@

Credit Trader Suite User/Developer Guide

L akshmi Krishnamurthy
v2.2 14 August 2013

I ntroduction

Credit Trader Suitef libraries aims to provide open source analydicg

trading/valuation system solution suite for cretitl fixed income products. To this end,
it implements its functionality in a single libraoyer 5 main components —

CreditProductCreditAnalytics SplineLibrary FixedPointFinderandRegressionSuite

Overview and Problem Space Coverage

The main challenges th@redit Trader Suitattempts to address are:

* Implementation of day count conventions, holidagieedars, and rule-based period
generators

» Abstract the functionality behind curves, paranmsgtand products onto defined
interfaces

* Unified/standardized methods for curve calibratjggagameter and product
implementers and constructors

» Environmental system to hold live ticks, closingrksa and reference data containers

* Enhanced analytics testing

» Ease of usage, installation, and deployment

While a number of other libraries - both Open Seunsplementations such gsiantlib

and itsvariantsand proprietary systems suchFascad NumeriX, Algorithmics they

typically cater to the needs of the wider finanangthematics community, thus diluting
their value towards treating credit products. Fertliew of them inherently export a
curve/product/product models that work well witloghucts quotes, marks, and reference
data sources, thereby forcing development tearhsitd their own integration layers
from scratch. Finally, building the componentsuridtional credit-trading system

requires additional layers of development over witas.

Credit Trader Suités an attempt to overcome these shortcomingsnlt & bring the

aspects mentioned above together in one Open Soopbementation that readily

integrates onto existing systems.

Main Librariesand their Purpose

The libraries the constitute the Credit Trader &aite:
» CreditProduct Focused on the core analytics, and the curegpdinameter, and the
product definitions.

* CreditAnalytics— Concerned with the construction and the impldgatem of the

interfaces defined in CreditProduct, analytics emvinent management, and
functional distribution.

» SplineLibrary— Provides the functionality for building, calitirey, and evaluating
different kinds of splines.

» FixedPointFinder Provides the implmentation of all the standa&tketing and

open root finding techniques, along with a cust@iie and configurable framework
that separates the initilization/bracketing funcétity from the eventual root search.

» RegressionSuite This aims to ease testing of analytics, measamneésnd generation

of the execution time distribution, as well as aske performance characterization.

CreditProduct Description and Problem Space Cover age

CreditProductims to define the functional and behavioral ifistegs behind curves,
products, and different parameter types (markdtiagi@n, pricing, and product
parameters). To facilitate this, it implements @as day count conventions, holiday sets,

period generators, and calculation outputs.

CreditProductibrary achieves its design goal by implementitsgunctionality over

several packages:

Dates and holidays coverageovers a variety of day count conventions, 120+

holiday locations, as well as custom user-definadlhys

Curve and analytics definitionBefines the base functional interfaces for theawvds

of discount curves, credit curves, and FX curves

Market Parameter definition®efines quotes, component/basket market parasjeter

and custom scenario parameters

Valuation and Pricing ParameteBefines valuation, settlement/work-out, and

pricing parameters of different variants
Product and product parameter definitioDgfines the product creation and behavior
interfaces for Cash/EDF/IRS (all rates), bonds/G@&dit), and basket bond/CDS,

and their feature parameters.

Output measures contain®efines generalized component and basket outpsts,

well customized outputs for specific products

CreditAnalytics Description and Problem Space Coverage

CreditAnalyticsprovides the functionality behind creation, cadifoon, and

implementation of the curve, the parameter, angtbduct interfaces defined in

CreditProductlt also implements a curve/parameter/productygicalmanagement

environment, and has packaged samples and testers.

CreditAnalyticslibrary achieves its design goal by implementisgunctionality over

several packages:

Curve calibration and creatioRunctional implementation and creation factofes

rates curves, credit curves, and FX curves ofgy

Market Parameter implementation and creatioiplementation and creation of

guotes, component/basket market parameters, agsvetienario parameters.
Product implementation and creatidmplementation and creation factories for rates
products (cash/EDF/IRS), credit products (bonds/{;BSwell as basket products.

* Reference data/marks loaddreaders for bond/CDX, as well a sub-universe of

closing marks

» Calculation Environment Managdmplementation of the market parameter

container, manager for live/closing curves, studhtlfunctionality for
serverization/distribution, input/output serialipat
« SamplesSamples for curve, parameters, product, and acslyreation and usage

» Unit functional testersDetailed unit scenario test of various analytsye,

parameter, and product functionality.

SplineLibrary Description and Problem Space Coverage

SplineLibraryprovides the functionality for building, calibnatj, and evaluating different
kinds of splines. It implements the functionalighind spline design, spline
constructions, customization, calibration, and eaaibn of a wide variety of spline types

and basis functions.

SplineLibraryachieves its design goals by implementing its tionality over several
packages the perform the following:

» Spline Calibration Frameworkchematic spline segment/span partitioning,

elastc/inelastic entity-variate separation, matherakcalibration formulation
framework with constriaints/boundary incorporatisansitivity Jacobian estimator
setup, Hard/Soft (Truthness/Smoothness) partitgnin

» Shape Preserving Spline SuiBsplines, Polynomial Splines and Variants

(Bernstein, Kaklis-Pandelis, Manni), Integrated Jien Splines
(exponential/hyperbolic), partitioned tension seir{(explicit shape control using
rational splines).

» Space Spline Curveslermitian, Catmull-Rom, Cardinal Cubic, Space jh®0

» Spline CalibrationExplicit segment formulation frane work, Optinrmgi shape

preserving splnes, curvature (or criterion-defingefalty minimizing mu-splines,

segment/span self-Jacobian and micro-Jacobian.

Spline EvaluationMetric'ed evaluation of monotonicity, convexigynoothness,

smoothness, locality, and approximation order.

Spline Extensionsvariational Smoothing, density smoothing techeigaiternate

smoothener customization extension, multi-dimeraigncluding thin plate) splines.

FixedPointFinder Description and Problem Space Coverage

RootFinderachieves its design goal by implementing its fiomztlity over several

packages:

Framework Framework to accommodate bracketing/open connemgmitialization,
execution customization/configuration, iterativeiae evolution, and search
termination detection

Bracket Initialization Techniguetmplementation of the different techniques fae th

initial bracket extraction.

Open Method Convergence Zone Initialization Techegjlmplementation of the

different techniques for the convergence zoneistavariate extraction.

Iterative Open Methodsmplementation of the iterative Open Methods wikmn-

Raphson and Secant Methods

Iterative Bracketing Primitive Methodbnplementation of the iterative bracketing

primitives — Bisection, False Position, Quadratitetpolation, Inverse Quadratic
Interpolation, and Ridder.

Iterative Bracketing Compound Methodsiplementation of the iterative bracketing

compound methodologies — Brent’s and Zheng’s method

Search Initialization Heuristicémplementation of a number of search heuristics t

make the search targeted and customized.
SamplesSamples for the various bracketing and the opethaods, their
cusomization, and configuration.

DocumentationLiterature review, framework description, mathéoa and

formulation details of the different componenttrbnder synthetic knowledge unit

(SKU) composition, and module and API usage guide.

* Regression Test$Statistical regression analysis and dispersiotricnevaluation for

the initialization and the iteration componentshef different bracketing and open

root finder methodologies.

RegressionSuite Description and Problem Space Coverage

RegressionSuitaims to incorporate measurement of the startupagsurement of

accurate execution times, generating executioisstat customized input distributions,

and processable regression specific details aoptre regular unit tests.

RegressionSuitkbrary achieves its design goal by implementiisgunctionality over

several packages:

* Regression Enginé’rovides control for distribution set, invocatistnategy, and

load.

* Unit Regression ExecutofFramework that implements set up and tear-dowmvel

as generate run details

* Regression StatisticExecution time distribution, start-up and otheer delay
measurements, and system load monitoring

* Regression OutpuFine grained regressor level output, module agges output,

sub-element execution time estimation.

* Regressor SeModule containing set of regressors, group léwei on/off and
execution control

* Regression UtilitiesFormatting and tolerance checking.

Design Objectives

This section covers the design objectives acrogsrakfacets — functional, software,

system, usage, and deployment aspects.

Financial Feature design attributes

The chief design aims from a financial functionaéingle are:

Interface representations of curve, parameter paoducts

Separation of the creation and the implementatiodutes from the exposed
functional interface behavior

Re-usable functional and behavioral abstractioosrat financial products

Provide “open” public implementations of the stamidanalytics functionality such as
day count conventions, holidays, date represemigtiale based period generation
etc

Abstraction of the quote, the market parameterthagricing structures

Abstraction and implementation of the standard ewalibration

Softwar e Feature design attributes

The chief design aims from a software design aage

Logical functionality identification/localizatioma functional group partitioning
Clearly defined interface structure
Implementation and creation factory bodies

Reach and interaction through interfaces only

System Feature Design Attributes

The key system design aims are:

Functionality needs to be readily serverizable @disttibutable
Provide built in serialization, marshalling, andgstence of all the main components
Management containers around the products, theespand the parameter sets, and

establishing the execution control environment

Analytics Usage Design Objectives

The key usage design goals are:

The analytics modules should provide comprehernsieeit product risk, valuation,
and pricing functionality from a set of functiorfsiPl

Ease of use

Flexible

When direct object access is needed, use onlyghrthe object model interface (and
amend the interface as appropriate)

Test Design Objectives

The key testing design goals in this area are:

Comprehensive unit testing of curve, parameteid paoduct implementation
Extensive composite scenario testing

Environment and server components testing

Release time performance characterization and éradime and execution resource
statistics calculation

Installation, Dependency, and Deployment Design Objectives

The key design goals in this area are:
* Minimize dependency on external modules
* Ease of installation and deployment

» Customizability — for non-standard setups — throtinghsupplied configuration file.

10

Credit Product

Credit Product Librargonsists of the following 14 packages:

1. Date & Time ManipulatorsThis contains functionality for creating, manigirig,

and adjusting dates, as well as time instantsgtm+second granularity).

2. Day-count Parameters, Conventions, and Date Adgrsti@perationsThis contains

the functionality for day count generation and datpistment according to specific

rules. It also holds parameters needed for speddfyccount conventions.

3. Location Specific Standard Holiday S&his contains all the non-weekend holidays

that correspond to a specific location jurisdictiand its description. Each location

implements it holidays in a separate class.

4. Custom HolidaysThis provides the ability to specify custom holiday the standard

ones provided earlier are insufficient. Differeypes of holidays can be added —

variable, fixed, static, as well as weekends fgivan location.

5. Curve Analytics DefinitionsThis provides the definition of all the curve atie— the

base curve, the rates curves (discount curvesenodcarves), credit curves, and the

FX curves (FX basis and FX forward curves).

6. Cash flow PeriodThis contains the cash flow period functionalédyg,well as place

holders for the period related different curve dast

7. Analytics Support UtilitiesThis contains utility functions for manipulatinget core

Credit Product modules, generic utility functioasd a logger.

11

8. Quotes, Market, and Scenario Parameters Definitibhis contains the classes that

implement the definitions for all parameters exqapduct feature parameters —
guotes, calibration parameters, market parameteesk parameters, and the scenario

curves.

9. Pricer Parameterdhis contains the pricing parameters correspontiraggiven

product and model.

10. Quoting Parameterd his contains the quoting parameters needed eoprét a

product quote.

11.Valuation Parameterdhis contains all the non-market and non-prodacameters

needed for valuing a product at a given date.

12. Product DefinitionsThis contains interface definitions for all protkjalong with
definitions for credit, rates, and FX componentd specific credit/rates/FX products,
and baskets.

13.Product Parameter¥his contains the implementations of the featvegsiired for a

complete construction of an instance of the praduct

14.Product RV and Batch Calculation Outpulhis contains the bulk results of pricing

and relative value calculation for the products.

15. Serializer This interface defines the core object serialmatnethods — serialization

into and de-serialization out of byte arrays, all agethe object serializer version.

12

Credit Product: Date Time M anipulators

Date Time Manipulatorare implemented in the packaae.drip.analytics.date. It

contains functionality for creating, manipulatiagd adjusting dates, as well as time

instants (to nano-second granularity).

The functionality is implemented in 2 classBsteTimeandJulianDate and both are

serializable.

JulianDate

This class provides a comprehensive representafidulian date and date manipulation

functionality. It exports the following functionalt

» Explicit date construction, as well as date comsion from several input string
formats

» Date Addition/Adjustment, add/subtract days/weeksitis/years and tenor codes

* Leap Year Functionality (number of leap days indghen interval, is the given year
a leap year etc.)

* Generate the subsequent IMM date (EDF/CME IMM dat@S/Credit ISDA IMM
date etc)

» Export the date to a variety of date formats.

DateTime

DateTimecontains nano-second level instantiation-time sfagate/time instant.

13

Credit Product: Day Count Parameter s, Conventions, and

Date Adjustment Oper ations

Day Count Calculatorare implemented in the package.drip.analytics.daycount. It

contains the functionality for day count generatmal date adjustment according to

specific rules. It also holds parameters neededgdecific day count conventions.

The functionality is implemented across 18 clas8esActDCParamsConvention and
DateAdjustParam®ateEOMAdjustmentDC30 360 DC30_365DC30_Act
DC30E_360DCAct 360 DC30_364DC30_365DC30 365L DCAct Act_ISDA
DCAct_Act, DCFCalculatorDCNL_360 DCNL_ 364 andDCNL_Act.

ActActDCParams

This class contains parameters to represent thd&alay count - the frequency, and the

reference period start/end dates.

Convention

This class contains flags that indicate where tiglays are loaded from, as well as the

holiday types and load rules. It exports the follmywate related functionality:

* Add business days according to the specified calend

* The Year Fraction between any 2 days given thecdapt type and the holiday
calendar

* Adjust/roll to the next working day according t@tadjustment rule

14

» Holiday Functions - is the given day a holiday/imesis day, the number and the set of
holidays/business days between 2 days.
» Calendars and Day counts - Available set of daytoanventions and calendars,

and the weekend days corresponding to a givendaten

DateAdjustParams

This class contains the parameters needed fortadjudates — holiday calendar and
adjustment type.

