
 1

Credit Trader Suite User/Developer Guide

Lakshmi Krishnamurthy

v2.2 14 August 2013

 2

Introduction

Credit Trader Suite of libraries aims to provide open source analytics and

trading/valuation system solution suite for credit and fixed income products. To this end,

it implements its functionality in a single library over 5 main components –

CreditProduct, CreditAnalytics, SplineLibrary, FixedPointFinder, and RegressionSuite.

Overview and Problem Space Coverage

The main challenges that Credit Trader Suite attempts to address are:

• Implementation of day count conventions, holidays calendars, and rule-based period

generators

• Abstract the functionality behind curves, parameters, and products onto defined

interfaces

• Unified/standardized methods for curve calibrations, parameter and product

implementers and constructors

• Environmental system to hold live ticks, closing marks, and reference data containers

• Enhanced analytics testing

• Ease of usage, installation, and deployment

While a number of other libraries - both Open Source implementations such as Quantlib

and its variants and proprietary systems such as Fincad, NumeriX, Algorithmics, they

typically cater to the needs of the wider financial mathematics community, thus diluting

their value towards treating credit products. Further, few of them inherently export a

curve/product/product models that work well with products quotes, marks, and reference

data sources, thereby forcing development teams to build their own integration layers

from scratch. Finally, building the components of functional credit-trading system

requires additional layers of development over analytics.

 3

Credit Trader Suite is an attempt to overcome these shortcomings. It aims to bring the

aspects mentioned above together in one Open Source implementation that readily

integrates onto existing systems.

Main Libraries and their Purpose

The libraries the constitute the Credit Trader Suite are:

• CreditProduct – Focused on the core analytics, and the curve, the parameter, and the

product definitions.

• CreditAnalytics – Concerned with the construction and the implementation of the

interfaces defined in CreditProduct, analytics environment management, and

functional distribution.

• SplineLibrary – Provides the functionality for building, calibrating, and evaluating

different kinds of splines.

• FixedPointFinder – Provides the implmentation of all the standard bracketing and

open root finding techniques, along with a customizable and configurable framework

that separates the initilization/bracketing functionality from the eventual root search.

• RegressionSuite – This aims to ease testing of analytics, measurement and generation

of the execution time distribution, as well as release performance characterization.

CreditProduct Description and Problem Space Coverage

CreditProduct aims to define the functional and behavioral interfaces behind curves,

products, and different parameter types (market, valuation, pricing, and product

parameters). To facilitate this, it implements various day count conventions, holiday sets,

period generators, and calculation outputs.

CreditProduct library achieves its design goal by implementing its functionality over

several packages:

 4

• Dates and holidays coverage: Covers a variety of day count conventions, 120+

holiday locations, as well as custom user-defined holidays

• Curve and analytics definitions: Defines the base functional interfaces for the variants

of discount curves, credit curves, and FX curves

• Market Parameter definitions: Defines quotes, component/basket market parameters,

and custom scenario parameters

• Valuation and Pricing Parameters: Defines valuation, settlement/work-out, and

pricing parameters of different variants

• Product and product parameter definitions: Defines the product creation and behavior

interfaces for Cash/EDF/IRS (all rates), bonds/CDS (credit), and basket bond/CDS,

and their feature parameters.

• Output measures container: Defines generalized component and basket outputs, as

well customized outputs for specific products

CreditAnalytics Description and Problem Space Coverage

CreditAnalytics provides the functionality behind creation, calibration, and

implementation of the curve, the parameter, and the product interfaces defined in

CreditProduct. It also implements a curve/parameter/product/analytics management

environment, and has packaged samples and testers.

CreditAnalytics library achieves its design goal by implementing its functionality over

several packages:

• Curve calibration and creation: Functional implementation and creation factories for

rates curves, credit curves, and FX curves of al types

• Market Parameter implementation and creation: Implementation and creation of

quotes, component/basket market parameters, as well as scenario parameters.

• Product implementation and creation: Implementation and creation factories for rates

products (cash/EDF/IRS), credit products (bonds/CDS), as well as basket products.

 5

• Reference data/marks loaders: Loaders for bond/CDX, as well a sub-universe of

closing marks

• Calculation Environment Manager: Implementation of the market parameter

container, manager for live/closing curves, stub/client functionality for

serverization/distribution, input/output serialization.

• Samples: Samples for curve, parameters, product, and analytics creation and usage

• Unit functional testers: Detailed unit scenario test of various analytics, curve,

parameter, and product functionality.

SplineLibrary Description and Problem Space Coverage

SplineLibrary provides the functionality for building, calibrating, and evaluating different

kinds of splines. It implements the functionality behind spline design, spline

constructions, customization, calibration, and evaluation of a wide variety of spline types

and basis functions.

SplineLibrary achieves its design goals by implementing its functionality over several

packages the perform the following:

• Spline Calibration Framework: Schematic spline segment/span partitioning,

elastc/inelastic entity-variate separation, mathematical calibration formulation

framework with constriaints/boundary incorporation, sensitivity Jacobian estimator

setup, Hard/Soft (Truthness/Smoothness) partitioning.

• Shape Preserving Spline Suite: B-splines, Polynomial Splines and Variants

(Bernstein, Kaklis-Pandelis, Manni), Integrated Tension Splines

(exponential/hyperbolic), partitioned tension splines (explicit shape control using

rational splines).

• Space Spline Curves: Hermitian, Catmull-Rom, Cardinal Cubic, Space Loops.

• Spline Calibration: Explicit segment formulation frane work, Optimizing shape

preserving splnes, curvature (or criterion-defined) penalty minimizing mu-splines,

segment/span self-Jacobian and micro-Jacobian.

 6

• Spline Evaluation: Metric'ed evaluation of monotonicity, convexity, smoothness,

smoothness, locality, and approximation order.

• Spline Extensions: Variational Smoothing, density smoothing technique, alternate

smoothener customization extension, multi-dimensional (including thin plate) splines.

FixedPointFinder Description and Problem Space Coverage

RootFinder achieves its design goal by implementing its functionality over several

packages:

• Framework: Framework to accommodate bracketing/open convergence initialization,

execution customization/configuration, iterative variate evolution, and search

termination detection

• Bracket Initialization Techniques: Implementation of the different techniques for the

initial bracket extraction.

• Open Method Convergence Zone Initialization Techniques: Implementation of the

different techniques for the convergence zone starting variate extraction.

• Iterative Open Methods: Implementation of the iterative Open Methods - Newton-

Raphson and Secant Methods

• Iterative Bracketing Primitive Methods: Implementation of the iterative bracketing

primitives – Bisection, False Position, Quadratic Interpolation, Inverse Quadratic

Interpolation, and Ridder.

• Iterative Bracketing Compound Methods: Implementation of the iterative bracketing

compound methodologies – Brent’s and Zheng’s methods.

• Search Initialization Heuristics: Implementation of a number of search heuristics to

make the search targeted and customized.

• Samples: Samples for the various bracketing and the open methods, their

cusomization, and configuration.

• Documentation: Literature review, framework description, mathematical and

formulation details of the different components, root finder synthetic knowledge unit

(SKU) composition, and module and API usage guide.

 7

• Regression Tests: Statistical regression analysis and dispersion metric evaluation for

the initialization and the iteration components of the different bracketing and open

root finder methodologies.

RegressionSuite Description and Problem Space Coverage

RegressionSuite aims to incorporate measurement of the startup lag, measurement of

accurate execution times, generating execution statistics, customized input distributions,

and processable regression specific details as part of the regular unit tests.

RegressionSuite library achieves its design goal by implementing its functionality over

several packages:

• Regression Engine: Provides control for distribution set, invocation strategy, and

load.

• Unit Regression Executor: Framework that implements set up and tear-down, as well

as generate run details

• Regression Statistics: Execution time distribution, start-up and other event delay

measurements, and system load monitoring

• Regression Output: Fine grained regressor level output, module aggregated output,

sub-element execution time estimation.

• Regressor Set: Module containing set of regressors, group level turn on/off and

execution control

• Regression Utilities: Formatting and tolerance checking.

 8

Design Objectives

This section covers the design objectives across several facets – functional, software,

system, usage, and deployment aspects.

