sentence: " << e.what()
45 << std::endl;
46 }
47
48 if(nmea.sentence_id() == "GGA")
49 {
50 goby::glog << "This is a GGA type message." << std::endl;
51
52 // create the message we send on the wire
53 GPSSentenceGGA gga;

CHAPTER 3. THE GPS DRIVER EXAMPLE 37

54 // copy the raw message (in case later users want to do their
55 // own parsing)
56 gga.mutable_nmea()->CopyFrom(nmea);
57
58 try
59 {
60 set_gga_specific_fields(&gga);
61
62 // parse the time stamp
63 using goby::util::as;
64 gga.mutable_header()->set_time(as<std::string>(nmea_time2ptime(nmea.part(1))));
65 goby::glog << gga << std::flush;
66
67 publish(gga);
68 }
69 catch(bad_gga_sentence& e)
70 {
71 goby::glog << warn << "bad GGA sentence: " << e.what()
72 << std::endl;
73 }
74
75 }
76
77 }
78 }
79
80
81 // from http://www.gpsinformation.org/dale/nmea.htm#GGA
82 // GGA - essential fix data which provide 3D location and accuracy data.
83 // $GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47
84 // Where:
85 // GGA Global Positioning System Fix Data
86 // 123519 Fix taken at 12:35:19 UTC
87 // 4807.038,N Latitude 48 deg 07.038' N
88 // 01131.000,E Longitude 11 deg 31.000' E
89 // 1 Fix quality: 0 = invalid
90 // 1 = GPS fix (SPS)
91 // 2 = DGPS fix
92 // 3 = PPS fix
93 // 4 = Real Time Kinematic
94 // 5 = Float RTK
95 // 6 = estimated (dead reckoning)
96 // (2.3 feature)
97 // 7 = Manual input mode
98 // 8 = Simulation mode
99 // 08 Number of satellites being tracked

CHAPTER 3. THE GPS DRIVER EXAMPLE 38

100 // 0.9 Horizontal dilution of position
101 // 545.4,M Altitude, Meters, above mean sea level
102 // 46.9,M Height of geoid (mean sea level) above WGS84
103 // ellipsoid
104 // (empty field) time in seconds since last DGPS update
105 // (empty field) DGPS station ID number
106 // *47 the checksum data, always begins with *
107 // If the height of geoid is missing then the altitude should be suspect.
108 // Some non-standard implementations report altitude with respect to the
109 // ellipsoid rather than geoid altitude. Some units do not report negative
110 // altitudes at all. This is the only sentence that reports altitude.
111
112 void GPSDriver::set_gga_specific_fields(GPSSentenceGGA* gga)
113 {
114 using goby::util::as;
115 const NMEASentence& nmea = gga->nmea();
116
117 const std::string& lat_string = nmea.part(2);
118
119 if(lat_string.length() > 2)
120 {
121 double lat_deg = as<double>(lat_string.substr(0, 2));
122 double lat_min = as<double>(lat_string.substr(2, lat_string.size()));
123 double lat = lat_deg + lat_min / 60;
124 gga->set_lat((nmea.part(3) == "S") ? -lat : lat);
125 }
126 else
127 {
128 throw(bad_gga_sentence("invalid latitude field"));
129 }
130
131 const std::string& lon_string = nmea.part(4);
132 if(lon_string.length() > 2)
133 {
134 double lon_deg = as<double>(lon_string.substr(0, 3));
135 double lon_min = as<double>(lon_string.substr(3, nmea.part(4).size()));
136 double lon = lon_deg + lon_min / 60;
137 gga->set_lon((nmea.part(5) == "W") ? -lon : lon);
138 }
139 else
140 throw(bad_gga_sentence("invalid longitude field: " + nmea.part(4)));
141
142 switch(goby::util::as<int>(nmea.part(6)))
143 {
144 default:
145 case 0: gga->set_fix_quality(GPSSentenceGGA::INVALID); break;

