Using the GNU Compiler Collection

For ccc version 4.8.2

(crosstool-NG linaro-1.13.1-4.8-2013.08 - Linaro GCC 2013.08)

Richard M. Stallman and the GCC Developer Community

Published by:

GNU Press Website: www.gnupress.org
a division of the General: press@Qgnu.org
Free Software Foundation Orders: sales@gnu.org

51 Franklin Street, Fifth Floor Tel 617-542-5942

Boston, MA 02110-1301 USA Fax 617-542-2652

Last printed October 2003 for GCC 3.3.1.
Printed copies are available for $45 each.

Copyright (©) 1988-2013 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

Introductiono e 1
1 Programming Languages Supported by GCC............... 3
2 Language Standards Supported by GCC D
3 GCC Command Optionsvvteniie e 9
4 C Implementation-defined behavior..................... 315
5 C++ Implementation-defined behavior.................. 323
6 Extensions to the C Language Family 325
7 Extensions to the C++ Language 647
8 GNU Objective-C features, 661
9 Binary Compatibility 677
10 gcov—a Test Coverage Program 681
11 Known Causes of Trouble with GCC.................... 689
12 Reporting Bugs......... .o, 705
13 How To Get Help with GCC 707
14 Contributing to GCC Development 709
Funding Free Software i 711
The GNU Project and GNU/Linux. 713
GNU General Public License., 715
GNU Free Documentation License 27
Contributors to GCC 735
Option Indexo 751

Keyword Index oo 769

Table of Contents

Introduction 1

1 Programming Languages Supported by GCC

... 3

2 Language Standards Supported by GCC 5
2.1 O AN gUAZE .« o ettt e e 5
2.2 CH4H languageot 6
2.3 Objective-C and Objective-C++ languages 7
24 GOlanguAZEeot 8
2.5 References for other languages.............. L. 8
3 GCC Command Options....................... 9
3.1 Option SUMMATYttt e e 9
3.2 Options Controlling the Kind of Output....................... 24
3.3 Compiling C+4 Programscooiuiiiiiiiinnieennn.. 29
3.4 Options Controlling C Dialect............. ..., .. 30
3.5 Options Controlling C++ Dialect, 35
3.6 Options Controlling Objective-C and Objective-C++ Dialects.. 46
3.7 Options to Control Diagnostic Messages Formatting 49
3.8 Options to Request or Suppress Warnings 50
3.9 Options for Debugging Your Program or GCC................. 74
3.10 Options That Control Optimization.......................... 97
3.11 Options Controlling the Preprocessor........................ 148
3.12 Passing Options to the Assembler........................... 159
3.13 Options for Linking........ ... i i 160
3.14 Options for Directory Search.............. 163
3.15 Specifying subprocesses and the switches to pass to them.... 165
3.16 Specifying Target Machine and Compiler Version............ 173
3.17 Hardware Models and Configurations 173
3.17.1 AArch64 Optionsc.vvviiie e e 173
3.17.1.1 ‘-march’ and ‘-mcpu’ feature modifiers............. 174
3.17.2 Adapteva Epiphany Options 175
3.17.3 ARM Options.ooueiir i 177
3174 AVR Optionscoiiiii i 182
3.17.4.1 EIND and Devices with more than 128 Ki Bytes of Flash
.. 186

3.17.4.2 Handling of the RAMPD, RAMPX, RAMPY and RAMPZ Special
Function Registers.......... ..o i it 188

3.17.4.3 AVR Built-in Macros.............coooiiiiii.. 188
3.17.5 Blackfin Options............ooiiiiiiiiain. 190

3.17.6 COX Options. . ..ottt 193

iii

v

Using the GNU Compiler Collection (GCC)

3.17.7 CRIS Options.ooiiiiiii i 193
3.17.8 CRI6 Options .. vveeee e 195
3.17.9 Darwin Options.o, 195
3.17.10 DEC Alpha Optionso.eiiiiiiieiieiiean.. 199
3.17.11 FR30 Optionsovuuiiiii i 203
3.17.12 FRV Options ... 204
3.17.13 GNU/Linux Options.............coooiiiiiiiii... 207
3.17.14 H8/300 Options.ovvueneitii i 208
3.17.15 HPPA Options.ot 208
3.17.16 Intel 386 and AMD x86-64 Options 211
3.17.17 1386 and x86-64 Windows Options 226
3.17.18 TA-64 Options ... ouveie et 227
3.17.19 LM32 Options . . .vvviee et 231
3.17.20 M32C Options . .. vouve ettt e 231
3.17.21 M32R/D Optionscovvuiuiniiiiiiiiiieen., 232
3.17.22 M680X0 OptionS . ..vvvre et ie e e e 233
3.17.23 MCore Optionseeeiiue i 238
3.17.24 MeP Optionsc.oviiiiiii i 239
3.17.25 MicroBlaze Options. ..., 241
3.17.26 MIPS Optionsot 242
3.17.27 MMIX Optionso.vviii i 254
3.17.28 MNI10300 Optionsc.vvurreneeit i, 255
3.17.29 Moxie Optionseviii e 256
3.17.30 PDP-11 Optionsvvuutii i 256
3.17.31 picoChip Optionsc.cvvvviiiie i, 257
3.17.32 PowerPC Options.........c.ooiiiiiiii ... 258
3.17.33 RL78 Options.ttt 258
3.17.34 IBM RS/6000 and PowerPC Options.................. 258
3.17.35 RX Options .. .oveeii e 272
3.17.36 S/390 and zSeries Optionscoooiuii... 274
3.17.37 Score Options.vieint et 277
3.17.38 SH Optionsoouuiiiii e 278
3.17.39 Solaris 2 Optionscooviiiiiiiiii i 285
3.17.40 SPARC Optionsouuiiniii i 285
3.17.41 SPU OpPtions ..o vt e i e 290
3.17.42 Options for System V..., 292
3.17.43 TILE-Gx Options.ccoviuiiiiiiiiiiiii e, 292
3.17.44 TILEPro Options.......oouiiiiiiiiiiiiii e, 293
3.17.45 V850 Options.vueiti et 293
31746 VAX Options........ooiiiiiiiiii i 296
3.17.47 VMS Options. . ..oouueeiii i 296
3.17.48 VxWorks Options. ..., 296
3.17.49 x86-64 OPtionsouuriniiiit i 297
3.17.50 Xstormyl6 Options...........ccoviiiiiiiiiiiina... 297
3.17.51 Xtensa Options..........coiiiiiiiaainn 297
3.17.52 zSeries Optionsot 298
3.18 Options for Code Generation Conventions................... 298

3.19 Environment Variables Affecting GCC 309

3.20 Using Precompiled Headers, 311

C Implementation-defined behavior 315
4.1 Translationot e 315
4.2 Environment.. ... 315
4.3 Identifiers........ooiiii 315
4.4 CharaCters. ... 316
4.5 Inbegers. ... 316
4.6 Floating point ..o 317
4.7 Arrays and pointers........ 318
4.8 HintS ..ottt 319
4.9 Structures, unions, enumerations, and bit-fields............... 319
4.10 Qualifiers.o 320
411 Declarators 320
412 Statementsooiiiiiii e 320
4.13 Preprocessing directives........ ... i 320
4.14 Library functionsot 321
4.15 Architecture........ ... 321
4.16 Locale-specific behavior............ i 321

C++ Implementation-defined behavior 323

5.1 Conditionally-supported behavior 323
5.2 Exception handling o i 323
Extensions to the C Language Family...... 325
6.1 Statements and Declarations in Expressions 325
6.2 Locally Declared Labels.......... ..o i it 326
6.3 Labelsas Values ... 327
6.4 Nested Functionso 328
6.5 Constructing Function Calls.................... ..., 330
6.6 Referring to a Type with typeof 332
6.7 Conditionals with Omitted Operands......................... 333
6.8 128-bit integersoui 334
6.9 Double-Word Integers. ..., 334
6.10 Complex Numbers...........ooiiiiiiiiii i 334
6.11 Additional Floating Types.........coouiiiiiiiiiiiiiia.. 335
6.12 Half-Precision Floating Point 335
6.13 Decimal Floating Types........ccooiiiiiiiiiii .. 336
6.14 Hex Floats...... ..o e 336
6.15 Fixed-Point Types........ccoiiiiiiiiii i 337
6.16 Named Address Spacescoviieiiiiin ... 338
6.16.1 AVR Named Address Spaces..........cooovieeenieann... 338
6.16.2 M32C Named Address Spaces..........c.oovvieenne ... 340
6.16.3 RL78 Named Address Spaces............ccoviuvinne ... 340
6.16.4 SPU Named Address Spacesccoviiiveinnn... 340
6.17 Arrays of Length Zero i 340

6.18 Structures With No Members..........c.coviiiinin ... 341

vi

Using the GNU Compiler Collection (GCC)

6.19 Arrays of Variable Length................................... 342
6.20 Macros with a Variable Number of Arguments............... 343
6.21 Slightly Looser Rules for Escaped Newlines.................. 343
6.22 Non-Lvalue Arrays May Have Subscripts.................... 344
6.23 Arithmetic on void- and Function-Pointers.................. 344
6.24 Non-Constant Initializers, 344
6.25 Compound Literalsoo i 344
6.26 Designated Initializers i, 345
6.27 Case Ranges. 347
6.28 Cast toa Union Type......oooviiiiiiiiiiiiiii .. 347
6.29 Mixed Declarations and Code.................coiiiiian... 348
6.30 Declaring Attributes of Functions........................... 348
6.31 Attribute Syntax 378
6.32 Prototypes and Old-Style Function Definitions 381
6.33 C+-+ Style Commentsooviiiiiii .. 382
6.34 Dollar Signs in Identifier Names.......... 382
6.35 The Character ESC in Constantsooviia... 382
6.36 Specifying Attributes of Variables........................... 382
6.36.1 AVR Variable Attributes................, 387
6.36.2 Blackfin Variable Attributes..............., 387
6.36.3 M32R/D Variable Attributes........................... 387
6.36.4 MeP Variable Attributes........... 388
6.36.5 1386 Variable Attributes............... L. 388
6.36.6 PowerPC Variable Attributes........................... 390
6.36.7 SPU Variable Attributes............. 390
6.36.8 Xstormyl6 Variable Attributes................ 390
6.37 Specifying Attributes of Types ..., 391
6.37.1 ARM Type Attributes ..., 395
6.37.2 MeP Type Attributes ..., 395
6.37.3 1386 Type Attributes........ ..., 395
6.37.4 PowerPC Type Attributes............. 396
6.37.5 SPU Type Attributeso 396
6.38 Inquiring on Alignment of Types or Variables 396
6.39 An Inline Function is As Fast Asa Macro................... 397
6.40 When is a Volatile Object Accessed? 398
6.41 Assembler Instructions with C Expression Operands......... 399
6.41.1 Sizeof an asm............ouiiiiiiiiiiii 405
6.41.2 1386 floating-point asm operands 405
6.42 Constraints for asm Operands............. ..., 407
6.42.1 Simple Constraints..................coiiiiiiiinen.... 407
6.42.2 Multiple Alternative Constraints 409
6.42.3 Constraint Modifier Characters......................... 410
6.42.4 Constraints for Particular Machines 411
6.43 Controlling Names Used in Assembler Code 435
6.44 Variables in Specified Registers............. 435
6.44.1 Defining Global Register Variables 436
6.44.2 Specifying Registers for Local Variables 437

6.45 Alternate Keywords. ... 438

6.46 Incomplete enum Typescovviiiiiiiiiiiiiiiiina... 438
6.47 Function Names as Strings............c.oooiiiiiiiii., 438
6.48 Getting the Return or Frame Address of a Function......... 439
6.49 Using Vector Instructions through Built-in Functions........ 440
6.50 Offsetof..o 442
6.51 Legacy -_sync Built-in Functions for Atomic Memory Access
.. 443
6.52 Built-in functions for memory model aware atomic operations
.. 445
6.53 x86 specific memory model extensions for transactional memory
.. 449
6.54 Object Size Checking Built-in Functions..................... 449
6.55 Other Built-in Functions Provided by GCC 451
6.56 Built-in Functions Specific to Particular Target Machines. ... 460
6.56.1 Alpha Built-in Functions............................... 460
6.56.2 ARM iWMMX¢t Built-in Functions..................... 461
6.56.3 ARM NEON Intrinsics.........ouuuueieiiieenniinna.n. 464
6.56.3.1 Addition......... ... 464
6.56.3.2 Multiplication............ i 468
6.56.3.3 Multiply-accumulate oL 469
6.56.3.4 Multiply-subtractol 470
6.56.3.5 Fused-multiply-accumulate 472
6.56.3.6 Fused-multiply-subtract 472
6.56.3.7 Round to integral (to nearest, ties to even) 472
6.56.3.8 Round to integral (to nearest, ties away from zero)
.. 472
6.56.3.9 Round to integral (towards +Inf).................. 472
6.56.3.10 Round to integral (towards -Inf) 472
6.56.3.11 Round to integral (towards 0).................... 472
6.56.3.12 Subtraction..............c.ooiiiiiiiiii 472
6.56.3.13 Comparison (equal-to) 476
6.56.3.14 Comparison (greater-than-or-equal-to)............ 477
6.56.3.15 Comparison (less-than-or-equal-to) 477
6.56.3.16 Comparison (greater-than)....................... 478
6.56.3.17 Comparison (less-than)........................... 479
6.56.3.18 Comparison (absolute greater-than-or-equal-to)... 479
6.56.3.19 Comparison (absolute less-than-or-equal-to) 480
6.56.3.20 Comparison (absolute greater-than).............. 480
6.56.3.21 Comparison (absolute less-than).................. 480
6.56.3.22 Test DitS....oeeni 480
6.56.3.23 Absolute difference...........l 481
6.56.3.24 Absolute difference and accumulate............... 482
6.56.3.25 Maximum........c.uutiitiiiiii e 483
6.56.3.26 Minimumc.ouiiiiiiiiiiii .. 483
6.56.3.27 Pairwise add i 484
6.56.3.28 Pairwise add, single_opcode widen and accumulate
.. 485

