The HypeDyn Hypertext Fiction Editor
Tutorial 3: Node Rules and Facts

Contents
1__Introductionl 1
12 Getting started| 2
13 Writing “sculptural” hypertext| 2
4 _Node rules 3
4.1 Creating thenodes| 3
4.2 Editing anoderulel. 0oL 5
4.3 Controlling access with node rules| 6
4.4 Adding the rest of the node rulesf 8
[4.5 Disabling the back button] 10
[4.6 " Sculptural vs. regular hypertext| 11
5 Using facts to keep track of what happened 11
5.1 Creating thenodes| 12
5.2 reating the facts| oL 12
5.3 Using facts in node rule conditions| 13
.4 Updating facts when picking the flowers| 14
.5 Updating facts when in the forest grove| 15
5.6 Using text facts with conditional text| 15
6 Next steps 16
7 _Conclusionl 17

1 Introduction
In this tutorial, we will introduce some new features to HypeDyn:

e “node rules”, which allow conditions to be attached to nodes as well as
links, and allow you to update facts when a node is visited; and

e “facts”, which represent information which can be set and checked while
a story is being read. Facts can be used in conditions, and can also be
used in conditional text.

We will be creating a new version of the “Little Red Riding Hood” story, which
does not build on the versions created in tutorials 1 and 2. This time, we will
be using anywhere nodes for all of the content, and will be making use of the
automatic generation of links to these nodes, plus a combination of facts and
node rules to control when the reader can see these nodes. The nodes and facts
in the final story are shown in Figure

800 LRRH4_new.dyn - HypeDyn

H| Run | Mew node | New anywhere node | Edit node | Rename node | Delete node | Node count: 10

Approach the young man N
Explore the forest
Go deeper into the forest

Go directly to Grandma's house n
Head home

Pass the basket to Grandma
Pick the geraniums

Pick the violets

Talk to young man =
start (start node)

Approach the young man

av

In the forest grove (true/false)

Picked flowers (true/false)
The flowers (text) m

Figure 1: The completed “Little Red Riding Hood” story.

Note: HypeDyn is a work-in-progress, so there are some features that are still
not completed, and there may be bugs. If you encounter any errors, please report
them as bugs on our Launchpad site: |https: // launchpad. net/hypedyn.

2 Getting started

First, open HypeDyn by double-clicking on the file HypeDyn.exe (in Win-
dows) or HypeDyn.app (in MacOS). Save your file by choosing “Save” from
the File menu. Make sure that you give the file a .dyn extension.

3 Writing “sculptural” hypertext

For this tutorial, we are going to create a story which consists almost entirely
of anywhere nodes. The only normal node will be the “start” node. Writing

https://launchpad.net/hypedyn

a story this way requires a slightly different way of thinking about hypertext.
Each node, as in regular hypertext, represents a fragment of the story. Since
the nodes you’ll be using are anywhere nodes, initially all the nodes will be
accessible from every other node - essentially there are implicit links between
every node.

Once your nodes are created, you need to start thinking about restricting
the reader’s possible paths through the nodes, otherwise your story will have no
structure, and the reader is likely to become overwhelmed and lost. You will
do this by using node rules to determine when an anywhere node’s link can be
seen. As you start restricting access, you are essentially removing some of the
implicit links.

This approach is often referred to as “sculptural” hypertext,
[Bernstein et al., 2002], since the process of placing conditions on the nodes is
similar to carving out a sculpture from a block of stone - what is left behind
once unwanted links are carved away is the story. We’ll see how this works as
we go through and create our version of Little Red Riding Hood.

4 Node rules

We are now going to create the outline of our story, and then create node rules
to control the order in which readers can access the nodes.

4.1 Creating the nodes

We'll start by creating a collection of nodes which represent the fragments in
the story. After creating these nodes, you will have something like what can be
seen in Figure 2}

aNo LRRH4.dyn - HypeDyn

||‘ Run | New node I New anywhere node | Edit node | Rename node | Delete node | Node count: 8
Approach the young man B

Explore the forest

Go deeper into the forest

Go directly to Grandma's house -

Head home i

Pass the basket to Grandma
Talk to young man
start (start node)

Ga decper into the farest

Figure 2: The initial set of nodes.