DateEOM Adjustment

This class holds the applicable anterior and past&XOM adjustments for a given date
pair.

DCFCalculator

This interface is the stub for all the day countwantion functionality. It exposes the

base/alternate day count convention names, thefrgedion and the days accrued.

DC30 360

This class implements the 30/360 day count coneenti

DC30 365

15

This class implements the 30/365 day count coneenti

DC30 Act

This class implements the 30/Act day count coneenti

DC30E 360

This class implements the 30E/360 day count comwent

DCAct 360

This class implements the Act/360 day count coneant

DCAct 364

This class implements the Act/364 day count conwant

DCAct 365

This class implements the Act/365 day count conwant

DCAct 365L

16

This class implements the Act/365L day count cotigen

DCAct Act ISDA

This class implements the Act/Act ISDA day coumntwention.

DCAct Act

This class implements the Act/Act day count conient

DCNL 360

This class implements the NL/360 day count conwenti

DCNL 365

This class implements the NL/365 day count coneenti

DCNL Act

This class implements the NL/Act day count conwanti

17

Credit Product: L ocation Specific Standard Holiday Set

Location Specific Holidayare implemented in the packag@.drip.analytics.holset. It

contains all the holidays that correspond to aifipdacation jurisdiction, and its

description.

The functionality is implemented in its own locatiqualified class instance - each of

which is an instance of thecationHolidayinterface.

L ocationHoliday

LocationHoliday is an interface that is implementgdhll the Location Holiday classes.

It exposes the specific holiday location, as welttee set of location-specific holidays.

Other classes in this package provide explicitdayé and the locale name. So faredit

Producthas about 130 locales implemented — please cahg@tredit Analytics sitdor

what they are.

18

Credit Product: Custom Holidays

Custom Holiday creator@re implemented in the packame.drip.analytics.holiday. It

provides the ability to add holidays, it the stamidanes provided earlier are insufficient.

Different types of holidays can be addedariable fixed, static as well asveekenddor

a given location.

Different holiday types are implemented in theimoglasses — they aBtatic Fixed and

Variable each of which extends tlBase holiday clas®Veekends implemented in a

separate class. All holiday instances for a givecaleare maintained on a named

holiday container.

Base

Base is an abstraction around holiday and desonipfibstract function generates an

optional adjustment for weekends in a given year.

Weekend

Weekend holds the left and the right weekend days

Static

Static implements a complete date as a specifiddyl

19

Fixed

Fixed contains the fixed holiday’s date and mohtblidays are generated on a per-year
basis by applying the year, and by adjusting the danerated.

Variable

Variable class contains the rule characterizingvtiv@able holiday's month, day in week,
week in month, and the weekend days. Specific hg#idn the given year are generated
using these rules.

L ocale

Locale contains the set of regular holidays andweekend holidays for a location. It

also provides the functionality to add custom haygland weekends.

20

Credit Product: Curve Analytics Definitions

Curve Analytics Curve definitionsre implemented in the package

org.drip.analytics.definition. It provides the definition of all the curve olige the base

curve, the rates curves (discount curves and aex@s), credit curves, and the FX

curves (FX basis and FX forward curves).

Functionality in this package is implemented acstasses €urve DiscountCurve

ZeroCurve CreditCurve FXBasisCurveandFXForwardCurve

Curve

Curve implements the interfaces across all curs&ainces. It exposes the following
functionality:

» Set the effective/start date

» Set up calibration run framework (initialize theilduun, build the interpolator etc.)
* Generate scenario curves from the base curvepdiatiel/custom)

» Set/retrieve the components and their quotes

DiscountCurve

DiscountCurve is the stub for the discount curvecfionality. It extends the Curve object
by exposing the following functions:

* Forward Rate to a specific date/tenor, and effeatate between a date interval.

» Discount Factor to a specific date/tenor, and @&ffeaiscount factor between a date

interval.

21

Zero Rate to a specific date/tenor.

Generate scenario curves from the base discouve ¢flat/parallel/custom).
Value Jacobian for Forward rate, discount factod zero rate.

Cross Jacobian between each of Forward rate, dis€actor, and zero rate.

Quote Jacobian to Forward rate, discount factat,zamo rate.

ZeroCurve

ZeroCurve exposes the node set containing theczeve node points. In addition to the

discount curve functionality that it automaticghigovides by extension, it provides the

functionality to calculate the zero rate.

CreditCurve

CreditCurve is the stub for the survival curve fiimgality. It extends the Curve object by

exposing the following functions:

Recovery to a specific date/tenor, and effectivevery between a date interval.
Hazard Rate to a specific date/tenor, and effettazard rate between a date interval.
Survival to a specific date/tenor, and effectivevatal between a date interval.
Set/unset date of specific default.

Generate scenario curves from the base credit ¢tlatgparallel/custom)

FXBasisCurve

FXBasisCurve implements the curve representindrXigasis nodes. It extends the

Curve class, and exposes the following functiopalit

Retrieve the spot parameters (FX Spot, Spot Datkflge currency pair).

22

* Indicate if the basis has been bootstrapped.

» Calculate the Full set of FX Forward correspondmgach basis node.

FXForwardCurve

FXForwardCurve implements the curve representiegekForward nodes. It extends
the Curve class, and exposes the following funefion

* Retrieve the spot parameters (FX Spot, Spot Datétlge currency pair).

» Calculate the Full set of FX Basis/Zero Rate nanesesponding to each basis node.
» Bootstrap basis points/discount curves correspaniditthe FXForward node set.

* Imply the zero rate to a given date from the FXFaodhcurve.

23

Credit Product: Cash flow Period

Cash flow periodunctionality is implemented in the packame.drip.analytics.period.

It contains the cash flow period functionality,veall as place holders for the period

related different curve factors.

Functionality in this package is implemented acrbstasses Period CouponPeriod

CouponPeriodCurveFacto@ndLossPeriodCurveFactars

Period

Period serves as a holder for the period dategdgstart/end, period accrual start/end,

pay, and full period day count fraction.

CouponPeriod

CouponPeriod extends the period class with theviefig coupon day-count specific
parameters: frequency, reset date, and accruatalay convention. It also exposes static
methods to construct coupon period sets startingviards/forwards, as well as merge

coupon periods.

CouponPeriodCurveFactors

24

CouponPeriodCurveFactors is an enhancement ofatfiedoclass using the following
period measures: start/end survival probabilisésit/end notionals, and period start/end

discount factor.

L ossPeriodCurveFactors

LossPeriodCurveFactors is an implementation op#réeod class enhanced by the
following period measures:
» Start/end survival probabilities

» Period effective notional/recovery/discount factor

25

Credit Product: Analytics Support Utilities

Analytics Supporfunctionality is implemented in the packame.drip.anal ytics.support.

It contains utility functions for manipulating tig&redit Productmodules, case insensitive
maps, and a logger.

Functionality in this package is implemented acrbstasses AnalyticsHelper

CaselnsensitiveHashMa@aselnsensitiveTreeMapndLogger

AnalyticsHelper

AnalyticsHelper contains the collection of the gtiak related utility functions used by
the modules. The following is the functionality tltaexposes:

* Yield to Discount Factor, and vice versa.

» Map Bloomberg Codes to CreditAnalytics Codes.

» Generate rule-based curve bumped nodes.

* Generate loss periods using a variety of diffesehiemes.

* Aggregate/disaggregate coupon period lists.

Casel nsensitiveHashM ap

CaselnsensitiveMap implements a case insensitiyénka hash map.

Casel nsensitiveT reeM ap

26

CaselnsensitiveMap implements a case insensitiyénka hash map

L ogger

The Logger class implements level-set logging, bddky either the screen or a file.

Logging always includes time-stamps, and happecsrding to the level requested.

27

Credit Product: Quote, Market, and Scenario Parameters

Quote, Market, Tweak, and Scenario parameter diefrsiare specified in the package

org.drip.param.definition. It contains the classes that implement the dedims for all

parameters except product feature parameters esjuealibration parameters, market

parameters, tweak parameters, and the scenariesurv

Functionality in this package is implemented actd3glasses and 5 groups —

CalibrationParamshe quote parameters grodpupote andComponentQuolethe tweak

parameters groupNpdeTweakParama&ndCreditNodeTweakPararsand the scenario

curves groupRatesScenarioCunandCreditScenarioGroypand the market parameters

group ComponentMarketParanBasketMarketParamMarketParams

CalibrationParams

CalibrationParams the calibration parameters nthasure to be calibrated, the
type/nature of the calibration to be performed, redwork-out date to which the

calibration is done.

Quote

Quote interface contains the stubs correspondiaga@duct quote. It contains the quote

value and quote instant for the different quotesitbid/ask/mid).

ComponentQuote

28

ComponentQuote abstract class holds the diffeypetstof quotes for a given
component. It contains a single market field/quue, but multiple alternate named

guotes (to accommodate quotes on different meagurdse component).

NodeT weak Params

NodeTweakParams is the place-holder for the saehaeak parameters, for either a
specific curve node, or the entire curve (flatxaP@eter bumps can be parallel or

proportional.

CreditNodeT weak Par ams

CreditNodeTweakParams is the place-holder for thditcurve scenario tweak
parameters: the measure, the curve node, and tia¢ calibration type (entire curve/flat

or a given tenor point).

RatesScenarioCurve

RatesScenarioCurve abstract class exposes thiaggehe constructs scenario discount
curves. The following curve construction scenaassupported:

* Base, flat/tenor up/down by arbitrary bumps.

» Tenor bumped discount curve set - keyed usingethert

« NTP-based custom scenario curves.

CreditScenarioCurve

29

CreditScenarioCurve abstract class exposes the panameters and the curves for the
following credit curve scenarios:

* Base, Flat Spread/Recovery bumps.

» Spread/Recovery Tenor bumped up/down credit cuetsekeyed using the tenor.

» NTP-based custom scenario curves.

ComponentM ar ketParams

ComponentMarketParams abstract class providedatuibe
ComponentMarketParamsRef interface. It is a plautden for the market parameters
needed to value the component object — the disaauwg, the forward curve, the
treasury curve, the EDSF curve, the credit cutve component quote, the treasury quote

map, and the fixings map.

BasketM ar ketParams

BasketMarketParams class extends the BaketMarketiR&ef for a specific scenario. It
provides access to maps holding named discounesunamed credit curves, named

treasury quote, named component quote, and fixabgect.

M ar ketPar ams

MarketParams is the place-holder for the compreherssiite of the market set of curves
for the given date. It exports the following furoetality:
* Add/remove/retrieve scenario discount curve.

+ Add/remove/retrieve scenario zero curve.

30

Add/remove/retrieve scenario credit curve.
Add/remove/retrieve scenario recovery curve.
Add/removel/retrieve scenario FXForward curve.
Add/remove/retrieve scenario FXBasis curve.
Add/remove/retrieve scenario fixings.
Add/remove/retrieve Treasury/component quotes.
Retrieve scenario CMP/BMP.

Retrieve map of flat rates/credit/recovery CMP/BMP.
Retrieve double map of tenor rates/credit/reco@viP/BMP.

Retrieve rates/credit scenario generator.

31

Credit Product: Pricing Parameters

Pricing parameteis implemented in the packagey.drip.param.priceit contains the

pricing parameters corresponding to a given prodndtmodel.

Currently only the credit-pricing model is implented — it is implemented in

PricerParams

Pricer Par ams

PricerParams contains the pricer parameters -itlceate unit size, calibration mode
on/off, survival to pay/end date, and the discegion scheme.

32

Credit Product: Quoting Parameters

Pricing parameteis implemented in the packagey.drip.param.quotingrhis contains

the quoting parameters needed to interpret a ptapiate.

Functionality in this package is implemented ac®stasses Measurelnterpreter

QuotedSpreadinterpreterndYieldinterpreter

M easur el nter pr eter

Measurelnterpreter is the abstract shell stub ¢tass which all product measure quoting
parameters are derived. It contains fields need@utérpret a measure quote.

QuotedSpread| nter preter

QuotedSpreadinterpreter holds the fields needétdearet a Quoted Spread Quote. It

contains the contract type and the coupon.

Yieldlnterpreter

YieldInterpreter holds the fields needed to intetjar Yield Quote. It contains the quote
day count, quote frequency, quote EOM Adjustmembte Act/Act parameters, and

guote Calendar.

33

Credit Product: Valuation Parameters

Valuation parameterare implemented in the packame.drip.param.valuation. It

contains all the non-market and non-product parareeteeded for valuing a product at a
given date.

Functionality in this package is implemented acebstasses QuotingParams

CashSettleParam#/orkoutinfo, andValuationParams

CashSettlePar ams

CashSettleParams is the place-holder for the ataraent parameters for a given

product. It contains the cash settle lag, the ciEgrand the date adjustment mode.

QuotingParams

QuotingParams holds the parameters needed torietéhe input quotes. It contains the
guote day count, quote frequency, quote EOM Adjesiimquote Act/Act parameters,

and quote Calendar. It also indicates if the najwete is spread based.

ValuationPar ams

ValuationParams is the place-holder for the vatumafiarameters for a given product. It
contains the valuation and the cash pay/settlesdasewell as the calendar. It also

exposes a number of methods to construct standdudtion parameters.

34

W or koutl nfo

Workoutinfo is the place-holder for the work-out@aeters. It contains the date, the

factor, the type, and the yield of the work-out.

35

Credit Product: Product Definitions

Product definitionsare implemented in the package.drip.product.definition. It

contains interface definitions for all productraj with definitions for credit, rates, and

FX components and specific credit/rates/FX produantsl baskets.

Product definitionsre implemented in different groups — base compiogi®up

(ComponentMarketParamsR&omponentCalibrateComponejtbase basket group

(BasketMarketParamRdBasketProdugt RatesComponenCredit Component Group

(CreditComponeniCreditDefaultSwapBondProductBond), and FX Component group
(FXSpotandEXForwarg.

