Installation Guide
OpenShot™ Video Library | libopenshot (C++)

Introduction
Features
License
Getting Started
Build Tools
Dependencies
Obtaining Source Code
Folder Structure
Developer Tools (IDE)
Linux Build Instructions
Install Dependencies (via Package Manager)
Build & Install libopenshot-audio (Dependency)
Build & Install OpenShot Video Library on Linux (libopenshot)
Windows Build Instructions
Install Dependencies (Manually)
Build & Install OpenShot Video Library on Windows (libopenshot)
Environment Variables
Mac Build Instructions
Install Dependencies (via MacPorts & Homebrew)
Build & Install libopenshot-audio (Dependency)
Build & Install OpenShot Video Library on Mac (libopenshot)
CMake Flags (Optional)
Installers / Packaging
Packaging Bazaar Branch
Daily PPA for Ubuntu
Downloads
PyQt Interface (Optional)
Obtaining Source Code
Folder Structure
Linux Instructions
Windows Instructions
Mac Instructions
Launching the App
Conclusion
Donations

Introduction

The OpenShot Video Library (also known as libopenshot) was created to provide a free and

http://www.openshot.org/

open-source video editing, composition, animation, and playback library, which focuses on
professional features, stability, cross-platform support, and multi-core processor support. The
library is written in C++ and includes full bindings for Python 3 and Ruby. These instructions
are designed for programmers and packagers who are interested in compiling and installing
the source code.

Features

Cross-Platform (Linux, Windows, and Mac)

Animation Curves (Bézier, Linear, Constant)

Multi-Layer Compositing

Time Mapping (Curve-based Slow Down, Speed Up, Reverse)
Audio Mixing (Curve-based)

Audio Plug-ins (VST & AU)

Audio Drivers (ASIO, WASAPI, DirectSound, CoreAudio, iPhone Audio, ALSA, JACK,
and Android)

Telecine and Inverse Telecine (Film to TV, TV to Film)

Frame Rate Conversions

Multi-Processor Support (Performance)

Python and Ruby Bindings (All Features Supported)

Unit Tests (Stability)

All FFmpeg Formats and Codecs Supported

Full Documentation (Auto Generated)

License

Copyright (c) 2008-2014 OpenShot Studios, LLC
<http://www.openshotstudios.com/>.

OpenShot Library (libopenshot) is free software: you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

OpenShot Library (libopenshot) is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License
along with OpenShot Library. If not, see <http://www.gnu.org/licenses/>.

http://www.openshotstudios.com/
http://www.gnu.org/licenses/

Getting Started

The best way to get started with libopenshot, is to learn about our build system, obtain all the
source code, install a development IDE and tools, and better understand our dependencies.
So, please read through the following sections, and follow all the instructions. And keep in
mind, that your computer is likely different than the one used when writing these instructions.
Your file paths and versions of applications might be slightly different, so keep an eye out for
subtle file path differences in the commands you type.

Build Tools

CMake is the backbone of our build system. It is a cross-platform build system, which checks
for dependencies, locates header files and libraries, generates makefiles, and supports the
cross-platform compiling of libopenshot and libopenshot-audio. CMake uses an
out-of-source build concept, where all temporary build files, such as makefiles, object files,
and even the final binaries, are created outside of the source code folder, inside a /build/
folder. This prevents the build process from cluttering up the source code. These instructions
have only been tested with the GNU compiler (including MinGW for Windows).

Dependencies

The following libraries are required to build libopenshot. Instructions on how to install these
dependencies are listed under each operating system below. Libraries and Executables have
been color-coded in the list below to help distinguish between them.

. Library . Executable . Compiler Flag

e FFmpeg (libavformat, libavcodec, libavutil, libavdevice, libavresample, libswscale)
o http://www.ffmpeg.org/
o This library is used to decode and encode video, audio, and image files. Itis
also used to obtain information about media files, such as frames per second,
sample rate, aspect ratio, and other common attributes.

e ImageMagick++ (libMagick++, libMagick\Wand, libMagickCore)
o http://www.imagemagick.org/script/magick++.php
o This library is used to resize, composite, and apply effects to images, including
frames of video.

e OpenShot Audio Library (libopenshot-audio)
o This library is used to mix, resample, host plug-ins, and play audio. It is based
on the JUCE project, which is an outstanding audio library used by many
different applications

http://www.cmake.org/
http://www.ffmpeg.org/
http://www.imagemagick.org/script/magick++.php

e Qt5 (libgth)
o Qt5 is used to display video on the screen and many other utility functions,
such as file system manipulation, high resolution timers, JSON parsing, etc...

e CMake (cmake)
o http://www.cmake.org/
o This executable is used to automate the generation of Makefiles, check for
dependencies, and is the backbone of libopenshot’s cross-platform build
process.

e SWIG (swig)
o http://www.swig.org/
o This executable is used to generate the Python and Ruby bindings for
libopenshot.

e Python (libpython)
o http://www.python.org/
o This library is used by swig to create the Python bindings for libopenshot.

e Doxygen (doxygen)
o http://www.stack.nl/~dimitri/doxygen/
o This executable is used to auto-generate the documentation used by
libopenshot.

o UnitTest++ (libunittest++)
o http://unittest-cpp.sourceforge.net/
o This library is used to execute unit tests for libopenshot. It contains many
macros used to keep our unit testing code very clean and simple.

e OpenMP (-fopenmp)
o http://openmp.org/wp/
o If your compiler supports this flag, it provides libopenshot with easy methods of
using parallel programming techniques to improve performance and take
advantage of multi-core processors.