Note that, as there are no links, the arrangement of the nodes in the graph

view is entirely up to you. Also note that you can drag the border between the
regular and anywhere node portions of the map view so that you can see all of
the anywhere nodes.

1. First, create a node named “start”.

2. Edit the node, and make it the start node by clicking on the Set start
node button.

3. Now add the following text:

One day, Little Red Riding Hood is walking through the for-
est, on the way to deliver a basket of food and flowers to her
grandmother.

4. Now we need to create the rest of the story content, which will consist of a
set of anywhere nodes. Create 7 anywhere nodes, with names and content
as shown in Table [1

| Content ‘
Tempted by a grove of flowers, Red strays off the
path into the forest. There are a number of different
types of flowers growing in the grassy clearing.

’ Name

Explore the forest

Go deeper into the
forest

A handsome young man is leaning against the trunk
of a tree. He gestures to Red to come over.

Talk to young man

Red goes over and talks to the wolf. He asks her
where she’s going, and she says she’s off to deliver a
basket of food and flowers to her sick grandma.

Go directly to
Grandma’s house

Red walks along the path, sticking carefully to the
center to avoid the dark, menacing trees. Eventually,
she reaches Grandma’s house.

When Red enters Grandma’s house, she is surprised
to see the young man sitting on the sofa.

Grandma smiles when she sees Red.

Pass the basket to
Grandma

Red passes the basket of food and flowers to
Grandma.

Approach the | Unfortunately, the young man was a wolf. Neither
young man Red nor Grandma were ever seen again.
Head home Red heads back home.

Table 1: Node contents

If you now try running the story, you’ll see that all the nodes are available
from all other nodes (see Figure . If you click on the links, at each node all
the other nodes are available. We will now start to carve out the shape of our
story using node rules.

eno Mozilla Firefox
@) {7} localhost:8888/temp1 find: [}] (-"l' GoogIQ) @

SEETE VI 3 —
Back (Restart)

One day, Little Red Riding Hood is walking through the
forest, on the way to deliver a basket of food and flowers to
her grandmother.

Explore the forest

Go deeper into the forest

Talk to young man

Go directly to Grandma's house
Pass the basket to Grandma

Approach the young man
Head home

Figure 3: Links from every node to every other node.

4.2 Editing a node rule

We will now explore the use of node rules. Edit the node “Talk to young man”,
and click on the “Edit node rule” button. You will see the Edit node rules
window (see Figure [4)).

(. VarNe Edit node rules: Talk to young man

Rules (applied in order shown) Change rule order: Up Down

IAdd Anywhere Link Stop if true |_J
Add Rule) Delete Selected Edit Rule Close)

Figure 4: The edit node rules window.

Notice that this window looks similar to the Fdit Link window that you
would have seen in tutorials 1 and 2. Both windows contain a list of rules,
which are evaluated in order. The main difference is that for node rules, the
rules are generally evaluated when the reader enters the node. For link rules,
rules are generally evaluated when the reader clicks on the linkﬂ

1Evaluation of link rules is actually done in two steps: “update text using” actions are
carried out when the reader enters the node containing the link, and all other actions are
carried out when the reader clicks on the link.

For an anywhere node, a default rule is created when the node is first created,
named “Add Anywhere Link”. Edit this rule by selecting it and then clicking
on the “Edit Rule” button. You will see the Edit rule window (see Figure [5)).

8.0 Edit rule for node: Talk to young man

Rule name: Add Anywhere Link

If | Al |5 of the following conditions are true: (Up) (Down)
[Add condition) Delete selected
THEN perform the following actions: ([Up) (Down)
enable links to this node from anywhere
(" Add Action) [update fact |4] Delete Selected
([Cancel) | oK

Figure 5: The edit rule window for a node rule.