ComponentM ar ketPar amRef

ComponentMarketParamRef interface provides stubsdimponent name, IR curve,

forward curve, credit curve, TSY curve, and EDSFvewneeded to value the component.

Component

Component abstract class extends ComponentMarlegtiRaf and provides the
following methods:

* Get the component's initial notional, notional, @odpon.

» Get the Effective date, Maturity date, First Coujate.

» List the coupon periods.

» Set the market curves - discount, TSY, forwardd@reand EDSF curves.

» Retrieve the component's settlement parameters.

36

* Value the component using standard/custom markahpsters.

* Retrieve the component's named measures and naeasiira values.

CalibratableComponent

CalibratableComponent abstract class provides imgteation of Component's
calibration interface. It exposes stubs for getiatling the component’s calibration
code, generate calibrated measure values from dhnleetninputs, and compute micro-
Jacobians (QuoteDF and PVDF micro-Jacks).

BasketM ar ketPar amRef

BasketMarketParamRef interface provides stubsdorponent's IR and credit curves
that constitute the basket.

BasketProduct

BasketProduct abstract class extends BasketMarieeti®Ref. It provides methods for
getting the basket's components, notional, couptiactive date, maturity date, coupon
amount, and list of coupon periods.

RatesComponent

RatesComponent is the abstract class that extesids&ableComponent on top of

which all rates components are implemented.

37

CreditComponent

CreditComponent is the base abstract class onftaioh all credit components are
implemented. Its methods expose Credit Valuatiaamaters, and coupon/loss cash

flows.

CreditDefaultSwap

CreditDefaultSwap is the base abstract class imgésthe pricing, the valuation, and
the RV analytics functionality for the CDS product.

BondProduct

BondProduct interface implements the product stiia behind bonds of all kinds.
Bond static data is captured in a set of 11 coatattasses — BondTSYParams,
BondCouponParams, BondNotionalParams, BondFloaterida BondCurrencyParams,
BondldentifierParams, ComponentValuationParams, i2orentRatesValuationParams,
ComponentCreditValuationParams, ComponentTermingtient,
BondFixedPeriodParams, and one EmbeddedOptionSlehebject instance each for the

call and the put objects. Each of these parametsrcan be set separately.

Bond

Bond abstract class implements the pricing, theatain, and the RV analytics

functionality for the bond product.

38

EXSpot

FXSpot is the abstract class exposes the functtgrhind the FXSpot Contract.

Derived implementations return the spot date aedthrency pair.

FXForward

FXForward is the abstract class exposes the fumaity behind the FXForward
Contract. Derived implementations expose the pyfsacondary codes, the
effective/maturity dates, the currency pair, imilg discount curve basis and the FX
Forward from a set of market parameters. The Valnetion carries out a full valuation.

39

Credit Product: Product Parameters

Product parameter definitiomse implemented in the packameg.drip.product.param#t

contains the implementations of the features requior a complete construction of an

instance of the product.

Product parameteere implemented across 20 clas$&didatableis the base interface
that underpins most of them. Others are identf@@ameters@DXIdentifier,
CDXRefDataParamsdentifierSet StandardCDXParamsCouponSettingCreditSetting
CurrencySetEmbeddedOptionScheduleactorScheduléNotionalSetting
PeriodGeneratoPeriodSetFloaterSettingRatesSetingl erminationSetting

QuoteConventionTreasury Parameter§réasuryBenchmark syBmkSe}, and

CurrencyPair

Validatable

Validatable interface defines the validate functiwhich validates the current object

state.

CDXldentifier

CDXldentifier implements the creation and the stdtails of the all the NA, EU, SovX,
EMEA, and ASIA standardized CDS indexes. It corddhre index, the tenor, the series,

and the version of a given CDX.

40

CDXRefDataParams

CDXRefDataParams contains the complete set ofaeferdata that corresponds to the

contract of a standard CDX. It consists of thedwlhg category and fields:

» Descriptive => Index Label, Index Name, Curve Namdex Class, Index Group
Name, Index Short Group.

* Name, Index Short Name, Short Name.

* Issuer ID => Curve ID, Red ID, Series, Version, GuCurve ID, Location,
Bloomberg Ticker.

* Quote Details => Quote As CDS.

» Date => Issue Date, Maturity Date.

» Coupon Parameters => Coupon Rate, Currency, DagptCBull First Stub,
Frequency.

* Component Details => Original Count, Defaulted Ctoun

» Payoff Details => Knock out on Default, Pay Accriisdount, Recovery on Default.

* Other => Index Life Span, Index Factor

| dentifier Set

IdentifierSet contains the component's identifi@rgoneters - ISIN, CUSIP, ID, and

ticker.

StandardCDXParams

StandardCDXParams implements the parameters useddte the standard CDX - the

coupon, the number of components, and the currency.

41

CouponSetting

CouponSetting contains the coupon type, schedntetree coupon amount for the
component. If available, the floor and/or the cgjlmay also be applied to the coupon, in

a pre-determined order of precedence.

CreditSetting

CreditSetting contains the credit related valuaparameters - use default pay lag, use
curve or the component recovery, component recoeeegit curve name, and whether

there is accrual on default.

CurrencySet

CurrencySet contains the component's trade, theatguand the redemption currencies.

EmbeddedOptionSchedule

EmbeddedOptionSchedule is a place-holder for tHeeelaied option schedule for the
component. It contains the schedule of exercisesdatd factors, the exercise notice
period, and the option is to call or put. Furthiethe option is of the type fix-to-float on
exercise, contains the post-exercise floater iraekfloating spread. If the exercise is not
discrete (American option), the exercise datessfacire discretized according to a pre-

specified discretization grid.

Factor Schedule

42

FactorSchedule contains the array of dates andrfact

Notional Setting

NotionalSetting contains the product's notionaksithle and the amount. It also
incorporates hints on how the notional factorstaree interpreted - off of the original or
the current notional. Further flags tell whether tiotional factor is to be applied at the

start/end/average of the coupon period.

PeriodGener ator

PeriodGenerator generates the component coupardpdrom flexible inputs. Periods
can be generated forwards or backwards, with Itigistubs. For customization, date
adjustment parameters can be applied to each lcagldéte of the period - effective,
maturity, period start start/end, accrual start/g@y and reset can each be generated

according to the date adjustment rule applied tainal period start/end.

PeriodSet

PeriodSet is the place holder for the componemt®d generation parameters. It
contains the component's date adjustment paranfetgeeriod start/end, period accrual
start/end, effective, maturity, pay and resetf imipon date, and interest accrual start

date.

Floater Setting

43

FloaterSetting contains the component's floating parameters. It holds the rate index,

floater day count, and one of either the couporagpor the full current coupon.

RatesSetting

RatesSetting contains the rate related valuatioanpeters - the discount curves to be

used for discounting the coupon, the redemptiaaptimcipal, and the settle cash flows.

TerminationSetting

TerminationSetting class contains the current Hags" state of the component, and, if

inactive, how it entered that state.

QuoteConvention

QuoteConvention contains the Component Market Catie Parameters - the quote

convention, the calculation type, the first setid¢e, and the redemption amount.

TreasuryBenchmark

TreasuryBenchmark contains component treasury Ipesdhparameters - the treasury

benchmark set, and the names of the treasury an@ISF IR curves.

TsyBmkSet

44

TsyBmkSet contains the treasury benchmark set pringary treasury benchmark, and

an array of secondary treasury benchmarks.

CurrencyPair

CurrencyPair class contains the numerator currgheydenominator currency, the quote
currency, and the PIP Factor.

45

Credit Product: Product RV and Batch Calculation Outputs

Product bulk outputare implemented in the packawe.drip.analytics.output. It

contains the bulk results of pricing and relatiadue calculation for the products.

Outputs are implemented in 6 classé&semponentMeasurebond specific calculation

outputs Exerciselnfo BondCouponMeasureBondWorkoutMeasures

BondRVMeasurgs andBasketMeasures

ComponentM easur es

ComponentMeasures is the place-holder for analygiogle component output
measures, optionally across scenarios. It contagesure maps for the following

scenarios:

Unadjusted Base IR/credit curves

Flat delta/gamma bump measure maps for IR/creditpgbcurves
* Tenor bump double maps for IR/credit curves
* Flat/recovery bumped measure maps for recovery bdmpedit curves

* Measure Maps generated for Custom Scenarios

Exerciselnfo

Exerciselnfo is a place-holder for the full seegércise information. It contains the

exercise date, the exercise factor, and the exetyie.

46

BondCouponM easur es

This class encapsulates the parsimonius but coenpdettof the cash-flow oriented

coupon measures generated out of a full bond acslyin to a given work-out. These

are:

DV01
PV Measures (Coupon PV, Index Coupon PV, PV)

BondW or koutM easur es

BondWorkoutMeasures encapsulates the parsimoniuygplete set of measures

generated out of a full bond analytics run to a&giwork-out. It contains the following:

Credit Risky/Credit Riskless Clean/Dirty Coupon Meges

Credit Risky/Credit Riskless Par/Principal PV

Loss Measures such as expected Recovery, Losstamianeous default, and default
exposure with/without recovery

Unit Coupon measures such as Accrued 01, firstamofupdex rate

BondRVM easures

BondRVMeasures encapsulates the comprehensivé R&t measures calculated for the

bond to the appropriate exercise:

Workout Information.

Price, Yield, and YieldO1.

Spread Measures: Asset Swap/Credit/G/I/OAS/PECSIZSY
Basis Measures: Bond Basis, Credit Basis, YieldBas

Duration Measures: Macaulay/Modified Duration, Cexity

47

BasketM easur es

BasketMeasures is the place holder for the analyhiasket measures, optionally across
scenarios. It contains the following scenario measwaps:

* Unadjusted Base Measures

* Flat delta/gamma bump measure maps for IR/credii®Rp curves

» Component/tenor bump double maps for IR/credit/RR&s

* Flat/component recovery bumped measure maps foveeg bumped credit curves

» Custom scenario measure map

48

Credit Product: Serializer

Serializer interfacare implemented in the packawe.drip.service.stream. The interface

defines methods for serializing out of and de-$eny into a byte stream, as well as the

object serialization version.

There is just one interface in this packadggerializer

Serializer

Serializer interface defines the core object segaimethods — serialization into and de-

serialization out of byte arrays, as well as thgctoversion.

49

Credit AnalyticsLibrary

Credit Analytics Libraryconsists of the following 16 packages:

. CurvelmplementationsThis contains the curve objects implemented usimgof the

many ways of calibration, and contains concretdemgntations of Discount Curve,

Zero Curve, Credit Curve, and FX Curves.

. Curve CalibratorsThis contains the curve calibrators that use diffecalibration

schemes, and the curve scenario generators.

. Curve CreatorsThis contains the curve object factories for thfedent curves using

the calibration parameters.

. Reference Data LoaderEhis package contains functionality that loadskibed and

the CDS reference data, as well as closing marks few date ranges.

. Analytics ConfiguratarThis package contains functionality to configuagious

aspects of Credit Analytics.

. Market, Quote, and Scenario Parameter Implement&fldis contains the

implementations of th€redit Product interfacagpresenting the quotes, the

basket/component market parameters, and the scenawie containers.

. Market, Quote, and Scenario Parameter Creaityis contains the builder factories

for the quotes, market parameters, and the scenamnes.

50

8. Rates Component Implementatioifis contains the implementations of heedit

Product interfacefor Cash, Euro-dollar future, fixed/floating stnes, interest rate

swap instruments, and rates basket products.

9. Credit Product Implementation§his contains the implementations of heedit
Product interfacefor Bonds, CDS, basket CDS, and bond baskets.

10. EX Product Implementation3 his contains the implementation of Ge=dit Product

interfacefor FX products.

11.Product CreatorsThis contains the creators for the various ratesjit, and FX

component and basket products.

12. Analytics Environment ManageThis provides functionality for loading products

from their reference data and managing them, alsasareating/accessing

live/closing curves.

13. Analytics Bridge This provides the stub and proxy functionality foroking Credit

Analyticsfunctionality in a remote server and extracting tésults.

14. Analytics APt This provides a unified and comprehensive funetipstatic interface
of all the mainCredit Analyticsfunctionality.

15. Analytics SamplesThis provides samples illustrating the functiotygirovided by

Credit Analytics— samples demonstrating the creation and usagene¢s and

products across rates, credit, and FX componetdaskets. Examples are also
provided on how to compare against standard analygndors/suppliers (e.qg.,
Bloomberg).

51

16. Functional TestersThis contains a fairly extensive set of unit anchposite testers

for the curve, products, serialization, and anedyfunctionality provided by the

Credit Analytics suitewith a special focus on bonds.

52

Credit Analytics: Curve Il mplementations

Credit Product curve definitiorewe implemented in the packame.drip.analytics.curve.

This package contains the curve objects implemamédy one of the many ways of
calibration, and contains concrete implementat@fridiscount Curve, Zero Curve,

Credit Curve, and FX Curves.

Functionality in this package is implemented ovetases €onstantForwardHazard

ConstantForwardRat®erivedFXBasisDerivedFXForwardDerivedZeroRate

HyperbolicTensionForwardRatBolynomialForwardRateandPolynomialSplineDF

ConstantForwar dHazard

This class contains the constant hazard rate lwaedd curve holder object. It exports
the following functionality:

» Calculate survival probability / survival probabjlJacobian

» Calculate recovery / recovery Jacobian

» Calculate hazard rate / hazard rate Jacobian

» Construct tweaked curve instances (parallel/tenstémnm tweaks)

* Optionally provide the calibration instruments ajutes used to build the curve.

ConstantForwar dRate

This class contains the constant forward rate bdsedunt curve holder object. It
exports the following functionality:

* Calculate discount factor / discount factor Jacobia

53

* Calculate implied forward rate / implied forwarde@acobian
» Construct tweaked curve instances (parallel/tenstémm tweaks)

» Optionally provide the calibration instruments apobtes used to build the curve.