6.56.3.29 Folding maximum...............ccoooiiiiiii... 485

vii

viii Using the GNU Compiler Collection (GCC)

6.56.3.30 Folding minimum, 486
6.56.3.31 Reciprocal step ... 486
6.56.3.32 Vector shift left, 486
6.56.3.33 Vector shift left by constant...................... 490
6.56.3.34 Vector shift right by constant 492
6.56.3.35 Vector shift right by constant and accumulate 495
6.56.3.36 Vector shift right and insert...................... 496
6.56.3.37 Vector shift left and insert 497
6.56.3.38 Absolute value........... L. 498
6.56.3.39 Negation...........ccoiiiiiiiiiiiiiiiiii., 499
6.56.3.40 Bitwisenot 500
6.56.3.41 Count leading sign bits............... 500
6.56.3.42 Count leading zeros........... ..o, 501
6.56.3.43 Count number of set bits......................... 501
6.56.3.44 Reciprocal estimate 502
6.56.3.45 Reciprocal square-root estimate 502
6.56.3.46 Get lanes from a vector, 502
6.56.3.47 Set lanes ina vector 503
6.56.3.48 Create vector from literal bit pattern............. 504
6.56.3.49 Set all lanes to the same value.................... 505
6.56.3.50 Combining vectorscooiiiiiiii.. 508
6.56.3.51 Splitting vectors, 508
6.56.3.52 CONVErSIONS\ttt 509
6.56.3.53 Move, single_opcode narrowing................... 510
6.56.3.54 Move, single_opcode long......................... 510
6.56.3.55 Table lookup........ccooviiiiiiiiiii . 511
6.56.3.56 Extended table lookup L 511
6.56.3.57 Multiply, lane.......... ... 512
6.56.3.58 Long multiply, lane 512
6.56.3.59 Saturating doubling long multiply, lane........... 513
6.56.3.60 Saturating doubling multiply high, lane 513
6.56.3.61 Multiply-accumulate, lane........................ 513
6.56.3.62 Multiply-subtract, lane.................... 514
6.56.3.63 Vector multiply by scalar......................... 515
6.56.3.64 Vector long multiply by scalar.................... 515
6.56.3.65 Vector saturating doubling long multiply by scalar
.. 515
6.56.3.66 Vector saturating doubling multiply high by scalar
.. 516
6.56.3.67 Vector multiply-accumulate by scalar............. 516
6.56.3.68 Vector multiply-subtract by scalar................ 517
6.56.3.69 Vector extractoo it 518
6.56.3.70 Reverse elements.............ooiiiiiiiiiiii 519
6.56.3.71 Bit selectionol 520
6.56.3.72 Transpose elementsccoovi..... 522
6.56.3.73 Zipelements......... ..o i 523
6.56.3.74 Unzip elementso, 524

6.56.3.75 Element/structure loads, VLD1 variants.......... 525

6.56.3.76 Element/structure stores, VST1 variants 528
6.56.3.77 Element/structure loads, VLD2 variants.......... 530
6.56.3.78 Element /structure stores, VST2 variants 532
6.56.3.79 Element/structure loads, VLD3 variants.......... 534
6.56.3.80 Element/structure stores, VST3 variants 536
6.56.3.81 Element/structure loads, VLD4 variants.......... 538
6.56.3.82 Element /structure stores, VST4 variants 540
6.56.3.83 Logical operations (AND).......... 542
6.56.3.84 Logical operations (OR).......................... 543
6.56.3.85 Logical operations (exclusive OR)................ 543
6.56.3.86 Logical operations (AND-NOT) 544
6.56.3.87 Logical operations (OR-NOT).................... 545
6.56.3.88 Reinterpret casts. ... 546
6.56.4 AVR Built-in Functions................. 551
6.56.5 DBlackfin Built-in Functions..................... 552
6.56.6 FR-V Built-in Functions 553
6.56.6.1 Argument Types...... ..o, 553
6.56.6.2 Directly-mapped Integer Functions 553
6.56.6.3 Directly-mapped Media Functions................. 554
6.56.6.4 Raw read/write Functions......................... 556
6.56.6.5 Other Built-in Functions 556
6.56.7 X86 Built-in Functions............... ... oL 556
6.56.8 X86 transaction memory intrinsics 578
6.56.9 MIPS DSP Built-in Functions................. 579
6.56.10 MIPS Paired-Single Support 584
6.56.11 MIPS Loongson Built-in Functions.................... 584
6.56.11.1 Paired-Single Arithmetic................ 586
6.56.11.2 Paired-Single Built-in Functions.................. 587
6.56.11.3 MIPS-3D Built-in Functions...................... 588
6.56.12 Other MIPS Built-in Functions........................ 590
6.56.13 picoChip Built-in Functions........................... 590
6.56.14 PowerPC Built-in Functions........................... 591
6.56.15 PowerPC AltiVec Built-in Functions................... 591
6.56.16 RX Built-in Functions oL 626
6.56.17 S/390 System z Built-in Functions 628
6.56.18 SH Built-in Functions............ 629
6.56.19 SPARC VIS Built-in Functions........................ 630
6.56.20 SPU Built-in Functions 632
6.56.21 TI C6X Built-in Functions.................... 633
6.56.22 TILE-Gx Built-in Functions................. 633
6.56.23 TILEPro Built-in Functions........................... 634
6.57 Format Checks Specific to Particular Target Machines. 634
6.57.1 Solaris Format Checks o i, 634
6.57.2 Darwin Format Checks........... 634
6.58 Pragmas Accepted by GCC...... ... 635
6.58.1 ARM Pragmas..........cooiiiiiiiiiiii i 635
6.58.2 M32C Pragmasooiuuiiiiii i 635

6.58.3 MeP Pragmas..........cooiiiiiiiiiiii i 635

ix

Using the GNU Compiler Collection (GCC)

6.58.4 RS/6000 and PowerPC Pragmas 636
6.58.5 Darwin Pragmas............. ... i i 636
6.58.6 Solaris Pragmas....... ... 637
6.58.7 Symbol-Renaming Pragmas 637
6.58.8 Structure-Packing Pragmas 638
6.58.9 Weak Pragmas. ... 638
6.58.10 Diagnostic Pragmas............ ... ot 639
6.58.11 Visibility Pragmas................o o i it 640
6.58.12 Push/Pop Macro Pragmascoooou... 640
6.58.13 Function Specific Option Pragmas..................... 640
6.59 Unnamed struct/union fields within structs/unions.......... 641
6.60 Thread-Local Storage......... ... i, 642
6.60.1 ISO/IEC 9899:1999 Edits for Thread-Local Storage. 643
6.60.2 ISO/IEC 14882:1998 Edits for Thread-Local Storage.... 643
6.61 Binary constants using the ‘Ob’ prefix 645
Extensions to the C++4 Language.......... 647
7.1 When is a Volatile C++ Object Accessed? 647
7.2 Restricting Pointer Aliasing............ ...l 647
7.3 Vague Linkageo 648
7.4 #pragma interface and implementation....................... 649
7.5 Where’s the Template?......... ... i, 650
7.6 Extracting the function pointer from a bound pointer to member
function 652
7.7 C++-Specific Variable, Function, and Type Attributes 653
7.8 Function Multiversioning............. o i 654
7.9 Namespace Association ..., 655
710 Type Traits. ... 655
7.11 Java Exceptionscooiiiiiiiiiiiiiii i 658
7.12 Deprecated Features, 658
7.13 Backwards Compatibilityo it 659
GNU Objective-C features.................. 661
8.1 GNU Objective-C runtime API 661
8.1.1 Modern GNU Objective-C runtime API................. 661
8.1.2 Traditional GNU Objective-C runtime APT.............. 662
8.2 +load: Executing code before main 662
8.2.1 What you can and what you cannot do in +load......... 663
8.3 Typeencoding.......coouuiiiiiiiiiii i, 664
8.3.1 Legacy typeencodingooiiiiiiiiiiiii. 666
8.3.2 @encodeot 666
8.3.3 Method signaturesol i 667
8.4 Garbage Collection., 667
8.5 Constant string objects i 668
8.6 compatibility_alias...........co i 669
8.7 EXCEPIONS. ... 669
8.8 Synchronization........... ... i 671

8.9 Fast enumeration 671

8.9.1 Using fast enumeration..............ccovvviiieeninn... 671
8.9.2 ¢99-like fast enumeration syntax............... 671
8.9.3 Fast enumeration details L 672
8.9.4 Fast enumeration protocol............ L. 673
8.10 Messaging with the GNU Objective-C runtime 674
8.10.1 Dynamically registering methods....................... 674
8.10.2 Forwarding hook.......... ..o, 674
9 Binary Compatibility 677
10 gcov—a Test Coverage Program........... 681
10.1 Introduction to GCOV......c.viiuiiiiii i 681
10.2 Invoking GCovottt 681
10.3 Using gcov with GCC Optimization......................... 687
10.4 Brief description of gcov data files.............. 688
10.5 Data file relocation to support cross-profiling................ 688
11 Known Causes of Trouble with GCC...... 689
11.1 Actual Bugs We Haven’t Fixed Yet 689
11.2 Interoperationc.couiiiiiiiiiinn i, 689
11.3 Incompatibilities of GCC....... 691
11.4 Fixed Header Files..........coiiiii i 694
11.5 Standard Libraries...........c.couiiiiiiiiiieeeeennnnnns 694
11.6 Disappointments and Misunderstandings 695
11.7 Common Misunderstandings with GNU C++ 696
11.7.1 Declare and Define Static Members 696
11.7.2 Name lookup, templates, and accessing members of base
ClaSSES . o vt 697
11.7.3 Temporaries May Vanish Before You Expect............ 698
11.7.4 TImplicit Copy-Assignment for Virtual Bases............ 699
11.8 Certain Changes We Don’t Want to Make................... 700
11.9 Warning Messages and Error Messages...................... 703
12 Reporting Bugs............................. 705
12.1 Have You Found a Bug? o i 705
12.2 How and where to Report Bugs................ 705
13 How To Get Help with GCC 707
14 Contributing to GCC Development 709
Funding Free Software........................... 711

The GNU Project and GNU/Linux............ 713

xi

xii Using the GNU Compiler Collection (GCC)

GNU General Public License 715
GNU Free Documentation License 727

ADDENDUM: How to use this License for your documents........ 734
Contributors to GCC............................ 735
Option Index, 751

Keyword Index................ooiiiiiiiiiia... 769

Introduction 1

Introduction

This manual documents how to use the GNU compilers, as well as their features and in-
compatibilities, and how to report bugs. It corresponds to the compilers (crosstool-NG
linaro-1.13.1-4.8-2013.08 - Linaro GCC 2013.08) version 4.8.2. The internals of the GNU
compilers, including how to port them to new targets and some information about how
to write front ends for new languages, are documented in a separate manual. See Section
“Introduction” in GNU Compiler Collection (GCC) Internals.

Chapter 1: Programming Languages Supported by GCC 3

1 Programming Languages Supported by GCC

GCC stands for “GNU Compiler Collection”. GCC is an integrated distribution of compil-
ers for several major programming languages. These languages currently include C, C++,
Objective-C, Objective-C++, Java, Fortran, Ada, and Go.

The abbreviation GCC has multiple meanings in common use. The current official mean-
ing is “GNU Compiler Collection”, which refers generically to the complete suite of tools.
The name historically stood for “GNU C Compiler”, and this usage is still common when
the emphasis is on compiling C programs. Finally, the name is also used when speaking
of the language-independent component of GCC: code shared among the compilers for all
supported languages.