Financial Feature design attributes

The chief design aims from a financial functionality angle are:

• Interface representations of curve, parameter, and products

• Separation of the creation and the implementation modules from the exposed

functional interface behavior

• Re-usable functional and behavioral abstractions around financial products

• Provide “open” public implementations of the standard analytics functionality such as

day count conventions, holidays, date representations, rule based period generation

etc

• Abstraction of the quote, the market parameter and the pricing structures

• Abstraction and implementation of the standard curve calibration

Software Feature design attributes

The chief design aims from a software design angle are:

• Logical functionality identification/localization and functional group partitioning

• Clearly defined interface structure

• Implementation and creation factory bodies

• Reach and interaction through interfaces only

 9

System Feature Design Attributes

The key system design aims are:

• Functionality needs to be readily serverizable and distributable

• Provide built in serialization, marshalling, and persistence of all the main components

• Management containers around the products, the curves, and the parameter sets, and

establishing the execution control environment

Analytics Usage Design Objectives

The key usage design goals are:

• The analytics modules should provide comprehensive credit product risk, valuation,

and pricing functionality from a set of functional API

• Ease of use

• Flexible

• When direct object access is needed, use only through the object model interface (and

amend the interface as appropriate)

Test Design Objectives

The key testing design goals in this area are:

• Comprehensive unit testing of curve, parameters, and product implementation

• Extensive composite scenario testing

• Environment and server components testing

• Release time performance characterization and execution time and execution resource

statistics calculation

 10

Installation, Dependency, and Deployment Design Objectives

The key design goals in this area are:

• Minimize dependency on external modules

• Ease of installation and deployment

• Customizability – for non-standard setups – through the supplied configuration file.

 11

Credit Product

Credit Product Library consists of the following 14 packages:

1. Date & Time Manipulators: This contains functionality for creating, manipulating,

and adjusting dates, as well as time instants (to nano-second granularity).

2. Day-count Parameters, Conventions, and Date Adjustment Operations: This contains

the functionality for day count generation and date adjustment according to specific

rules. It also holds parameters needed for specific day count conventions.

3. Location Specific Standard Holiday Set: This contains all the non-weekend holidays

that correspond to a specific location jurisdiction, and its description. Each location

implements it holidays in a separate class.

4. Custom Holidays: This provides the ability to specify custom holidays, if the standard

ones provided earlier are insufficient. Different types of holidays can be added –

variable, fixed, static, as well as weekends for a given location.

5. Curve Analytics Definitions: This provides the definition of all the curve objects – the

base curve, the rates curves (discount curves and zero curves), credit curves, and the

FX curves (FX basis and FX forward curves).

6. Cash flow Period: This contains the cash flow period functionality, as well as place

holders for the period related different curve factors.

7. Analytics Support Utilities: This contains utility functions for manipulating the core

Credit Product modules, generic utility functions, and a logger.

 12

8. Quotes, Market, and Scenario Parameters Definitions: This contains the classes that

implement the definitions for all parameters except product feature parameters –

quotes, calibration parameters, market parameters, tweak parameters, and the scenario

curves.

9. Pricer Parameters: This contains the pricing parameters corresponding to a given

product and model.

10. Quoting Parameters: This contains the quoting parameters needed to interpret a

product quote.

11. Valuation Parameters: This contains all the non-market and non-product parameters

needed for valuing a product at a given date.

12. Product Definitions: This contains interface definitions for all products, along with

definitions for credit, rates, and FX components and specific credit/rates/FX products,

and baskets.

13. Product Parameters: This contains the implementations of the features required for a

complete construction of an instance of the product.

14. Product RV and Batch Calculation Outputs: This contains the bulk results of pricing

and relative value calculation for the products.

15. Serializer: This interface defines the core object serialization methods – serialization

into and de-serialization out of byte arrays, as well as the object serializer version.

 13

Credit Product: Date Time Manipulators

Date Time Manipulators are implemented in the package org.drip.analytics.date. It

contains functionality for creating, manipulating, and adjusting dates, as well as time

instants (to nano-second granularity).

The functionality is implemented in 2 classes: DateTime and JulianDate, and both are

serializable.

JulianDate

This class provides a comprehensive representation of Julian date and date manipulation

functionality. It exports the following functionality:

• Explicit date construction, as well as date construction from several input string

formats

• Date Addition/Adjustment, add/subtract days/weeks/months/years and tenor codes

• Leap Year Functionality (number of leap days in the given interval, is the given year

a leap year etc.)

• Generate the subsequent IMM date (EDF/CME IMM date, CDS/Credit ISDA IMM

date etc)

• Export the date to a variety of date formats.

DateTime

DateTime contains nano-second level instantiation-time snap of date/time instant.

 14

Credit Product: Day Count Parameters, Conventions, and

Date Adjustment Operations

Day Count Calculators are implemented in the package org.drip.analytics.daycount. It

contains the functionality for day count generation and date adjustment according to

specific rules. It also holds parameters needed for specific day count conventions.

The functionality is implemented across 18 classes: ActActDCParams, Convention, and

DateAdjustParams, DateEOMAdjustment, DC30_360, DC30_365, DC30_Act,

DC30E_360, DCAct_360, DC30_364, DC30_365, DC30_365L, DCAct_Act_ISDA,

DCAct_Act, DCFCalculator, DCNL_360, DCNL_364, and DCNL_Act.

ActActDCParams

This class contains parameters to represent the Act/Act day count - the frequency, and the

reference period start/end dates.

Convention

This class contains flags that indicate where the holidays are loaded from, as well as the

holiday types and load rules. It exports the following date related functionality:

• Add business days according to the specified calendar

• The Year Fraction between any 2 days given the day count type and the holiday

calendar

• Adjust/roll to the next working day according to the adjustment rule

 15

• Holiday Functions - is the given day a holiday/business day, the number and the set of

holidays/business days between 2 days.

• Calendars and Day counts - Available set of day count conventions and calendars,

and the weekend days corresponding to a given calendar.

DateAdjustParams

This class contains the parameters needed for adjusting dates – holiday calendar and

adjustment type.

DateEOMAdjustment

This class holds the applicable anterior and posterior EOM adjustments for a given date

pair.

DCFCalculator

This interface is the stub for all the day count convention functionality. It exposes the

base/alternate day count convention names, the year-fraction and the days accrued.

DC30_360

This class implements the 30/360 day count convention.

DC30_365

 16

This class implements the 30/365 day count convention.

DC30_Act

This class implements the 30/Act day count convention.

DC30E_360

This class implements the 30E/360 day count convention.

DCAct_360

This class implements the Act/360 day count convention.

DCAct_364

This class implements the Act/364 day count convention.

DCAct_365

This class implements the Act/365 day count convention.

DCAct_365L

 17

This class implements the Act/365L day count convention.

DCAct_Act_ISDA

This class implements the Act/Act ISDA day count convention.

DCAct_Act

This class implements the Act/Act day count convention.

DCNL_360

This class implements the NL/360 day count convention.

DCNL_365

This class implements the NL/365 day count convention.

DCNL_Act

This class implements the NL/Act day count convention.

 18

Credit Product: Location Specific Standard Holiday Set

Location Specific Holidays are implemented in the package org.drip.analytics.holset. It

contains all the holidays that correspond to a specific location jurisdiction, and its

description.

The functionality is implemented in its own location qualified class instance - each of

which is an instance of the LocationHoliday interface.

LocationHoliday

LocationHoliday is an interface that is implemented by all the Location Holiday classes.

It exposes the specific holiday location, as well as the set of location-specific holidays.

Other classes in this package provide explicit holidays and the locale name. So far, Credit

Product has about 130 locales implemented – please consult the Credit Analytics site for

what they are.

 19

Credit Product: Custom Holidays

Custom Holiday creators are implemented in the package org.drip.analytics.holiday. It

provides the ability to add holidays, it the standard ones provided earlier are insufficient.

Different types of holidays can be added – variable, fixed, static, as well as weekends for

a given location.

Different holiday types are implemented in their own classes – they are Static, Fixed, and

Variable, each of which extends the Base holiday class. Weekend is implemented in a

separate class. All holiday instances for a given Locale are maintained on a named

holiday container.

Base

Base is an abstraction around holiday and description. Abstract function generates an

optional adjustment for weekends in a given year.

Weekend

Weekend holds the left and the right weekend days

Static

Static implements a complete date as a specific holiday.

 20

Fixed

Fixed contains the fixed holiday’s date and month. Holidays are generated on a per-year

basis by applying the year, and by adjusting the date generated.