Again, this window looks similar to the corresponding “Edit Rule” window
for link rules. In fact, both windows are rule editors. Rules in HypeDyn consist
of two parts: a set of conditions, and a set of actions which are carried out if the
conditions are true. In a node rule, the conditions are the same as for a link.
The actions, however, are different. Notice that the action list already contains
a default action: “enable links to this node from anywhere”. The other action
which is available is “update fact”. We will look at the first of these actions
now, and come back to the second later in the tutorial.

4.3 Controlling access with node rules

What we want to do at this point is control access to our anywhere nodes.
We can do this by setting conditions in the node rule. If these conditions are
true, then HypeDyn will enable the automatic anywhere links to this node.
Otherwise, the node will not be accessible.

So, what we need to do is think carefully about when each of our nodes
should be accessible. One way to think about this is to consider the conditions
on the node to be preconditions which must be satisfied for this event (node) to
take place. These preconditions can be expressed in terms of which other nodes

the reader has already seen. For example, for the “Talk to young man” node,
we might want this only to be available to the reader if Red has gone deeper
into the forest, ie. the reader has seen the “Go deeper into the forest” node.
Lets add this as a condition.

1. Click on “Add condition”.

2. As in a link, a new condition will appear. If you pull down the Node
pulldown menu, you’ll see three options: Node, Link, and Fact. The first
two you’ve seen before. We’'ll return to the third later.

3. Choose Node, and then choose Go deeper into the forest and Visited.

If you try running the story now, you’ll see that although all the other nodes
are still accessible, the node “Talk to young man” isn’t available until you've
visited “Go deeper into the forest”.

There is a problem, though - after Red has talked to the young man, and the
reader clicks on any of the other links, the “Talk to young man” link reappears.
This can lead to the reader repeatedly looping through the same node. Although
this may sometimes be desirable, particularly if you are using alternative text to
procedurally change the contents of the node, in our story we don’t want this.
To prevent this, we can add one more condition to our node: that the “Talk to
young man” node itself has not been visited.

1. Edit the node rule for “Talk to young man”.

2. In the “Add Anywhere Link” rule, add another condition, as follows:
“Node Talk to young man Not Visited”.

Rule name: Add Anywhere Link

If | Al I:I of the following conditions are true: (up) [Down)

| Node 2] | Go deeper into the forest o=] | Visited
| Node =] | Talk to young man &] | Not Visited
(Y e Lo
| Add condition) Delete selected
THEN perform the following actions: (up) (Down)
enable links to this node from anywhere

Figure 6: The node rule for “Talk to young man”.

Your node rule should be similar to what is shown in Figure [6}

Now if you run the story, the “Talk to young man” node is only available
after you visit “Go deeper into the forest” and haven’t yet visited “Talk to young
man”.

This handles most of the conditions. However, what if the reader had decided
to, for example, click on “Head home” or “Go directly to Grandma’s house”?
Would it make sense for Red to still be able to talk to the young man at this

point? Probably not, so we need to add two more conditions.
1. Edit the “Add Anywhere Link” rule for “Talk to young man”.
2. Add another condition, as follows: “Node Head home Not Visited”.

3. Finally, add the condition “Go directly to Grandma’s house Not Visited”.

Rule name: Add Anywhere Link

If | All l:] of the following conditions are true: (up) [Down)

| 5 - = 5 i_*

[Node b] [Head home s] [Mot Visited

| Node b } [Go directly to Grandma's house | &] [Mot Visited H
v

4 4 >

| Add condition) Delete selected
THEN perform the following actions: (up) [Down)
enable links to this node from anywhere

Figure 7: The final node rule for “Talk to young man”.

Your final node rule should be similar to what is shown in Figure [7]

4.4 Adding the rest of the node rules

We can now go through and consider each of the other nodes, and add appropri-
ate conditions. A good way to do this is to work back from the most constrained
nodes to the least constrained nodes. So, working back from “Talk to young
man”, we can now consider “Go deeper into the forest”. Logically, this node
should only be available if the reader has chosen to visit “Explore the forest”,
and should only be seen once. It should also not be available if the reader has
chosen “Head home” or “Go directly to Grandma’s house”. To get this to work,

we can follow a similar approach to what we did above.