The language-independent component of GCC includes the majority of the optimizers,
as well as the “back ends” that generate machine code for various processors.

The part of a compiler that is specific to a particular language is called the “front end”.
In addition to the front ends that are integrated components of GCC, there are several
other front ends that are maintained separately. These support languages such as Pascal,
Mercury, and COBOL. To use these, they must be built together with GCC proper.

Most of the compilers for languages other than C have their own names. The C++ compiler
is G++, the Ada compiler is GNAT, and so on. When we talk about compiling one of those
languages, we might refer to that compiler by its own name, or as GCC. Either is correct.

Historically, compilers for many languages, including C++ and Fortran, have been im-
plemented as “preprocessors” which emit another high level language such as C. None of
the compilers included in GCC are implemented this way; they all generate machine code
directly. This sort of preprocessor should not be confused with the C preprocessor, which
is an integral feature of the C, C++, Objective-C and Objective-C++ languages.

Chapter 2: Language Standards Supported by GCC 5

2 Language Standards Supported by GCC

For each language compiled by GCC for which there is a standard, GCC attempts to follow
one or more versions of that standard, possibly with some exceptions, and possibly with
some extensions.

2.1 C language

GCC supports three versions of the C standard, although support for the most recent version
is not yet complete.

The original ANSI C standard (X3.159-1989) was ratified in 1989 and published in 1990.
This standard was ratified as an ISO standard (ISO/IEC 9899:1990) later in 1990. There
were no technical differences between these publications, although the sections of the ANSI
standard were renumbered and became clauses in the ISO standard. This standard, in
both its forms, is commonly known as C89, or occasionally as C90, from the dates of
ratification. The ANSI standard, but not the ISO standard, also came with a Rationale
document. To select this standard in GCC, use one of the options ‘-ansi’, ‘-std=c90’ or
‘-std=1509899:1990’; to obtain all the diagnostics required by the standard, you should
also specify ‘-pedantic’ (or ‘-pedantic-errors’ if you want them to be errors rather than
warnings). See Section 3.4 [Options Controlling C Dialect], page 30.

Errors in the 1990 ISO C standard were corrected in two Technical Corrigenda published
in 1994 and 1996. GCC does not support the uncorrected version.

An amendment to the 1990 standard was published in 1995. This amendment added
digraphs and __STDC_VERSION__ to the language, but otherwise concerned the library. This
amendment is commonly known as AMDI; the amended standard is sometimes known as
C94 or C95. To select this standard in GCC, use the option ‘-~std=1s09899:199409’ (with,
as for other standard versions, ‘-pedantic’ to receive all required diagnostics).

A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and
is commonly known as C99. GCC has incomplete support for this standard version; see
http://gcc.gnu.org/c99status.html for details. To select this standard, use ‘-std=c99’
or ‘-std=is09899:1999’. (While in development, drafts of this standard version were re-
ferred to as C9X.)

Errors in the 1999 ISO C standard were corrected in three Technical Corrigenda published
in 2001, 2004 and 2007. GCC does not support the uncorrected version.

A fourth version of the C standard, known as C11, was published in 2011 as ISO/IEC
9899:2011. GCC has limited incomplete support for parts of this standard, enabled with
‘~std=c11’ or ‘-std=is09899:2011’. (While in development, drafts of this standard version
were referred to as C1X.)

By default, GCC provides some extensions to the C language that on rare occasions con-
flict with the C standard. See Chapter 6 [Extensions to the C Language Family], page 325.
Use of the ‘-std’ options listed above will disable these extensions where they conflict with
the C standard version selected. You may also select an extended version of the C lan-
guage explicitly with ‘-std=gnu90’ (for C90 with GNU extensions), ‘-std=gnu99’ (for C99
with GNU extensions) or ‘-std=gnull’ (for C11 with GNU extensions). The default, if
no C language dialect options are given, is ‘~std=gnu90’; this will change to ‘-std=gnu99’

¢

or ‘-std=gnull’ in some future release when the C99 or C11 support is complete. Some

http://gcc.gnu.org/c99status.html

6 Using the GNU Compiler Collection (GCC)

features that are part of the C99 standard are accepted as extensions in C90 mode, and
some features that are part of the C11 standard are accepted as extensions in C90 and C99
modes.

The ISO C standard defines (in clause 4) two classes of conforming implementation. A
conforming hosted implementation supports the whole standard including all the library fa-
cilities; a conforming freestanding implementation is only required to provide certain library
facilities: those in <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>; since AMDI,
also those in <is0646.h>; since C99, also those in <stdbool.h> and <stdint.h>; and since
C11, also those in <stdalign.h> and <stdnoreturn.h>. In addition, complex types, added
in C99, are not required for freestanding implementations. The standard also defines two
environments for programs, a freestanding environment, required of all implementations and
which may not have library facilities beyond those required of freestanding implementations,
where the handling of program startup and termination are implementation-defined, and a
hosted environment, which is not required, in which all the library facilities are provided
and startup is through a function int main (void) or int main (int, char *[]). An OS
kernel would be a freestanding environment; a program using the facilities of an operating
system would normally be in a hosted implementation.

GCC aims towards being usable as a conforming freestanding implementation, or as the
compiler for a conforming hosted implementation. By default, it will act as the compiler for a
hosted implementation, defining __STDC_HOSTED__ as 1 and presuming that when the names
of ISO C functions are used, they have the semantics defined in the standard. To make it act
as a conforming freestanding implementation for a freestanding environment, use the option
‘~ffreestanding’; it will then define __STDC_HOSTED__ to O and not make assumptions
about the meanings of function names from the standard library, with exceptions noted
below. To build an OS kernel, you may well still need to make your own arrangements for
linking and startup. See Section 3.4 [Options Controlling C Dialect], page 30.

GCC does not provide the library facilities required only of hosted implementations, nor
yet all the facilities required by C99 of freestanding implementations; to use the facilities
of a hosted environment, you will need to find them elsewhere (for example, in the GNU C
library). See Section 11.5 [Standard Libraries], page 694.

Most of the compiler support routines used by GCC are present in ‘libgcc’, but there
are a few exceptions. GCC requires the freestanding environment provide memcpy, memmove,
memset and memcmp. Finally, if __builtin_trap is used, and the target does not implement
the trap pattern, then GCC will emit a call to abort.

For references to Technical Corrigenda, Rationale documents and information concerning
the history of C that is available online, see http://gcc.gnu.org/readings.html

2.2 C++ language

GCC supports the original ISO C++ standard (1998) and contains experimental support for
the second ISO C++ standard (2011).

The original ISO C++ standard was published as the ISO standard (ISO/IEC 14882:1998)
and amended by a Technical Corrigenda published in 2003 (ISO/IEC 14882:2003). These
standards are referred to as C++98 and C++03, respectively. GCC implements the majority
of C++98 (export is a notable exception) and most of the changes in C++03. To select
this standard in GCC, use one of the options ‘-ansi’, ‘-std=c++98’, or ‘-std=c++03’; to

http://gcc.gnu.org/readings.html

Chapter 2: Language Standards Supported by GCC 7

obtain all the diagnostics required by the standard, you should also specify ‘-pedantic’ (or
‘-pedantic-errors’ if you want them to be errors rather than warnings).

A revised ISO C++ standard was published in 2011 as ISO/IEC 14882:2011, and is re-
ferred to as C++11; before its publication it was commonly referred to as C++0x. C++11
contains several changes to the C++ language, most of which have been implemented in an
experimental C++11 mode in GCC. For information regarding the C++11 features available
in the experimental C++11 mode, see http://gcc.gnu.org/projects/cxx0x.html. To
select this standard in GCC, use the option ‘-std=c++11’; to obtain all the diagnostics
required by the standard, you should also specify ‘-pedantic’ (or ‘-pedantic-errors’ if
you want them to be errors rather than warnings).

More information about the C++ standards is available on the ISO C++ committee’s web
site at http://www.open-std.org/jtcl/sc22/wg21/.

By default, GCC provides some extensions to the C++ language; See Section 3.5 [C++
Dialect Options]|, page 35. Use of the ‘-std’ option listed above will disable these extensions.
You may also select an extended version of the C++ language explicitly with ‘-std=gnu++98’
(for C++98 with GNU extensions) or ‘-std=gnu++11’ (for C++11 with GNU extensions). The
default, if no C++ language dialect options are given, is ‘~std=gnu++98’.

2.3 Objective-C and Objective-C++ languages

GCC supports “traditional” Objective-C (also known as “Objective-C 1.0”) and contains
support for the Objective-C exception and synchronization syntax. It has also support for
a number of “Objective-C 2.0” language extensions, including properties, fast enumeration
(only for Objective-C), method attributes and the @Qoptional and @required keywords in
protocols. GCC supports Objective-C++ and features available in Objective-C are also
available in Objective-C++.

GCC by default uses the GNU Objective-C runtime library, which is part of GCC and
is not the same as the Apple/NeXT Objective-C runtime library used on Apple systems.
There are a number of differences documented in this manual. The options ‘-fgnu-runtime’
and ‘-fnext-runtime’ allow you to switch between producing output that works with the
GNU Objective-C runtime library and output that works with the Apple/NeXT Objective-
C runtime library.

There is no formal written standard for Objective-C or Objective-C++. The authori-
tative manual on traditional Objective-C (1.0) is “Object-Oriented Programming and the
Objective-C Language”, available at a number of web sites:

e http://www.gnustep.org/resources/documentation/0bjectivCBook . pdf is the
original NeXTstep document;

e http://objc.toodarkpark.net is the same document in another format;

e http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/
ObjectiveC/ has an updated version but make sure you search for “Object Oriented
Programming and the Objective-C Programming Language 1.0”, not documentation
on the newer “Objective-C 2.0” language

The Objective-C exception and synchronization syntax (that is, the keywords Qtry,
@throw, @catch, @finally and @synchronized) is supported by GCC and is enabled with

http://gcc.gnu.org/projects/cxx0x.html
http://www.open-std.org/jtc1/sc22/wg21/
http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf
http://objc.toodarkpark.net
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/

8 Using the GNU Compiler Collection (GCC)

the option ‘~fobjc-exceptions’. The syntax is briefly documented in this manual and in
the Objective-C 2.0 manuals from Apple.

The Objective-C 2.0 language extensions and features are automatically enabled; they
include properties (via the @property, @synthesize and @dynamic keywords), fast enumera-
tion (not available in Objective-C++), attributes for methods (such as deprecated, noreturn,
sentinel, format), the unused attribute for method arguments, the @package keyword for
instance variables and the @Qoptional and @required keywords in protocols. You can disable
all these Objective-C 2.0 language extensions with the option ‘-fobjc-std=objcl’, which
causes the compiler to recognize the same Objective-C language syntax recognized by GCC
4.0, and to produce an error if one of the new features is used.

GCC has currently no support for non-fragile instance variables.

The authoritative manual on Objective-C 2.0 is available from Apple:

e http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/
ObjectiveC/

For more information concerning the history of Objective-C that is available online, see
http://gcc.gnu.org/readings.html

2.4 Go language

As of the GCC 4.7.1 release, GCC supports the Go 1 language standard, described at
http://golang.org/doc/gol.html.

2.5 References for other languages
See Section “About This Guide” in GNAT Reference Manual, for information on standard
conformance and compatibility of the Ada compiler.

See Section “Standards” in The GNU Fortran Compiler, for details of standards sup-
ported by GNU Fortran.

See Section “Compatibility with the Java Platform” in GNU gc¢j, for details of compati-
bility between gcj and the Java Platform.

http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/
http://gcc.gnu.org/readings.html
http://golang.org/doc/go1.html

Chapter 3: GCC Command Options 9

3 GCC Command Options

When you invoke GCC, it normally does preprocessing, compilation, assembly and linking.
The “overall options” allow you to stop this process at an intermediate stage. For example,
the ‘=c’ option says not to run the linker. Then the output consists of object files output
by the assembler.

Other options are passed on to one stage of processing. Some options control the prepro-
cessor and others the compiler itself. Yet other options control the assembler and linker;
most of these are not documented here, since you rarely need to use any of them.

Most of the command-line options that you can use with GCC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says
so explicitly. If the description for a particular option does not mention a source language,
you can use that option with all supported languages.

See Section 3.3 [Compiling C++ Programs|, page 29, for a summary of special options for
compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multi-
letter names; therefore multiple single-letter options may not be grouped: ‘-dv’ is very
different from ‘-4 -v’.

You can mix options and other arguments. For the most part, the order you use doesn’t
matter. Order does matter when you use several options of the same kind; for example, if
you specify ‘-L’ more than once, the directories are searched in the order specified. Also,
the placement of the ‘-1’ option is significant.