DerivedFXBasis

This class contains the constant forward basiscbeXeBasis Curve holder object. It
exports the following functionality:

» Calculate FX Forward / FX Forward Jacobian

» Calculate Forward Basis / Forward Basis Jacobian

» Construct tweaked curve instances (parallel/tenstémm tweaks)

» Optionally provide the calibration instruments apobtes used to build the curve.

DerivedFXForward

This class contains the constant forward baseddw&d Curve holder object. It
exports the following functionality:

* Calculate FX Forward / FX Forward Jacobian

» Calculate Forward Basis / Forward Basis Jacobian

* Construct tweaked curve instances (parallel/tenstémm tweaks)

» Optionally provide the calibration instruments apobtes used to build the curve.

DerivedZeroRate

This class implements the zero rate curve. It espbe following functionality:
» Calculate discount factor / discount factor Jacobia

e Calculate zero/forward rate / zero/forward rateobam

54

* Construct tweaked curve instances (parallel/tenstémm tweaks)
» Optionally provide the calibration instruments, thetes, the base discount curve,

and the zero bump used to build the curve.

HyperbolicT ensionForwar dRate

This class contains the polynomial spline discdaator based discount curve holder
object. The class constructs the discount curvegugeneric polynomial splines
(arbitrary degree, variable shape control, custegm®nt knot constraints, user specified
variational penalty optimization, and segment temsilt exports the following
functionality:

» Calculate discount factor / discount factor Jacobia

* Calculate implied forward rate / implied forwarde@acobian

» Construct tweaked curve instances (parallel/tenstémm tweaks)

» Optionally provide the calibration instruments apobtes used to build the curve.

Polynomial For war dRate

This class contains the polynomial forward rateedagiscount curve holder object. The
class constructs the discount curve using genetimpmial splines (arbitrary degree,
variable shape control, custom segment knot cansdraiser specified variational
penalty optimization, and segment tension). It etgptie following functionality:

» Calculate discount factor / discount factor Jacobia

» Calculate implied forward rate / implied forwardedacobian

» Construct tweaked curve instances (parallel/tenstémm tweaks)

» Optionally provide the calibration instruments apobtes used to build the curve.

55

Polynomial SplineDF

This class contains the polynomial spline discdaator based discount curve holder
object. The class constructs the discount curvegugeneric polynomial splines
(arbitrary degree, variable shape control, custegment knot constraints, user specified
variational penalty optimization, and segment temsilt exports the following
functionality:

» Calculate discount factor / discount factor Jacobia

* Calculate implied forward rate / implied forwarde@acobian

» Construct tweaked curve instances (parallel/tenstémm tweaks)

» Optionally provide the calibration instruments apobtes used to build the curve.

56

Credit Analytics: Curve Calibrators

Curve calibratoraire implemented in the packame.drip.analytics.calibration. This

package contains the curve calibrators that userdift calibration schemes, and the

curve scenario generators.

Functionality in this package is implemented ovetadses -€urveCalibrator

RatesCurveScenarioGeneratandCreditCurveScenarioGenerator

CurveCalibrator

CurveCalibrator calibrates the discount and cred#érd curves from the components

and their quotes.

CurveCalibrator employs a set of techniques foreathg this calibration.

» It bootstraps the nodes in sequence to calibrateuhve.

* In conjunction with splining interpolation technigy it may also be used to perform
dual sweep calibration. The inner sweep achiewvesdlibration of the segment
spline parameters, while the outer sweep calibitgestively for the targeted

boundary conditions.

CurveCalibrator bootstraps/cooks both discountesiand credit curves.

RatesCurveScenarioGener ator

57

This calls contains the interest rate calibratimstruments to be used with the component

calibrator to produce scenario interest rate curves

RatesCurveScenarioGenerator typically first cormssrthe actual curve calibrator
instance to localize the intelligence around cuwestruction. It then uses this curve
calibrator instance to build individual curves loe sequence of node bumped scenario

curves. The curves in the set may be an arragnarikeyed.

CreditCurveScenarioGener ator

This calls contains the credit calibration instrumseto be used with the component

calibrator to produce scenario credit curves.

CreditCurveScenarioGenerator typically first consts the actual curve calibrator
instance to localize the intelligence around cuwestruction. It then uses this curve
calibrator instance to build individual curves loe sequence of node bumped scenario
curves. The curves in the set may be an arragnarikeyed.

58

Credit Analytics: Curve Creators

Curve creatorare implemented in the package.drip.analytics.creator. This contains

the curve object factories for the different curussg the calibration parameters.

Functionality in this package is implemented ovetdsses -DiscountCurveBuilder

ZeroCurveBuilderCreditCurveBuilderFXBasisCurveBuilderand

FXForwardCurveBuilder

CreditCurveBuilder

This class contains the builder functions that troies the credit curve (comprising both
survival and recovery) instance. It contains statictions that build different types of
credit curve from 3 major types of inputs:

* From a variety of ordered credit-sensitive calilm@instruments and their quotes

* From an array of ordered survival probabilities

* From a serialized byte stream of the credit cungtaince

DiscountCurveBuilder

This class contains the builder functions that troies the discount curve (comprising
both the rates and the discount factors) instdhcentains static functions that build
different types of discount curve from 3 major typd inputs:

* From a variety of ordered DF-sensitive calibratiostruments and their quotes

* From an array of ordered discount factors

* From a serialized byte stream of the discount curstance

59

FXBasisCurveBuilder

This class contains the baseline FX Basis curvieléuobject. It contains static functions
that build FX Basis curves from the 3 major inputs:

* An ordered array of Forward FX

* An ordered array of Forward Basis Points

* A byte Stream representing the serialized instaftiee FXBasisCurve.

FXForwardCurveBuilder

This class contains the baseline FX Forward cunielér object. It contains static
functions that build FX Forward curves from the 8jon inputs:

* An ordered array of Forward FX

* An ordered array of Forward Basis Points

* A byte Stream representing the serialized instahtike FXForwardCurve.

ZeroCurveBuilder

This class contains the baseline zero curve budbgsct. It contains static functions that

build zero curves from cash flows, discount curaesl other input curves/instruments.

60

Credit Analvytics: Reference Data L oaders

Data loadersaire implemented in the packame.drip.feed.loaders. This package

contains functionality that loads the bond and@IxS reference data, as well as closing

marks for a few date ranges.

Functionality in this package is implemented ovetddses BondRefData
CDXRefDatg andCreditStaticAndMarks

BondRefData

BondRefData contains functionality to load a varigtt Bond Product reference data and
closing marks. It exposes the following functiotali

* Load the bond valuation-based reference data, &atoin schedule and EOS

« Build the bond instance entities from the valuati@sed reference data

* Load the bond non-valuation-based reference data

BondRefData assumes the appropriate connectioresvaii@ble to load the data.

CDXRefData

CDXRefData contains the functionality to load thenslard CDX reference data and

definitions, and create compile time static clageethese definitions.

CreditStaticAndM ar ks

61

CreditStaticAndMarks contains functionality to loadariety of Credit and Rates
Product reference data and closing marks. It exgptteefollowing functionality:

* Load the bond reference data, static data, ambaizachedule and EOS.

» Build the bond instance entities from the refereta.

* Load the bond, CDS, and Rates product Closing Marks

* Load and build the Holiday Calendars.

CreditStaticAndMarks assumes the appropriate cdimmscare available to load the data.

62

Credit Analytics: Analytics Configurator

Credit Analytics configuratois implemented in the packagey.drip.param.config. This

package contains functionality to configure variagpects o€Credit Analytics

Functionality in this package is implemented inrgyke class -ConfigLoader

ConfigL oader

ConfigLoader implements the configuration functilityalt exposes the following:
» Parses the XML configuration file and extract thg pairs information.

* Retrieve the logger.

* Load the holiday calendars and retrieve the loodtialidays.

» Connect to analytics server and the database server

Depending on the configuration setting, ConfigLaddads the above from either a file

or the specified database.

63

Credit Analytics: Market Parameters, Quotes, and Scenario

Par ameter | mplementations

Quotes and Market Parametare implemented in the packamg.drip.param.market

This contains the implementations of theedit Product interfacagpresenting the

guotes, the basket/component market parametersharstenario curve containers.

Functionality in this package is implemented ovetg&ses -MultiSidedQuote

ComponentTickQuoteComponentMultiMeasureQuqtRatesCurveScenarioContaiper

CreditCurveScenarioContain€@omponentMarketParamsSBasketMarketParamSet

andMarketParamsContainer

M ultiSidedQuote

MultiSidedQuote implements the Quote interface,olfdontains the stubs
corresponding to a product quote. It contains tiheevalue and the quote time-snap for

the different quote sides (bid/ask/mid).

ComponentTickQuote

ComponentTickQuote holds the tick related compoparameters - it contains the
product ID, the quote composite, the source, thmtay party, and whether the quote can

be treated as a mark.

ComponentM ultiM easur eQuote

64

ComponentMultiMeasureQuote holds the different $ypequotes for a given
component. It contains a single market field/quue, but multiple alternate named

guotes (to accommodate quotes on different meagurdse component).

RatesCurveScenarioContainer

RatesCurveScenarioContainer implements the RateaBo€urve abstract class that
exposes the interface the constructs scenariouhsonrves. The following curve
construction scenarios are supported:

* Base, flat/tenor up/down by arbitrary bumps

* Tenor bumped discount curve set - keyed usingethert

« NTP-based custom scenario curves

CreditCurveScenarioContainer

CreditCurveScenarioContainer is the place-holdetife bump parameters and the
curves for the different credit curve scenariosnt@ms the spread and the recovery
bumps, and the credit curve scenario generatocotbjat wraps the calibration
instruments. It also contains the base credit glapeead bumped up/down credit curves,

recovery bumped up/down credit curves, and therterapped up/down credit curves.

ComponentM ar ketPar amSet

ComponentMarketParamSet provides implementatidgheof
ComponentMarketParamsRef interface. It is the plaatder for the market parameters
needed to value the component object — discounectorward curve, treasury curve,

EDSF curve, credit curve, component quote, treaguoge map, and fixings map.

65

BasketM ar ketPar amSet

BasketMarketParamSet provides an implementatiddasketMarketParamsRef for a
specific scenario. It contains maps holding namsdadint curves, named credit curves,

named component quote, and fixings object.

M ar ketPar amsContainer

MarketParamsContainer extends MarketParams abstesst and is the place-holder for
the comprehensive suite of the market set of cuiethe given date. It exports the
following functionality:

* Add/remove/retrieve scenario discount curve.

* Add/remove/retrieve scenario zero curve.

» Add/remove/retrieve scenario credit curve.

* Add/remove/retrieve scenario recovery curve.

* Add/remove/retrieve scenario FXForward curve.

* Add/remove/retrieve scenario FXBasis curve.

» Add/remove/retrieve scenario fixings.

» Add/remove/retrieve Treasury/component quotes.

* Retrieve scenario CMP/BMP.

* Retrieve map of flat rates/credit/recovery CMP/BMP.

* Retrieve double map of tenor rates/credit/recoGP/BMP.

* Retrieve rates/credit scenario generator.

66

Credit Analytics: Market Parameters, Quotes, and Scenario

Parameter Creators

Builders for quotes, market parameters, and sagcarves are implemented in the

packageorg.drip.param.creator. This contains the builder factories for the gspte

market parameters, and the scenario curves.

Functionality in this package is implemented ovefe&ses -QuoteBuildey
ComponentQuoteBuilde€omponentTickQuoteBuildeRatesScenarioCurveBuilder

CreditScenarioCurveBuilde€omponentMarketParamsBuilder

BasketMarketParamsBuilddvlarketParamsBuilder

QuoteBuilder

QuoteBuilder contains the quote builder objeatolitains static functions that build two-

sided quotes from inputs, as well as from a bytsast.

ComponentQuoteBuilder

ComponentQuoteBuilder contains the component duaitder object. It contains static
functions that build component quotes from the gueputs, as well as from byte

streams.

ComponentTickQuoteBuilder

67

ComponentTickQuoteBuilder implements the compotiektquote builder object. It
contains static functions that build component gadtom the inputs, as well as from
byte array.

RatesScenarioCurveBuilder

RatesScenarioCurveBuilder implements the the cactsdn of the scenario discount

curve using the input discount curve instruments.

CreditScenarioCurveBuilder

CreditScenarioCurveBuilder implements the consibactdeserialization, and building
of the custom scenario based credit curves.

ComponentM ar ketPar amsBuilder

ComponentMarketParamsBuilder implements the vaneays of constructing, de-
serializing, and building the Component Market Raeters.

BasketM ar ketPar amsBuilder

BasketMarketParamsBuilder implements the variougswe constructing, de-serializing,
and building the Basket Market Parameters.

M ar ketPar amsBuilder

68

MarketParamsBuilder implements the functionalitydonstructing, de-serializing, and

building the Market Universe Curves Container.

69

Credit Analytics. Rates Component | mplementations

Rates componentre implemented in the packame.drip.product.rates. This contains

the implementations of théredit Product interfacder Cash, Euro-dollar future,

fixed/floating streams, interest rate swap instratseand rates basket products.

Functionality in this package is implemented ovetagses -€ashComponent

EDFComponentFixedStreamFloatingStreamRSComponentandRatesBasket

CashComponent

CashComponent contains the implementation of tteh @eoduct and its

contract/valuation details.

EDFComponent

EDFComponent contains the implementation of theoElallar future contract/valuation
(EDF).

FixedStream

FixedStream contains an implementation of the fiegdcash flow stream product.

FloatingStream

70

FloatingStream contains an implementation of tloaftihg leg cash flow stream.

| RSComponent

IRSComponent contains the implementation of therést Rate Swap product

contract/valuation details. It is made off one é>aream and one floating stream.

RatesBasket

RatesBasket contains the implementation of the &asfkRates Component legs.

RatesBasket is made from zero/more fixed and figattreams.