1. Edit the “Add Anywhere Link” node rule for “Go deeper into the forest.
2. Add the following conditions:

(a) “Node Explore the forest Visited”.

(b) “Node Go deeper into the forest Not Visited”.
(¢) “Node Head home Not Visited”.

(d) “Go directly to Grandma’s house Not Visited”.

The next node we’ll consider is “Explore the forest”. This node is much less
restricted, as we want this to be available to the reader immediately, but only
if it has not yet been visited. As with “Go deeper into the forest, it should
also not be available if the reader has chosen “Head home” or “Go directly to
Grandma’s house”.

1. Edit the “Add Anywhere Link” node rule for “Explore the forest”.
2. Add the following conditions:

(a) “Node Explore the forest Not Visited”.
(b) “Node Head home Not Visited”.
(¢) “Go directly to Grandma’s house Not Visited”.

We have now set out a path for the reader from the start through to talking
to the young man. Next, lets turn our attention to the path to Grandma’s
house. The node “Go directly to Grandma’s house” should always be available
unless the reader has already seen it, or has decided to view “Head home”.

1. Edit the “Add Anywhere Link” node rule for “Go directly to Grandma’s
house”.

2. Add the following conditions:

(a) “Node Head home Not Visited”.
(b) “Go directly to Grandma’s house Not Visited”.

Notice that there is also some text in this node which probably should have
conditions attached to it. Following what we did in the previous tutorials, set it
up so that the second paragraph only appears if Red talked to the young man,
and the third paragraph only appears if she didn’t talk to him.

There are three nodes left: “Pass the basket to Grandma”, “Approach the
young man”, and “Head home”. The first two are important, since they depend
on whether or not Red told the young man where she is going. Because of this,
we need to carefully design their conditions.

For “Pass the basket to Grandma”, we want the node to be available only if
Red has gone to Grandma’s, she didn’t talk to the wolf, she hasn’t gone home,
and she hasn’t yet passed the basket to Grandma. This translates into the
following conditions:

1. Edit the “Add Anywhere Link” node rule for “Pass the basket to Grandma”.
2. Add the following conditions:

a) “Go directly to Grandma’s house Visited”.

b) “Node Talk to young man Not Visited”.

¢) “Node Head home Not Visited”.

d) “Node Pass the basket to Grandma Not Visited”.

For “Approach the young man” we have a similar set of conditions, although
this time we want to specify that Red did talk to the young man.

1. Edit the “Add Anywhere Link” node rule for “Approach the young man”.
2. Add the following conditions:
(a) “Go directly to Grandma’s house Visited”.
(b)
(¢) “Node Head home Not Visited”.
(d)

“Node Talk to young man Visited”.

“Node Approach the young man Not Visited”.

Finally, we have to set the conditions for “Head home”. This is the least
constrained of all the nodes, as it should be available everywhere except if Red
and Grandma were eaten by the wolf.

1. Edit the “Add Anywhere Link” node rule for “Head home”.

2. Add the condition: “Node Approach the young man Not Visited”.

Now run the story. You should be able to explore several variations of the
story, and see that the conditions that we specified ensure that our events only
occur if their preconditions are satisfied.

4.5 Disabling the back button

There is one remaining problem: the reader can click on the “back” button
and return to the previous node. In some cases, this does not make sense. For
example, after clicking on “Talk to young man”, if the reader clicks on the
“back” button, she will see the “Go deeper into the forest” node. We could
either have the contents of the nodes adapt to whether or not the reader has
seen the next node, which is quite complicated, or we could disable the back
button. We’ll do the latter.

To disable the back button, go to the File menu and choose Properties. You
should see the “Properties” dialog (see Figure . Check the checkbox to the
left of “Disable back button”, and click on the “Ok” button. Now try running
the story. You should see that the back button has been removed.