Many options have long names starting with ‘-f’ or with ‘-W—for example,
‘-fmove-loop-invariants’, ‘-Wformat’ and so on. Most of these have both positive and
negative forms; the negative form of ‘~ffoo’ is ‘-fno-foo’. This manual documents only
one of these two forms, whichever one is not the default.

See [Option Index]|, page 751, for an index to GCC’s options.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following
sections.

Overall Options
See Section 3.2 [Options Controlling the Kind of Output], page 24.

-c -S -E -o file -no-canonical-prefixes

-pipe -pass-exit-codes

-x language -v -### --help[=class[,...]] --target-help

--version -wrapper Q@file -fplugin=file -fplugin-arg-name=arg
-fdump-ada-spec[-slim| -fada-spec-parent=arg -fdump-go-spec=file

C Language Options
See Section 3.4 [Options Controlling C Dialect], page 30.

-ansi -std=standard -fgnu89-inline

-aux-info filename -fallow-parameterless-variadic-functions
-fno-asm -fno-builtin -fno-builtin-function

-fhosted -ffreestanding -fopenmp -fms-extensions -fplan9-extensions
-trigraphs -traditional -traditional-cpp

10 Using the GNU Compiler Collection (GCC)

-fallow-single-precision -fcond-mismatch -flax-vector-conversions
-fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char

C++ Language Options
See Section 3.5 [Options Controlling C++ Dialect|, page 35.

-fabi-version=n -fno-access-control -fcheck-new
-fconstexpr-depth=n -ffriend-injection
-fno-elide-constructors

-fno-enforce-eh-specs

-ffor-scope -fno-for-scope -fno-gnu-keywords
-fno-implicit-templates

-fno-implicit-inline-templates

-fno-implement-inlines -fms-extensions
-fno-nonansi-builtins -fnothrow-opt -fno-operator-names
-fno-optional-diags -fpermissive

-fno-pretty-templates

-frepo -fno-rtti -fstats -ftemplate-backtrace-limit=n
-ftemplate-depth=n

-fno-threadsafe-statics -fuse-cxa-atexit -fno-weak -nostdinc++
-fno-default-inline -fvisibility-inlines-hidden
-fvisibility-ms-compat

-fext-numeric-literals

-Wabi -Wconversion-null -Wctor-dtor-privacy
-Wdelete-non-virtual-dtor -Wliteral-suffix -Wnarrowing
-Wnoexcept -Wnon-virtual-dtor -Wreorder

-Weffc++ -Wstrict-null-sentinel
-Wno-non-template-friend -Wold-style-cast
-Woverloaded-virtual -Wno-pmf-conversions

-Wsign-promo

Objective-C and Objective-C++ Language Options
See Section 3.6 [Options Controlling Objective-C and Objective-C++ Dialects],
page 46.

-fconstant-string-class=class-name
-fgnu-runtime -fnext-runtime
-fno-nil-receivers
-fobjc-abi-version=n
-fobjc-call-cxx-cdtors
-fobjc-direct-dispatch
-fobjc-exceptions

-fobjc-gc

-fobjc-nilcheck
-fobjc-std=objcl
-freplace-objc-classes
-fzero-link

-gen-decls
-Wassign-intercept
-Wno-protocol -Wselector
-Wstrict-selector-match
-Wundeclared-selector

Language Independent Options
See Section 3.7 [Options to Control Diagnostic Messages Formatting|, page 49.
-fmessage-length=n
-fdiagnostics-show-location=[once|every-line]
-fno-diagnostics-show-option -fno-diagnostics-show-caret

Chapter 3: GCC Command Options 11

Warning Options
See Section 3.8 [Options to Request or Suppress Warnings|, page 50.

-fsyntax-only -fmax-errors=n -Wpedantic

-pedantic-errors

-w -Wextra -Wall -Waddress -Waggregate-return
-Waggressive-loop-optimizations -Warray-bounds

-Wno-attributes -Wno-builtin-macro-redefined

-Wc++-compat -Wc++1ll-compat -Wcast-align -Wcast-qual
-Wchar-subscripts -Wclobbered -Wcomment

-Wconversion -Wcoverage-mismatch -Wno-cpp -Wno-deprecated
-Wno-deprecated-declarations -Wdisabled-optimization
-Wno-div-by-zero -Wdouble-promotion -Wempty-body -Wenum-compare
-Wno-endif-labels -Werror -Werror=x

-Wfatal-errors -Wfloat-equal -Wformat -Wformat=2
-Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral
-Wformat-security -Wformat-y2k

-Wframe-larger-than=len -Wno-free-nonheap-object -Wjump-misses-init
-Wignored-qualifiers

-Wimplicit -Wimplicit-function-declaration -Wimplicit-int
-Winit-self -Winline -Wmaybe-uninitialized
-Wno-int-to-pointer-cast -Wno-invalid-offsetof

-Winvalid-pch -Wlarger-than=len -Wunsafe-loop-optimizations
-Wlogical-op -Wlong-long

-Wmain -Wmaybe-uninitialized -Wmissing-braces -Wmissing-field-initializers [}
-Wmissing-include-dirs

-Wno-mudflap

-Wno-multichar -Wnonnull -Wno-overflow

-Woverlength-strings -Wpacked -Wpacked-bitfield-compat -Wpadded
-Wparentheses -Wpedantic-ms-format -Wno-pedantic-ms-format
-Wpointer-arith -Wno-pointer-to-int-cast

-Wredundant-decls -Wno-return-local-addr

-Wreturn-type -Wsequence-point -Wshadow

-Wsign-compare -Wsign-conversion -Wsizeof-pointer-memaccess
-Wstack-protector -Wstack-usage=len -Wstrict-aliasing
-Wstrict-aliasing=n

-Wstrict-overflow -Wstrict-overflow=n
-Wsuggest-attribute=[pure|const |noreturn|format]
-Wmissing-format-attribute

-Wswitch -Wswitch-default -Wswitch-enum -Wsync-nand
-Wsystem-headers -Wtrampolines -Wtrigraphs -Wtype-limits -Wundef
-Wuninitialized -Wunknown-pragmas -Wno-pragmas
-Wunsuffixed-float-constants -Wunused -Wunused-function
-Wunused-label -Wunused-local-typedefs -Wunused-parameter
-Wno-unused-result -Wunused-value

-Wunused-variable

-Wunused-but-set-parameter -Wunused-but-set-variable
-Wuseless-cast -Wvariadic-macros -Wvector-operation-performance
-Wvla -Wvolatile-register-var -Wwrite-strings -Wzero-as-null-pointer-constant|

C and Objective-C-only Warning Options
-Wbad-function-cast -Wmissing-declarations
-Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs
-Wold-style-declaration -Wold-style-definition
-Wstrict-prototypes -Wtraditional -Wtraditional-conversion
-Wdeclaration-after-statement -Wpointer-sign

Debugging Options
See Section 3.9 [Options for Debugging Your Program or GCC], page 74.

12

Using the GNU Compiler Collection (GCC)

-dletters —-dumpspecs -dumpmachine -dumpversion
-fsanitize=style

-fdbg-cnt-1list -fdbg-cnt=counter-value-list
-fdisable-ipa-pass_name

-fdisable-rtl-pass_name
-fdisable-rtl-pass—-name=range-1list
-fdisable-tree-pass_name
-fdisable-tree-pass-name=range-1list

-fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links
-fdump-translation-unit[-n]

-fdump-class-hierarchy[-n]

-fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline
-fdump-passes

-fdump-statistics

-fdump-tree-all

-fdump-tree-original[-n]

-fdump-tree-optimized|-n]

-fdump-tree-cfg -fdump-tree-alias

-fdump-tree-ch

-fdump-tree-ssa[-n| -fdump-tree-pre[-n

-fdump-tree-ccp[-n] -fdump-tree-dce[-n]
-fdump-tree-gimple[-raw] -fdump-tree-mudflap|-n]
-fdump-tree-dom[-n]

-fdump-tree-dse[-n]

-fdump-tree-phiprop|-n]

-fdump-tree-phiopt[-n]

-fdump-tree-forwprop|-n|

-fdump-tree-copyrename[-n]

-fdump-tree-nrv -fdump-tree-vect

-fdump-tree-sink

-fdump-tree-sra[-n]

-fdump-tree-forwprop|-n|

-fdump-tree-fre[-n]

-fdump-tree-vrp|-n]

-ftree-vectorizer-verbose=n

-fdump-tree-storeccp|-n]

-fdump-final-insns=file

-fcompare-debug[=opts| -fcompare-debug-second
-feliminate-dwarf2-dups -fno-eliminate-unused-debug-types
-feliminate-unused-debug-symbols -femit-class-debug-always
-fenable-kind-pass

-fenable-kind-pass=range-list

-fdebug-types-section -fmem-report-wpa

-fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs
-fopt-info

-fopt-info-options[=file]

-frandom-seed=string -fsched-verbose=n
-fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose
-fstack-usage -ftest-coverage -ftime-report -fvar-tracking
-fvar-tracking-assignments -fvar-tracking-assignments-toggle
-g -glevel -gtoggle -gcoff -gdwarf-version

-ggdb -grecord-gcc-switches -gno-record-gcc-switches
-gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf

-gvms -gxcoff -gxcoff+

-fno-merge-debug-strings -fno-dwarf2-cfi-asm
-fdebug-prefix-map=old=new

-femit-struct-debug-baseonly -femit-struct-debug-reduced
-femit-struct-debug-detailed|=spec-1ist]

Chapter 3: GCC Command Options 13

-p -pg -print-file-name=library -print-libgcc-file-name
-print-multi-directory -print-multi-lib -print-multi-os-directory
-print-prog-name=program -print-search-dirs -Q

-print-sysroot -print-sysroot-headers-suffix

-save-temps -save-temps=cwd -save-temps=obj -time[=file]

Optimization Options
See Section 3.10 [Options that Control Optimization], page 97.

-faggressive-loop-optimizations -falign-functions[=n]

-falign-jumps [=n]

-falign-labels[=n] -falign-loops[=n]

-fassociative-math -fauto-inc-dec -fbranch-probabilities

-fbranch-target-load-optimize -fbranch-target-load-optimize2

-fbtr-bb-exclusive -fcaller-saves

-fcheck-data-deps -fcombine-stack-adjustments -fconserve-stack

-fcompare-elim -fcprop-registers -fcrossjumping

-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules

-fcx-limited-range

-fdata-sections -fdce -fdelayed-branch

-fdelete-null-pointer-checks -fdevirtualize -fdse

-fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects

-ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=style

-fforward-propagate -ffp-contract=style -ffunction-sections

-fgcse -fgcse-after-reload -fgcse-las -fgcse-1lm -fgraphite-identity

-fgcse-sm -fhoist-adjacent-loads -fif-conversion

-fif-conversion2 -findirect-inlining

-finline-functions -finline-functions-called-once -finline-limit=n

-finline-small-functions -fipa-cp -fipa-cp-clone

-fipa-pta -fipa-profile -fipa-pure-const -fipa-reference

-fira-algorithm=algorithm

-fira-region=region -fira-hoist-pressure

-fira-loop-pressure -fno-ira-share-save-slots

-fno-ira-share-spill-slots -fira-verbose=n

-fivopts -fkeep-inline-functions -fkeep-static-consts

-floop-block -floop-interchange -floop-strip-mine -floop-nest-optimize

-floop-parallelize-all -flto -flto-compression-level

-flto-partition=alg -flto-report -fmerge-all-constants

-fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves

-fmove-loop-invariants fmudflap -fmudflapir -fmudflapth -fno-branch-count-
reg

-fno-default-inline

-fno-defer-pop -fno-function-cse -fno-guess-branch-probability

-fno-inline -fno-math-errno -fno-peephole -fno-peephole2

-fno-sched-interblock -fno-sched-spec -fno-signed-zeros

-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss

-fomit-frame-pointer -foptimize-register-move -foptimize-sibling-calls

-fpartial-inlining -fpeel-loops -fpredictive-commoning

-fprefetch-loop-arrays -fprofile-report

-fprofile-correction -fprofile-dir=path -fprofile-generate

-fprofile-generate=path

-fprofile-use -fprofile-use=path -fprofile-values

-freciprocal-math -free -fregmove -frename-registers -freorder-blocks

-freorder-blocks-and-partition -freorder-functions

-frerun-cse-after-loop -freschedule-modulo-scheduled-loops

-frounding-math -fsched2-use-superblocks -fsched-pressure

-fsched-spec-load -fsched-spec-load-dangerous

-fsched-stalled-insns-dep[=n] -fsched-stalled-insns[=n]

-fsched-group-heuristic -fsched-critical-path-heuristic

14 Using the GNU Compiler Collection (GCC)

-fsched-spec-insn-heuristic -fsched-rank-heuristic
-fsched-last-insn-heuristic -fsched-dep-count-heuristic
-fschedule-insns -fschedule-insns2 -fsection-anchors
-fselective-scheduling -fselective-scheduling2
-fsel-sched-pipelining -fsel-sched-pipelining-outer-loops
-fshrink-wrap -fsignaling-nans -fsingle-precision-constant
-fsplit-ivs-in-unroller -fsplit-wide-types -fstack-protector
-fstack-protector-all -fstrict-aliasing -fstrict-overflow
-fthread-jumps -ftracer -ftree-bit-ccp

-ftree-builtin-call-dce -ftree-ccp -ftree-ch
-ftree-coalesce-inline-vars -ftree-coalesce-vars -ftree-copy-prop
-ftree-copyrename -ftree-dce -ftree-dominator-opts -ftree-dse
-ftree-forwprop -ftree-fre -ftree-loop-if-convert
-ftree-loop-if-convert-stores -ftree-loop-im

-ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns
-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize
-ftree-parallelize-loops=n -ftree-pre -ftree-partial-pre -ftree-pta
-ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra
-ftree-switch-conversion -ftree-tail-merge

-ftree-ter -ftree-vect-loop-version -ftree-vectorize -ftree-vrp
-funit-at-a-time -funroll-all-loops -funroll-loops
-funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops
-fvariable-expansion-in-unroller -fvect-cost-model -fvpt -fweb
-fwhole-program -fwpa -fuse-ld=linker -fuse-linker-plugin

--param name=value -0 -00 -01 -02 -03 -0s -0Ofast -Og

Preprocessor Options
See Section 3.11 [Options Controlling the Preprocessor|, page 148.