71

Credit Analytics: Credit Product | mplementations

Credit product definitionare implemented in the packame.drip.product.credit. This

contains the implementations of teedit Product interfacdsr Bonds, CDS, basket

default swaps, and bond baskets.

Functionality in this package is implemented ovetasses BondComponent
BondBasketCDSComponentandCDSBasket

BondComponent

BondComponent is the base class that extends Cadjonent abstract class and
implements the functionality behind bonds of atids. Bond static data is captured in a
set of 11 container classes — BondTSYParams, Bamgi&d’arams,
BondNotionalParams, BondFloaterParams, BondCurRareyns, BondldentifierParams,
BondIRValuationParams, CompCRValParams, BondCFTetienEvent,
BondFixedPeriodGenerationParams, and one EmbeddetSphedule object instance

each for the call and the put objects. Each ofelpesameter sets can be set separately.

BondBasket

BondBasket implements the bond basket product aontietails. Contains the basket

name, basket notional, component bonds, and theghis.

CDSComponent

72

CDSComponent implements the credit default swapyrbcontract details. Contains
effective date, maturity date, coupon, coupon aaynt coupon frequency, contingent
credit, currency, basket notional, credit valuag@nameters, and optionally the

outstanding notional schedule.

CDSBasket

CDSBasket implements the basket default swap ptadtuntract details. Contains
effective date, maturity date, coupon, coupon aayt, coupon frequency, basket
components, basket notional, loss pay lag, andwogly the outstanding notional

schedule and the flat basket recovery.

73

Credit Analytics: FX Component | mplementations

EX componentsre implemented in the packaag.drip.product.fx. This contains the

implementations of th€redit Product interfacdsr FX spot and forward contracts.

Functionality in this package is implemented ovetdsses FXSpotContracand

FXForwardContract

FXForwardContr act

FXForwardContract contains the FX forward produmttcact details - the effective date,

the maturity date, the currency pair and the prbdade.

FXSpotContract

FXSpotContract contains the FX spot contract patarse the spot date and the currency

pair.

74

Credit Analytics: Product Creators

Product creatorare implemented in the packaae.drip.product.creator. This contains

the creators for the various rates, credit, ancéXiponent and basket products.

Functionality in this package is implemented ov2rclasses €ashBuilder
EDFutureBuilderRatesStreamBuilde€DSBuilder bond creator classes
(BondRefDataBuilderBondProductBuilderBondBuilde), CDS basket creator classes
(CDSBasketBuilderCDXRefDataHoldey, BondBasketBuilderand FX product builder
classesEXSpotBuilderandEXForwardBuilde). Of theseCDXRefDataHoldeis

generated from the CDX reference/static information

BondBasketBuilder

BondBasketBuilder contains the suite of helper fioms for creating the bond Basket

Product from different kinds of inputs and byteeains.

BondBuilder

BondBuilder contains the suite of helper functiémrscreating simple fixed/floater
bonds, user defined bonds, optionally with custashdlows and embedded option
schedules (European or American). It also condroohds by de-serializing the byte

stream.

BondProductBuilder

75

BondProductBuilder holds the static parameteri@fiiond product needed for the full

bond valuation. It contains:

* Bond identifier parameters (ISIN, CUSIP)

* Issuer level parameters (Ticker, SPN or the cradite string)

» Coupon parameters (coupon rate, coupon frequenapon type, day count)

* Maturity parameters (maturity date, maturity tyfpeal maturity, redemption value)

» Date parameters (announce, first settle, first oaymterest accrual start, and issue
dates)

» Embedded option parameters (callable, putablebées exercised)

» Currency parameters (trade, coupon, and redemetioencies)

* Floater parameters (floater flag, floating couponwention, current coupon, rate
index, spread)

* Whether the bond is perpetual or has defaulted

BondRefDataBuilder

BondRefDataBuilder holds the entire set of statimmeters for the bond product. In

particular, it contains

* Bond identifier parameters (ISIN, CUSIP, BBG IDpmashort name)

* Issuer level parameters (Ticker, category, indusigue type, issuer country, issuer
country code, collateral type, description, seguyipe, unique Bloomberg ID, long
company name, issuer name, SPN or the credit ctinve)

* Issue parameters (issue amount, issue price, ndistpamount, minimum piece,
minimum increment, par amount, lead manager, exgghaade, country of
incorporation, country of guarantor, country of doite, industry sector, industry
group, industry sub-group, senior/sub)

* Coupon parameters (coupon rate, coupon frequeaapon type, day count)

* Maturity parameters (maturity date, maturity tyfpeal maturity, redemption value)

76

» Date parameters (announce, first settle, first oaumterest accrual start, next
coupon, previous coupon, penultimate coupon, asukislates)

» Embedded option parameters (callable, putableb&as exercised)

* Currency parameters (trade, coupon, and redemgtioencies)

* Floater parameters (floater flag, floating couponwention, current coupon, rate
index, spread)

* Trade status

* Ratings (S & P, Moody, and Fitch),

» Whether the bond is private placement, is regidieésea bearer bond, is reverse

convertible, is a structured note, can be unitddads perpetual or has defaulted.

CashBuilder

CashBuilder contains the suite of helper functifmmnreating the Cash product from the

parameters/codes/byte array streams.

CDSBasketBuilder

CDSBasketBuilder contains the suite of helper fimmat for creating the CDS Basket

Product from different kinds of inputs and byteeas.

CDSBuilder

CDSBuilder contains the suite of helper functiomsdreating the CreditDefaultSwap
product from the parameters/byte array streanadsdi creates the standard EU, NA,

ASIA contracts, CDS with amortization schedules] &S from product codes/tenors.

77

CDXRefDataHolder

CDXRefDataHoldercontains all the generated standard CDX Produetisined as

instances o€reditProduct’'s BasketProdudterface. Since this is a generated file, please
do not delete this.

EDFutureBuilder

EDFutureBuilder contains the suite of helper fumasi for creating the EDFuture product

from the parameters/codes/byte array streams.

FXForwardBuilder

FXForwardBuilder contains the suite of helper fumts for creating the

FXForwardBuilder product from the parameters/bytayastreams.

FXSpotBuilder

FXSpotBuilder contains the suite of helper funcsidor creating the FXSpot from the
corresponding parameters/byte array streams.

RatesStreamBuilder

RatesStreamBuilder contains the suite of helpertfons for creating the Stream-based

Rates Products from different kinds of inputs. dmtjgular, it demonstrates the following:

78

» Construction of the custom/standard fixed/floastigams from parameters.
» Construction of the custom/standard IRS from patarae

» Construction of the fixed/floating streams and fiR#n byte arrays.

79

Credit Analytics: Analytics Environment M anager

Analytics Environment Manageomponent are implemented in the package

org.drip.service.env. This contains the creators for the various rates]it, and FX

component and basket products.

Functionality in this package is implemented ovetasses BondManager
CDSManagerEnvManagerEODCurvesRatesManageStandardCDXManageand
StaticBACurves

BondM anager

BondManager implements a container that holds B Bnd bond static information on

a per issuer basis. It exposes the following fuometiity:

» Retrieve the available tickers, and all the ISipés ticker.

* Load the full set of bond reference data, embedqi¢idn schedules, and
amortization schedules.

* Load the full set of bond marks.

» Calculate the bond RV/Value measures for a tickttond set, given the EOD and
the appropriate curves and market measures.

» Save the computed measures for a given EOD.

* (Optionally) Generate a Bond Creator File.

CDSM anager

80

CDSManager is the container that retrieves the B&GIDCDS/credit curve information

on a per-issuer basis and populates the MPC.

EnvM anager

EnvManagessets the environment and connection parametedp@pulates the market

parameters (quotes, curves, and fixings) for ag&@D.

EODCurves

EODCurves that creates the closing curves frontliteng marks available in the DB

for a given EOD and populates them onto the MP@uilds the following:

* Discount Curve (from cash/future/swap - typicalsstce), EDSF Curve, and TSY
Curve

» Credit Curve from CDS quotes

* On-the-run TSY yield quotes

RatesM anager

RatesManagemanages the creation/loading of the rates curivdsferent kinds for a
given EOD.

StaticBACurves

StaticBACurves that creates the closing curves ftastom/user defined marks for a

given EOD and populates them onto the MPC. It lsuitek following:

81

* Discount Curve (from cash/future/swap - typicalsstce), EDSF Curve, and TSY
Curve

» Credit Curve from CDS quotes

* On-the-run TSY yield quotes

StandardCDXM anager

StandardCDXManager implements the creation angtétée details of the all the NA,

EU, SovX, EMEA, and ASIA standardized CDS indidégxposes the following

functionality:

» Retrieve the full set of pre-set/pre-loaded CDX mafdescriptions.

* Retrieve all the CDX's given an index name.

» Get the index, index series, and the effective/nitgitdates for a given CDX.

» Get all the on-the-runs for an index, date, andrten

* Retrieve the full basket product corresponding &dBU/ASIA IG/HY/EM and other
available standard CDX.

* Build a custom CDX product.

82

Credit Analytics: Analytics Bridge

Analytics Bridgeis implemented in the packagey.drip.service.bridge. This provides

the stub and proxy functionality for invokir@@redit Analytics functionalityn a remote

server and extracting the results.

Functionality in this package is implemented ovetasses -€reditAnalyticsRequest
CreditAnalyticsRespons€reditAnalyticsStupandCreditAnalyticsProxy

CreditAnalyticsRequest

CreditAnalyticsRequest contains the requests ®1Qtedit Analytics server from the

client. It contains the following parameters:

The GUID and the time-stamp of the request.
* The component that is being valued.
* The valuation, the pricer, and the quoting pararsete

* The market parameters assembled in the ComponekehParams.

Typical usage is: Client fills in the entities imetrequest, serializes them, and sends them

to the server, and receives a serialized respadeftom the server.

CreditAnalyticsResponse

CreditAnalyticsResponse contains the response tinenCredit Analytics server to the
client. It contains the following parameters:
* The GUID and of the request.

83

* The type and time-stamp of the response.

* The string version of the response body.

CreditAnalyticsProxy

CreditAnalyticsProxy captures the requests forGhedit Analytics server from the
client, formats them, and sends them to the Craahilytics Stub.

CreditAnalyticsStub

CreditAnalyticsStub serves as a sample servehtgts the Credit Analytics
functionality. It receives requests from the anedytlient as a serialized message, and

invokes the CreditAnalytics functionality, and serde client the serialized results.

84

Credit Analytics: Analytics API

Analytics APlis implemented in the packagey.drip.service.api. This provides a

unified and comprehensive functional, static irdeef of all the mairedit Analytics

functionality.

Functionality in this package is implemented ovemale class €reditAnalytics

CreditAnalytics

CreditAnalytics exposes all the CreditAnalytics A®klients — this class is the main
functional interface. The functions exposed arertomerous to list, and can be roughly
grouped into the following:

* Product Creation

* Curve Construction from Market Instruments

* Product Reference Data Examination

* Product Valuation from the Market Parameters

* Product Measure Extraction

* Product RV Measure Computation

* General Finance Math calculation (day count, ddjpesa etc.)

» Closing points extraction

85

Credit Analytics: Samples

Credit Analytics sampleare available in the packagey.drip.service.sample. This

provides samples illustrating the functionality yided byCredit Analytics— samples

demonstrating the creation and usage of curvepayttlicts across rates, credit, and FX
components and baskets. Examples are also progmbdw to compare against standard

analytics vendors/suppliers (e.g., Bloomberg).

Functionality in this package is implemented ov&rclasses BloombergCDSW
BloombergSWPNBloombergYAS BondAnalyticsAP] BondBasketAPR|I
BondLiveAndEODAP] BondRVMeasuresAPBondStaticAP| CDSBasketAP|
CDSLiveAndEODAP] CreditAnalyticsAP) DayCountAndCalendarAPEXAPI,
MultiLegSwapAP| RatesAnalyticsARIRatesLiveAndEODARIStandardCDXARland
TreasuryCurveAPRI

Bloomber gCDSW

BloombergCDSW contains the sample demonstratinggplécation of Bloomberg's
CDSW functionality.

Bloomber gSWPM

BloombergSWPM contains the sample demonstratinggppiication of Bloomberg's
SWPM functionality.

86

BloombergYAS

BloombergYAS contains the sample demonstratingepbcation of Bloomberg's YAS

functionality.

BondAnalyticsAPI

BondAnalyticsAPI contains a demo of the bond anzdyAPl Sample. It generates the
value and the RV measures for essentially the $mme (with identical cash flows)
constructed in 3 different ways:

* As a fixed rate bond.

* As afloater.

* As a bond constructed from a set of custom coupdrpaincipal flows.

It shows these measures reconcile where they should

BondBasketAPI

BondBasketAPI contains a demo of the bond baskéSample. It shows the following:
* Build the IR Curve from the Rates' instruments.
Build the Component Credit Curve from the CDS imstents.

* Create the basket market parameters and add thedndistount curve and the credit
curves to it.

» Create the bond basket from the component bondthandveights.

» Construct the Valuation and the Pricing Parameters.

* Generate the bond basket measures from the valy#ti® pricer, and the market

parameters.

87

BondL iveAndEODAPI

BondLiveAndEODAPI contains the comprehensive samfass demonstrating the usage
of the EOD and Live Curve Bond API functions.

BondRVM easur esAPI

BondRVMeasuresAPI is a Simple Bond RV Measures $dthple demonstrating the
invocation and usage of Bond RV Measures functignat shows the following:

* Create the discount/treasury curve from ratestirgaastruments.

» Compute the work-out date given the price.

* Compute and display the base RV measures to theoutrdate.

» Compute and display the bumped RV measures to dhle-out date.

BondStaticAPI

BondStaticAPI contains a demo of the bond statit @dmple. The Sample demonstrates

the retrieval of the bond's static fields.

CDSBasketAPI

CDSBasketAPI contains a demo of the CDS basketS&Riple. It shows the following:

* Build the IR Curve from the Rates' instruments.

* Build the Component Credit Curve from the CDS imstents.