Obtaining Source Code

The first step in installing libopenshot is to obtain the most recent source code. The source
code is available on launchpad.net/libopenshot/. You can pull the latest version using the
Bazaar source control system, which is very similar to Git. There are two separate libraries
you need to compile: libopenshot-audio and libopenshot. You will need to pull the source

http://www.cmake.org/
http://www.swig.org/
http://www.python.org/
http://www.stack.nl/~dimitri/doxygen/
http://unittest-cpp.sourceforge.net/
http://openmp.org/wp/
https://launchpad.net/libopenshot/
http://bazaar.canonical.com/en/

code for both libraries with the following commands.

e bzr branch Ip:libopenshot
e bzr branch Ip:~openshot.code/libopenshot/libopenshot-audio

Folder Structure

The source code is divided up into the following folders.

build/ This folder needs to be manually created, and is used by cmake to store the
temporary build files, such as makefiles, as well as the final binaries (library
and test executables).

cmake/ This folder contains custom modules not included by default in cmake, used
to find dependency libraries and headers and determine if these libraries are
installed.

doc/ This folder contains documentation and related files, such as logos and
images required by the doxygen auto-generated documentation.

include/ This folder contains all headers (*.h) used by libopenshot.

src/ This folder contains all source code (*.cpp) used by libopenshot.

tests/ This folder contains all unit test code. Each class has it's own test file
(*.cpp), and uses UnitTest++ macros to keep the test code simple and
manageable.

thirdparty/ This folder contains code not written by the OpenShot team. For example,
jsoncpp, open-source JSON code needed by OpenShot.

Developer Tools (IDE)

While any text editor and terminal will allow you to make changes and compile libopenshot,
we recommend the following configuration (which works on Mac, Windows, and Linux).

e Eclipse or Aptana 3.x

o

o

http://www.eclipse.org/ or http://www.aptana.com/

Once Eclipse or Aptana is installed, you will need to install the C/C++
Development Tools, using the Help->Install New Software menu.

Once the C++ tools are installed, you can switch to the C/C++ perspective,
which arranges the windows and toolbars to the appropriate configuration.
Next, we need to import the Eclipse/Aptana project file into your Project
Explorer window (on the left of the screen). Right click in the Project Explorer,

http://www.eclipse.org/
http://www.aptana.com/

choose Import...-> General-> EXxisting Projects into Workspace. Choose the
libopenshot folder on your computer, and click Finish. This will load all the files
in libopenshot into your Project Explorer.

o Before you can compile / build libopenshot, you must first launch cmake, which
you can do easily from Eclipse/Aptana. In the C/C++ perspective, on the far
right side of the screen you should have a tab called Make Targets. On this tab,
you will see different targets for each operating system (Mac, Windows, and
Linux). Double click the one that matches your operating system. The Debug
versions create debugging symbols, the Release versions do not create debug
symbols. These Make Targets will launch cmake, which generates the
makefiles, which contain the final commands to compile/build libopenshot.

o Click the Build button (i.e hammer icon) on the top toolbar to compile
libopenshot. If you are using Windows, you will need to choose the “Windows
Debug” build configuration, which uses the mingw32-make command instead of
the make command.

o Here is a screenshot of Aptana 3.x configured correctly with libopenshot and
the C/C++ tools:

C/C++ - libopenshot/src/Main.cpp - Aptana Studio 3 - oEn

Linux Build Instructions

These build instructions are for a Debian-based Linux distribution. Other Linux distributions
should be very similar, but might also be subtly different. So, exercise caution if you are using
a non-Debian distribution.

Install Dependencies (via Package Manager)

Most packages needed by libopenshot can be installed easily with a package manager.
Install the following packages using apt-get, Synaptic, or similar package manager:

build-essential
cmake
libavformat-dev
libavdevice-dev
libswscale-dev
libavresample-dev
qt5-default
gtbaseb5-dev
gt5-gmake
gtmultimedia5-dev
libmagick++-dev
python3-dev
libunittest++-dev
swig

doxygen
libxinerama-dev
libxcursor-dev
libasound2-dev

Build & Install libopenshot-audio (Dependency)

Since libopenshot-audio is not available in a Debian package, we need to go through a few
additional steps to manually build and install it.

Branch the latest version: $ bzr branch
lp:~openshot.code/libopenshot/libopenshot-audio
Launch a terminal, and enter:

cd /home/user/libopenshot-audio/

mkdir build

cd build

cmake ../

Uy Ur A -

O O O O

S make
If you are missing any dependencies for libopenshot-audio, you might receive error
messages at this point. Just install the missing packages (usually with a -dev suffix),
and run the above commands again. Repeat until no error messages are displayed,
and the build process completes.
Once libopenshot-audio has been successfully built, we need to install it (i.e. copy it
to the correct folder, so other libraries can find it)

o $ sudo make install
If everything worked correctly, this command should play a test sound:

0 $ openshot-audio-test-sound

Build & Install OpenShot Video Library on Linux (libopenshot)

The first step in installing libopenshot is to obtain the most recent source code. The source
code is available on launchpad.net/libopenshot.