-Aquestion=answer

-A-question[=answer]

-C -dD -dI -dM -dN

-Dmacro[=defn| -E -H

-idirafter dir

-include file -imacros file

-iprefix file -iwithprefix dir

-iwithprefixbefore dir -isystem dir

-imultilib dir -isysroot dir

-M -MM -MF -MG -MP -MQ -MT -nostdinc

-P -fdebug-cpp -ftrack-macro-expansion -fworking-directory
-remap -trigraphs -undef -Umacro

-Wp,option —-Xpreprocessor option -no-integrated-cpp

Assembler Option
See Section 3.12 [Passing Options to the Assembler], page 159.

-Wa,option -Xassembler option

Linker Options

See Section 3.13 [Options for Linking], page 160.
object-file-name -llibrary
-nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic
-s -static -static-libgcc -static-libstdc++
-static-libasan -static-libtsan
-shared -shared-libgcc -symbolic
-T script -Wl,option -Xlinker option
-u symbol

Directory Options
See Section 3.14 [Options for Directory Search], page 163.

Chapter 3: GCC Command Options

-Bprefix -Idir -iplugindir=dir
-iquotedir -Ldir -specs=file -I-
--sysroot=dir --no-sysroot-suffix

Machine Dependent Options
See Section 3.17 [Hardware Models and Configurations], page 173.

AArch6/ Options
-mbig-endian -mlittle-endian
-mgeneral-regs-only
-mcmodel=tiny -mcmodel=small -mcmodel=large
-mstrict-align
-momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer
-mtls-dialect=desc -mtls-dialect=traditional
-march=name -mcpu=name -mtune=name

Adapteva Epiphany Options
-mhalf-reg-file -mprefer-short-insn-regs
-mbranch-cost=num -mcmove -mnops=num -msoft-cmpsf
-msplit-lohi -mpost-inc -mpost-modify -mstack-offset=num
-mround-nearest -mlong-calls -mshort-calls -msmalll6

-mfp-mode=mode -mvect-double -max-vect-align=num
-msplit-vecmove-early -mlreg-reg

ARM Options
-mapcs-frame -mno-apcs-frame
-mabi=name
-mapcs-stack-check -mno-apcs-stack-check
-mapcs-float -mno-apcs-float
-mapcs-reentrant -mno-apcs-reentrant
-msched-prolog -mno-sched-prolog
-mlittle-endian -mbig-endian -mwords-little-endian
-mfloat-abi=name
-mfpl6-format=name -mthumb-interwork -mno-thumb-interwork
-mcpu=name -march=name -mfpu=name
-mstructure-size-boundary=n
-mabort-on-noreturn
-mlong-calls -mno-long-calls
-msingle-pic-base -mno-single-pic-base
-mpic-register=reg
-mnop-fun-dllimport
-mpoke-function-name
-mthumb -marm
-mtpcs-frame -mtpcs-leaf-frame
-mcaller-super-interworking -mcallee-super-interworking
-mtp=name -mtls-dialect=dialect
-mword-relocations
-mfix-cortex-m3-ldrd
-munaligned-access
-mneon-for-64bits
-mrestrict-it

AVR Options

-mmcu=mcu -maccumulate-args -mbranch-cost=cost
-mcall-prologues -mint8 -mno-interrupts -mrelax
-mstrict-X -mtiny-stack -Waddr-space-convert

Blackfin Options
-mcpu=cpu[-sirevision]
-msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer

15

16

Using the GNU Compiler Collection (GCC)

-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly
-mlow-64k -mno-low64k -mstack-check-11 -mid-shared-library

-mno-id-shared-library -mshared-library-id=n
-mleaf-id-shared-library -mno-leaf-id-shared-library
-msep-data -mno-sep-data -mlong-calls -mno-long-calls

-mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram

-micplb

C6X Options
-mbig-endian -mlittle-endian -march=cpu
-msim -msdata=sdata-type

CRIS Options

-mcpu=cpu -march=cpu -mtune=cpu
-mmax-stack-frame=n -melinux-stacksize=n

-metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects

-mstack-align -mdata-align -mconst-align

-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt

-melf -maout -melinux -mlinux -sim -sim2
-mmul-bug-workaround -mno-mul-bug-workaround

CR16 Options

-mmac
-mcri6cplus -mcri6ec
-msim -mint32 -mbit-ops -mdata-model=model

Darwin Options

-all_load -allowable_client -arch -arch_errors_fatal
-arch_only -bind_at_load -bundle -bundle_loader
-client_name -compatibility_version -current_version
-dead_strip

-dependency-file -dylib_file -dylinker_install_name
-dynamic -dynamiclib -exported_symbols_list

-filelist -flat_namespace -force_cpusubtype_ALL
-force_flat_namespace -headerpad_max_install_names
-iframework

-image_base -init -install_name -keep_private_externs

-multi_module -multiply_defined -multiply_defined_unused

-noall_load -no_dead_strip_inits_and_terms

-nofixprebinding -nomultidefs -noprebind -noseglinkedit

-pagezero_size -prebind -prebind_all_twolevel_modules
-private_bundle -read_only_relocs -sectalign
-sectobjectsymbols -whyload -segladdr

-sectcreate -sectobjectsymbols -sectorder

-segaddr -segs_read_only_addr -segs_read_write_addr
-seg_addr_table -seg_addr_table_filename -seglinkedit
-segprot -segs_read_only_addr -segs_read_write_addr
-single_module -static -sub_library -sub_umbrella
-twolevel_namespace -umbrella -undefined
-unexported_symbols_list -weak_reference_mismatches

-whatsloaded -F -gused -gfull -mmacosx-version-min=version

-mkernel -mone-byte-bool

DEC Alpha Options
-mno-fp-regs -msoft-float
-mieee -mieee-with-inexact -mieee-conformant
-mfp-trap-mode=mode -mfp-rounding-mode=mode
-mtrap-precision=mode -mbuild-constants
-mcpu=cpu-type -mtune=cpu-type
-mbwx -mmax -mfix -mcix

Chapter 3: GCC Command Options

-mfloat-vax -mfloat-ieee

-mexplicit-relocs -msmall-data -mlarge-data
-msmall-text -mlarge-text
-mmemory-latency=time

FR30 Options

-msmall-model -mno-lsim

FRV Options
-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64
-mhard-float -msoft-float
-malloc-cc -mfixed-cc -mdword -mno-dword
-mdouble -mno-double
-mmedia -mno-media -mmuladd -mno-muladd
-mfdpic -minline-plt -mgprel-ro -multilib-library-pic
-mlinked-fp -mlong-calls -malign-labels
-mlibrary-pic -macc-4 -macc-8
-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move
-moptimize-membar -mno-optimize-membar
-mscc -mno-scc -mcond-exec -mno-cond-exec
-mvliw-branch -mno-vliw-branch
-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec
-mno-nested-cond-exec -mtomcat-stats
-mTLS -mtls
-mcpu=cpu

GNU/Linuz Options

-mglibc -muclibc -mbionic -mandroid
-tno-android-cc -tno-android-1d

H8/300 Options

-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300

HPPA Options

-march=architecture-type

-mbig-switch -mdisable-fpregs -mdisable-indexing
-mfast-indirect-calls -mgas -mgnu-1ld -mhp-1d
-mfixed-range=register-range

-mjump-in-delay -mlinker-opt -mlong-calls
-mlong-load-store -mno-big-switch -mno-disable-fpregs
-mno-disable-indexing -mno-fast-indirect-calls -mno-gas
-mno-jump-in-delay -mno-long-load-store
-mno-portable-runtime -mno-soft-float

-mno-space-regs -msoft-float -mpa-risc-1-0
-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime
-mschedule=cpu-type -mspace-regs -msio -mwsio
-munix=unix-std -nolibdld -static -threads

1386 and x86-64 Options
-mtune=cpu-type -march=cpu-type
-mfpmath=unit
-masm=dialect -mno-fancy-math-387
-mno-fp-ret-in-387 -msoft-float
-mno-wide-multiply -mrtd -malign-double
-mpreferred-stack-boundary=num
-mincoming-stack-boundary=num
-mcld -mcx16 -msahf -mmovbe -mcrc32
-mrecip -mrecip=opt
-mvzeroupper -mprefer-avx128
-mmmx -msse -msse2 -msse3 -mssse3 -msse4.l -msse4.2 -msse4 -mavx

Using the GNU Compiler Collection (GCC)

-mavx2 -maes -mpclmul -mfsgsbase -mrdrnd -mfl16c -mfma

-msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt
-mbmi2 -mrtm -mlwp -mthreads

-mno-align-stringops -minline-all-stringops
-minline-stringops-dynamically -mstringop-strategy=alg
-mpush-args -maccumulate-outgoing-args -m128bit-long-double
-m96bit-long-double -mlong-double-64 -mlong-double-80
-mregparm=num -msseregparm

-mveclibabi=type -mvect8-ret-in-mem

-mpc32 -mpc64 -mpc80 -mstackrealign

-momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs
-mcmodel=code-model -mabi=name -maddress-mode=mode

-m32 -m64 -mx32 -mlarge-data-threshold=num

-msse2avx -mfentry -m8bit-idiv

-mavx256-split-unaligned-load -mavx256-split-unaligned-store

1386 and x86-64 Windows Options

-mconsole -mcygwin -mno-cygwin -mdll
-mnop-fun-dllimport -mthread
-municode -mwin32 -mwindows -fno-set-stack-executable

IA-64 Options

-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic
-mvolatile-asm-stop -mregister-names -msdata -mno-sdata

-mconstant-gp -mauto-pic -mfused-madd

-minline-float-divide-min-latency

-minline-float-divide-max-throughput

-mno-inline-float-divide

-minline-int-divide-min-latency

-minline-int-divide-max-throughput

-mno-inline-int-divide

-minline-sqrt-min-latency -minline-sqrt-max-throughput

-mno-inline-sqrt

-mdwarf2-asm -mearly-stop-bits

-mfixed-range=register-range -mtls-size=tls-size

-mtune=cpu-type -milp32 -mlp64

-msched-br-data-spec -msched-ar-data-spec -msched-control-spec
-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec
-msched-spec-1ldc -msched-spec-control-ldc
-msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns
-msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path
-msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost
-msched-max-memory-insns-hard-limit -msched-max-memory-insns=max-insns

LM32 Options

-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled
-msign-extend-enabled -muser-enabled

MS32R /D Options

-m32r2 -m32rx -m32r

-mdebug

-malign-loops -mno-align-loops
-missue-rate=number
-mbranch-cost=number
-mmodel=code-size-model-type
-msdata=sdata-type

-mno-flush-func -mflush-func=name
-mno-flush-trap -mflush-trap=number
-G num

Chapter 3: GCC Command Options 19

M32C Options
-mcpu=cpu -msim -memregs=number
M680x0 Options

-march=arch -mcpu=cpu -mtune=tune -m68000 -m68020 -m68020-40 -m68020-60 -
m68030 -m68040