» Create the basket market parameters and add thedndistount curve and the credit

curves to it.

88

Create the CDS basket from the component CDS amnidwieights.
Construct the Valuation and the Pricing Parameters.
Generate the CDS basket measures from the valugtepricer, and the market

parameters.

CDSLiveANndEODAPI

CDSLiveAndEODAPI is a fairly comprehensive sampdend'ing the usage of the EOD
and Live CDS Curve API functions. It demonstratesfollowing:

Retrieves all the CDS curves available for the giZ©D.

Retrieves the calibrated credit curve from the G uments for the given CDS
curve name, IR curve name, and EOD. Also show4 @esurvival probability and
hazard rate.

Displays the CDS quotes used to construct thergosiedit curve.

Loads all available credit curves for the giverveulD built from CDS instruments
between 2 dates and displays the correspondingidtéeq

Calculate and display the EOD CDS measures fooastprting CDS based off of a

specific credit curve.

CreditAnalyticsAPI

CreditAnalyticsAPI contains a demo of the CDS Ahal/API Sample. It illustrates the

following:

Credit Curve Creation: From flat Hazard Rate, andhfan array of dates and their
corresponding survival probabilities.
Create Credit Curve from CDS instruments, and rective input measure quotes.

Create an SNAC CDS, price it, and display the caollpses cash flow.

89

DayCountAndCalendar API

DayCountAndCalendarAPI demonstrates Day-count addridar API FUnctionality. It

does the following:

* Get all the holiday locations in CreditAnalyticedaall the holidays in the year
according the calendar set.

* Get all the week day/weekend holidays in the yeaomling the calendar set.

» Calculate year fraction between 2 dates accordirsgmi-annual, Act/360, and USD
calendar.

* Adjust the date FORWARD according to the USD cadend

* Roll to the PREVIOUS date according to the USD rdée.

EXAPI

FXAPI contains a demo of the FX APl Sample. It shdhe following:

» Create a currency pair, FX SPot, and FX Forward.

e Calculate the FX forward PIP/outright.

» Calculate the DC Basis on the domestic and thedgior@urves.

» Create an FX curve from the spot, and the arrapodes, FX forward, as well as the
PIP indicator.

» Calculate the array of the domestic/foreign basis.

» Calculate the array of bootstrapped domestic/forbasis.

* Re-imply the array of FX Forward from domestic/igreBasis Curve.

MultiL egSwapAPI

90

MultiLegSwapAPI illustrates the creation, invocati@nd usage of the MultiLegSwap. It
shows how to:

» Create the Discount Curve from the rates instrument

* Set up the valuation and the market parameters.

* Create the Rates Basket from the fixed/float steeam

+ Value the Rates Basket.

RatesAnalyticsAPI

RatesAnalyticsAPI contains a demo of the Rates yaigal APl Usage. It shows the

following:

* Build a discount curve using: cash instruments ,daF instruments only, IRS
instruments only, or all of them strung together.

* Re-calculate the component input measure quotesttie calibrated discount curve
object.

» Compute the PVDF Wengert Jacobian across all gteuiments used in the curve

construction.

Ratesl iveANdEODAPI

RatesLiveAndEODAPI contains the sample API demattisty the usage of the Rates

Live and EOD functions. It does the following:

» Pulls all the closing rates curve names (of angtypcl. TSY) that exist for a given
date.

* Load the full IR curve created from all the singlgrency rate quotes (except TSY)
for the given currency and date.

» Calculate the discount factor to an arbitrary desie@g the constructed curve.

91

Retrieve the components and their quotes that imemtonstructing the curve, and
display them.

Load all the rates curves available between thesdat the currency specified, and
step through.

Load all the Cash quotes available between thesdatehe currency specified, and
step through.

Load all the EDF quotes available between the datethe currency specified, and
step through.

Load all the IRS quotes available between the datefe currency specified, and
step through.

Load all the TSY quotes available between the datethe currency specified, and

step through.

StandardCDXAPI

StandardCDXAPI contains a demo of the CDS basketSaple. It shows the

following:

Construct the CDX.NA.IG 5Y Series 17 index by naane series.
Construct the on-the-run CDX.NA.IG 5Y Series index.

List all the built-in CDX's - their names and degtons.

Construct the on-the run CDX.EM 5Y corresponding tolY.
Construct the on-the run ITRAXX.ENERGY 5Y corresdomgto T - 7Y.
Retrieve the full set of date/index series sel TRRAXX.ENERGY.

TreasuryCurveAP|

TreasuryCurveAPI contains a demo of constructiahwsage of the treasury discount

curve from government bond inputs. It shows thioWahg:

92

Create on-the-run TSY bond set.

Calibrate a discount curve off of the on-the-ruelgé and calculate the implied
zeroes and DF's.

Price an off-the-run TSY.

93

Credit Analvytics: Functional Testers

Credit Analytics functional testeese available in the packagey.drip.tester.functional.

This contains a fairly extensive set of unit anchposite testers for the curve, products,

serialization, and analytics functionality providegltheCredit Analytics suitewith a

special focus on bonds.

Functionality in this package is implemented ovetasses BondTestSuite
CreditAnalyticsTestSuitdProductTestSuiteandSerializerTestSuite

BondTestSuite

BondTestSuite tests more-or-less the full suitkarfd functionality exposed in
CreditAnalytics API.

CreditAnalyticsT estSuite

CreditAnalyticsTestSuite tests more-or-less theduite of functionality exposed in
CreditAnalytics API across all products, curvesptgs, outputs, and parameters, and

their variants.

ProductTestSuite

ProductTestSuite tests more-or-less the full safithe product valuation functionality

exposed in CreditAnalytics API. The following varia are tested.

94

» Full suite of products - rates, credit and FX, batimponents and baskets.

* Base flat/tenor bumped scenario tests.

Serializer TestSuite

SerializerTestSuite tests the serialization fumaly across all products, curves, quotes,

outputs, and parameters, and their variants.

95

Regression SuiteLibrary

Regression Suite Libraigonsists of the following 2 packages:

1. Core Regression Librarfhis contains the full set étegression Suite’sore

framework and the set of extensible interfaces.

2. Curve Regression Suit&his contains the suite for regression testinthefCurve

construction and usage functionality.

3. Curve Jacobian Regression Suihis contains the suite for regression testinthef

Curve Jacobian extraction and usage functionality.

4. Fixed Point Finder Regression Suildis contains the suite for regression testing of

the non-linear univariate fixed-point finder.

5. Basis Spline Regression Suiféhis contains the suite for regression testinthef

basis spline set construction, usage, and theigpampolation functionality.

96

Regression Suite: Core

Thecore functionality of the regression suite libresymplemented in the package

org.drip.regression.core. This contains the full set &egression Suite core framework

and the set of extensible interfaces.

Functionality in this package is implemented ovetasses -RegressionEngine

RegressionRunDetaiRegressionRunOutpuRegressorSetnitRegressionExecutor

UnitRegressionStaandUnitRegressaor

RegressionEngine

RegressionEngine provides the control and framee\fworctionality for the General

Purpose Regression Suite. It invokes the folloveitaps as part of the execution:

» Initialize the regression environment. This stefs s@ the regression sets, and adds
individual regressors to the set.

* Invoke the regressors in each set one by one.

» Collect the results and details of the regressims.r

» Compile the regression statistics.

» Optionally display the regression statistics.

Regr essionRunDetail

RegressionRunDetail contains named field leveligetautput of the regression activity.

97

Regr essionRunOutput

RegressionRunOutput contains the output of a siegjeession activity. It holds the
following:

* The execution time

» The Success/failure status of the run

* The regression scenario that was executed

» The Completion time for the regression module

» The Regression Run Detail for the regression run

Regr essor Set

RegressorSet interface provides the Regressiaiiges. It contains a set of regressors
and is associated with a unique name. It providedunctionality to set up the contained

regressors.

UnitRegr essionExecutor

UnitRegressionExecutor implements the UnitRegressuat splits the regression
execution into pre-, execute, and post-regres#igmovides default implementations for
pre-regression and post-regression. Most typicakssors only need to over-ride the

execRegression method.

UnitRegr essionStat

UnitRegressionStat creates the statistical dd@ilhe Unit Regressor. It holds the

following:

98

* Execution Initialization Delay
e Execution time mean, variance, maximum, and minimum

* The full list of individual execution times

UnitReqgr essor

UnitRegressor provides the stub functionality foe tndividual Regressors. Its derived

classes implement the actual regression run. lddaliregressors are named.

99

Curve Regression Suite

The core functionality of theurve regression librang implemented in the package

org.drip.regression.curv@his contains the suite for regression testinthefCurve

construction and usage functionality.

Functionality in this package is implemented ovefgsses DiscountCurveRegressor

ZeroCurveRegressoCreditCurveRegressdeXCurveReqgressoand

CreditAnalyticsRegressionEngine

DiscountCurveReqr essor

DiscountCurveRegressor implements the regressicamsdysis for the Discount Curve.

DiscountCurveRegressor regresses 11 scenarios:

#1:
#2:
#3:
#4.:
#5:
#6:
#7:
#8:
#9:

Create the discount curve from a set 30 ingnim(cash/future/swap).
Create the discount curve from a flat discoatg.

Create the discount curve from a set of disttaators.

Create the discount curve from the implied alist rates.

Extract the discount curve instruments andegiot

Create a parallel shifted discount curve.

Create a rate shifted discount curve.

Create a basis rate shifted discount curve.

Create a node tweaked discount curve.

#10: Compute the effective discount factor betw2elates.

#11: Compute the effective implied rate betweemt2sl

100

ZeroCurveRegr essor

ZeroCurveRegressor implements the regression analgtsfor the Zero Curve. The
regression tests do the following:

* Build a discount curve, followed by the zero curve.

* Regressor #1: Compute zero curve discount factors.

* Regressor #2: Compute zero curve zero rates.

CreditCurveRegr essor

CreditCurveRegressor implements the regressiocarsdysis for the Credit Curve.
CreditCurveRegressor regresses 12 scenarios:

* #1: Create an SNAC CDS.

» #2: Create the credit curve from a set of CDS umsénts.

» #3: Create the credit curve from a flat hazard.rate

* #4: Create the credit curve from a set of survprababilities.

» #5: Create the credit curve from an array of haraies.

* #6: Extract the credit curve instruments and quotes

» #7: Create a parallel hazard shifted credit curve.

» #8: Create a parallel quote shifted credit curve.

* #9: Create a node tweaked credit curve.

* #10: Set a specific default date on the crediteurv

* #11: Compute the effective survival probabilityween 2 dates.

* #12: Compute the effective hazard rate betweertésda

FXCurveRegr essor

101

FXCurveRegressor implements the regression analgsir the FX Curve.

FXCurveRegressor implements 3 regression tests:

#1: FX Basis and FX Curve Creation: Construct aéiard Curve from an array of
FX forward nodes and the spot.

#2: Imply the FX Forward given the domestic anckign discount curves.

#3a: Compute the domestic and foreign basis givemtarket FX forward.

#3b: Build the domestic/foreign basis curve giviea ¢orresponding basis nodes.
#3c: Imply the array of FX forward points/PIPs frdine array of basis and

domestic/foreign discount curves.

CreditAnalyticsRegr ess onEngine

CreditAnalyticsRegressionEngine implements the BegjonEngine for the curve

regression. It adds the CreditCurveRegressor, Drig€urveRegressor,

FXCurveRegressor, and ZeroCurveRegressor, andhaaribe regression engine.

102

Curve Jacobian Regr ession Suite

The core functionality of theurve Jacobian regression librasyimplemented in the

packageorg.drip.regression.curveJacohidiiis contains the suite for regression testing

of the Curve construction and usage functionality.

Functionality in this package is implemented ovetdsses €ashJacobianRegressorSet

EDFJacobianRegressorSiSJacobianRegressorSet

DiscountCurveJacobianRegressor@&adCurveJacobianRegressionEngine

CashJacobianReqr essor Set

CashJacobianRegressorSet implements the regressatysis set for the Cash product
related Sensitivity Jacobians. Specifically, it gutes the PVDF micro-Jack.

EDFJacobianRegr essor Set

EDFJacobianRegressorSet implements the regressatyses set for the EDF product
related Sensitivity Jacobians. Specifically, it gutes the PVDF micro-Jack.

| RSJacobianRegr essor Set

IRSJacobianRegressorSet implements the regressadyses set for the IRS product
related Sensitivity Jacobians. Specifically, it gutes the PVDF micro-Jack.

103

DiscountCurvelacobianRegr essor Set

DiscountCurveJacobianRegressorSet implements ginesson analysis for the full
discount curve (built from cash/future/swap) Sewisit Jacobians. Specifically, it

computes the PVDF micro-Jack.

CurvelacobianRegr onEngine

CurveJacobianRegressionEngine implements the Regn&ngine for the curve
Jacobian regression. It adds the CashJacobianRedbes, the
EDFJacobianRegressorSet, the IRSJacobianRegressm&¢he
DiscountCurveJacobianRegressorSet, and launchesgdtession engine.

104

Fixed-Point Finder Regression Suite

The core functionality of theon-linear fixed-point finder regression librasy

implemented in the packageg.drip.regression.fixedpointfindeFhis contains the suite

for regression testing of the non-linear univariated-point finder.

Functionality in this package is implemented ovetasses -OpenRegressorSet

BracketingRegressorS€&lompoundBracketingRegressorSaid

FixedPointFinderRegressionEngine

OpenRegr essor Set

OpenRegressorSet implements the regression ruhdaddpen (i.e., Newton) Fixed Point
Search Method.

BracketingRegr essor Set

BracketingRegressorSet implements regression muthéoPrimitive Bracketing Fixed
Point Search Method. It implements the followingrémitive bracketing schemes:

Bisection, False Position, Quadratic, and Invergadpatic.

CompoundBracketingReqgr essor Set

CompoundBracketingRegressorSet implements regressiofor the Compound
Bracketing Fixed Point Search Method. It implemehgsfollowing 2 compound

bracketing schemes: Brent and Zheng.