Variable

Variable class contains the rule characterizing the variable holiday’s month, day in week,

week in month, and the weekend days. Specific holidays in the given year are generated

using these rules.

Locale

Locale contains the set of regular holidays and the weekend holidays for a location. It

also provides the functionality to add custom holidays and weekends.

 21

Credit Product: Curve Analytics Definitions

Curve Analytics Curve definitions are implemented in the package

org.drip.analytics.definition. It provides the definition of all the curve objects – the base

curve, the rates curves (discount curves and zero curves), credit curves, and the FX

curves (FX basis and FX forward curves).

Functionality in this package is implemented across 6 classes – Curve, DiscountCurve,

ZeroCurve, CreditCurve, FXBasisCurve, and FXForwardCurve.

Curve

Curve implements the interfaces across all curve instances. It exposes the following

functionality:

• Set the effective/start date

• Set up calibration run framework (initialize the build run, build the interpolator etc.)

• Generate scenario curves from the base curve (flat/parallel/custom)

• Set/retrieve the components and their quotes

DiscountCurve

DiscountCurve is the stub for the discount curve functionality. It extends the Curve object

by exposing the following functions:

• Forward Rate to a specific date/tenor, and effective rate between a date interval.

• Discount Factor to a specific date/tenor, and effective discount factor between a date

interval.

 22

• Zero Rate to a specific date/tenor.

• Generate scenario curves from the base discount curve (flat/parallel/custom).

• Value Jacobian for Forward rate, discount factor, and zero rate.

• Cross Jacobian between each of Forward rate, discount factor, and zero rate.

• Quote Jacobian to Forward rate, discount factor, and zero rate.

ZeroCurve

ZeroCurve exposes the node set containing the zero curve node points. In addition to the

discount curve functionality that it automatically provides by extension, it provides the

functionality to calculate the zero rate.

CreditCurve

CreditCurve is the stub for the survival curve functionality. It extends the Curve object by

exposing the following functions:

• Recovery to a specific date/tenor, and effective recovery between a date interval.

• Hazard Rate to a specific date/tenor, and effective hazard rate between a date interval.

• Survival to a specific date/tenor, and effective survival between a date interval.

• Set/unset date of specific default.

• Generate scenario curves from the base credit curve (flat/parallel/custom)

FXBasisCurve

FXBasisCurve implements the curve representing the FXBasis nodes. It extends the

Curve class, and exposes the following functionality:

• Retrieve the spot parameters (FX Spot, Spot Date, and the currency pair).

 23

• Indicate if the basis has been bootstrapped.

• Calculate the Full set of FX Forward corresponding to each basis node.

FXForwardCurve

FXForwardCurve implements the curve representing the FXForward nodes. It extends

the Curve class, and exposes the following functionality:

• Retrieve the spot parameters (FX Spot, Spot Date, and the currency pair).

• Calculate the Full set of FX Basis/Zero Rate nodes corresponding to each basis node.

• Bootstrap basis points/discount curves corresponding to the FXForward node set.

• Imply the zero rate to a given date from the FXForward curve.

 24

Credit Product: Cash flow Period

Cash flow period functionality is implemented in the package org.drip.analytics.period.

It contains the cash flow period functionality, as well as place holders for the period

related different curve factors.

Functionality in this package is implemented across 4 classes – Period, CouponPeriod,

CouponPeriodCurveFactors, and LossPeriodCurveFactors.

Period

Period serves as a holder for the period dates: period start/end, period accrual start/end,

pay, and full period day count fraction.

CouponPeriod

CouponPeriod extends the period class with the following coupon day-count specific

parameters: frequency, reset date, and accrual day-count convention. It also exposes static

methods to construct coupon period sets starting backwards/forwards, as well as merge

coupon periods.

CouponPeriodCurveFactors

 25

CouponPeriodCurveFactors is an enhancement of the period class using the following

period measures: start/end survival probabilities, start/end notionals, and period start/end

discount factor.

LossPeriodCurveFactors

LossPeriodCurveFactors is an implementation of the period class enhanced by the

following period measures:

• Start/end survival probabilities

• Period effective notional/recovery/discount factor

 26

Credit Product: Analytics Support Utilities

Analytics Support functionality is implemented in the package org.drip.analytics.support.

It contains utility functions for manipulating the Credit Product modules, case insensitive

maps, and a logger.

Functionality in this package is implemented across 4 classes – AnalyticsHelper,

CaseInsensitiveHashMap, CaseInsensitiveTreeMap, and Logger.

AnalyticsHelper

AnalyticsHelper contains the collection of the analytics related utility functions used by

the modules. The following is the functionality that it exposes:

• Yield to Discount Factor, and vice versa.

• Map Bloomberg Codes to CreditAnalytics Codes.

• Generate rule-based curve bumped nodes.

• Generate loss periods using a variety of different schemes.

• Aggregate/disaggregate coupon period lists.

CaseInsensitiveHashMap

CaseInsensitiveMap implements a case insensitive key in a hash map.

CaseInsensitiveTreeMap

 27

CaseInsensitiveMap implements a case insensitive key in a hash map

Logger

The Logger class implements level-set logging, backed by either the screen or a file.

Logging always includes time-stamps, and happens according to the level requested.

 28

Credit Product: Quote, Market, and Scenario Parameters

Quote, Market, Tweak, and Scenario parameter definitions are specified in the package

org.drip.param.definition. It contains the classes that implement the definitions for all

parameters except product feature parameters – quotes, calibration parameters, market

parameters, tweak parameters, and the scenario curves.

Functionality in this package is implemented across 10 classes and 5 groups –

CalibrationParams, the quote parameters group (Quote, and ComponentQuote), the tweak

parameters group (NodeTweakParams, and CreditNodeTweakParams), and the scenario

curves group (RatesScenarioCurve and CreditScenarioGroup), and the market parameters

group (ComponentMarketParams, BasketMarketParams, MarketParams).

CalibrationParams

CalibrationParams the calibration parameters - the measure to be calibrated, the

type/nature of the calibration to be performed, and the work-out date to which the

calibration is done.

Quote

Quote interface contains the stubs corresponding to a product quote. It contains the quote

value and quote instant for the different quote sides (bid/ask/mid).

ComponentQuote

 29

ComponentQuote abstract class holds the different types of quotes for a given

component. It contains a single market field/quote pair, but multiple alternate named

quotes (to accommodate quotes on different measures for the component).

NodeTweakParams

NodeTweakParams is the place-holder for the scenario tweak parameters, for either a

specific curve node, or the entire curve (flat). Parameter bumps can be parallel or

proportional.

CreditNodeTweakParams

CreditNodeTweakParams is the place-holder for the credit curve scenario tweak

parameters: the measure, the curve node, and the nodal calibration type (entire curve/flat

or a given tenor point).

RatesScenarioCurve

RatesScenarioCurve abstract class exposes the interface the constructs scenario discount

curves. The following curve construction scenarios are supported:

• Base, flat/tenor up/down by arbitrary bumps.

• Tenor bumped discount curve set - keyed using the tenor.

• NTP-based custom scenario curves.

CreditScenarioCurve

 30

CreditScenarioCurve abstract class exposes the bump parameters and the curves for the

following credit curve scenarios:

• Base, Flat Spread/Recovery bumps.

• Spread/Recovery Tenor bumped up/down credit curve sets keyed using the tenor.

• NTP-based custom scenario curves.

ComponentMarketParams

ComponentMarketParams abstract class provides stub for the

ComponentMarketParamsRef interface. It is a place-holder for the market parameters

needed to value the component object – the discount curve, the forward curve, the

treasury curve, the EDSF curve, the credit curve, the component quote, the treasury quote

map, and the fixings map.

BasketMarketParams

BasketMarketParams class extends the BaketMarketParamsRef for a specific scenario. It

provides access to maps holding named discount curves, named credit curves, named

treasury quote, named component quote, and fixings object.

MarketParams

MarketParams is the place-holder for the comprehensive suite of the market set of curves

for the given date. It exports the following functionality:

• Add/remove/retrieve scenario discount curve.

• Add/remove/retrieve scenario zero curve.

 31

• Add/remove/retrieve scenario credit curve.

• Add/remove/retrieve scenario recovery curve.

• Add/remove/retrieve scenario FXForward curve.

• Add/remove/retrieve scenario FXBasis curve.

• Add/remove/retrieve scenario fixings.

• Add/remove/retrieve Treasury/component quotes.