-m68060 -mcpu32 -m5200 -m5206e -m528x -mb307 -m5407

-mcfvde -mbitfield -mno-bitfield -mc68000 -mc68020

-mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort

-mno-short -mhard-float -m68881 -msoft-float -mpcrel

-malign-int -mstrict-align -msep-data -mno-sep-data

-mshared-library-id=n -mid-shared-library -mno-id-shared-library

-mxgot -mno-xgot

MCore Options

-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates
-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields
-m4byte-functions -mno-4byte-functions -mcallgraph-data
-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim
-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment

MeP Options

-mabsdiff -mall-opts -maverage -mbased=n -mbitops

-mc=n -mclip -mconfig=name -mcop -mcop32 -mcop64 -mivc2

-mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax

-mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf
-mtiny=n

MicroBlaze Options

-msoft-float -mhard-float -msmall-divides -mcpu=cpu

-mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift
-mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss
-mxl-multiply-high -mxl-float-convert -mxl-float-sqrt
-mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-app-model

MIPS Options

-EL -EB -march=arch -mtune=arch

-mipsl -mips2 -mips3 -mips4 -mips32 -mips32r2
-mips64 -mips64r2

-mips16 -mno-mipsl6 -mflip-mipsi16

-minterlink-mips16 -mno-interlink-mipsi16

-mabi=abi -mabicalls -mno-abicalls

-mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot
-mgp32 -mgp64 -mfp32 -mfp64 -mhard-float -msoft-float
-mno-float -msingle-float -mdouble-float

-mdsp -mno-dsp -mdspr2 -mno-dspr2

-mmcu -mmno-mcu

-mfpu=fpu-type

-msmartmips -mno-smartmips

-mpaired-single -mno-paired-single -mdmx -mno-mdmx
-mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc
-mlong64 -mlong32 -msym32 -mno-sym32

-Gnum -mlocal-sdata -mno-local-sdata

-mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt
-membedded-data -mno-embedded-data
-muninit-const-in-rodata -mno-uninit-const-in-rodata
-mcode-readable=setting

-msplit-addresses -mno-split-addresses
-mexplicit-relocs -mno-explicit-relocs

20

Using the GNU Compiler Collection (GCC)

-mcheck-zero-division -mno-check-zero-division
-mdivide-traps -mdivide-breaks

-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls

-mmad -mno-mad -mfused-madd -mno-fused-madd -nocpp
-mfix-24k -mno-fix-24k

-mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400
-mfix-r10000 -mno-fix-r10000 -mfix-vr4120 -mno-fix-vr4120
-mfix-vr4130 -mno-fix-vr4130 -mfix-sbl -mno-fix-sbl
-mflush-func=func -mno-flush-func

-mbranch-cost=num -mbranch-likely -mno-branch-likely
-mfp-exceptions -mno-fp-exceptions

-mvr4130-align -mno-vr4130-align -msynci -mno-synci
-mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address

MMIX Options

-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu
-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols
-melf -mbranch-predict -mno-branch-predict -mbase-addresses
-mno-base-addresses -msingle-exit -mno-single-exit

MN10500 Options

-mmult-bug -mno-mult-bug
-mno-am33 -mam33 -mam33-2 -mam34
-mtune=cpu-type
-mreturn-pointer-on-do0

-mno-crt0 -mrelax -mliw -msetlb

Moxie Options

-meb -mel -mno-crtO

PDP-11 Options

-mfpu -msoft-float -macO -mno-acO -m40 -m45 -m10
-mbcopy -mbcopy-builtin -mint32 -mno-inti16
-mint16 -mno-int32 -mfloat32 -mno-float64
-mfloat64 -mno-float32 -mabshi -mno-abshi
-mbranch-expensive -mbranch-cheap

-munix-asm -mdec-asm

picoChip Options

-mae=ae_type -mvliw-lookahead=N
-msymbol-as—-address -mno-inefficient-warnings

PowerPC Options See RS/6000 and PowerPC Options.
RL78 Options

-msim -mmul=none -mmul=gl3 -mmul=rl78

RS/6000 and PowerPC Options

-mcpu=cpu-type

-mtune=cpu-type

-mcmodel=code-model

-mpowerpc64

-maltivec -mno-altivec

-mpowerpc-gpopt -mno-powerpc-gpopt

-mpowerpc-gfxopt -mno-powerpc-gfxopt

-mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd
-mfprnd -mno-fprnd

-mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp
-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc

-m64 -m32 -mxl-compat -mno-xl-compat -mpe

Chapter 3: GCC Command Options 21

-malign-power -malign-natural

-msoft-float -mhard-float -mmultiple -mno-multiple
-msingle-float -mdouble-float -msimple-fpu

-mstring -mno-string -mupdate -mno-update
-mavoid-indexed-addresses -mno-avoid-indexed-addresses
-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align
-mstrict-align -mno-strict-align -mrelocatable
-mno-relocatable -mrelocatable-lib -mno-relocatable-1lib
-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian
-mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base
-mprioritize-restricted-insns=priority
-msched-costly-dep=dependence_type
-minsert-sched-nops=scheme

-mcall-sysv -mcall-netbsd

-maix-struct-return -msvr4-struct-return

-mabi=abi-type -msecure-plt -mbss-plt
-mblock-move-inline-limit=num

-misel -mno-isel

-misel=yes -misel=no

-mspe -mno-spe

-mspe=yes -mspe=no

-mpaired

-mgen-cell-microcode -mwarn-cell-microcode

-mvrsave -—mno-vrsave

-mmulhw -mno-mulhw

-mdlmzb -mno-dlmzb

-mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double
-mprototype -mno-prototype

-msim -mmvme -mads -myellowknife -memb -msdata
-msdata=opt -mvxworks -G num -pthread

-mrecip -mrecip=opt -mno-recip -mrecip-precision
-mno-recip-precision

-mveclibabi=type -mfriz -mno-friz
-mpointers-to-nested-functions -mno-pointers-to-nested-functions
-msave-toc-indirect -mno-save-toc-indirect

RX Options

S/390

-m64bit-doubles -m32bit-doubles -fpu -nofpu

-mcpu=

-mbig-endian-data -mlittle-endian-data

-msmall-data

-msim -mno-sim

-mas100-syntax -mno-as100-syntax

-mrelax

-mmax-constant-size=

-mint-register=

-mpid

-mno-warn-multiple-fast-interrupts
-msave-acc-in-interrupts

and zSeries Options

-mtune=cpu-type -march=cpu-type

-mhard-float -msoft-float -mhard-dfp -mno-hard-dfp
-mlong-double-64 -mlong-double-128

-mbackchain -mno-backchain -mpacked-stack -mno-packed-stack
-msmall-exec -mno-small-exec -mmvcle -mno-mvcle

-m64 -m31 -mdebug -mno-debug -mesa -mzarch

-mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd
-mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard

Using the GNU Compiler Collection (GCC)

Score Options

-meb -mel

-mnhwloop

-muls

-mmac

-mscore5 -mscorebu -mscore7 -mscore7d

SH Options
-ml -m2 -m2e
-m2a-nofpu -m2a-single-only -m2a-single -m2a
-m3 -m3e
-m4-nofpu -m4-single-only -m4-single -mé
-m4a-nofpu -mé4a-single-only -mé4a-single -m4a -méal
-mb-64media -m5-64media-nofpu
-m5-32media -m5-32media-nofpu
-mb-compact -mb5-compact-nofpu
-mb -ml -mdalign -mrelax
-mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave
-mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct
-mspace -mprefergot -musermode -multcost=number -mdiv=strategy
-mdivsi3_libfunc=name -mfixed-range=register-range
-mindexed-addressing -mgettrcost=number -mpt-fixed
-maccumulate-outgoing-args -minvalid-symbols
-matomic-model=atomic-model
-mbranch-cost=num -mzdcbranch -mno-zdcbranch -mcbranchdi -mcmpeqdi
-mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra
-mpretend-cmove -mtas

Solaris 2 Options

-mimpure-text -mno-impure-text
-pthreads -pthread

SPARC Options

-mcpu=cpu-type

-mtune=cpu-type

-mcmodel=code-model
-mmemory-model=mem-model

-m32 -m64 -mapp-regs -mno-app-regs
-mfaster-structs -mno-faster-structs -mflat -mno-flat
-mfpu -mno-fpu -mhard-float -msoft-float
-mhard-quad-float -msoft-quad-float
-mstack-bias -mno-stack-bias
-munaligned-doubles -mno-unaligned-doubles
-mv8plus -mno-v8plus -mvis -mno-vis

-mvis2 -mno-vis2 -mvis3 -mno-vis3

-mcbcond -mno-cbcond

-mfmaf -mno-fmaf -mpopc -mno-popc
-mfix-at697f

SPU Options

-mwarn-reloc -merror-reloc

-msafe-dma -munsafe-dma

-mbranch-hints

-msmall-mem -mlarge-mem -mstdmain
-mfixed-range=register-range

-mea32 -meab4

-maddress-space-conversion -mno-address—-space-conversion
-mcache-size=cache-size

-matomic-updates -mno-atomic-updates

Chapter 3: GCC Command Options 23

System V Options
-Qy -Qn -YP,paths -Ym,dir

TILE-Gz Options

-mcpu=cpu -m32 -m64 -mcmodel=code-model
TILEPro Options

-mcpu=cpu -m32
V850 Options

-mlong-calls -mno-long-calls -mep -mno-ep
-mprolog-function -mno-prolog-function -mspace
-mtda=n -msda=n -mzda=n

-mapp-regs -mno-app-regs

-mdisable-callt -mno-disable-callt
-mv850e2v3 -mv850e2 -mv850el -mv850es
-mv850e -mv850 -mv850e3v5

-mloop

-mrelax

-mlong-jumps

-msoft-float

-mhard-float

-mgcc-abi

-mrh850-abi

-mbig-switch

VAX Options
-mg -mgnu -munix
VMS Options

-mvms-return-codes -mdebug-main=prefix -mmalloc64
-mpointer-size=size

VazWorks Options
-mrtp -non-static -Bstatic -Bdynamic
-Xbind-lazy -Xbind-now

£86-64 Options See 1386 and x86-64 Options.

Xstormy16 Options
-msim
Xtensa Options

-mconst16 -mno-const16

-mfused-madd -mno-fused-madd

-mforce-no-pic

-mserialize-volatile -mno-serialize-volatile
-mtext-section-literals -mno-text-section-literals
-mtarget-align -mno-target-align

-mlongcalls -mno-longcalls

zSeries Options See S/390 and zSeries Options.

Code Generation Options
See Section 3.18 [Options for Code Generation Conventions|, page 298.

-fcall-saved-reg -fcall-used-reg

-ffixed-reg -fexceptions

-fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables
-fasynchronous-unwind-tables

-finhibit-size-directive -finstrument-functions

24

Using the GNU Compiler Collection (GCC)

-finstrument-functions-exclude-function-list=sym,sym,...
—finstrument-functions-exclude-file-list=file,file,...
-fno-common -fno-ident

-fpcc-struct-return -fpic -fPIC -fpie -fPIE
-fno-jump-tables

-frecord-gcc-switches

-freg-struct-return -fshort-enums

-fshort-double -fshort-wchar

-fverbose-asm -fpack-struct[=n] -fstack-check
-fstack-limit-register=reg -fstack-limit-symbol=sym
-fno-stack-limit -fsplit-stack

-fleading-underscore -ftls-model=model
-fstack-reuse=reuse_level

-ftrapv -fwrapv -fbounds-check

-fvisibility -fstrict-volatile-bitfields -fsync-libcalls

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly
and linking, always in that order. GCC is capable of preprocessing and compiling several
files either into several assembler input files, or into one assembler input file; then each
assembler input file produces an object file, and linking combines all the object files (those
newly compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:

file.

file.d

file.
file.

file.

file.
file.

file.
file.

file.
file.
file.
file.
file.
file.
file.

C
i
ii

m

mi

mii

ccC

CXX
cpp
CPP
c++
C

C source code that must be preprocessed.
C source code that should not be preprocessed.
C++ source code that should not be preprocessed.

Objective-C source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C program work.

Objective-C source code that should not be preprocessed.

Objective-C++ source code. Note that you must link with the ‘1ibobjc’ library
to make an Objective-C++ program work. Note that ‘.M refers to a literal
capital M.

Objective-C++ source code that should not be preprocessed.

C, C++, Objective-C or Objective-C++ header file to be turned into a precom-
piled header (default), or C, C++ header file to be turned into an Ada spec (via
the ‘-~fdump-ada-spec’ switch).

C++ source code that must be preprocessed. Note that in ‘.cxx’, the last two
letters must both be literally ‘x’. Likewise, .C’ refers to a literal capital C.

Chapter 3: GCC Command Options 25

file.
file.

file.

file.
file.
file.
file.
-hpp
file.
file.
file.

file

file.
file.
file.

file.
file.
file.
file.
file.

file.
file.
file.
file.

file.
file.
file.
file.

file.
file.

file.

file.

file.
file.