CHAPTER 3. THE GPS DRIVER EXAMPLE 39

146 case 1: gga->set_fix_quality(GPSSentenceGGA::GPS_FIX); break;
147 case 2: gga->set_fix_quality(GPSSentenceGGA::DGPS_FIX); break;
148 case 3: gga->set_fix_quality(GPSSentenceGGA::PPS_FIX); break;
149 case 4: gga->set_fix_quality(GPSSentenceGGA::REAL_TIME_KINEMATIC);
150 break;
151 case 5: gga->set_fix_quality(GPSSentenceGGA::FLOAT_RTK); break;
152 case 6: gga->set_fix_quality(GPSSentenceGGA::ESTIMATED); break;
153 case 7: gga->set_fix_quality(GPSSentenceGGA::MANUAL_MODE); break;
154 case 8: gga->set_fix_quality(GPSSentenceGGA::SIMULATION_MODE); break;
155 }
156
157 gga->set_num_satellites(goby::util::as<int>(nmea.part(7)));
158 gga->set_horiz_dilution(goby::util::as<float>(nmea.part(8)));
159 gga->set_altitude(goby::util::as<double>(nmea.part(9)));
160 gga->set_geoid_height(goby::util::as<double>(nmea.part(11)));
161 }
162
163 // converts a NMEA0183 sentence string into a class representation
164 void GPSDriver::string2nmea_sentence(std::string in, NMEASentence* out)
165 {
166
167 // Silently drop leading/trailing whitespace if present.
168 boost::trim(in);
169
170 // Basic error checks ($, empty)
171 if (in.empty())
172 throw bad_nmea_sentence("message provided.");
173 if (in[0] != '$')
174 throw bad_nmea_sentence("no $: '" + in + "'.");
175 // Check if the checksum exists and is correctly placed, and strip it.
176 // If it's not correctly placed, we'll interpret it as part of message.
177 // NMEA spec doesn't seem to say that * is forbidden elsewhere?
178 // (should be)
179 if (in.size() > 3 && in.at(in.size()-3) == '*') {
180 std::string hex_csum = in.substr(in.size()-2);
181 int cs;
182 if(goby::util::hex_string2number(hex_csum, cs))
183 out->set_checksum(cs);
184 in = in.substr(0, in.size()-3);
185 }
186
187 // Split string into parts.
188 size_t comma_pos = 0, last_comma_pos = 0;
189 while((comma_pos = in.find(",", last_comma_pos)) != std::string::npos)
190 {
191 out->add_part(in.substr(last_comma_pos, comma_pos-last_comma_pos));

CHAPTER 3. THE GPS DRIVER EXAMPLE 40

192
193 // +1 moves us past the comma
194 last_comma_pos = comma_pos + 1;
195 }
196 out->add_part(in.substr(last_comma_pos));
197
198 // Validate talker size.
199 if (out->part(0).size() != 6)
200 throw bad_nmea_sentence("bad talker length '" + in + "'.");
201
202 // GP
203 out->set_talker_id(out->part(0).substr(1, 2));
204 // GGA
205 out->set_sentence_id(out->part(0).substr(3));
206
207 }
208
209
210 // converts the time stamp used by GPS messages of the format HHMMSS.SSS
211 // for arbitrary precision fractional
212 // seconds into a boost::ptime object (much more usable class
213 // representation of for dates and times)
214 // *CAVEAT* this assumes that the message was received "today" for the
215 // date part of the returned ptime.
216 boost::posix_time::ptime GPSDriver::nmea_time2ptime(const std::string& mt)
217 {
218 using namespace boost::posix_time;
219 using namespace boost::gregorian;
220
221 // must be at least HHMMSS
222 if(mt.length() < 6)
223 return ptime(not_a_date_time);
224 else
225 {
226 std::string s_hour = mt.substr(0,2), s_min = mt.substr(2,2),
227 s_sec = mt.substr(4,2), s_fs = "0";
228
229 // has some fractional seconds
230 if(mt.length() > 7)
231 s_fs = mt.substr(7); // everything after the "."
232
233 try
234 {
235 int hour = boost::lexical_cast<int>(s_hour);
236 int min = boost::lexical_cast<int>(s_min);
237 int sec = boost::lexical_cast<int>(s_sec);