10

N6 Properties

Style
) default
) fancy

O custom

Control
™ Disable Back Button
] Disable Restart Button

Web Reader

[Disable Resize
Width 800
Height 600
Mobile Reader
(] Disable Page Breaks

——— —
ok) Cancel

Figure 8: Disabling the back button.

Disabling the back button is useful for cases such as this, where the procedu-
ral nature of the story makes the back button problematic. It can also be useful
if you want to force readers to commit to their choices. Note, however, that it
can be frustrating for readers not to be able to go back, so use this feature with
care. Also note that preferences are saved with the story file, and only apply to
a specific story, so if you create a new story, the preferences will be set back to
their default settings.

4.6 Sculptural vs. regular hypertext

One thing to note is that we could have achieved a very similar effect using
regular nodes, links, and conditions. However, the process of developing a story
using this form of hypertext is very different from what we saw in tutorials 1
and 2. As a result, the type of story that you are likely to create is also much
different.

It would also be possible to reduce the complexity of the conditions that we
created above by making use of facts to keep track of important information in
the story, and use this information to control when nodes are available. We will
now look at how to use facts.

5 Using facts to keep track of what happened

In previous tutorials, we have seen that HypeDyn can keep track of what the
reader has done by referring to which nodes have been visited, and which links
have been followed. This allows for quite complex procedural change. However,
one major limitaton is that you, as the author, are unable to have HypeDyn
forget that a node was visited or a link was followed. There are also times

11

when a condition depends on one of several nodes having been visited, which
can lead to fairly complex conditions. You also might want to have a condition
that depends on, for example, the reader visiting a node several times, which
requires that you count the number of visits to a node.

To handle these limitations, we will now introduce facts. In HypeDyn, a fact
is something which is important to the story. There are three types of facts:
true/false facts, text facts, and number facts. True/false facts are either true
or false, and can be checked in a condition and updated by an action. Text
facts contain a piece of text, such as a sentence, can be updated by an action,
and can be used to replace text in a node in the same way as alternative text.
Number facts contain integers, such as 1 or 42, can be checked in a condition,
updated by an action, and can be used to replace text in a node. In this tutorial
we will cover true/false and text facts. See tutorial 4 for details on how to use
number facts.

5.1 Creating the nodes

Suppose we want to let Red pick the flowers in the forest grove, and put them in
the basket for Grandma. We could do this by using conditions and conditional
text. However, we will now show how this can be done with facts, and then
explain how this is actually more flexible than the approaches used in tutorials
1 and 2.

First, create two new anywhere nodes:

1. Name: Pick the geraniums
Content:

Red decides to pick some of the geraniums in the grove and
exchange them for the flowers in the basket for Grandma.

2. Name: Pick the violets
Content:

Red decides to pick some of the violets in the grove and exchange
them for the flowers in the basket for Grandma.

5.2 Creating the facts

We will now create two facts to keep track of whether or not Red has picked
the flowers and which flowers she picked, and one fact to keep track of whether
or not Red is in the forest grove (and therefore able to pick flowers).

1. In the main HypeDyn window, go to the Fact menu, and pick the New
menu item, and the True/False submenu item.

2. The “New True/False Fact” dialogue will appear (see Figure @ Enter
the name of the fact as “Picked flowers”, and click “ok”.

12

™ 7 New True/False fact

Fact name

Picked flowers

(cancel) (OK)

Figure 9: Creating a new fact.

3. Now go to the Fact menu, and pick the New menu item and the True/False
submenu item again.

4. The “New True/False Fact” dialogue will appear. Enter the name of the
fact as “In the forest grove”, and click “ok”.

5. Now go to the Fact menu, and pick the New menu item and the Text
submenu item.

6. The “New Text Fact” dialogue will appear. Enter the name of the fact as
“The flowers”, and click “ok”.

We will use the fact “Picked flowers” to remember whether or not the reader
has had Red pick the flowers, and “The flowers” to remember the type of flowers.
We will use the fact “In the forest grove” to make sure that the flowers can only
be picked in the forest grove. This could be done by checking which nodes have
and haven’t been visited, but in this case using a fact is much simpler, and
allows for greater flexibility.

