
 1

 

 

 

 

 

 

 

 

 

 

 

Why Regression Suite? 

 

Lakshmi Krishnamurthy 

v1.0, 10 June 2012 



 2

Introduction 

 

Regression Suite aims to incorporate performance tests as part of routine unit regression 

tests. In particular, the following are the design objectives: 

• Generate execution time distributions and statistics 

• Enhanced design to allow precise measurement of execution times 

• Estimate initialization and event-specific delays 

• Produce elaborate and customized regression details and outputs that are compact, 

queryable, and processable (in particular, fields that can be used to generate 

statistics). 

 

Specifically, all these are suited for tests of analytics modules (financial analytics in 

particular, but other analytics too). 

 

 

RegressionSuite Features 

 

The key objective behind the design of the RegressionSuite is that it enable/ease 

incorporation of testing to beyond simple unitary unit testing (pass/fail), and allow for (in 

this edition) clock time based performance measurements. To that end, the following is a 

comprehensive suite of design goals and features that it handles: 

 

• Execution Time Distribution: A first objective is the measurement of the execution 

time (clock time, as opposed to CPU time – to gauge the response in a given 

setting/environment) distribution. Measurement is done by isolating the actual 

regression run from the preparation and processing (more on this later). Further start-

up is treated separately from the routine run, again with a view to measurement 

isolation. Central statistical measures such as mean and variance are generated – so 

are the extremal measures (minimum and maximum execution times). 

• Enhanced Unit Testing: The next goal is to enhance the unit testing by extending the 

typical unit regression tests in a couple of ways. First, RegressionSuite is intended for 



 3

generating a variety of inputs to span the full range (this can, of course, cause it to be 

prohibitively expensive for practical use in many situations – strategies for input 

variance reduction may be employed as suitable – as in identifying the parameter-

correlated valid input ranges). Next RegressionSuite also needs to distinguish 

between situations where the unit tests fail, but the regression is deemed to have 

succeeded (e.g., over specific inputs). Further RegressionSuite will be extended to 

capture both the execution time distribution and the unit test success/failure over the 

given input ranges. As noted earlier, measurement of execution times makes most 

sense if done by excluding the preparation and output processing times, unit tests 

need to account for that as well (more on this on the frame-work discussion). 

• Pluggable and automated frame-work: RegressionSuite is built using interfaces and 

frame-works, yet with simple process controls, invocation freedom (minimal 

constraints), and without side-effects. Both the regression set/modules as well as the 

unit regressors are built around interfaces, and the core invocation/execution 

functionality is delegated to the frame-work. The frame-work also generates the 

regression statistics and other details. 

• Regression Details: Details are as elaborate or brief, and their emission is controlled 

typically at multi-levels – at the frame-work level, at the individual module level, and 

at the unit regressor level. Field level details are built in by the unit regressor, and 

there are no limitations on the what constitutes a detail. Being named values, the 

details are built to be compact/efficient, parseable, and procesesable (XML is not the 

format of choice). Of course distribution may be generated on any of the number 

parsable detail fields. 

 