M
mii
hh

hp
hxx

HPP
h++
tcc

for
ftn

FOR
frp
FPP
FTN

£90
£95
03
08

F90
F95
FO3
FO8

go

ads

adb

SX

other

Objective-C++ source code that must be preprocessed.

Objective-C++ source code that should not be preprocessed.

C++ header file to be turned into a precompiled header or Ada spec.

Fixed form Fortran source code that should not be preprocessed.

Fixed form Fortran source code that must be preprocessed (with the traditional
preprocessor).

Free form Fortran source code that should not be preprocessed.

Free form Fortran source code that must be preprocessed (with the traditional
preprocessor).

Go source code.

Ada source code file that contains a library unit declaration (a declaration of a
package, subprogram, or generic, or a generic instantiation), or a library unit
renaming declaration (a package, generic, or subprogram renaming declaration).
Such files are also called specs.

Ada source code file containing a library unit body (a subprogram or package
body). Such files are also called bodies.

Assembler code.

Assembler code that must be preprocessed.

An object file to be fed straight into linking. Any file name with no recognized
suffix is treated this way.

26 Using the GNU Compiler Collection (GCC)

You can specify the input language explicitly with the ‘-x’ option:

-x language
Specify explicitly the language for the following input files (rather than letting
the compiler choose a default based on the file name suffix). This option applies
to all following input files until the next ‘~x’ option. Possible values for language
are:
¢ c-header cpp-output
c++ c++-header c++-cpp-output
objective-c objective-c-header objective-c-cpp-output
objective-c++ objective-c++-header objective-c++-cpp-output
assembler assembler-with-cpp
ada
£77 £77-cpp-input £95 £95-cpp-input
go
java
-X none Turn off any specification of a language, so that subsequent files are handled
according to their file name suffixes (as they are if ‘-x’ has not been used at

all).

-pass-exit-codes
Normally the gcc program exits with the code of 1 if any phase of the compiler
returns a non-success return code. If you specify ‘-pass-exit-codes’, the gcc
program instead returns with the numerically highest error produced by any
phase returning an error indication. The C, C++, and Fortran front ends return
4 if an internal compiler error is encountered.

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes)
to tell gcc where to start, and one of the options ‘-c’, ‘-S’, or ‘-E’ to say where gcc is to
stop. Note that some combinations (for example, ‘-x cpp-output -E’) instruct gcc to do
nothing at all.

-C Compile or assemble the source files, but do not link. The linking stage simply

is not done. The ultimate output is in the form of an object file for each source
file.

By default, the object file name for a source file is made by replacing the suffix

‘.c’, .17 fL8’, ete., with ‘.o’

Unrecognized input files, not requiring compilation or assembly, are ignored.
-S Stop after the stage of compilation proper; do not assemble. The output is in

the form of an assembler code file for each non-assembler input file specified.

By default, the assembler file name for a source file is made by replacing the

b4

suffix <.¢’, ‘.17, etc., with ‘.s’.
Input files that don’t require compilation are ignored.

-E Stop after the preprocessing stage; do not run the compiler proper. The output
is in the form of preprocessed source code, which is sent to the standard output.
Input files that don’t require preprocessing are ignored.

-o file Place output in file file. This applies to whatever sort of output is being pro-

duced, whether it be an executable file, an object file, an assembler file or
preprocessed C code.

Chapter 3:

-V

— it

-pipe

--help

GCC Command Options 27

If ‘-0’ is not specified, the default is to put an executable file in ‘a.out’, the
object file for ‘source.suffix’ in ‘source.o’, its assembler file in ‘source.s’, a
precompiled header file in ‘source. suffix.gch’, and all preprocessed C source
on standard output.

Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program and
of the preprocessor and the compiler proper.

Like ‘-v’ except the commands are not executed and arguments are quoted
unless they contain only alphanumeric characters or ./-_. This is useful for
shell scripts to capture the driver-generated command lines.

Use pipes rather than temporary files for communication between the various
stages of compilation. This fails to work on some systems where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

Print (on the standard output) a description of the command-line options under-
stood by gcc. If the ‘~v’ option is also specified then ‘--help’ is also passed on
to the various processes invoked by gcc, so that they can display the command-
line options they accept. If the ‘~-Wextra’ option has also been specified (prior to
the ‘--help’ option), then command-line options that have no documentation
associated with them are also displayed.

--target-help

Print (on the standard output) a description of target-specific command-line
options for each tool. For some targets extra target-specific information may
also be printed.

--help={class|["|qualifier}|,...]

Print (on the standard output) a description of the command-line options un-
derstood by the compiler that fit into all specified classes and qualifiers. These
are the supported classes:

‘optimizers’
Display all of the optimization options supported by the compiler.
‘warnings’
Display all of the options controlling warning messages produced
by the compiler.

‘target’ Display target-specific options. Unlike the ‘~—target-help’ option
however, target-specific options of the linker and assembler are not
displayed. This is because those tools do not currently support the
extended ‘--help=’ syntax.

‘params’ Display the values recognized by the ‘~-param’ option.

language Display the options supported for language, where language is the
name of one of the languages supported in this version of GCC.

‘common’ Display the options that are common to all languages.

These are the supported qualifiers:

28 Using the GNU Compiler Collection (GCC)

‘undocumented’
Display only those options that are undocumented.

‘joined’ Display options taking an argument that appears after an equal sign
in the same continuous piece of text, such as: ‘--help=target’.

‘separate’
Display options taking an argument that appears as a separate word
following the original option, such as: ‘-o output-file’.

Thus for example to display all the undocumented target-specific switches sup-
ported by the compiler, use:

--help=target,undocumented

The sense of a qualifier can be inverted by prefixing it with the ‘~’ character,

so for example to display all binary warning options (i.e., ones that are either
on or off and that do not take an argument) that have a description, use:
--help=warnings, ~joined, "undocumented

The argument to ‘--help="should not consist solely of inverted qualifiers.

Combining several classes is possible, although this usually restricts the output
so much that there is nothing to display. One case where it does work, however,
is when one of the classes is target. For example, to display all the target-specific
optimization options, use:
--help=target,optimizers

The ‘--help=’ option can be repeated on the command line. Each successive
use displays its requested class of options, skipping those that have already been
displayed.
If the ‘-Q’ option appears on the command line before the ‘~-help="option, then
the descriptive text displayed by ‘--help=’is changed. Instead of describing
the displayed options, an indication is given as to whether the option is enabled,
disabled or set to a specific value (assuming that the compiler knows this at the
point where the ‘--help=’ option is used).
Here is a truncated example from the ARM port of gcc:

% gcc -Q -mabi=2 --help=target -c

The following options are target specific:

-mabi= 2
-mabort-on-noreturn [disabled]
-mapcs [disabled]

The output is sensitive to the effects of previous command-line options, so for
example it is possible to find out which optimizations are enabled at ‘-02’ by
using:

-Q -02 --help=optimizers
Alternatively you can discover which binary optimizations are enabled by ‘-03’
by using:

gcc -c¢ -Q -03 --help=optimizers > /tmp/03-opts

gcc -c¢ -Q -02 --help=optimizers > /tmp/02-opts

diff /tmp/02-opts /tmp/03-opts | grep enabled

-no-canonical-prefixes

Do not expand any symbolic links, resolve references to ‘/. ./’ or ‘/./’, or make
the path absolute when generating a relative prefix.

Chapter 3: GCC Command Options 29

--version
Display the version number and copyrights of the invoked GCC.

-wrapper Invoke all subcommands under a wrapper program. The name of the wrapper
program and its parameters are passed as a comma separated list.
gcc —-c t.c -wrapper gdb,--args
This invokes all subprograms of gcc under ‘gdb --args’, thus the invocation of
cclis ‘gdb —-args ccl ...".

-fplugin=name.so
Load the plugin code in file name.so, assumed to be a shared object to
be dlopen’d by the compiler. The base name of the shared object file
is used to identify the plugin for the purposes of argument parsing (See
‘~fplugin-arg-name-key=value’ below). FEach plugin should define the
callback functions specified in the Plugins API.

-fplugin-arg-name-key=value
Define an argument called key with a value of value for the plugin called name.

-fdump-ada-spec[-slim]
For C and C++ source and include files, generate corresponding Ada specs. See
Section “Generating Ada Bindings for C and C++ headers” in GNAT User’s
Guide, which provides detailed documentation on this feature.

-fdump-go-spec=file
For input files in any language, generate corresponding Go declarations in file.
This generates Go const, type, var, and func declarations which may be
a useful way to start writing a Go interface to code written in some other
language.

@file Read command-line options from file. The options read are inserted in place
of the original @file option. If file does not exist, or cannot be read, then the
option will be treated literally, and not removed.

Options in file are separated by whitespace. A whitespace character may be
included in an option by surrounding the entire option in either single or double
quotes. Any character (including a backslash) may be included by prefixing the
character to be included with a backslash. The file may itself contain additional
@file options; any such options will be processed recursively.

3.3 Compiling C++ Programs

C++ source files conventionally use one of the suffixes ‘.C’, ‘.cc’, ‘.cpp’, ‘.CPP’, ‘.c++’,
‘.cp’, or ‘.cxx’; C++ header files often use ‘.hh’; ‘.hpp’, ‘.H’, or (for shared template code)
‘.tcc’; and preprocessed C++ files use the suffix ‘.ii’. GCC recognizes files with these
names and compiles them as C++ programs even if you call the compiler the same way as
for compiling C programs (usually with the name gcc).

However, the use of gcc does not add the C++ library. g++ is a program that calls GCC
and automatically specifies linking against the C++ library. It treats ‘.c’, *.h’ and ‘.1’ files
as C++ source files instead of C source files unless ‘-x’ is used. This program is also useful

30 Using the GNU Compiler Collection (GCC)

when precompiling a C header file with a ‘.h’ extension for use in C++ compilations. On
many systems, g++ is also installed with the name c++.

When you compile C++ programs, you may specify many of the same command-line
options that you use for compiling programs in any language; or command-line options
meaningful for C and related languages; or options that are meaningful only for C++ pro-
grams. See Section 3.4 [Options Controlling C Dialect], page 30, for explanations of options
for languages related to C. See Section 3.5 [Options Controlling C++ Dialect], page 35, for
explanations of options that are meaningful only for C++ programs.

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++,
Objective-C and Objective-C++) that the compiler accepts:

-ansi In C mode, this is equivalent to ‘-std=c90’. In C++ mode, it is equivalent to
‘~std=c++98’".
This turns off certain features of GCC that are incompatible with ISO C90
(when compiling C code), or of standard C++ (when compiling C++ code), such
as the asm and typeof keywords, and predefined macros such as unix and vax
that identify the type of system you are using. It also enables the undesirable
and rarely used ISO trigraph feature. For the C compiler, it disables recognition
of C++ style ¢//’ comments as well as the inline keyword.

The alternate keywords __asm__, __extension__, __inline__ and __typeof_
_ continue to work despite ‘-~ansi’. You would not want to use them in an ISO
C program, of course, but it is useful to put them in header files that might be
included in compilations done with ‘-ansi’. Alternate predefined macros such
as __unix__ and __vax__ are also available, with or without ‘~ansi’.

The ‘-ansi’ option does not cause non-ISO programs to be rejected
gratuitously. For that, ‘-Wpedantic’ is required in addition to ‘-ansi’. See
Section 3.8 [Warning Options|, page 50.

The macro __STRICT_ANSI_

_ is predefined when the ‘-—ansi’ option is used.

Some header files may notice this macro and refrain from declaring certain
functions or defining certain macros that the ISO standard doesn’t call for; this
is to avoid interfering with any programs that might use these names for other
things.

Functions that are normally built in but do not have semantics defined by ISO
C (such as alloca and ffs) are not built-in functions when ‘-ansi’ is used. See
Section 6.55 [Other built-in functions provided by GCC], page 451, for details
of the functions affected.

-std= Determine the language standard. See Chapter 2 [Language Standards Sup-
ported by GCC]J, page 5, for details of these standard versions. This option is
currently only supported when compiling C or C++.

The compiler can accept several base standards, such as ‘c90’ or ‘c++98’, and
GNU dialects of those standards, such as ‘gnu90’ or ‘gnu++98’. When a base
standard is specified, the compiler accepts all programs following that stan-
dard plus those using GNU extensions that do not contradict it. For example,

Chapter 3: GCC Command Options 31

‘-std=c90’ turns off certain features of GCC that are incompatible with ISO
C90, such as the asm and typeof keywords, but not other GNU extensions that
do not have a meaning in ISO C90, such as omitting the middle term of a 7:
expression. On the other hand, when a GNU dialect of a standard is specified,
all features supported by the compiler are enabled, even when those features
change the meaning of the base standard. As a result, some strict-conforming
programs may be rejected. The particular standard is used by ‘-Wpedantic’ to
identify which features are GNU extensions given that version of the standard.
For example ‘-std=gnu90 -Wpedantic’ warns about C++ style ‘//’ comments,
while ‘-std=gnu99 -Wpedantic’ does not.