CHAPTER 3. THE GPS DRIVER EXAMPLE 41

238 int micro_sec = boost::lexical_cast<int>(s_fs)*
239 pow(10, 6-s_fs.size());
240
241 return (ptime(date(day_clock::universal_day()),
242 time_duration(hour, min, sec, 0)) +
243 microseconds(micro_sec));
244 }
245 catch (boost::bad_lexical_cast&)
246 {
247 return ptime(not_a_date_time);
248 }
249 }
250 }
251

3.6.10 goby/share/examples/core/ex2 gps driver/gobyd.cfg

3.6.11 goby/share/examples/core/ex2 gps driver/depth simulator g.cfg

1 base
2 {
3 platform_name: "AUV-1"
4 loop_freq: 1
5 }
6
7 depth: 10

3.6.12 goby/share/examples/core/ex2 gps driver/gps driver g.cfg

1 base
2 {
3 platform_name: "AUV-1"
4 loop_freq: 1
5 }
6 serial_port: "/tmp/ttyFAKE"

3.6.13 goby/share/examples/core/ex2 gps driver/node reporter g.cfg

1 base
2 {

CHAPTER 3. THE GPS DRIVER EXAMPLE 42

3 platform_name: "AUV-1"
4 loop_freq: 0.5
5 }

3.6.14 goby/share/examples/core/ex2 gps driver/nmea.txt

1 $GPRMC,183729,A,3907.356,N,12102.482,W,000.0,360.0,080301,015.5,E*6F
2 $GPRMB,A,,,,,,,,,,,,V*71
3 $GPGGA,183730,3907.356,N,12102.482,W,1,05,1.6,646.4,M,-24.1,M,,*75
4 $GPGSA,A,3,02,,,07,,09,24,26,,,,,1.6,1.6,1.0*3D
5 $GPGSV,2,1,08,02,43,088,38,04,42,145,00,05,11,291,00,07,60,043,35*71
6 $GPGSV,2,2,08,08,02,145,00,09,46,303,47,24,16,178,32,26,18,231,43*77
7 $PGRME,22.0,M,52.9,M,51.0,M*14
8 $GPGLL,3907.360,N,12102.481,W,183730,A*33
9 $PGRMZ,2062,f,3*2D
10 $PGRMM,WGS 84*06
11 $GPBOD,,T,,M,,*47
12 $GPRTE,1,1,c,0*07
13 $GPRMC,183731,A,3907.482,N,12102.436,W,000.0,360.0,080301,015.5,E*67
14 $GPRMB,A,,,,,,,,,,,,V*71

4Goby Underpinnings
The previous chapters talked about the C++ applications and classes included with
Goby to make our lives easy. However, none of these are required to use Goby. In
this chapter we will throw away these tools for now and work from the ground up.

4.1 Design Considerations

43

5What’s next
That’s all for goby-core in Release 1.0. There’s still a lot to do so keep tuned. If you
want the bleeding edge, you can checkout theGoby trunkbranchwith bzr checkout lp:goby.
Here’s what’s on the horizon:

• support for seamless inter-platformcommunications via acoustics (acomms),
serial, wifi, and ethernet. Maybe even two cans and a string.

• a Wt [11] based configuration, launch, and runtime manager.

Stay tuned at https://launchpad.net/goby. Thanks.

44

https://launchpad.net/goby

Glossary
application a collection of code that compiles to a single exectuable unit on your

operating system. synonymously (and more precise): processes or binaries.
2

asynchronous From [?]: ” of, used in, or being digital communication (as between
computers) in which there is no timing requirement for transmission and in
which the start of each character is individually signaled by the transmitting
device.”. 11

autonomy architecture lossly defined, a collection of software applications and li-
braries that facilitate communications, decision making, timing, and other
utilties needed for making robots function. Another common term for this is
autonomy “middleware”. 2, 3

base class also known as subclass or child class. 5

daemon an application on a Linux/UNIX machine that runs continuously in the
background. the gobyd is a server and the Goby applications are clients.. 4

derived class also known as superclass or parent class. 5

multicast A communications scheme where one application sends messages to a
group of applications. Multicast is designed such that the sender only sends
once and the network topology is responsible for replicating it as necessary.
In general, multicast refers to IP (internet protocol) multicast. In Goby, we
use encapsulated Pragmatic General Multicast (PGM), which provides a reli-
ability layer to UDP multicast.. 4, 5