Branch the latest version: $ bzr branch 1lp:libopenshot
Create a folder called /build/ inside the /libopenshot/ folder: /libopenshot/build/
o This will be used to store the final binary of libopenshot.so
e Launch a terminal, and enter:
0 $ cd /home/user/libopenshot/build/
o $ cmake ../
o $ make
e [f you are missing any dependencies for libopenshot, you might receive error
messages at this point. Just install the missing packages (usually with a -dev suffix),
and run the above commands again. Repeat until no error messages are displayed,
and the build process completes. Also, if you manually install Qt 5, you might need to
specify the location for cmake:
$ cmake -DCMAKE PREFIX PATH=/qt5 path/qt5/5.2.0/ ../
e Torun all unit tests (and verify everything is working correctly), launch a terminal, and
enter:
0 $ make test
o If all tests pass, then you have successfully built libopenshot!
e To auto-generate the documentation for libopenshot, launch a terminal, and enter:
o $ make doc
o This will use doxygen to generate a folder of HTML files, with all classes and
methods documented. The folder is located at
/home/user/libopenshot/build/doc/html/.
e Once libopenshot has been successfully built, we need to install it (i.e. copy it to the
correct folder, so other libraries can find it)
0 $ sudo make install
o This should copy the binary file to /usr/local/lib/libopenshot.so, and the header
files to /usr/local/include/openshot/... This is where other projects will likely look
for the libopenshot files when building.
e The Python bindings are located in /libopenshot/build/src/. To test them, launch a
terminal, and enter:
$ cd /home/user/libopenshot/build/src/
$ python
>>> import openshot
If no errors are displayed, you may now access all the classes and methods of
libopenshot through the openshot module in Python.

O O O O

https://launchpad.net/libopenshot/

Windows Build Instructions

These build instructions are for Windows 7, but should work for other versions of Windows as
well. There are many additional steps when using Windows to build libopenshot, and will
require the downloading and installation of many different applications, libraries, and tools.
These instructions are based on the MinGW (Minimalist GNU for Windows) compiler. Visual
Studio can not be used with these instructions. In fact, libraries that are built with Visual
Studio can not be linked correctly using MinGW, so all dependency libraries need to be built
with MinGW as well.

TIP: When running commands in the command line or other terminal shells, be sure and
“‘Run as administrator” whenever possible. Many of these commands will create folders or
copy files, and might not have permission. Also, | recommend using a better terminal than
cmd.exe, for example Clink.

Install Dependencies (Manually)

Unfortunately, Windows does not have a simple way to install commonly used libraries and
applications, similar to a Linux package manager. So, you will need to manually find,
download, and install each dependency application and library, making sure the binaries are
compiled with MinGW (and not Visual Studio). In a few cases, you will have to compile a
library manually with MinGW, if no suitable MinGW binaries can be found online. This is
going to take a while, so be sure you have some free time before continuing beyond this
point. Good luck!

e MinGW (Minimalist GNU for Windows)

o http://sourceforge.net/projects/mingw/files/

o Download and Install the Automated MinGW Installer (.exe)

o This will install new commands that you can use from the command line, such
as “g++” and “mingw32-make”. If these commands are not found, you might
need to add the mingw folder to your PATH environment variable.

o OpenMP and pthreads: Be sure to install mingw32-pthreads-w32-dev, which
is an optional MinGW package. It is required to compile libopenshot. You can
install this package (along with many other common MinGW packages using
the MinGW Installation Manager).

e CMake
o http://www.cmake.org/cmake/resources/software.html
o Download and Install the Win32 Installer
o This will install a new command that you can use from the command line:
“‘cmake”. If the command is not found, you might need to add the cmake folder
to your PATH environment variable.

https://code.google.com/p/clink/
http://sourceforge.net/projects/mingw/files/
http://www.cmake.org/cmake/resources/software.html

FFmpeg / Libav

o

o

http://builds.libav.org/windows/release-lgpl/

Both the FFmpeg and Libav libraries are supported by libopenshot, but
currently, it is easier to install Libav on Windows.

Download and Install the version for either 32-bit or 64-bit Windows.

Create an environment variable called FFMPEGDIR and set the value to
C:\libav-folder-name\usr\ (your path might be different). This is the folder
which contains both the ‘include’ folder (for headers) and ‘bin’ folder (for dlls).
This environment variable will be used by CMake to find the binary and header
files.

Qt5
http://qgt-project.org/downloads
Download and Install the newest MinGW version (for example:
http://download.qt-project.org/official_releases/qt/5.1/5.1.1/gt-windows-opensou
rce-5.1.1-mingw48_opengl-x86-offline.exe).
o Add the Qt install folder to your PATH (if it is not there after installation). For
example: ¢:\Qt\5.1.1\bin.
o Troubleshooting Qt5:
m If you receive compile errors related to Qt5, you might have to manually
fix a but in the Qt headers (your path might be a bit different).
m Comment out the following line in
C:/Qt/Qt5.1.1/5.1.1/mingw48_32/include/QtGui/qopenglversionfunctions
.h
m // void (QOPENGLF_APIENTRYP MemoryBarrier)(GLbitfield barriers);
m Eventually this bug will be fixed on upstream Qt, but until that happens,
this work-around should solve any compile errors.
Python3

o

o

o

http://www.python.org/download/

Download and Install the Python 3.X Windows Installer (32bit version / x86).
This will also install the headers and library files for Python.
Troubleshooting Python:

m If cmake cannot find PythonLibs, it might be due to the following bug in
cmake’s FindPythonLibs.cmake file. It seems that in some versions of
cmake, the find_library command does not parse registry paths.

m Please see our CMake Flags section below for tips on manually
pointing to your Python3 include folder and library.