A value for this option must be provided; possible values are

‘c90’

‘c89’

‘1509899:1990’
Support all ISO C90 programs (certain GNU extensions that con-
flict with ISO C90 are disabled). Same as ‘-ansi’ for C code.

‘1509899:199409’
ISO C90 as modified in amendment 1.

‘c99’
‘c9x
‘1509899:1999’
‘1809899:199x’
ISO C99. Note that this standard is not yet fully supported; see
http://gcc.gnu.org/c99status.html for more information. The
names ‘c9x’ and ‘1s09899:199x’ are deprecated.

9y

‘c1?l’
‘clx
‘1809899:2011’
ISO C11, the 2011 revision of the ISO C standard. Support is
incomplete and experimental. The name ‘c1x’ is deprecated.

9y

‘gnu90’
‘gnu8?’ GNU dialect of ISO C90 (including some C99 features). This is the
default for C code.

‘gnu99’
‘gnu9x’ GNU dialect of ISO C99. When ISO C99 is fully implemented in
GCC, this will become the default. The name ‘gnu9x’ is deprecated.

‘gnull’
‘gnulx’ GNU dialect of ISO C11. Support is incomplete and experimental.
The name ‘gnulx’ is deprecated.

‘c++98’
‘c++03’ The 1998 ISO C++ standard plus the 2003 technical corrigendum
and some additional defect reports. Same as ‘—ansi’ for C++ code.

http://gcc.gnu.org/c99status.html

32

Using the GNU Compiler Collection (GCC)

‘gnu++98’
‘gnu++03’ GNU dialect of ‘-std=c++98’. This is the default for C++ code.

‘c++11’

‘c++0x’ The 2011 ISO C++ standard plus amendments. Support for C++11
is still experimental, and may change in incompatible ways in future
releases. The name ‘c++0x’ is deprecated.

‘gnu++11’

‘gnu++0x’ GNU dialect of ‘-std=c++11’. Support for C++11 is still experi-
mental, and may change in incompatible ways in future releases.
The name ‘gnu++0x’ is deprecated.

‘cH+1ly’ The next revision of the ISO C++ standard, tentatively planned
for 2017. Support is highly experimental, and will almost certainly
change in incompatible ways in future releases.

‘gnu++1y’ GNU dialect of ‘-std=c++1y’. Support is highly experimental, and
will almost certainly change in incompatible ways in future releases.

-fgnu89-inline

The option ‘-fgnu89-inline’ tells GCC to use the traditional GNU semantics
for inline functions when in C99 mode. See Section 6.39 [An Inline Function
is As Fast As a Macro|, page 397. This option is accepted and ignored by
GCC versions 4.1.3 up to but not including 4.3. In GCC versions 4.3 and later
it changes the behavior of GCC in C99 mode. Using this option is roughly
equivalent to adding the gnu_inline function attribute to all inline functions
(see Section 6.30 [Function Attributes], page 348).

The option ‘-fno-gnu89-inline’ explicitly tells GCC to use the C99 semantics
for inline when in C99 or gnu99 mode (i.e., it specifies the default behavior).
This option was first supported in GCC 4.3. This option is not supported in
‘-std=c90’ or ‘-std=gnu90’ mode.

The preprocessor macros __GNUC_GNU_INLINE__ and __GNUC_STDC_INLINE__
may be used to check which semantics are in effect for inline functions. See
Section “Common Predefined Macros” in The C Preprocessor.

—aux-info filename

Output to the given filename prototyped declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option
is silently ignored in any language other than C.

Besides declarations, the file indicates, in comments, the origin of each declara-
tion (source file and line), whether the declaration was implicit, prototyped or
unprototyped (‘I’, ‘N’ for new or ‘0’ for old, respectively, in the first character
after the line number and the colon), and whether it came from a declaration
or a definition (‘C’ or ‘F’, respectively, in the following character). In the case
of function definitions, a K&R-style list of arguments followed by their decla-
rations is also provided, inside comments, after the declaration.

-fallow-parameterless-variadic-functions

Accept variadic functions without named parameters.

Chapter 3: GCC Command Options 33

-fno-asm

Although it is possible to define such a function, this is not very useful as it
is not possible to read the arguments. This is only supported for C as this
construct is allowed by C++.

Do not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm__, __inline__ and
__typeof__ instead. ‘~ansi’ implies ‘~fno-asm’.

In C++, this switch only affects the typeof keyword, since asm and inline
are standard keywords. You may want to use the ‘~fno-gnu-keywords’ flag
instead, which has the same effect. In C99 mode (‘-std=c99’ or ‘-std=gnu99’),
this switch only affects the asm and typeof keywords, since inline is a standard
keyword in ISO C99.

—-fno-builtin
—-fno-builtin-function

—-fhosted

Don’t recognize built-in functions that do not begin with ‘__builtin_’ as prefix.
See Section 6.55 [Other built-in functions provided by GCC], page 451, for
details of the functions affected, including those which are not built-in functions
when ‘-ansi’ or ‘-std’ options for strict ISO C conformance are used because
they do not have an ISO standard meaning.

GCC normally generates special code to handle certain built-in functions more
efficiently; for instance, calls to alloca may become single instructions which
adjust the stack directly, and calls to memcpy may become inline copy loops.
The resulting code is often both smaller and faster, but since the function
calls no longer appear as such, you cannot set a breakpoint on those calls,
nor can you change the behavior of the functions by linking with a different
library. In addition, when a function is recognized as a built-in function, GCC
may use information about that function to warn about problems with calls to
that function, or to generate more efficient code, even if the resulting code still
contains calls to that function. For example, warnings are given with ‘~-Wformat’
for bad calls to printf when printf is built in and strlen is known not to
modify global memory.

With the ‘~fno-builtin-function’ option only the built-in function function
is disabled. function must not begin with ‘__builtin_’. If a function is named
that is not built-in in this version of GCC, this option is ignored. There is
no corresponding ‘-fbuiltin-function’ option; if you wish to enable built-in
functions selectively when using ‘~fno-builtin’ or ‘~-ffreestanding’, you may
define macros such as:

#define abs(n) __builtin_abs ((n))
#define strcpy(d, s) __builtin_strcpy ((d), (s))
Assert that compilation targets a hosted environment. This implies

‘~fbuiltin’. A hosted environment is one in which the entire standard library
is available, and in which main has a return type of int. Examples are nearly
everything except a kernel. This is equivalent to ‘-fno-freestanding’.

34

Using the GNU Compiler Collection (GCC)

-ffreestanding

—-fopenmp

-fgnu-tm

Assert that compilation targets a freestanding environment. This implies
‘~fno-builtin’. A freestanding environment is one in which the standard
library may not exist, and program startup may not necessarily be at
main. The most obvious example is an OS kernel. This is equivalent to
‘~fno-hosted’.

See Chapter 2 [Language Standards Supported by GCC], page 5, for details of
freestanding and hosted environments.

Enable handling of OpenMP directives #pragma omp in C/C++ and !$omp
in Fortran. When ‘-fopenmp’ is specified, the compiler generates parallel
code according to the OpenMP Application Program Interface v3.0
http://www.openmp.org/. This option implies ‘-pthread’, and thus is only
supported on targets that have support for ‘-pthread’.

When the option ‘~fgnu-tm’ is specified, the compiler generates code for the
Linux variant of Intel’s current Transactional Memory ABI specification doc-
ument (Revision 1.1, May 6 2009). This is an experimental feature whose
interface may change in future versions of GCC, as the official specification
changes. Please note that not all architectures are supported for this feature.

For more information on GCC’s support for transactional memory, See Section
“The GNU Transactional Memory Library” in GNU Transactional Memory
Library.

Note that the transactional memory feature is not supported with non-call
exceptions (‘-fnon-call-exceptions’).

-fms-extensions

Accept some non-standard constructs used in Microsoft header files.

In C++ code, this allows member names in structures to be similar to previous
types declarations.

typedef int UOW;

struct ABC {

Uow UOW;

};
Some cases of unnamed fields in structures and unions are only accepted
with this option. See Section 6.59 [Unnamed struct/union fields within
structs/unions], page 641, for details.

-fplan9-extensions

-trigraphs

Accept some non-standard constructs used in Plan 9 code.

This enables ‘-fms-extensions’, permits passing pointers to structures with
anonymous fields to functions that expect pointers to elements of the type of
the field, and permits referring to anonymous fields declared using a typedef.
See Section 6.59 [Unnamed struct/union fields within structs/unions|, page 641,
for details. This is only supported for C, not C++.

Support ISO C trigraphs. The ‘-ansi’ option (and ‘-std’ options for strict ISO
C conformance) implies ‘~trigraphs’.

http://www.openmp.org/

Chapter 3: GCC Command Options 35

—-traditional

-traditional-cpp
Formerly, these options caused GCC to attempt to emulate a pre-standard C
compiler. They are now only supported with the ‘~E’ switch. The preprocessor
continues to support a pre-standard mode. See the GNU CPP manual for
details.

-fcond-mismatch
Allow conditional expressions with mismatched types in the second and third
arguments. The value of such an expression is void. This option is not supported
for C++.

-flax-vector-conversions
Allow implicit conversions between vectors with differing numbers of elements
and/or incompatible element types. This option should not be used for new
code.

-funsigned-char
Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like
unsigned char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char
when it depends on the signedness of an object. But many programs have been
written to use plain char and expect it to be signed, or expect it to be unsigned,
depending on the machines they were written for. This option, and its inverse,
let you make such a program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned
char, even though its behavior is always just like one of those two.

-fsigned-char
Let the type char be signed, like signed char.

Note that this is equivalent to ‘-fno-unsigned-char’, which is the negative
form of ‘~funsigned-char’. Likewise, the option ‘~fno-signed-char’ is equiv-
alent to ‘-funsigned-char’.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields
These options control whether a bit-field is signed or unsigned, when the dec-
laration does not use either signed or unsigned. By default, such a bit-field is
signed, because this is consistent: the basic integer types such as int are signed

types.

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs.
You can also use most of the GNU compiler options regardless of what language your
program is in. For example, you might compile a file firstClass.C like this:

36 Using the GNU Compiler Collection (GCC)

g++ -g -frepo -0 -c firstClass.C

In this example, only ‘~frepo’ is an option meant only for C++ programs; you can use the
other options with any language supported by GCC.

Here is a list of options that are only for compiling C++ programs:

-fabi-version=n
Use version n of the C++ ABI. The default is version 2.
Version 0 refers to the version conforming most closely to the C++ ABI spec-
ification. Therefore, the ABI obtained using version 0 will change in different
versions of G++ as ABI bugs are fixed.

Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
Version 2 is the version of the C++ ABI that first appeared in G++ 3.4.

Version 3 corrects an error in mangling a constant address as a template argu-
ment.

Version 4, which first appeared in G++ 4.5, implements a standard mangling
for vector types.

Version 5, which first appeared in G++ 4.6, corrects the mangling of attribute
const/volatile on function pointer types, decltype of a plain decl, and use of a
function parameter in the declaration of another parameter.

Version 6, which first appeared in G++ 4.7, corrects the promotion behav-
ior of C++11 scoped enums and the mangling of template argument packs,
const /static_cast, prefix ++ and —, and a class scope function used as a tem-
plate argument.

See also ‘-Wabi’.

-fno-access-control
Turn off all access checking. This switch is mainly useful for working around
bugs in the access control code.

-fcheck-new

Check that the pointer returned by operator new is non-null before attempting
to modify the storage allocated. This check is normally unnecessary because
the C++ standard specifies that operator new only returns 0 if it is declared
‘throw()’, in which case the compiler always checks the return value even with-
out this option. In all other cases, when operator new has a non-empty ex-
ception specification, memory exhaustion is signalled by throwing std: :bad_
alloc. See also ‘new (nothrow)’.

-fconstexpr-depth=n
Set the maximum nested evaluation depth for C++11 constexpr functions to
n. A limit is needed to detect endless recursion during constant expression
evaluation. The minimum specified by the standard is 512.

-fdeduce-init-list
Enable deduction of a template type parameter as std::initializer_list
from a brace-enclosed initializer list, i.e.

template <class T> auto forward(T t) -> decltype (realfn (t))
{

Chapter 3: GCC Command Options 37

return realfn (t);

}

void £()

{
forward({1,2}); // call forward<std::initializer_list<int>>

}
This deduction was implemented as a possible extension to the originally pro-
posed semantics for the C++11 standard, but was not part of the final standard,
so it is disabled by default. This option is deprecated, and may be removed in
a future version of G++.

-ffriend-injectio