platform Used to refer to a physical robotic entity, such as an AUV, a topside com-
puter on board a ship, or a buoy.. 4

protobuf From [?]: “Protocol buffers areGoogle’s language-neutral, platform-neutral,
extensiblemechanism for serializing structureddata – thinkXML, but smaller,
faster, and simpler. You define how youwant your data to be structured once,
then you can use special generated source code to easily write and read your
structured data to and from a variety of data streams and using a variety of
languages – Java, C++, or Python.”. 6, 7, 17, 23

45

GLOSSARY 46

SQL a language (in the sense of a programming language) that allows querying or
accessing data from a database. For example, if I wanted to know the best
baseball players in history and I had a database of players’ stats, I could write
in SQL the following query that would provide the data I need: "SELECT *
FROM baseball players WHERE batting average > 0.300 ORDER BY
batting average DESC". 25

synchronous From [?]: ”recurring or operating at exactly the same period.”. 9

virtual A member of a base class than can be redefined in a derived class. See also
http://www.cplusplus.com/doc/tutorial/polymorphism/. 9

http://www.cplusplus.com/doc/tutorial/polymorphism/

Bibliography
[1] P. Newman, “The MOOS: Cross platform software for robotics research.” [On-

line]. Available: http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.
php

[2] A. S. Huang, E. Olson, and D. C. Moore, “Lightweight communications and
marshalling.” [Online]. Available: http://code.google.com/p/lcm/

[3] Goby Developers, “Goby underwater autonomy project documentation.”
[Online]. Available: http://gobysoft.com/doc

[4] S. Prata, C++ Primer Plus (Fourth Edition), 4th ed. Indianapolis, IN, USA: Sams,
2001.

[5] B. Stroustrup, The C++ Programming Language, 3rd ed. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2000.

[6] Google, “Protocol buffer basics: C++.” [Online]. Available: http://code.google.
com/apis/protocolbuffers/docs/cpptutorial.html

[7] ——, “Language guide.” [Online]. Available: http://code.google.com/apis/
protocolbuffers/docs/proto.html

[8] ——, “C++ generated code.” [Online]. Available: http://code.google.com/apis/
protocolbuffers/docs/reference/cpp-generated.html

[9] Kitware, “CMake.” [Online]. Available: http://www.cmake.org/

[10] SQLite Developers, “Sqlite.” [Online]. Available: http://www.sqlite.org/

[11] Emweb, “Wt, a C++ web toolkit.” [Online]. Available: http://www.webtoolkit.
eu/wt

47

http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php
http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php
http://code.google.com/p/lcm/
http://gobysoft.com/doc
http://code.google.com/apis/protocolbuffers/docs/cpptutorial.html
http://code.google.com/apis/protocolbuffers/docs/cpptutorial.html
http://code.google.com/apis/protocolbuffers/docs/proto.html
http://code.google.com/apis/protocolbuffers/docs/proto.html
http://code.google.com/apis/protocolbuffers/docs/reference/cpp-generated.html
http://code.google.com/apis/protocolbuffers/docs/reference/cpp-generated.html
http://www.cmake.org/
http://www.sqlite.org/
http://www.webtoolkit.eu/wt
http://www.webtoolkit.eu/wt

	Contents
	Introduction
	What is Goby?
	Why Goby?
	Structure of this Manual
	How to get help

	The Hello World example
	Meeting goby::core::ApplicationBase
	Creating a simple Google Protocol Buffers Message: HelloWorldMsg
	Learning how to publish: HelloWorld1
	Learning how to subscribe: HelloWorld2
	Compiling our applications using CMake
	Trying it all out: running from the command line
	Code

	The GPS Driver example
	Reading configuration from files and command line: DepthSimulator
	Our first useful application: GPSDriver
	Subscribing for multiple types: NodeReporter
	Putting it all together
	Reading the log files (SQLite3)
	Code

	Goby Underpinnings
	Design Considerations

	What's next
	Glossary
	Bibliography