• Retrieve scenario CMP/BMP.

• Retrieve map of flat rates/credit/recovery CMP/BMP.

• Retrieve double map of tenor rates/credit/recovery CMP/BMP.

• Retrieve rates/credit scenario generator.

 32

Credit Product: Pricing Parameters

Pricing parameter is implemented in the package org.drip.param.pricer. It contains the

pricing parameters corresponding to a given product and model.

Currently only the credit-pricing model is implemented – it is implemented in

PricerParams.

PricerParams

PricerParams contains the pricer parameters - the discrete unit size, calibration mode

on/off, survival to pay/end date, and the discretization scheme.

 33

Credit Product: Quoting Parameters

Pricing parameter is implemented in the package org.drip.param.quoting. This contains

the quoting parameters needed to interpret a product quote.

Functionality in this package is implemented across 3 classes – MeasureInterpreter,

QuotedSpreadInterpreter, and YieldInterpreter.

MeasureInterpreter

MeasureInterpreter is the abstract shell stub class from which all product measure quoting

parameters are derived. It contains fields needed to interpret a measure quote.

QuotedSpreadInterpreter

QuotedSpreadInterpreter holds the fields needed to interpret a Quoted Spread Quote. It

contains the contract type and the coupon.

YieldInterpreter

YieldInterpreter holds the fields needed to interpret a Yield Quote. It contains the quote

day count, quote frequency, quote EOM Adjustment, quote Act/Act parameters, and

quote Calendar.

 34

Credit Product: Valuation Parameters

Valuation parameters are implemented in the package org.drip.param.valuation. It

contains all the non-market and non-product parameters needed for valuing a product at a

given date.

Functionality in this package is implemented across 4 classes – QuotingParams,

CashSettleParams, WorkoutInfo, and ValuationParams.

CashSettleParams

CashSettleParams is the place-holder for the cash settlement parameters for a given

product. It contains the cash settle lag, the calendar, and the date adjustment mode.

QuotingParams

QuotingParams holds the parameters needed to interpret the input quotes. It contains the

quote day count, quote frequency, quote EOM Adjustment, quote Act/Act parameters,

and quote Calendar. It also indicates if the native quote is spread based.

ValuationParams

ValuationParams is the place-holder for the valuation parameters for a given product. It

contains the valuation and the cash pay/settle dates, as well as the calendar. It also

exposes a number of methods to construct standard valuation parameters.

 35

WorkoutInfo

WorkoutInfo is the place-holder for the work-out parameters. It contains the date, the

factor, the type, and the yield of the work-out.

 36

Credit Product: Product Definitions

Product definitions are implemented in the package org.drip.product.definition. It

contains interface definitions for all products, along with definitions for credit, rates, and

FX components and specific credit/rates/FX products, and baskets.

Product definitions are implemented in different groups – base component group

(ComponentMarketParamsRef, Component, CalibrateComponent), base basket group

(BasketMarketParamRef, BasketProduct), RatesComponent, Credit Component Group

(CreditComponent, CreditDefaultSwap, BondProduct, Bond), and FX Component group

(FXSpot and FXForward).

ComponentMarketParamRef

ComponentMarketParamRef interface provides stubs for component name, IR curve,

forward curve, credit curve, TSY curve, and EDSF curve needed to value the component.

Component

Component abstract class extends ComponentMarketParamRef and provides the

following methods:

• Get the component's initial notional, notional, and coupon.

• Get the Effective date, Maturity date, First Coupon Date.

• List the coupon periods.

• Set the market curves - discount, TSY, forward, Credit, and EDSF curves.

• Retrieve the component's settlement parameters.

 37

• Value the component using standard/custom market parameters.

• Retrieve the component's named measures and named measure values.

CalibratableComponent

CalibratableComponent abstract class provides implementation of Component's

calibration interface. It exposes stubs for getting/setting the component’s calibration

code, generate calibrated measure values from the market inputs, and compute micro-

Jacobians (QuoteDF and PVDF micro-Jacks).

BasketMarketParamRef

BasketMarketParamRef interface provides stubs for component's IR and credit curves

that constitute the basket.

BasketProduct

BasketProduct abstract class extends BasketMarketParamRef. It provides methods for

getting the basket’s components, notional, coupon, effective date, maturity date, coupon

amount, and list of coupon periods.

RatesComponent

RatesComponent is the abstract class that extends CalibratableComponent on top of

which all rates components are implemented.

 38

CreditComponent

CreditComponent is the base abstract class on top of which all credit components are

implemented. Its methods expose Credit Valuation Parameters, and coupon/loss cash

flows.

CreditDefaultSwap

CreditDefaultSwap is the base abstract class implements the pricing, the valuation, and

the RV analytics functionality for the CDS product.

BondProduct

BondProduct interface implements the product static data behind bonds of all kinds.

Bond static data is captured in a set of 11 container classes – BondTSYParams,

BondCouponParams, BondNotionalParams, BondFloaterParams, BondCurrencyParams,

BondIdentifierParams, ComponentValuationParams, ComponentRatesValuationParams,

ComponentCreditValuationParams, ComponentTerminationEvent,

BondFixedPeriodParams, and one EmbeddedOptionSchedule object instance each for the

call and the put objects. Each of these parameter sets can be set separately.

Bond

Bond abstract class implements the pricing, the valuation, and the RV analytics

functionality for the bond product.

 39

FXSpot

FXSpot is the abstract class exposes the functionality behind the FXSpot Contract.

Derived implementations return the spot date and the currency pair.

FXForward

FXForward is the abstract class exposes the functionality behind the FXForward

Contract. Derived implementations expose the primary/secondary codes, the

effective/maturity dates, the currency pair, imply the discount curve basis and the FX

Forward from a set of market parameters. The value function carries out a full valuation.

 40

Credit Product: Product Parameters

Product parameter definitions are implemented in the package org.drip.product.params. It

contains the implementations of the features required for a complete construction of an

instance of the product.

Product parameters are implemented across 20 classes. Validatable is the base interface

that underpins most of them. Others are identifier parameters (CDXIdentifier,

CDXRefDataParams, IdentifierSet, StandardCDXParams), CouponSetting, CreditSetting,

CurrencySet, EmbeddedOptionSchedule, FactorSchedule, NotionalSetting,

PeriodGenerator, PeriodSet, FloaterSetting, RatesSeting, TerminationSetting,

QuoteConvention, Treasury Parameters (TreasuryBenchmark, TsyBmkSet), and

CurrencyPair.

Validatable

Validatable interface defines the validate function, which validates the current object

state.

CDXIdentifier

CDXIdentifier implements the creation and the static details of the all the NA, EU, SovX,

EMEA, and ASIA standardized CDS indexes. It contains the index, the tenor, the series,

and the version of a given CDX.

 41

CDXRefDataParams

CDXRefDataParams contains the complete set of reference data that corresponds to the

contract of a standard CDX. It consists of the following category and fields:

• Descriptive => Index Label, Index Name, Curve Name, Index Class, Index Group

Name, Index Short Group.

• Name, Index Short Name, Short Name.

• Issuer ID => Curve ID, Red ID, Series, Version, Curvy Curve ID, Location,

Bloomberg Ticker.

• Quote Details => Quote As CDS.

• Date => Issue Date, Maturity Date.

• Coupon Parameters => Coupon Rate, Currency, Day Count, Full First Stub,

Frequency.

• Component Details => Original Count, Defaulted Count.

• Payoff Details => Knock out on Default, Pay Accrued Amount, Recovery on Default.

• Other => Index Life Span, Index Factor

IdentifierSet

IdentifierSet contains the component's identifier parameters - ISIN, CUSIP, ID, and

ticker.

StandardCDXParams

StandardCDXParams implements the parameters used to create the standard CDX - the

coupon, the number of components, and the currency.

 42

CouponSetting

CouponSetting contains the coupon type, schedule, and the coupon amount for the

component. If available, the floor and/or the ceiling may also be applied to the coupon, in

a pre-determined order of precedence.

CreditSetting

CreditSetting contains the credit related valuation parameters - use default pay lag, use

curve or the component recovery, component recovery, credit curve name, and whether

there is accrual on default.

CurrencySet

CurrencySet contains the component's trade, the coupon, and the redemption currencies.