m Or, here is another workaround to fix that bug. Add the following line to
FindPythonLibs.cmake inside the first foreach loop:

e GET_FILENAME_COMPONENT(HKEY_LOCAL_MACHINE_PA
TH

http://builds.libav.org/windows/release-lgpl/
http://qt-project.org/downloads
http://download.qt-project.org/official_releases/qt/5.1/5.1.1/qt-windows-opensource-5.1.1-mingw48_opengl-x86-offline.exe
http://download.qt-project.org/official_releases/qt/5.1/5.1.1/qt-windows-opensource-5.1.1-mingw48_opengl-x86-offline.exe
http://www.python.org/download/

e Swig
o
o

"[HKEY_LOCAL_MACHINEWSOFTWARE\\Python\\PythonCore\\
${ CURRENT_VERSION}\InstallPath]" ABSOLUTE)

e Then, add ${HKEY_LOCAL_MACHINE_PATH} to the PATHS on
any find_library commands you find in the file. This should
correctly parse the registry entry, and search that path for the
dlls. Also, be sure to include the correct suffix: /libs or /include.

http://www.swig.org/download.html

Download and Install the “swigwin” Windows installer. This will install a new
command that you can use from the command line: “swig”. If the command is
not found, you might need to add the swig folder to your PATH environment
variable.

e Doxygen

o

o

http://www.stack.nl/~dimitri/doxygen/download.html#latestsrc

Download and Install the Windows Installer. This will install a new command
that you can use from the command line: “doxygen”. If the command is not
found, you might need to add the doxygen folder to your PATH environment
variable.

o UnitTest++

o

o

http://sourceforge.net/projects/unittest-cpp/files/
Download and Extract the UnitTest++ source code .ZIP to a local folder:
C:\UnitTest++\. No binary files are available to download, so we will need to
build the source code. The source code comes with Visual Studio project files,
but MinGW will be unable to link a Visual Studio DLL with libopenshot. So, we
need to manually build UnitTest++ with MinGW and CMake.
Create a folder called \build\ inside the \UnitTest++\ folder:
C:\UnitTest++\build\

m This will be used to store the final binary of libUnitTest++.dll
Copy and rename a file from the libopenshot source code into the \UnitTest++\
folder.

m C:\libopenshot\cmake\Modules\UnitTest++_CMakeLists.txt -->

C:\UnitTest++\CMakeLists.txt
m This file (CMakeLists.txt) will be used by CMake to compile UnitTest++.
Be sure to rename the file.

Launch a terminal, and enter:

B S cd C:\UnitTest++\build\

m $ cmake -G "MinGW Makefiles"™ ../

B $ mingw32-make
Create an environment variable called UNITTEST_DIR and set the value to
C:\UnitTest++

http://www.swig.org/download.html
http://www.stack.nl/~dimitri/doxygen/download.html#latestsrc
http://sourceforge.net/projects/unittest-cpp/files/

o

e MSYS
o
o

O O O O

e DLfcn

e Zlib

o

This environment variable will be used by CMake to find the binary and header
files.

http://downloads.sourceforge.net/mingw/MSYS-1.0.11.exe

MSYS is a collection of GNU utilities, commands, and a shell that allows
compiling Linux applications with MinGW. ImageMagick++ does not have any
MinGW compiled binaries available to download, and MSYS is the only way
I’'ve been successful building it on Windows with MinGW. 1t is a fairly straight
forward process, but a little confusing if it’s your first time learning about MSYS.
However, the basic idea is that MSYS gives you a terminal shell that can
understand linux file paths, and common linux commands, but the compiling of
source code still uses MinGW.

Download and Install the MSYS (exe) listed above.

Enter "C:\msys\1.0", when prompted where to install MSYS.

Enter "C:\mingw", when prompted where MinGW is installed.

Install the MSYS DTK (http://downloads.sourceforge.net/mingw/msysDTK-1.0.1.exe) in the
C:\msys\1.0\ folder.

Install the MSYS Core

(http://sourceforge..net/projects/mingw/files/MSY S/BaseSystem/msys-1.0.11/msysCORE-1.0.11-bin.tar.gz/d
ownload). It is an archive. Extract it in the C:\msys\1.0\ folder.

Set the environment variable HOME to C:\msys\1.0\home

Now, you should have a shortcut to the MSYS shell on your desktop, and in
your program list. This will launch the MSYS shell, which behaves very similar
to a Linux terminal. Commands such as “Is”, “cp”, and “mv” will now work. This
shell is required to install ImageMagick++, because their build process uses
Linux file paths and Linux commands which do not work in the Windows
command line.

http://code.google.com/p/dIfcn-win32/downloads/list

Download and Extract the Win32 Static (.tar.bz2) archive to a local folder:
C:\libdi\

Create an environment variable called DL_DIR and set the value to C:\libdI\
This environment variable will be used by CMake to find the binary and header
file.

http://gnuwin32.sourceforge.net/packages/zlib.htm
Download and Install the Windows Setup program.

e FreeType

o

http://gnuwin32.sourceforge.net/packages/freetype.htm

http://downloads.sourceforge.net/mingw/MSYS-1.0.11.exe
http://code.google.com/p/dlfcn-win32/downloads/list
http://gnuwin32.sourceforge.net/packages/zlib.htm
http://gnuwin32.sourceforge.net/packages/freetype.htm

Download and Install the Windows Setup program.