5.3 Using facts in node rule conditions

Now we need to make sure that the two nodes for picking the flowers are only
available when Red is in the forest grove, and hasn’t yet picked the flowers.
We’ll do this by using the two true/false facts created above.

1. Edit the “Add Anywhere Link” rule in the node rule for node “Pick the
violets”.

2. Add a condition, and select True/False Fact as the type. Now choose the
fact Picked flowers and value False. This means that the condition is true
when the fact Picked flowers is false, ie. Red hasn’t picked the flowers.
Note that facts are always false until they have been updated, so when
the story is started, both Picked flowers and In the forest grove are false.

3. Add another condition, and set it to “True/False Fact In the forest grove
True”. This means that the condition is true when Red is in the forest
grove.

You should have conditions as in Figure

13

If | All I:] of the following conditions are true: (Up) (Down :I

[True/False Fact | :] [Picked flowers | :i [False | :i

-

[True/False Fact | :i [In the forest grove | :i [True | ,]

Figure 10: Conditions for “Pick the Violets”.

5.4 Updating facts when picking the flowers

Now that we have our condition set, we need to update our facts. Facts can
be updated either when nodes are visited, or when links are clicked. In our
case, when the node“Pick the violets” is visited, we’ll update the fact “Picked
flowers” to true, and update the fact “The Flowers” to hold the name of the
flowers that were picked.

1. If you aren’t already, edit the “Add Anywhere Link” rule in the node rule
for node “Pick the violets” again.

2. Add an “update fact” action.
3. Set the action’s fact type to “True/False”.

4. Now choose the fact Picked flowers and set the value to True. This means
that when the node “Pick the violets” is visited, the fact Picked flowers
is set to true, ie. Red has picked the flowers.

5. Add another “update fact” action, and select Text as the type.

6. Now choose the fact The flowers. You should see a text entry field appear
to the right. Type in the text “violets”.

THEN perform the following actions: C Up) [Down)
— F
update fact [True/False | :i [Picked flowers J :] [True | :!
update fact | Text I3 [The flowers |3 [violets

v
4 { ; 9

(Add Action) (update fact | 3! Delete Selected

Figure 11: Updating facts for “Pick the Violets”.

14

You should have actions as in Figure Note that in this image the original
“Enable links to this node from anywhere” action is scrolled off the top.

Now do exactly the same thing for the node “Pick the geraniums”, except
in the last step, type in the text “geraniums” instead of “violets”.

5.5 Updating facts when in the forest grove

At this point we are missing one key step - we don’t ever update the fact “In
the forest grove”. We want to use this to keep track of when the reader can
have Red pick the flowers. To do this, we need to set the fact to true when
Red enters the forest, ie. when the reader visits the node “Explore the forest”,
and set it to false whenever any of the nodes which represent leaving the forest
grove are visited. These nodes are “Go directly to Grandma’s house”, “Head
home”, and “Go deeper into the forest”.

1. Edit the node “Explore the forest”.

2. Edit the “Add Anywhere Link” rule for the node’s node rule, and add an
“update fact” action to set the fact “In the forest grove” to true.

3. Now do the same for nodes “Go directly to Grandma’s house”, “Head
home”, and “Go deeper into the forest”, but instead of setting the fact to
true, set it to false.

We now have the “In the forest grove” fact set up to track whether or not
Red is in the forest grove. Note that this would be very difficult to accomplish
using conditions on whether nodes where visited or not. (Try it!)

5.6 Using text facts with conditional text

The one thing remaining to be done is to update the text where the flowers
are mentioned, so that the specific type of flowers that Red picked are shown.
There are two places where this can be done: “Pass the basket to Grandma”,
and “Talk to young man”. We’ll to the first, and the second is left as an exercise.