105

FixedPointFinder Regr essonEngine

FixedPointFinderRegressionEngine implements thed®sgnEngine for the Fixed Point
Finder regression. It adds the OpenRegressor®eBrecketingRegressorSet, and the

CompoundBracketingRegressorSet, and launchesdhesston engine.

106

Basis Spline Regression Suite

The core functionality of thbasis spline regression libras/implemented in the

packageorg.drip.regression.splind@his contains the suite for regression testinthef

basis spline set construction, usage, and theigpampolation functionality.

Functionality in this package is implemented ovetddses BasisSplineRegressor

BasisSplineRegressorSandBasisSplineRegressionEngine

BasisSplineRegr essor

BasisSplineRegressor implements the custom bdse spgressor for the given basis
spline. As part of the regression run, it execthesollowing:

» Calibrate and compute the left and he right Jacobia

* Reset right node and re-run calibration.

* Compute an intermediate value Jacobian.

BasisSplineRegr essor Set

BasisSplineRegressorSet carries out regressiangdst the following series of basis
splines:

« #1: Polynomial Basis Spline, n = 2 basis functi@rs] C* = 0.

« #2: Polynomial Basis Spline, n = 3 basis functiarsj C* =1.

« #3: Polynomial Basis Spline, n = 4 basis functiarsj C* =1.

« #4: Polynomial Basis Spline, n = 4 basis functiars) C* = 2

« #5: Polynomial Basis Spline, n = 5 basis functiams] C* = 1.

« #6: Polynomial Basis Spline, n = 5 basis functiamsj C* = 2.

107

« #7: Polynomial Basis Spline, n = 5 basis functierg] C* = 3.
« #8: Polynomial Basis Spline, n = 6 basis functiars) C* =1.
« #9: Polynomial Basis Spline, n = 6 basis functiars) C* = 2.
« #10: Polynomial Basis Spline, n = 6 basis functi@mi C* = 3.
« #11: Polynomial Basis Spline, n = 6 basis functjemlC* = 4.
» #12: Polynomial Basis Spline, n = 7 basis functi@msl C* =1.
« #13: Polynomial Basis Spline, n = 7 basis functj@miC* = 2.

« #14: Polynomial Basis Spline, n = 7 basis functj@amiC* = 3
« #15: Polynomial Basis Spline, n = 7 basis functjemiC* = 4
« #16: Polynomial Basis Spline, n = 7 basis functiemlC* = 5

« #17: BernsteirPolynomial Basis Spline, n = 4 basis functions} &4 = 2.

« #18: Exponential Tension Spline, n = 4 basis fumsj Tension = 1., an@* = 2.
« #19: Hyperbolic Tension Spline, n = 4 basis funwicTension = 1., an@* = 2.
« #20: KaklisPandelisTension Spline, n = 4 basis functions, KP = 2, &d- 2.

BasisSplineRegr ess onEngine

BasisSplineRegressionEngine implements the Regrdssgine class for the basis spline

functionality.

108

DRIP Math

DRIP Math Libraryconsists of the following 9 packages:

1. DRIP Calculus Routine3his contains functionality for mathematical intsgon and

differentiation.

2. DRIP Common Utility Routined his contains functionality that is common across
all DRIP modules.

3. DRIP Probability Distribution LibraryThis contains functionality to generate/utilize

probability distributions.

4. DRIP Univariate Function Libraryrhis contains functionality to generate a wide

variety of univariate functions.

5. DRIP Span/Grid LibracyThis package implements the layout of the n-D grid

functionality in accordance with the calibratiomema set out in the corresponding

specification.

6. DRIP Linear Algebra Routine$his package implements a selected set of linear

algebra routines needed by the different segmédr@saalit Analytics.

7. DRIP Math Sampledhis package provides an illustration of the uszighe DRIP

math functionality. Samples here demonstrate liegaation set solution/matrix

inversion, basis spline set creation and usaga)yhayistomized polynomial spline
construction and properties evaluation, fixed pegdrch examples, and span

interpolation samples.

109

8. DRIP Non-linear Fixed Point Search Librafhis package implements a number of

univariate, non-linear fixed-point search routindethodology separates execution

initialization from variate iteration. A variety afpen and closed variate iteration

techniques are implemented, along with simple/cemplosed variate iteration

techniques.

9. DRIP Spline LibraryThis package implements the basis set acrosdftheedt
splines — their creation, the segment level cdiiwnathe customization, and

segment-level inference values. It customizes piaes construction into spline-

independent segment-control parameters, and spéipendent basis set generator
parameters. Finally it implements the spline fumaility according to the

specification and formulation laid out in detail.

110

DRIP Calculus Routines

The core functionality of thBRIP calculus routineis implemented in the package

org.drip.math.calculusThis contains functionality for mathematical ignt&tion and

differentiation. Differentiation is carried out agialgorithmic and automated
differentiation techniques, and modeule specifmb&n generation methods are

introduced. Several types of integration technicaresintroduced too.

Functionality in this package is implemented ovetagses DerivativeContrg|

Differential, Integrator andWengertJacobian

DerivativeControl

DerivativeControl provides bumps needed for nunadifiapproximating derivatives.

Bumps can be absolute or relative, and they defauwltfloor.

Differential

Differential holds the incremental differentials fbe_variateand the objective function.

I ntegrator

Integrator implements the following routines fotegrating the objective function:
* Mid-Point Scheme

» Trapezoidal Scheme

111

* Simpson/Simpson38 schemes

« BooleScheme

WengertJacobian

WengertJacobian contains the Jacobian of the gigenf Wengert variables to the set of
parameters. It exposes the following functionality:

» Set the Wengert variables

* Accumulate the Partials

» Scale the partial entries

» Merge the Jacobian with another

* Retrieve the WengertJacobian elements

112

DRIP Common Utility Routines

The core functionality of thBRIP common utility routiness implemented in the

packageorg.drip.math.commarirhis contains functionality that is common acrals

DRIP modules. Utilities include date manipulatistrjng parsing and formatting, map
manipulation, and number operations that are ramtilecovered.

Functionality in this package is implemented ovetdsses -DateUtil, FormatUtil
MapUtil, NumberUtil andStringUtil.

DateUtil

DateUtil implements date utility functions those axtraneous to the JulianDate
implementation. It exposes the following functiatyal

» Retrieve Day, Month, and Year From Java Date.

* Switch between multiple date formats (Oracle DB®G Date, different string

representations etc).

FormatUtil

FormatUtil implements formatting utility function€urrently it just exports functions to

pad and format.

MapUtil

113

The MapUitil class implements generic utility furmets used in DRIP modules. Some of
the functions it exposes are:

* Map Merging Functionality.

* Map Key Functionality - key-value flatteners, kegfixers.

* Decompose/transform List/Set/Array Contents.

* Multi-Dimensional Map Manipulator Routines.

Number Util

NumberUtil implements number utility functions eltposes the following functions:
* Verify number/number array validity, and closenesgch.
» Factorial Permutation/Combination functionality

* Dump multi-dimensional array contents

StringUtil

StringUtil implements string utility functions. éixports the following functions:

» Decompose + Transform string arrays into approptiatget type set/array/list, and
vice versa.

» General-purpose String processor functions, su€d® generator, splitter, type

converter and input checker.

114

DRIP Probability Distribution Library

The core functionality of thBRIP probability distribution librarys implemented in the

packageorg.drip.math.distributionThis contains functionality to generate/utilize

probability distributions. Supported distributianslude the univariate normal
distribution and its variants..

Currently, functionality in this package is implemted over 2 classesUnivariateand

UnivariateNormal

Univariate

Univariate implements the base abstract class tehiivariate distributions. It exports

methods for incremental, cumulative, and inversauative distribution densities.

UnivariateNor mal

UnivariateNormal implements the univariate normatrébution. It implements

incremental, cumulative, and inverse cumulativéridistion densities.

115

DRIP Univariate Function Library

The core functionality of thBRIP Univariate function libraris implemented in the

packageorg.drip.math.functionThese are currently most commonly used in thedfix

point searching schemes, as well as spline appegiamfunctionality.

Supported univariate functions include polynomialiants (regular, Bernstein), Cauchy
convergent series (e.g., natural log series), expited and hyperbolic tension
univariates, rational univariates. Also supportegifanction convolutions and function

reflections.

Functionality in this package is implemented ovefe&ses -AbstractUnivariate

BernsteinPolynomiaExponential TensiorHyperbolicTension

NaturalLogSeriesElemerffolynomial RationalShapeContradUnivariateConvolution

andUnivariateReflection

AbstractUnivariate

AbstractUnivariate provides the evaluation of thgotive function and its derivatives
for a specified variate. Default implementatiorttoé derivatives is for non-analytical

black box objective functions.

BernsteinPolynomial

BernsteinPolynomial provides the evaluation ofBleensteinPolynomial and its

derivatives for a specified variate.

116

Exponential Tension

ExponentialTension provides the evaluation of tkpdhential Tension Function and its

derivatives for a specified variate.

HyperbolicT ension

HyperbolicTension provides the evaluation of thgétpolic Tension Function and its

derivatives for a specified variate.

NaturalL ogSeriesElement

NaturalLogSeriesElement implements an elementemttural log series expansion.

Polynomial

Polynomial provides the evaluation of the n-th ofdelynomial and its derivatives for a

specified variate.

Rational ShapeContr ol

RationalShapeControl implements the deterministiional shape control functionality

on top of interpolating basis splines ins{de..;L), and globally[xo,...,xl):

X=X .

y
X=X

= ————— wherex is the normalized ordinate mappedxas>
1+ Ax(1- x)

117

UnivariateConvolution

This class provides the evaluation of the Convotutf, (x)x f,(x)and its derivatives for

a specified variate.

UnivariateReflection

UnivariateReflection provides the evaluatiéfi - x) instead off (x) for a given f .

118

DRIP Span/Grid Library

The core functionality of thBRIP span/grid librarys implemented in the package

org.drip.math.gridThis package implements the layout of the n-[@ frnctionality in

accordance with the calibration schema set outercorresponding specification. It lays
the basic segment/span separation, partition dyaeset parameters into elastics and
inelastics, and evaluates segment characteristicadtonicity, variational smoothening
effectivenss, etc.).

Functionality in this package is implemented ovetdsses Helastics Segment

SegmentControlParamSegmentMonotonicityandSpan

I nelastics

This class the inelastic fields of the given sedgrmein this case the start/end co-

ordinates.

ment

This abstract class extends Inelastics, and incatg® segment specific inelastic
parameters. Interpolating segment spline functantstheir coefficients are
implemented/calibrated in the overriding splinessks. It provides functionality for
assessing the various segment attributes:

* Segment Monotonicity.

» Interpolated Function Value, the ordered derivatared the corresponding Jacobian.
» Segment Local/Global Derivative.

* Evaluation of the Segment Micro-Jack.

119

* Head / Regular Segment calibration - both of thedfunction coefficients and the

Jacobian.

SegmentContr olParams

This class holds the parameters the guide theiereand the behavior of the segment. It

holds the segment elastic/inelastic parametershedamed basis function set.

SegmentM onotonicity

This class contains the monotonicity details reldtethe given segment. Indicates
whether the segment is monotonic, and if not, wéreithcontains a maximum, a

minimum, or an inflection.

Span

This class implements the span that spans mubggenents. It holds the ordered

segment sequence, the segment control parametdrsf available, the spanning

Jacobian. It exports the following group of funatidity:

o Construct adjoining segment sequences in accordgititehe segment control
parameters

o Calibrate according to a varied set of (i.e., NATALRFINANCIAL) boundary
conditions

o Interpolate both the value, the ordered derivatiaes the Jacobian at the given
ordinate

o Compute the monotonicity details - segment/spael lsonotonicity, co-
monotonicity, local monotonicity.

o Insert knots

120

Span also exports several static span creatiobfatibn methods to generate customized

basis splines, with customized segment behaviogusie segment control.

121

DRIP Linear Algebra Routines

The core functionality of thBRIP linear algebra routines implemented in the package

org.drip.math.linearalgebrdhis package implements a selected set of liakegbra

routines needed by the different segments of Chadhilytics. Functionality it exports
includes solving systems of linear equations, mat@nipulation

(inversion/diagonalization/components extractiar),eind Jacobian generation.

Functionality in this package is implemented ovetasses tinearizationOutpuyt

LinearSystemSolveMatrix, andMatrixComplementTransform

L inearizationOutput

LinearizationOutput holds the output of a sequesfdmearization operations. It contains
the transformed original matrix, the transformedSRRldnd the method used for the

linearization operation.

L inear SystemSolver

LinearSystemSolver implements the solver for asgysdf linear equations given

by Ax = B, where A is the matrix,x the set of variables, a8 is the result to be solved

for. It exports the following functions:

* Row Regularization and Diagonal Pivoting.

» Check for Diagonal Dominance.

* Solving the linear system using any one of theofeihg: Gaussian Elimination,
Gauss Seidel reduction, or matrix inversion.

122

M atrix

Matrix implements Matrix manipulation routinesebtports the following functionality:

* Matrix Inversion using Closed form solutions (fomd-dimension matrices), or using
Gaussian elimination

* Matrix Product

» Matrix Diagonalization, Regularization, and DiagbRasoting

M atrixComplementTransform

This class holds the results of Matrix transformdiee source and the complement, e.g.,

during a Matrix Inversion Operation.

123

DRIP Math Samples

The core functionality of thBRIP Math Samples implemented in the package

org.drip.math.samplérhis package provides an illustration of the esaigthe DRIP

math functionality. Samples here demonstrate liegaiation set solution/matrix
inversion, basis spline set creation and usaga)yhayistomized polynomial spline
construction and properties evaluation, fixed pegdrch examples, and span
interpolation samples.