Create an environment variable called FREETYPE_DIR and set the value to
C:\Program Files\GnuWin32\

This environment variable will be used by CMake to find the binaries and
header files.

e ImageMagick++

o

o

o

o

ftp://ftp.imagemagick.org/pub/ImageMaqgick/ImageMagick.tar.gz

First, be sure you have installed and configured MSYS before attempting to
install ImageMagick. Because ImageMagick must be compiled with MinGW
(and not VisualStudio), a working MSYS shell is needed. Download and
Extract the ImageMagick source code into your MSYS home directory:
C:\msys\1.0\home\USER\ImageMagick-6.7.1-0\ (your path might be
different)
Launch the MSYS shell, and enter:

m NOTE: Copy the cmake/Windows/build-imagemagick.sh and

urls.txt to a folder on Msys and execute the .sh
file. This will automate the downloading, extracting,
and installing of ImageMagick for Windows. Also, it
must link to your Qt5’s included version of MinGW. If
this works, it should create the ImageMagick Dlls,
and you can skip to the next step. If this fails,
continue to manually build ImageMagick with the
following commands.

$ cd /home/USER/ImageMagick*

$./configure --enable-shared=yes --enable-static=no
--with-x --prefix=/mingw LDFLAGS=-static-libstdc++

$ make

$ make install

If you get any errors, you might need to disable certain features, or
install additional libraries needed by ImageMagick. To see all configure
options, enter ./configure --help

The final step is to create the following registry key:
[HKEY_LOCAL_MACHINE\SOFTWARE\ImageMagick\Current;BinPath]
and set the value to C:/MinGW/msys/1.0/local

This registry key will be used by CMake to locate the final ImageMagick
binaries, and header files. C:/IMinGW/msys/1.0/local should have an
\include\ and \lib\ folder which contain ImageMagick files, once the
“make install” command is run.

Troubleshooting cmake:

If cmake cannot find ImageMagick, it might be due to the following bug
in cmake’s FindlmageMagick.cmake file. It seems that in some versions

ftp://ftp.imagemagick.org/pub/ImageMagick/ImageMagick.tar.gz

of cmake, the find_library command does not parse registry paths.
Thus, the registry path entered above, does not get searched for the
newly compiled ImageMagick dlls. Here is a work around to fix that bug.
Add the following line to FindlmageMagick.cmake:

m GET_FILENAME_COMPONENT(REGISTRY_PATH
"[HKEY_LOCAL_MACHINE\SOFTWARE\ImageMagick\\Current;BinPa
th]/lib" ABSOLUTE)

m Then, add ${REGISTRY_PATH} to the PATHS on the first find_library
command you find in the file. This should correctly parse the registry
entry, and search that path for the dlls.

e DirectX SDK

o

o

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=6812
Download and Install the DirectX SDK Setup program. This is needed for the
JUCE library to play audio on Windows.

Create an environment variable called DXSDK_DIR and set the value to
C:\Program Files\Microsoft DirectX SDK (June 2010)\ (your path might be
different)

This environment variable will be used by CMake to find the binaries and
header files.

e libSndFile

http://www.mega-nerd.com/libsndfile/#Download

Download and Install the Win32 Setup program.

Create an environment variable called SNDFILE_DIR and set the value to
C:\Program Files\libsndfile

This environment variable will be used by CMake to find the binary and header
files.

e libopenshot-audio

o

Since libopenshot-audio is not available in an installer, we need to go through a
few additional steps to manually build and install it.
Branch the latest version: $ bzr branch
lp:~openshot.code/libopenshot/libopenshot-audio
Launch a terminal, and enter:

] cd /libopenshot-audio/
mkdir build
cd build
cmake -G “MinGW Makefiles” ../
mingw32-make

H B B N
0 W v

If you are missing any dependencies for libopenshot-audio, you might receive
error messages at this point. Just install the missing libraries, and run the

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=6812
http://www.mega-nerd.com/libsndfile/#Download

above commands again. Repeat until no error messages are displayed, and
the build process completes. If you get stuck at this point, take a look at the
CMakelLists.txt file inside the \libopenshot-audio\ folder for clues on how it’s
trying to locate dependencies, such as environment variables, registry keys,
etc...

o If you are trying to build with Qt5’s version of MinGW, which is a 64 bit version
of MinGW, you “might” need to fix one of the header files in MinGW. Replace
the contents of iphlpapi.h with this file:
https://gitorious.org/w64/w64/raw/8debddd9a43d7b8d841d3ebc1dd8a46782ea
c120:mingw-w64-headers/include/iphlpapi.h

o Once libopenshot-audio has been successfully built, we need to install it (i.e.
copy it to the correct folder, so other libraries can find it)

B S mingw32-make install

m This should copy the binary file to C:\Program
Files\Project\lib\libopenshot-audio.dll, and the header files to
C:\Program Files\Project\include\libopenshot-audio\... This is where
libopenshot will ultimately look for the libopenshot-audio files when
building.

o If everything worked correctly, this command should play a test sound:

m $ openshot-audio-test-sound

o Create an environment variable called LIBOPENSHOT_AUDIO_DIR and set
the value to C:\Program Files\Project\libopenshot-audio (your path might be
different)

o This environment variable will be used by CMake to find the binary and header
files needed by libopenshot.

Build & Install OpenShot Video Library on Windows (libopenshot)

The first step in installing libopenshot is to obtain the most recent source code. The source
code is available on |launchpad.net/libopenshot.