1. Edit the node “Pass the basket to Grandma”.
. Select the text “flowers”, and create a new link named “flowers”.
. Add a new rule to the link, and edit the rule.

2
3
4. Name the rule “display the flowers”.
5. Add an “update text using” action.
6

. Now change the type of text from “alternative text” to “text fact”, and
choose the fact The flowers.

This means that the link text will be replaced by whatever value for the
fact “The flowers” we have set it to - either “violets” or “geraniums”,
depending on which node the reader visited.

15

7. We also need to make sure this replacement is only done if the flowers
have been picked. Add a condition, and select type Fact. Choose the fact
Picked flowers, and the value True. This means that the default text will
be shown if the flowers have not been picked, and the value of the fact
The flowers will be shown if the flowers have been picked.

The link for the alternative text should look something like Figure [12}

.00 Edit rule for link: flowers

Rule name: display the flowers

if | Al 15| of the following conditions are true: (Up) (Down)

[True/False Fact |4] [Picked flowers 4] [True | i

Add condition | Delete selected

THEN perform the following actions: (Up Y (Down)

update text using [text fact e] [The flowers |3]

<& y]
(" Add Action) | update fact |3] Delete Selected

(Cancel) (oK)

Figure 12: Substituting alternative text with a fact.

Try running the story and picking the flowers. Notice that for either of the
flowers that are picked, the correct name is substituted in the node “Pass the
basket to Grandma”. Add the same alternative text to “Talk to young man”.

Note that, as with the other examples where we have used facts, we could
have done the same thing with regular node conditions and alternative text.
However, it would have required several links in the “Pass the basket to Grandma”
node. In addition, we can easily add a third flower, and no changes need to be
made to either of the nodes where the text is substituted. This allows for much
more systematic use of procedural change than the alternative text mechanism
introduced in tutorial 2.

6 Next steps
We have created a simple story using the “sculptural” approach to hypertext,

where all nodes implicitly have links between them, and the creation of the
story structure consists of using conditions to gradually restrict which nodes

16

are and are not available to the reader. We have also used facts to keep track of
what the reader has done, and to procedurally change the text in nodes. The
completed version of this story can be found in the file LRRH4.DYN.

There are several things that you could try to enhance the story. For exam-
ple, you could allow the reader to go back from “Go deeper into the forest” to
pick the flowers. This can easily be done by making use of the “In the forest
grove” fact. Try adding a third type of flower to be picked. You might also want
to go back and use facts instead of node conditions to simplify the conditions
we placed on the anywhere nodes in the first part of this tutorial.

7 Conclusion

In this tutorial, we have created a simple “sculptural” hypertext fiction. By
creating a collection of story fragments, and then specifying a set of conditions
for when these fragments can be seen, we have taken a very different approach
to writing a hypertext story than was seen in the earlier versions of HypeDyn.
In addition, by using facts to keep track of what the reader has done, either
as true or false conditions, or as text, we now have a much more flexible way
of changing the behaviour of the system based on the reader’s actions. This
provides much more powerful possibilities in terms of procedural change and
interactivity.

References

[Bernstein, 2001] Bernstein, M. (2001). Card Shark and Thespis: exotic tools
for hypertext narrative. In Proceedings of Hypertext 01, pages 41-50. ACM
Press.

[Bernstein et al., 2002] Bernstein, M., Millard, D. E., and Weal, M. J. (2002).
On writing sculptural hypertext. In Proceedings of Hypertext ‘02, pages 65—66.
ACM.

17

	Introduction
	Getting started
	Writing ``sculptural'' hypertext
	Node rules
	Creating the nodes
	Editing a node rule
	Controlling access with node rules
	Adding the rest of the node rules
	Disabling the back button
	Sculptural vs. regular hypertext

	Using facts to keep track of what happened
	Creating the nodes
	Creating the facts
	Using facts in node rule conditions
	Updating facts when picking the flowers
	Updating facts when in the forest grove
	Using text facts with conditional text

	Next steps
	Conclusion