EmbeddedOptionSchedule

EmbeddedOptionSchedule is a place-holder for the embedded option schedule for the

component. It contains the schedule of exercise dates and factors, the exercise notice

period, and the option is to call or put. Further, if the option is of the type fix-to-float on

exercise, contains the post-exercise floater index and floating spread. If the exercise is not

discrete (American option), the exercise dates/factors are discretized according to a pre-

specified discretization grid.

FactorSchedule

 43

FactorSchedule contains the array of dates and factors.

NotionalSetting

NotionalSetting contains the product's notional schedule and the amount. It also

incorporates hints on how the notional factors are to be interpreted - off of the original or

the current notional. Further flags tell whether the notional factor is to be applied at the

start/end/average of the coupon period.

PeriodGenerator

PeriodGenerator generates the component coupon periods from flexible inputs. Periods

can be generated forwards or backwards, with long/short stubs. For customization, date

adjustment parameters can be applied to each cash flow date of the period - effective,

maturity, period start start/end, accrual start/end, pay and reset can each be generated

according to the date adjustment rule applied to nominal period start/end.

PeriodSet

PeriodSet is the place holder for the component’s period generation parameters. It

contains the component's date adjustment parameters for period start/end, period accrual

start/end, effective, maturity, pay and reset, first coupon date, and interest accrual start

date.

FloaterSetting

 44

FloaterSetting contains the component's floating rate parameters. It holds the rate index,

floater day count, and one of either the coupon spread or the full current coupon.

RatesSetting

RatesSetting contains the rate related valuation parameters - the discount curves to be

used for discounting the coupon, the redemption, the principal, and the settle cash flows.

TerminationSetting

TerminationSetting class contains the current "liveness" state of the component, and, if

inactive, how it entered that state.

QuoteConvention

QuoteConvention contains the Component Market Convention Parameters - the quote

convention, the calculation type, the first settle date, and the redemption amount.

TreasuryBenchmark

TreasuryBenchmark contains component treasury benchmark parameters - the treasury

benchmark set, and the names of the treasury and the EDSF IR curves.

TsyBmkSet

 45

TsyBmkSet contains the treasury benchmark set - the primary treasury benchmark, and

an array of secondary treasury benchmarks.

CurrencyPair

CurrencyPair class contains the numerator currency, the denominator currency, the quote

currency, and the PIP Factor.

 46

Credit Product: Product RV and Batch Calculation Outputs

Product bulk outputs are implemented in the package org.drip.analytics.output. It

contains the bulk results of pricing and relative value calculation for the products.

Outputs are implemented in 6 classes – ComponentMeasures, bond specific calculation

outputs (ExerciseInfo, BondCouponMeasures, BondWorkoutMeasures,

BondRVMeasures), and BasketMeasures.

ComponentMeasures

ComponentMeasures is the place-holder for analytical single component output

measures, optionally across scenarios. It contains measure maps for the following

scenarios:

• Unadjusted Base IR/credit curves

• Flat delta/gamma bump measure maps for IR/credit bump curves

• Tenor bump double maps for IR/credit curves

• Flat/recovery bumped measure maps for recovery bumped credit curves

• Measure Maps generated for Custom Scenarios

ExerciseInfo

ExerciseInfo is a place-holder for the full set of exercise information. It contains the

exercise date, the exercise factor, and the exercise type.

 47

BondCouponMeasures

This class encapsulates the parsimonius but complete set of the cash-flow oriented

coupon measures generated out of a full bond analytics run to a given work-out. These

are:

• DV01

• PV Measures (Coupon PV, Index Coupon PV, PV)

BondWorkoutMeasures

BondWorkoutMeasures encapsulates the parsimonius yet complete set of measures

generated out of a full bond analytics run to a given work-out. It contains the following:

• Credit Risky/Credit Riskless Clean/Dirty Coupon Measures

• Credit Risky/Credit Riskless Par/Principal PV

• Loss Measures such as expected Recovery, Loss on instantaneous default, and default

exposure with/without recovery

• Unit Coupon measures such as Accrued 01, first coupon/index rate

BondRVMeasures

BondRVMeasures encapsulates the comprehensive set of RV measures calculated for the

bond to the appropriate exercise:

• Workout Information.

• Price, Yield, and Yield01.

• Spread Measures: Asset Swap/Credit/G/I/OAS/PECS/TSY/Z.

• Basis Measures: Bond Basis, Credit Basis, Yield Basis.

• Duration Measures: Macaulay/Modified Duration, Convexity

 48

BasketMeasures

BasketMeasures is the place holder for the analytical basket measures, optionally across

scenarios. It contains the following scenario measure maps:

• Unadjusted Base Measures

• Flat delta/gamma bump measure maps for IR/credit/RR bump curves

• Component/tenor bump double maps for IR/credit/RR curves

• Flat/component recovery bumped measure maps for recovery bumped credit curves

• Custom scenario measure map

 49

Credit Product: Serializer

Serializer interface are implemented in the package org.drip.service.stream. The interface

defines methods for serializing out of and de-serializing into a byte stream, as well as the

object serialization version.

There is just one interface in this package – Serializer.

Serializer

Serializer interface defines the core object serializer methods – serialization into and de-

serialization out of byte arrays, as well as the object version.

 50

Credit Analytics Library

Credit Analytics Library consists of the following 16 packages:

1. Curve Implementations: This contains the curve objects implemented using one of the

many ways of calibration, and contains concrete implementations of Discount Curve,

Zero Curve, Credit Curve, and FX Curves.

2. Curve Calibrators: This contains the curve calibrators that use different calibration

schemes, and the curve scenario generators.

3. Curve Creators: This contains the curve object factories for the different curves using

the calibration parameters.

4. Reference Data Loaders: This package contains functionality that loads the bond and

the CDS reference data, as well as closing marks for a few date ranges.

5. Analytics Configurator: This package contains functionality to configure various

aspects of Credit Analytics.

6. Market, Quote, and Scenario Parameter Implementations: This contains the

implementations of the Credit Product interfaces representing the quotes, the

basket/component market parameters, and the scenario curve containers.

7. Market, Quote, and Scenario Parameter Creators: This contains the builder factories

for the quotes, market parameters, and the scenario curves.

 51

8. Rates Component Implementations: This contains the implementations of the Credit

Product interfaces for Cash, Euro-dollar future, fixed/floating streams, interest rate

swap instruments, and rates basket products.

9. Credit Product Implementations: This contains the implementations of the Credit

Product interfaces for Bonds, CDS, basket CDS, and bond baskets.

10. FX Product Implementations: This contains the implementation of the Credit Product

interface for FX products.

11. Product Creators: This contains the creators for the various rates, credit, and FX

component and basket products.

12. Analytics Environment Manager: This provides functionality for loading products

from their reference data and managing them, as well as creating/accessing

live/closing curves.

13. Analytics Bridge: This provides the stub and proxy functionality for invoking Credit

Analytics functionality in a remote server and extracting the results.

14. Analytics API: This provides a unified and comprehensive functional, static interface

of all the main Credit Analytics functionality.

15. Analytics Samples: This provides samples illustrating the functionality provided by

Credit Analytics – samples demonstrating the creation and usage of curves and

products across rates, credit, and FX components and baskets. Examples are also

provided on how to compare against standard analytics vendors/suppliers (e.g.,

Bloomberg).

 52

16. Functional Testers: This contains a fairly extensive set of unit and composite testers

for the curve, products, serialization, and analytics functionality provided by the

Credit Analytics suite, with a special focus on bonds.

 53

Credit Analytics: Curve Implementations

Credit Product curve definitions are implemented in the package org.drip.analytics.curve.

This package contains the curve objects implemented using one of the many ways of

calibration, and contains concrete implementations of Discount Curve, Zero Curve,

Credit Curve, and FX Curves.

Functionality in this package is implemented over 8 classes – ConstantForwardHazard,

ConstantForwardRate, DerivedFXBasis, DerivedFXForward, DerivedZeroRate,

HyperbolicTensionForwardRate, PolynomialForwardRate, and PolynomialSplineDF.

ConstantForwardHazard

This class contains the constant hazard rate based credit curve holder object. It exports

the following functionality:

• Calculate survival probability / survival probability Jacobian

• Calculate recovery / recovery Jacobian

• Calculate hazard rate / hazard rate Jacobian

• Construct tweaked curve instances (parallel/tenor/custom tweaks)

• Optionally provide the calibration instruments and quotes used to build the curve.