Branch the latest version: $ bzr branch lp:libopenshot
Create a folder called \build\ inside the \libopenshot\ folder: C:\libopenshot\build\
o This will be used to store the final binary of libopenshot.dll
e Launch a terminal, and enter:
0 $ cd C:\libopenshot\build
o $ cmake -G "MinGW Makefiles"
-DPYTHON INCLUDE DIR="C:/Python34/include/"
-DPYTHON LIBRARY="C:/Python34/libs/libpython34.a" ../
0 $ mingw32-make
e If you are missing any dependencies for libopenshot, you might receive error
messages at this point. Just install the missing packages (usually with a -dev suffix),
and run the above commands again. Repeat until no error messages are displayed,

https://gitorious.org/w64/w64/raw/8debddd9a43d7b8d841d3ebc1dd8a46782eac120:mingw-w64-headers/include/iphlpapi.h
https://gitorious.org/w64/w64/raw/8debddd9a43d7b8d841d3ebc1dd8a46782eac120:mingw-w64-headers/include/iphlpapi.h
https://launchpad.net/libopenshot/

and the build process completes. Also, be sure to point to your correct Python file
paths in the above command.
To run all unit tests (and verify everything is working correctly), launch a terminal, and
enter:
0 $ make test
o If all tests pass, then you have successfully built libopenshot!
To auto-generate the documentation for libopenshot, launch a terminal, and enter:
o $ make doc
o This will use doxygen to generate a folder of HTML files, with all classes and
methods documented. The folder is located at
/home/user/libopenshot/build/doc/html/.
Once libopenshot has been successfully built, we need to install it (i.e. copy it to the
correct folder, so other libraries can find it)
0 $ sudo make install
o This should copy the binary file to C:\Program
Files\openshot\lib\libopenshot.dll, and the header files to C:\Program
Files\openshot\include\... This is where other projects will likely look for the
libopenshot files when building.
The Python bindings are located in /libopenshot/build/src/. To test them, launch a
terminal, and enter:
$ cd C:\YOURPROJECTS\libopenshot\build\src\
$ python
>>> import openshot
If no errors are displayed, you may now access all the classes and methods of
libopenshot through the openshot module in Python.

o O O O

Environment Variables

Many environment variables will need to be set during this Windows installation guide. The
command line will need to be closed and re-launched after any changes to your environment
variables. Also, dependency libraries will not be found during linking or execution without

being found in the PATH environment variable. So, if you get errors related to missing
commands or libraries, double check the PATH variable.

The following environment variables need to be added to your “System Variables”. Be sure to

check each folder path for accuracy, as your paths will likely be different than this list.

Example Variables

DL_DIR C:\libdl

DXSDK_DIR C:\Program Files\Microsoft DirectX SDK (June 2010)\

http://en.wikipedia.org/wiki/Environment_variable

FFMPEGDIR C:\ffmpeg-git-95f163b-win32-dev

FREETYPE_DIR C:\Program Files\GnuWin32

HOME C:\msys\1.0\home
LIBOPENSHOT_AUDI | C:\Program Files\libopenshot-audio
O_DIR

QTDIR C:\qgt5

SNDFILE_DIR C:\Program Files\libsndfile
UNITTEST_DIR C:\UnitTest++

PATH The following paths were appended:

C:\msys\1.0\local\lib;C:\Program Files\CMake
2.8\bin;C:\MinGW\bin;C:\UnitTest++\build;C:\libopenshot\build\sr
c;C:\Program
Files\doxygen\bin;C:\ffmpeg-git-95f163b-win32-dev\lib;C:\swigwi
n-2.0.4;C:\Python27;C:\Program Files\Project\lib;

Mac Build Instructions

These build instructions are for Mac OS X (Mountain Lion). Other OS X versions should be
very similar, but might also be subtly different. So, exercise caution if you are using a
non-Mountain Lion version.

Install Dependencies (via MacPorts & Homebrew)

Most packages needed by libopenshot can be installed easily with MacPorts or Homebrew.
However, before MacPorts can be installed, you must first install Xcode with the following
options ("UNIX Development", "System Tools", "Command Line Tools", or "Command Line
Support"). Be sure to refresh your list of MacPort packages with the “sudo port selfupdate”
command and/or update your Homebrew packages with “brew update”. NOTE: Homebrew
seems to work much better for most users, so | am going to focus on brew for the rest of this
guide.

Install the following packages using the Homebrew package installer (http://brew.sh/). Pay
close attention to any warnings or errors during these brew installs. NOTE: You might have
some conflicting libraries in your /usr/local/ folders, so follow the directions from brew if these
are detected.

e brew install gcc48 --enable-all-languages

http://www.macports.org/install.php
http://brew.sh/
http://brew.sh/

brew install ffmpeg

brew install librsvg

brew install imagemagick --with-librsvg

brew install swig

brew install doxygen

brew install unittest-cpp --cc=gcc-4.8. You must specify the c++ compiler with the
--cc flag to be 4.7 or 4.8.

brew install qt5

brew install cmake

Install the following packages manually (because Homebrew does not have them):
e X11 (XQuartz) - http://xquartz.macosforge.org/landing/
o This library is used to display images with ImageMagick and libopenshot. Some
version of Mac OS X include X11, and some do not. You can install the newest
version of XQuartz from the link above.