Functionality in this package is implemented ovetdsses BasisSplineSet
LinearAlgebraPolynomialBasisSplindRootFinder andSpanlinterpolator

BasisSplineSet

BasisSplineSet implements Samples for the Congbruend the usage of various basis

spline functions. It demonstrates the following:

» Construction of segment control parameters - patyab(regular/Bernstein) segment
control, exponential/hyperbolic tension segmentnKaklis-Pandelis tension
segment control.

« Control the segment using the rational shape cihatyand the appropriat€*

* Interpolate the node value and the node value Jacolbth the segment, as well as at
the boundaries

» Calculate the segment monotonicity

Linear Algebra

124

LinearAlgebra implements Samples for Linear Algedmd Matrix Manipulations. It

demonstrates the following:

» Compute the inverse of a matrix, and multiply vtk original to recover the unit
matrix

* Solves system of linear equations using one thesegtechniques

PolynomialBasisSpline

PolynomialBasisSpline implements Samples for thesftaction and the usage of

polynomial basis spline functions. It demonstraitesfollowing:

» Control the polynomial segment using the ratiomape controller, the appropriate
C*, and the basis function.

» Demonstrate the variational shape optimization iena

* Interpolate the node value and the node value Jacolth the segment, as well as at
the boundaries.

» Calculate the segment monotonicity.

RootFinder

RootFinder contains a sample illustration of usaighe Root Finder Library. It
demonstrates the root extraction using the follgwechniques:

* Newton-Raphson method

» Bisection Method

» False Position

* Quadratic Interpolation

* Inverse Quadratic Interpolation

* Ridder's method

* Brent's method

125

* Zheng's method

Spanl nter polator

Spaninterpolator demonstrates the Span buildeusade API. It shows the following:

» Construction of segment control parameters - patyab(regular/Bernstein) segment
control, exponential/hyperbolic tension segmentmnKaklis-Pandelis tension
segment control.

« Control the segment using the rational shape cihetrand the appropriate*

» Construct a calibrated span interpolator

* Insert a knot into the Span

* Interpolate the node value and the node value Jatob

» Calculate the segment/span monotonicity

126

DRIP Non-linear Fixed-Point Search Library

The core functionality of thBRIP _non-linear fixed-point search librais/implemented

in the packagerg.drip.math.solver1DThis package implements a number of univariate,

non-linear fixed-point search routines. Methodolsgparates execution initialization
from variate iteration. A variety of open and closeariate iteration techniques are

implemented, along with primitive/complex closediate iteration techniques.

Functionality in this package is implemented ov@rclasses BracketingControlParams

BracketingOutpytConvergenceControlParan@onvergenceQutpuExecutionContrgl

ExecutionControlParamgxecutionlnitializationOutputExecutionlnitializer
FixedPointFinderFixedPointFinderBracketindrixedPointFinderBrent

FixedPointFinderNewtqrFixedPoinderOutpuFixedPointFinderZheng

InitializationHeuristicslteratedBracketliteratedVariate

VariatelterationSelectionParapendVariatelteratorPrimitive

BracketingContr olParams

BracketingControlParams implements the controlpatars for bracketing solutions.
BracketingControlParams provides the following pazters:

» The starting variate from which the search for kegiag begins.

* The initial width for the brackets.

* The factor by which the width expands with eactleiige search.

 The number of such iterations.

BracketingOutput

127

BracketingOutput carries the results of the braolganitialization. In addition to the
fields of ExecutionlnitializationOutput, Bracketi@gtput holds the left/right bracket

variates and the corresponding values for the tlgtunction.

Conver genceControlParams

ConvergenceControlParams holds the fields needeati¢acontrolling the execution of
Newton's method. ConvergenceControlParams doesisivag the following parameters:
* The determinant limit below which the convergenoeezis deemed to have reached.
» Starting variate from where the convergence seaarkitked off.

* The factor by which the variate expands across eeidtive search.

* The number of search iterations.

Conver genceQOutput

ConvergenceOutput extends the Executionlnitialira@iutput by retaining the starting
variate that results from the convergence zonebke@onvergenceOutput does not add

any new field to ExecutionlinitializationOutput.

ExecutionContr ol

ExecutionControl implements the core fixed-poirdrsé execution control and
customization functionality. ExecutionControl issdsfor a) calculating the absolute
tolerance, and b) determining whether the OF hashed the goal. ExecutionControl

determines the execution termination using its BxkenControlParams instance.

128

ExecutionContr olParams

ExecutionControlParams holds the parameters ndededntrolling the execution of the

fixed-point finder. ExecutionControlParams fieldstrol the fixed-point search in one of

the following ways:

Number of iterations after which the search is degto have failed.

Relative Objective Function Tolerance Factor whighen reached by the objective
function, will indicate that the fixed point hasdmereached.

Variate Convergence Factor, factor applied to titéal variate to determine the
absolute convergence.

Absolute Tolerance fall-back, which is used to datee that the fixed point has been
reached when the relative tolerance factor becases

Absolute Variate Convergence Fall-back, fall-baskdito determine if the variate

has converged.

ExecutionlnitializationOutput

ExecutionlnitializationOutput holds the output bétroot initializer calculation. The

following are the fields held by ExecutionlInitiadizonOutput:

Whether the initialization completed successfully.
The number of iterations, the number of objectivection calculations, and the time
taken for the initialization.

The starting variate from the initialization

Executionlnitializer

Executionlnitializer implements the initializati@xecution and customization

functionality. Executionlinitializer performs twoggs of variate initializations:

129

* Bracketing initialization: This brackets the fixpdint using the bracketing algorithm
described in http://www.credit-trader.org. If susskll, a pair of variate/OF
coordinate nodes that bracket the fixed-point reegated. These brackets are
eventually used by routines that iteratively detamthe fixed-point. Bracketing
initialization is controlled by the parameters iraBketingControlParams.

» Convergence Zone initialization: This generateargate that lies within the
convergence zone for the iterative determinatiotheffixed point using the Newton's
method. Convergence Zone Determination is conttddethe parameters in
ConvergenceControlParams.

Executionlnitializer behavior can be customizedfoed through several of the

initialization heuristics techniques implementedha InitializationHeuristics class.

FixedPointFinder

FixedPointFinder is the base abstract class thatgeemented by customized
invocations, e.g., Newton's method, or any of tteeketing methodologies.
FixedPointFinder invokes the core routine for deiaing the fixed point from the goal.
The ExecutionControl determines the execution teation. The initialization heuristics

implements targeted customization of the search.

FixedPointFinder main flow comprises of the followisteps:

* Initialize the fixed-point search zone by determ@either a) the brackets, or b) the
starting variate.

» Compute the absolute OF tolerance that establitleesttainment of the fixed point.

* Launch the variate iterator that iterates the varia

» Iterate until the desired tolerance has been atfiain

* Return the fixed-point output.

Fixed point finders that derive from this provigeplementations for the following:

130

» Variate initialization: They may choose either lettng initializer, or the
convergence initializer - functionality is providéat both in this module.
» Variate Iteration: Variates are iterated usingra) af the standard primitive built-in

variate iterators (or custom ones), or b) a vasatector scheme for each iteration.

FixedPointFinder Bracketing

FixedPointFinderBracketing customizes the Fixedfamaler for bracketing based fixed-
point finder functionality.

FixedPointFinderBracketing applies the followingtmization:
* Initializes the fixed-point finder by computing tetarting brackets.

» lterating the next search variate using one ofpexified variate iterator primitives.

By default, FixedPointFinderBracketing does notdmpound iterations of the variate

using any schemes - that is done by classes thateK.

FixedPointFinder Brent

FixedPointFinderBrent customizes FixedPointFindadBeting by applying the Brent's

scheme of compound variate selector.

Brent's scheme, as implemented here, is descniblettd://www.credit-trader.org. This
implementation retains absolute shifts that haygpblaed to the variate for the past 2

iterations as the discriminant that determinesyd variate to be generated.

FixedPointFinderBrent uses the following paramespecified in
VariatelterationSelectorParams:
* The Variate Primitive that is regarded as the "fastthod.

131

* The Variate Primitive that is regarded as the "stbmethod.
e The relative variate shift that determines when'tbbust" method is to be invoked
over the "fast".

 The lower bound on the variate shift between itengtthat serves as the fall-back to
the "robust".

FixedPointFinder Newton

FixedPointFinderNewton customizes the FixedPoirm&irfor Open (Newton's) fixed-

point finder functionality.

FixedPointFinderNewton applies the following cusization:
* Initializes the fixed point finder by computing @<ing variate in the convergence

zone.

» lterating the next search variate using the Newtoréthod.

FixedPointFinder Output

FixedPointFinderOutput holds the result of the dibpoint search.

FixedPointFinderOutput contains the following figld

* Whether the search completed successfully

* The number of iterations, the number of objectiwection base/derivative
calculations, and the time taken for the search

* The output from initialization

FixedPointFinder Zheng

132

FixedPointFinderZheng implements the fixed-poimakor using Zheng's improvement

to Brent's method.

FixedPointFinderZheng overrides the iterateCompbianidte method to achieve the

desired simplification in the iterative variateesgion.

InitializationHeuristics

InitializationHeuristics implements several heucstused to kick off the fixed-point

bracketing/search process.

The following custom heuristics are implementegas of the heuristics based kick-off:

» Custom Bracketing Control Parameters: Any of tlamdard bracketing control
parameters can be customized to kick-off the brtamksearch.

» Soft Left/Right Bracketing Hints: The left/rightesting bracket edges are used as soft
bracketing initialization hints.

» Soft Mid Bracketing Hint: A mid bracketing level specified to indicate the soft
bracketing kick-off.

» Hard Bracketing Floor/Ceiling: A pair of hard floand ceiling limits is specified as a
constraint to the bracketing.

» Hard Search Boundaries: A pair of hard left an@itrlgpundaries is specified to kick-

off the final fixed-point search.

These heuristics are further interpreted and deeelanside the Executionlnitializer and

the ExecutionControl implementations.

|ter atedBracket

133

IteratedBracket holds the left/right bracket vaasaand the corresponding values for the

objective function during each iteration.

IteratedVariate

IteratedVariate holds the variate and the corredipgrvalue for the objective function

during each iteration.

Variatelter ationSelectionParams

VariatelterationSelectorParams implements the cbparameters for the compound

variate selector scheme used in Brent's method.

Brent's method uses the following fields in VaritgeationSelectorParams to generate

the next variate:

* The Variate Primitive that is regarded as the "fastthod.

* The Variate Primitive that is regarded as the "stbhmethod.

* The relative variate shift that determines when"tbbust" method is to be invoked
over the "fast".

» The lower bound on the variate shift between itenstthat serves as the fall-back to

the "robust".

Variatelterator Primitive

VariatelteratorPrimitive implements the variousnfitive Variate Iterator routines.

134

VariatelteratorPrimitive implements the followirtgriation primitives:
* Bisection

» False Position

* Quadratic

* Inverse Quadratic

* Ridder

It may be readily enhanced to accommodate additgmmaitives.

135

DRIP SplineLibrary

The core functionality of thBRIP spline libraryis implemented in the package

org.drip.math.splineThis package implements the basis set acrosdifteesnt splines —

their creation, the segment level calibration,dbstomization, and segment-level
inference values. It customizes the spline constmanto spline-independent segment-
control parameters, and spline-dependent basgesetrator parameters. Finally it
implements the spline functionality according te #pecification and formulation laid
out in detail.

Functionality in this package is implemented oveta&ses BasisSetParams

ExponentialTensionBasisSetParaiaklisPandelisBasisSetPargms

PolynomialBasisSetParanegmentBasisSetBuildesegmentCkSegmentConstraint

andSegmentlnelasticParams

BasisSetPar ams

BasisSetParams is an empty stub class whose dempdeimentations hold the per-

segment basis set parameters.

Exponential TensonBas sSetPar ams

ExponentialTensionBasisSetParams implements penesgigparameters for the

exponential tension basis set - currently it ordgtains the tension parameter.

K aklisPandelisBasisSetPar ams

136

KaklisPandelisBasisSetParams implements per-segmaeameters for the Kaklis

Pandelis basis set - currently it only holds thimpamial tension degree.

Polynomial BasisSetPar ams

PolynomialBasisSetParams implements per-segmeist $tsparameters for the

polynomial basis spline - currently it holds themher of basis functions.

SegmentBasisSetBuilder

This class implements the basis set and splinddauibr the following types of splines:
o Exponential basis tension splines

Hyperbolic basis tension splines

Polynomial basis splines

Bernstein Polynomial basis splines

o O O o

Kaklis Pandelis basis tension splines

The elastic coefficients for the segment usiigbasis splines insid,...1) - globally

[Xy,...,X,) are extracted foy = Interpolator (Ck,x)* ShapeControIIer(x) wherex is the

: . X=X . : . o
normalized ordinate mapped as:- XTXa The inverse quadratic/rational spline is a

X~ X4

typical shape controller spline used.

SegmentCk

137

This concrete class extends segment, and implertrentegment'€* based spline

functionality. It exports the following:

o

o

o O o o

Calibration => Head Calibration, Regular Calibratio

Estimated Segment Elastics => The Basis Functinddteir coefficientsC*, the
shape controller

Local Point Evaluation => Value, Ordered Derivative

Local Monotonicity

Local coefficient/derivative micro-Jack, and vaka#fficient micro-Jack

Local Jacobians => Value Micro Jacobian, Value titakacobian, Composite Value
Jacobian

SegmentConstr aint

This class holds the segment coefficient conssant their values.

SegmentlnelasticParams

This class implements basis per-segment elastiesnader set. Currently it contaig

and the segment specific constraints.

138

| nstallation and Deployment Notes

Installation is really simple just drop of eachtleé jars CreditProductCreditAnalytics

SplineLibrary FixedPointFinderandRegressionSuijan the class-path.

Configuration is done off of the configuration &leorresponding to each of the libraries.
For most typical set-ups, the standard configunasizould suffice. Please consult the

configuration documentation on each of the libmat@configure each of the modules.

Because there is no other dependency, deploymeuatdshlso be straightforward. Use

the regression output as a guide for module capasttimation.

139