ConstantForwardRate

This class contains the constant forward rate based discount curve holder object. It

exports the following functionality:

• Calculate discount factor / discount factor Jacobian

 54

• Calculate implied forward rate / implied forward rate Jacobian

• Construct tweaked curve instances (parallel/tenor/custom tweaks)

• Optionally provide the calibration instruments and quotes used to build the curve.

DerivedFXBasis

This class contains the constant forward basis based FX Basis Curve holder object. It

exports the following functionality:

• Calculate FX Forward / FX Forward Jacobian

• Calculate Forward Basis / Forward Basis Jacobian

• Construct tweaked curve instances (parallel/tenor/custom tweaks)

• Optionally provide the calibration instruments and quotes used to build the curve.

DerivedFXForward

This class contains the constant forward based FX Forward Curve holder object. It

exports the following functionality:

• Calculate FX Forward / FX Forward Jacobian

• Calculate Forward Basis / Forward Basis Jacobian

• Construct tweaked curve instances (parallel/tenor/custom tweaks)

• Optionally provide the calibration instruments and quotes used to build the curve.

DerivedZeroRate

This class implements the zero rate curve. It exports the following functionality:

• Calculate discount factor / discount factor Jacobian

• Calculate zero/forward rate / zero/forward rate Jacobian

 55

• Construct tweaked curve instances (parallel/tenor/custom tweaks)

• Optionally provide the calibration instruments, the quotes, the base discount curve,

and the zero bump used to build the curve.

HyperbolicTensionForwardRate

This class contains the polynomial spline discount factor based discount curve holder

object. The class constructs the discount curve using generic polynomial splines

(arbitrary degree, variable shape control, custom segment knot constraints, user specified

variational penalty optimization, and segment tension). It exports the following

functionality:

• Calculate discount factor / discount factor Jacobian

• Calculate implied forward rate / implied forward rate Jacobian

• Construct tweaked curve instances (parallel/tenor/custom tweaks)

• Optionally provide the calibration instruments and quotes used to build the curve.

PolynomialForwardRate

This class contains the polynomial forward rate based discount curve holder object. The

class constructs the discount curve using generic polynomial splines (arbitrary degree,

variable shape control, custom segment knot constraints, user specified variational

penalty optimization, and segment tension). It exports the following functionality:

• Calculate discount factor / discount factor Jacobian

• Calculate implied forward rate / implied forward rate Jacobian

• Construct tweaked curve instances (parallel/tenor/custom tweaks)

• Optionally provide the calibration instruments and quotes used to build the curve.

 56

PolynomialSplineDF

This class contains the polynomial spline discount factor based discount curve holder

object. The class constructs the discount curve using generic polynomial splines

(arbitrary degree, variable shape control, custom segment knot constraints, user specified

variational penalty optimization, and segment tension). It exports the following

functionality:

• Calculate discount factor / discount factor Jacobian

• Calculate implied forward rate / implied forward rate Jacobian

• Construct tweaked curve instances (parallel/tenor/custom tweaks)

• Optionally provide the calibration instruments and quotes used to build the curve.

 57

Credit Analytics: Curve Calibrators

Curve calibrators are implemented in the package org.drip.analytics.calibration. This

package contains the curve calibrators that use different calibration schemes, and the

curve scenario generators.

Functionality in this package is implemented over 3 classes – CurveCalibrator,

RatesCurveScenarioGenerator, and CreditCurveScenarioGenerator.

CurveCalibrator

CurveCalibrator calibrates the discount and credit/hazard curves from the components

and their quotes.

CurveCalibrator employs a set of techniques for achieving this calibration.

• It bootstraps the nodes in sequence to calibrate the curve.

• In conjunction with splining interpolation techniques, it may also be used to perform

dual sweep calibration. The inner sweep achieves the calibration of the segment

spline parameters, while the outer sweep calibrates iteratively for the targeted

boundary conditions.

CurveCalibrator bootstraps/cooks both discount curves and credit curves.

RatesCurveScenarioGenerator

 58

This calls contains the interest rate calibration instruments to be used with the component

calibrator to produce scenario interest rate curves.

RatesCurveScenarioGenerator typically first constructs the actual curve calibrator

instance to localize the intelligence around curve construction. It then uses this curve

calibrator instance to build individual curves or the sequence of node bumped scenario

curves. The curves in the set may be an array, or tenor-keyed.

CreditCurveScenarioGenerator

This calls contains the credit calibration instruments to be used with the component

calibrator to produce scenario credit curves.

CreditCurveScenarioGenerator typically first constructs the actual curve calibrator

instance to localize the intelligence around curve construction. It then uses this curve

calibrator instance to build individual curves or the sequence of node bumped scenario

curves. The curves in the set may be an array, or tenor-keyed.

 59

Credit Analytics: Curve Creators

Curve creators are implemented in the package org.drip.analytics.creator. This contains

the curve object factories for the different curves using the calibration parameters.

Functionality in this package is implemented over 5 classes – DiscountCurveBuilder,

ZeroCurveBuilder, CreditCurveBuilder, FXBasisCurveBuilder, and

FXForwardCurveBuilder.

CreditCurveBuilder

This class contains the builder functions that construct the credit curve (comprising both

survival and recovery) instance. It contains static functions that build different types of

credit curve from 3 major types of inputs:

• From a variety of ordered credit-sensitive calibration instruments and their quotes

• From an array of ordered survival probabilities

• From a serialized byte stream of the credit curve instance

DiscountCurveBuilder

This class contains the builder functions that construct the discount curve (comprising

both the rates and the discount factors) instance. It contains static functions that build

different types of discount curve from 3 major types of inputs:

• From a variety of ordered DF-sensitive calibration instruments and their quotes

• From an array of ordered discount factors

• From a serialized byte stream of the discount curve instance

 60

FXBasisCurveBuilder

This class contains the baseline FX Basis curve builder object. It contains static functions

that build FX Basis curves from the 3 major inputs:

• An ordered array of Forward FX

• An ordered array of Forward Basis Points

• A byte Stream representing the serialized instance of the FXBasisCurve.

FXForwardCurveBuilder

This class contains the baseline FX Forward curve builder object. It contains static

functions that build FX Forward curves from the 3 major inputs:

• An ordered array of Forward FX

• An ordered array of Forward Basis Points

• A byte Stream representing the serialized instance of the FXForwardCurve.

ZeroCurveBuilder

This class contains the baseline zero curve builder object. It contains static functions that

build zero curves from cash flows, discount curves, and other input curves/instruments.

 61

Credit Analytics: Reference Data Loaders

Data loaders are implemented in the package org.drip.feed.loaders. This package

contains functionality that loads the bond and the CDS reference data, as well as closing

marks for a few date ranges.

Functionality in this package is implemented over 3 classes – BondRefData,

CDXRefData, and CreditStaticAndMarks.

BondRefData

BondRefData contains functionality to load a variety of Bond Product reference data and

closing marks. It exposes the following functionality:

• Load the bond valuation-based reference data, amortization schedule and EOS

• Build the bond instance entities from the valuation-based reference data

• Load the bond non-valuation-based reference data

BondRefData assumes the appropriate connections are available to load the data.

CDXRefData

CDXRefData contains the functionality to load the standard CDX reference data and

definitions, and create compile time static classes for these definitions.

CreditStaticAndMarks

 62

CreditStaticAndMarks contains functionality to load a variety of Credit and Rates

Product reference data and closing marks. It exposes the following functionality:

• Load the bond reference data, static data, amortization schedule and EOS.

• Build the bond instance entities from the reference data.

• Load the bond, CDS, and Rates product Closing Marks.

• Load and build the Holiday Calendars.

CreditStaticAndMarks assumes the appropriate connections are available to load the data.

 63

Credit Analytics: Analytics Configurator

Credit Analytics configurator is implemented in the package org.drip.param.config. This

package contains functionality to configure various aspects of Credit Analytics.

Functionality in this package is implemented in a single class – ConfigLoader.

ConfigLoader

ConfigLoader implements the configuration functionality. It exposes the following:

• Parses the XML configuration file and extract the tag pairs information.

• Retrieve the logger.

• Load the holiday calendars and retrieve the location holidays.

• Connect to analytics server and the database server.

Depending on the configuration setting, ConfigLoader loads the above from either a file

or the specified database.

 64

Credit Analytics: Market Parameters, Quotes, and Scenario

Parameter Implementations

Quotes and Market Parameters are implemented in the package org.drip.param.market.