Build & Install libopenshot-audio (Dependency)

Since libopenshot-audio is not available in a Homebrew or MacPorts package, we need to go
through a few additional steps to manually build and install it.

e Branch the latest version: $ bzr branch
lp:~openshot.code/libopenshot/libopenshot-audio

e Launch a terminal and enter:

0 $ cd /home/user/libopenshot-audio/

0 $ mkdir build

0 $ cd build

0 $ cmake -G “Unix Makefiles”
-DCMAKE CXX COMPILER=/usr/local/opt/gcc48/bin/g++-4.8
-DCMAKE C COMPILER=/usr/local/opt/gcc48/bin/gcc-4.8 ../
(This must not use the gcc-mp-4.7 compiler, since it compiles objective C
code.)
S make

o

o

$ make install
$ openshot-audio-test-sound (This should play a test sound)

o

Build & Install OpenShot Video Library on Mac (libopenshot)

The first step in installing libopenshot is to obtain the most recent source code. The source
code is available on launchpad.net/libopenshot.

e Branch the latest version: $ bzr branch lp:libopenshot

e Create a folder called /build/ inside the /libopenshot/ folder: /libopenshot/build/
o This will be used to store the final binary: libopenshot.so

e Launch a terminal, and enter:

http://xquartz.macosforge.org/landing/
https://launchpad.net/libopenshot/

0 $ cd /home/user/libopenshot/build/
cmake -G “Unix Makefiles”
-DCMAKE CXX COMPILER=/usr/local/opt/gcc48/bin/g++-4.8
-DCMAKE C COMPILER=/usr/local/opt/gcc48/bin/gcc-4.8
-DCMAKE PREFIX PATH=/usr/local/Cellar/qt5/5.1.1/
-DPYTHON INCLUDE DIR=/usr/local/Cellar/python3/3.3.2/Frame
works/Python. framework/Versions/3.3/include/python3.3m/
-DPYTHON LIBRARY=/usr/local/Cellar/python3/3.3.2/Framework
s/Python. framework/Versions/3.3/1ib/libpython3.3.dylib
-DPython FRAMEWORKS=/usr/local/Cellar/python3/3.3.2/Framew
orks/Python. framework/ ../
-D"CMAKE BUILD TYPE:STRING=Debug"
The extra arguments on the cmake command make sure the compiler will be
gcc4.8 and that cmake knows where to look for the Qt header files and Python
library. Double check these file paths, as yours might be different.
o $ make
If you are missing any dependencies for libopenshot, you will receive error messages
at this point. Just install the missing packages (usually with a -dev suffix), and run the
above commands again. Repeat until no error messages are displayed and the build
process completes.
Also, if you are having trouble building, please see the CMake Flags section below, as
it might provide a solution for finding a missing folder path, missing Python library,
etc...
To run all unit tests (and verify everything is working correctly), launch a terminal, and
enter:
O $ make test
o If all tests pass, then you have successfully built libopenshot! Congratulations!
To auto-generate the documentation for libopenshot, launch a terminal, and enter:
o $ make doc
o This will use doxygen to generate a folder of HTML files, with all classes and
methods documented. The folder is located at
/homel/user/libopenshot/build/doc/html/.
Once libopenshot has been successfully built, we need to install it (i.e. copy it to the
correct folder, so other libraries can find it)
o $ sudo make install
o This should copy the binary file to /usr/local/lib/libopenshot.so, and the header
files to /usr/local/include/openshot/... This is where other projects will likely look
for the libopenshot files when building.
The Python bindings are located in /libopenshot/build/src/. To test them, launch a
terminal, and enter:
0 $ cd /home/user/libopenshot/build/src/
o $ python (or python3)
o >>> import openshot

o If no errors are displayed, you can now access all the classes and methods of
libopenshot through the openshot module in Python.

CMake Flags (Optional)

There are many different build flags that can be passed to cmake to adjust how libopenshot is
compiled. Some of these flags might be required when compiling on certain OSes, just
depending on how your build environment is setup. To add a build flag, follow this general
syntax: $ cmake -DMAGICKCORE HDRI ENABLE=1 -DENABLE TESTS=1 ../

MAGICKCORE_HDRI_ENABLE 0

MAGICKCORE_QUANTUM_DEPTH 16

ENABLE_BLACKMAGIC 0

ENABLE_TESTS 1

CMAKE_PREFIX_PATH /location/to/missing/library/

PYTHON_INCLUDE_DIR /location/to/python/include/

PYTHON_LIBRARY /location/to/python/lib.a

PYTHON_FRAMEWORKS lusr/local/Cellar/python3/3.3.2/Frameworks/Pyth
on.framework/

CMAKE_CXX_COMPILER /location/to/mingw/g++

CMAKE_C_ COMPILER /location/to/mingw/gcc

Installers / Packaging

Many different installers and packages (as they are called on Linux and Mac) have been
created for libopenshot and libopenshot-audio. The source code for these packages is located
in a separate Bazaar branch.

Packaging Bazaar Branch
https://code.launchpad.net/~openshot.packagers/libopenshot/packaging.

Daily PPA for Ubuntu

https://code.launchpad.net/~openshot.packagers/libopenshot/packaging

For Ubuntu, we also have a daily built repository / PPA:
https://launchpad.net/~openshot.developers/+archive/ubuntu/libopenshot-daily

Downloads

Finally, we have many packages that are available on the Open Build Service:
http://download.opensuse.org/repositories/home:/jonoomph/

PyQt Interface (Optional)

Once you have successfully installed libopenshot and libopenshot-audio, you now have the
option of installing our PyQt5 desktop video editor: OpenShot Video Editor 2.0. Here are the
general instructions for installing OpenShot 2.0. Note: OpenShot 1.x does not use PyQt or
libopenshot.

Obtaining Source Code

The first step to installing our desktop video editor (i.e. OpenShot Video Editor 2.0), is to
download the source code. And luckily, this source code is Python and JavaScript, and does
not need to be compiled. The source code is currently only available for the OpenShot
Developers team, but will soon be released publicly on Launchpad.net. Of course, you are
welcome to join this team and download the source code, but will first need to contact the
project team lead before the following command will work.

e bzr pull bzr+ssh://YOURUSER@source.openshot.org/~/bzr/openshot_qgt/

Folder Structure
The source code is divided up into the following folders.

bin/ This folder contains the script that launches OpenShot 2.0

doc/ This folder contains documentation and related files, such as logos and
images required by the doxygen auto-generated documentation.

installer/ This folder contains the InstallBuilder project files (needed to build
Windows and Mac installers for OpenShot 2.0). This is not used on Linux.

src/ This folder contains all source code (*.py) used by libopenshot.

... Iblender/ This folder contains the Blender 3D animation files, used for animated
titles and other 3D effects.

... Iclasses/ This folder contains most of our primary classes and utility Python
methods. Such as our app.py, info.py, and other top level functions.

https://launchpad.net/~openshot.developers/+archive/ubuntu/libopenshot-daily
http://download.opensuse.org/repositories/home:/jonoomph/
https://launchpad.net/openshot-project
https://launchpad.net/~openshot.developers
mailto:jonathan@openshot.org
mailto:jonathan@openshot.org
http://source.openshot.org/~/bzr/openshot_qt/

.. leffects/

This folder contains the meta data for our effects. Such as effect
thumbnails, XML files, etc...

.. limages/ This folder contains misc images used by OpenShot 2.0 (i.e. logo).

.. llocale/ This folder contains language translations for OpenShot 2.0.

.. Ipresets/ This folder contains presets for our export dialog. The presets are XML
files that describe common combinations of export settings, such as DVD
NTSC.

.. Iprofiles/ This folder contains profiles for different screen resolutions, frame rates,
aspect ratios, etc...

.. Isettings/ This folder contains the default settings file used by OpenShot 2.0, as
well as the default timeline JSON file.

.. Itests/ This folder contains Python unit tests for OpenShot 2.0.

.. [timeline/ This folder contains the JavaScript source code and HTML used by the
timeline widget. It uses Angular.js and JQuery Ul to bind to the timeline’s
JSON structure and render the timeline. This HTML can actually be
tested and debugged outside of the PyQt application, using a recent
version of Google Chrome.

.. ltitles/ This folder contains the SVG vector titles uses by OpenShot 2.0.

.. [transitions/ | This folder contains the grayscale transition images, used to fade
between different clips / videos.

.. luploads/ This folder contains the YouTube and Vimeo source code, to upload
exported videos directly to a user’s account.

.. Iwindows/ This folder contains all the .Ul files and Window classes used by
OpenShot 2.0. Much of our source code is inside this folder, as most of
our source code relates to windows, dialogs, and interfaces.

xdg/ This folder contains some Linux specific files, related to packaging, such

as the .desktop launcher file, icon, and mime type data.

Linux Instructions

Here is a list of the packages you need to install via your package manager. These are the
package names on Ubuntu, so your OS might have different names for these packages.

e python3

e python3-pyqtd
e python3-pyqt5.qtmultimedia

e python3-pyqt5.qtwebkit
e libqtSsvgbs
e python3-simplejson

Windows Instructions

To run our desktop video editor on Windows, you need to install the frameworks and
dependencies that are required, such as PyQt5 and Python3.

e PyQt - http://www.riverbankcomputing.co.uk/software/pygt/download5
o Be sure to download the .exe for your correct architecture (32 bit vs 64 bit)
o You also need to be sure to install the version of PyQt5 that matches your Qt
version from the previous steps above. So, if you previously installed Qt 5.3, be
sure to install the version of PyQt that is based on Qt 5.3.
e Python3
o http://www.python.org/download/
o Download and Install the Python 3.X Windows Installer (32bit version / x86).
This will also install the headers and library files for Python.

Mac Instructions

The packages are needed by OpenShot 2.0, and can be installed easily with MacPorts or
Homebrew. However, before MacPorts can be installed, you must first install Xcode with the
following options ("UNIX Development", "System Tools", "Command Line Tools", or
"Command Line Support"). Be sure to refresh your list of MacPort packages with the “sudo
port selfupdate” command and/or update your Homebrew packages with “brew update”.
NOTE: Homebrew seems to work much better for most users, so | am going to focus on brew
for the rest of this guide.

Install the following packages using the Homebrew package installer (http://brew.sh/).

e brew install python3
e brew install pyqt5

Launching the App

To launch OpenShot 2.0 from source code, you must use the terminal / command line.
Navigate to the correct folder: /openshot_qt/, and run the following command:

e $ python3 src/launch.py
e or(python src/launch.py)

If you see any error messages printed to the terminal, it usually means that a dependency is

http://www.riverbankcomputing.co.uk/software/pyqt/download5
http://www.python.org/download/
http://www.macports.org/install.php
http://brew.sh/
http://brew.sh/

missing, such as libopenshot or PyQt. Hopefully with some careful googling, you can figure
out what is missing and fix it. Good luck!

Conclusion

I hope this Installation Guide was useful to you, and | hope you are now enjoying the
OpenShot Video Library. Be sure to contact me if you use this library for anything interesting
or exciting, as | would love to hear about it and share it with the community. Also, if you are
interested in obtaining a commercial license, please contact me for more details:
jonathan@openshot.org.

Donations

If you find any use or enjoyment from this library, | encourage you to donate a few dollars to
our project. Even the smallest contributions add up and help fund meetings, conferences,
travel expenses, and of course, my time to continue to improve this great project. For more
information on donations, please visit www.openshot.org/donate/. Thank you for your support!

mailto:jonathan@openshot.org
http://www.openshot.org/donate/