This contains the implementations of the Credit Product interfaces representing the

quotes, the basket/component market parameters, and the scenario curve containers.

Functionality in this package is implemented over 8 classes – MultiSidedQuote,

ComponentTickQuote, ComponentMultiMeasureQuote, RatesCurveScenarioContainer,

CreditCurveScenarioContainer, ComponentMarketParamsSet, BasketMarketParamSet,

and MarketParamsContainer.

MultiSidedQuote

MultiSidedQuote implements the Quote interface, which contains the stubs

corresponding to a product quote. It contains the quote value and the quote time-snap for

the different quote sides (bid/ask/mid).

ComponentTickQuote

ComponentTickQuote holds the tick related component parameters - it contains the

product ID, the quote composite, the source, the counter party, and whether the quote can

be treated as a mark.

ComponentMultiMeasureQuote

 65

ComponentMultiMeasureQuote holds the different types of quotes for a given

component. It contains a single market field/quote pair, but multiple alternate named

quotes (to accommodate quotes on different measures for the component).

RatesCurveScenarioContainer

RatesCurveScenarioContainer implements the RatesScenarioCurve abstract class that

exposes the interface the constructs scenario discount curves. The following curve

construction scenarios are supported:

• Base, flat/tenor up/down by arbitrary bumps

• Tenor bumped discount curve set - keyed using the tenor

• NTP-based custom scenario curves

CreditCurveScenarioContainer

CreditCurveScenarioContainer is the place-holder for the bump parameters and the

curves for the different credit curve scenarios. Contains the spread and the recovery

bumps, and the credit curve scenario generator object that wraps the calibration

instruments. It also contains the base credit curve, spread bumped up/down credit curves,

recovery bumped up/down credit curves, and the tenor mapped up/down credit curves.

ComponentMarketParamSet

ComponentMarketParamSet provides implementation of the

ComponentMarketParamsRef interface. It is the place-holder for the market parameters

needed to value the component object – discount curve, forward curve, treasury curve,

EDSF curve, credit curve, component quote, treasury quote map, and fixings map.

 66

BasketMarketParamSet

BasketMarketParamSet provides an implementation of BasketMarketParamsRef for a

specific scenario. It contains maps holding named discount curves, named credit curves,

named component quote, and fixings object.

MarketParamsContainer

MarketParamsContainer extends MarketParams abstract class, and is the place-holder for

the comprehensive suite of the market set of curves for the given date. It exports the

following functionality:

• Add/remove/retrieve scenario discount curve.

• Add/remove/retrieve scenario zero curve.

• Add/remove/retrieve scenario credit curve.

• Add/remove/retrieve scenario recovery curve.

• Add/remove/retrieve scenario FXForward curve.

• Add/remove/retrieve scenario FXBasis curve.

• Add/remove/retrieve scenario fixings.

• Add/remove/retrieve Treasury/component quotes.

• Retrieve scenario CMP/BMP.

• Retrieve map of flat rates/credit/recovery CMP/BMP.

• Retrieve double map of tenor rates/credit/recovery CMP/BMP.

• Retrieve rates/credit scenario generator.

 67

Credit Analytics: Market Parameters, Quotes, and Scenario

Parameter Creators

Builders for quotes, market parameters, and scenario curves are implemented in the

package org.drip.param.creator. This contains the builder factories for the quotes,

market parameters, and the scenario curves.

Functionality in this package is implemented over 8 classes – QuoteBuilder,

ComponentQuoteBuilder, ComponentTickQuoteBuilder, RatesScenarioCurveBuilder,

CreditScenarioCurveBuilder, ComponentMarketParamsBuilder,

BasketMarketParamsBuilder, MarketParamsBuilder.

QuoteBuilder

QuoteBuilder contains the quote builder object. It contains static functions that build two-

sided quotes from inputs, as well as from a byte stream.

ComponentQuoteBuilder

ComponentQuoteBuilder contains the component quote builder object. It contains static

functions that build component quotes from the quote inputs, as well as from byte

streams.

ComponentTickQuoteBuilder

 68

ComponentTickQuoteBuilder implements the component tick quote builder object. It

contains static functions that build component quotes from the inputs, as well as from

byte array.

RatesScenarioCurveBuilder

RatesScenarioCurveBuilder implements the the construction of the scenario discount

curve using the input discount curve instruments.

CreditScenarioCurveBuilder

CreditScenarioCurveBuilder implements the construction, de-serialization, and building

of the custom scenario based credit curves.

ComponentMarketParamsBuilder

ComponentMarketParamsBuilder implements the various ways of constructing, de-

serializing, and building the Component Market Parameters.

BasketMarketParamsBuilder

BasketMarketParamsBuilder implements the various ways of constructing, de-serializing,

and building the Basket Market Parameters.

MarketParamsBuilder

 69

MarketParamsBuilder implements the functionality for constructing, de-serializing, and

building the Market Universe Curves Container.

 70

Credit Analytics: Rates Component Implementations

Rates components are implemented in the package org.drip.product.rates. This contains

the implementations of the Credit Product interfaces for Cash, Euro-dollar future,

fixed/floating streams, interest rate swap instruments, and rates basket products.

Functionality in this package is implemented over 6 classes – CashComponent,

EDFComponent, FixedStream, FloatingStream, IRSComponent, and RatesBasket.

CashComponent

CashComponent contains the implementation of the Cash product and its

contract/valuation details.

EDFComponent

EDFComponent contains the implementation of the Euro-dollar future contract/valuation

(EDF).

FixedStream

FixedStream contains an implementation of the fixed leg cash flow stream product.

FloatingStream

 71

FloatingStream contains an implementation of the Floating leg cash flow stream.

IRSComponent

IRSComponent contains the implementation of the Interest Rate Swap product

contract/valuation details. It is made off one fixed stream and one floating stream.

RatesBasket

RatesBasket contains the implementation of the Basket of Rates Component legs.

RatesBasket is made from zero/more fixed and floating streams.

 72

Credit Analytics: Credit Product Implementations

Credit product definitions are implemented in the package org.drip.product.credit. This

contains the implementations of the Credit Product interfaces for Bonds, CDS, basket

default swaps, and bond baskets.

Functionality in this package is implemented over 4 classes – BondComponent,

BondBasket, CDSComponent, and CDSBasket.

BondComponent

BondComponent is the base class that extends CreditComponent abstract class and

implements the functionality behind bonds of all kinds. Bond static data is captured in a

set of 11 container classes – BondTSYParams, BondCouponParams,

BondNotionalParams, BondFloaterParams, BondCurrencyParams, BondIdentifierParams,

BondIRValuationParams, CompCRValParams, BondCFTerminationEvent,

BondFixedPeriodGenerationParams, and one EmbeddedOptionSchedule object instance

each for the call and the put objects. Each of these parameter sets can be set separately.

BondBasket

BondBasket implements the bond basket product contract details. Contains the basket

name, basket notional, component bonds, and their weights.

CDSComponent

 73

CDSComponent implements the credit default swap product contract details. Contains

effective date, maturity date, coupon, coupon day count, coupon frequency, contingent

credit, currency, basket notional, credit valuation parameters, and optionally the

outstanding notional schedule.

CDSBasket

CDSBasket implements the basket default swap product contract details. Contains

effective date, maturity date, coupon, coupon day count, coupon frequency, basket

components, basket notional, loss pay lag, and optionally the outstanding notional

schedule and the flat basket recovery.

 74

Credit Analytics: FX Component Implementations

FX components are implemented in the package org.drip.product.fx. This contains the

implementations of the Credit Product interfaces for FX spot and forward contracts.

Functionality in this package is implemented over 2 classes – FXSpotContract and

FXForwardContract.

FXForwardContract

FXForwardContract contains the FX forward product contract details - the effective date,

the maturity date, the currency pair and the product code.

FXSpotContract

FXSpotContract contains the FX spot contract parameters - the spot date and the currency

pair.

 75

Credit Analytics: Product Creators

Product creators are implemented in the package org.drip.product.creator. This contains

the creators for the various rates, credit, and FX component and basket products.

Functionality in this package is implemented over 12 classes – CashBuilder,

EDFutureBuilder, RatesStreamBuilder, CDSBuilder, bond creator classes

(BondRefDataBuilder, BondProductBuilder, BondBuilder), CDS basket creator classes

(CDSBasketBuilder, CDXRefDataHolder), BondBasketBuilder, and FX product builder

classes (FXSpotBuilder and FXForwardBuilder). Of these CDXRefDataHolder is

generated from the CDX reference/static information.

BondBasketBuilder

BondBasketBuilder contains the suite of helper functions for creating the bond Basket

Product from different kinds of inputs and byte streams.

BondBuilder

BondBuilder contains the suite of helper functions for creating simple fixed/floater

bonds, user defined bonds, optionally with custom cash flows and embedded option

schedules (European or American). It also constructs bonds by de-serializing the byte

stream.

BondProductBuilder

 76

BondProductBuilder holds the static parameters of the bond product needed for the full

bond valuation. It contains:

• Bond identifier parameters (ISIN, CUSIP)

• Issuer level parameters (Ticker, SPN or the credit curve string)

• Coupon parameters (coupon rate, coupon frequency, coupon type, day count)

• Maturity parameters (maturity date, maturity type, final maturity, redemption value)

• Date parameters (announce, first settle, first coupon, interest accrual start, and issue

dates)

• Embedded option parameters (callable, putable, has been exercised)

• Currency parameters (trade, coupon, and redemption currencies)

• Floater parameters (floater flag, floating coupon convention, current coupon, rate

index, spread)

• Whether the bond is perpetual or has defaulted

BondRefDataBuilder

BondRefDataBuilder holds the entire set of static parameters for the bond product. In

particular, it contains

• Bond identifier parameters (ISIN, CUSIP, BBG ID, name short name)

• Issuer level parameters (Ticker, category, industry, issue type, issuer country, issuer

country code, collateral type, description, security type, unique Bloomberg ID, long

company name, issuer name, SPN or the credit curve string)

• Issue parameters (issue amount, issue price, outstanding amount, minimum piece,

minimum increment, par amount, lead manager, exchange code, country of

incorporation, country of guarantor, country of domicile, industry sector, industry

group, industry sub-group, senior/sub)

• Coupon parameters (coupon rate, coupon frequency, coupon type, day count)

• Maturity parameters (maturity date, maturity type, final maturity, redemption value)

 77

• Date parameters (announce, first settle, first coupon, interest accrual start, next

coupon, previous coupon, penultimate coupon, and issue dates)

• Embedded option parameters (callable, putable, has been exercised)

• Currency parameters (trade, coupon, and redemption currencies)

• Floater parameters (floater flag, floating coupon convention, current coupon, rate

index, spread)

• Trade status

• Ratings (S & P, Moody, and Fitch),

• Whether the bond is private placement, is registered, is a bearer bond, is reverse

convertible, is a structured note, can be unit traded, is perpetual or has defaulted.

CashBuilder

CashBuilder contains the suite of helper functions for creating the Cash product from the

parameters/codes/byte array streams.

CDSBasketBuilder

CDSBasketBuilder contains the suite of helper functions for creating the CDS Basket

Product from different kinds of inputs and byte streams.

CDSBuilder

CDSBuilder contains the suite of helper functions for creating the CreditDefaultSwap

product from the parameters/byte array streams. It also creates the standard EU, NA,

ASIA contracts, CDS with amortization schedules, and CDS from product codes/tenors.

 78

CDXRefDataHolder

CDXRefDataHolder contains all the generated standard CDX Products, returned as

instances of CreditProduct’s BasketProduct interface. Since this is a generated file, please

do not delete this.

EDFutureBuilder

EDFutureBuilder contains the suite of helper functions for creating the EDFuture product

from the parameters/codes/byte array streams.

FXForwardBuilder

FXForwardBuilder contains the suite of helper functions for creating the

FXForwardBuilder product from the parameters/byte array streams.

FXSpotBuilder

FXSpotBuilder contains the suite of helper functions for creating the FXSpot from the

corresponding parameters/byte array streams.

RatesStreamBuilder

RatesStreamBuilder contains the suite of helper functions for creating the Stream-based

Rates Products from different kinds of inputs. In particular, it demonstrates the following:

 79

• Construction of the custom/standard fixed/floating streams from parameters.

• Construction of the custom/standard IRS from parameters.

• Construction of the fixed/floating streams and IRS from byte arrays.

 80

Credit Analytics: Analytics Environment Manager

Analytics Environment Manager component are implemented in the package

org.drip.service.env. This contains the creators for the various rates, credit, and FX

component and basket products.

Functionality in this package is implemented over 7 classes – BondManager,

CDSManager, EnvManager, EODCurves, RatesManager, StandardCDXManager, and

StaticBACurves.

BondManager

BondManager implements a container that holds the EOD and bond static information on

a per issuer basis. It exposes the following functionality:

• Retrieve the available tickers, and all the ISIN's per ticker.

• Load the full set of bond reference data, embedded option schedules, and

amortization schedules.

• Load the full set of bond marks.

• Calculate the bond RV/Value measures for a ticker/full bond set, given the EOD and

the appropriate curves and market measures.

• Save the computed measures for a given EOD.

• (Optionally) Generate a Bond Creator File.

CDSManager

 81

CDSManager is the container that retrieves the EOD and CDS/credit curve information

on a per-issuer basis and populates the MPC.

EnvManager

EnvManager sets the environment and connection parameters, and populates the market

parameters (quotes, curves, and fixings) for a given EOD.

EODCurves

EODCurves that creates the closing curves from the closing marks available in the DB

for a given EOD and populates them onto the MPC. It builds the following:

• Discount Curve (from cash/future/swap - typical sequence), EDSF Curve, and TSY

Curve

• Credit Curve from CDS quotes

• On-the-run TSY yield quotes

RatesManager

RatesManager manages the creation/loading of the rates curves of different kinds for a

given EOD.

StaticBACurves

StaticBACurves that creates the closing curves from custom/user defined marks for a

given EOD and populates them onto the MPC. It builds the following:

 82

• Discount Curve (from cash/future/swap - typical sequence), EDSF Curve, and TSY

Curve

• Credit Curve from CDS quotes

• On-the-run TSY yield quotes

StandardCDXManager

StandardCDXManager implements the creation and the static details of the all the NA,

EU, SovX, EMEA, and ASIA standardized CDS indices. It exposes the following

functionality:

• Retrieve the full set of pre-set/pre-loaded CDX names/descriptions.

• Retrieve all the CDX's given an index name.

• Get the index, index series, and the effective/maturity dates for a given CDX.

• Get all the on-the-runs for an index, date, and tenor.

• Retrieve the full basket product corresponding to NA/EU/ASIA IG/HY/EM and other

available standard CDX.

• Build a custom CDX product.

 83

Credit Analytics: Analytics Bridge

Analytics Bridge is implemented in the package org.drip.service.bridge. This provides

the stub and proxy functionality for invoking Credit Analytics functionality in a remote

server and extracting the results.

Functionality in this package is implemented over 4 classes – CreditAnalyticsRequest,

CreditAnalyticsResponse, CreditAnalyticsStub, and CreditAnalyticsProxy.

CreditAnalyticsRequest

CreditAnalyticsRequest contains the requests for the Credit Analytics server from the

client. It contains the following parameters:

• The GUID and the time-stamp of the request.

• The component that is being valued.

• The valuation, the pricer, and the quoting parameters.

• The market parameters assembled in the ComponentMarketParams.

Typical usage is: Client fills in the entities in the request, serializes them, and sends them

to the server, and receives a serialized response back from the server.

CreditAnalyticsResponse

CreditAnalyticsResponse contains the response from the Credit Analytics server to the

client. It contains the following parameters:

• The GUID and of the request.

 84

• The type and time-stamp of the response.

• The string version of the response body.

CreditAnalyticsProxy

CreditAnalyticsProxy captures the requests for the Credit Analytics server from the

client, formats them, and sends them to the Credit Analytics Stub.

CreditAnalyticsStub

CreditAnalyticsStub serves as a sample server that hosts the Credit Analytics

functionality. It receives requests from the analytics client as a serialized message, and

invokes the CreditAnalytics functionality, and sends the client the serialized results.

 85

Credit Analytics: Analytics API

Analytics API is implemented in the package org.drip.service.api. This provides a

unified and comprehensive functional, static interface of all the main Credit Analytics

functionality.

Functionality in this package is implemented over a single class – CreditAnalytics.

CreditAnalytics

CreditAnalytics exposes all the CreditAnalytics API to clients – this class is the main

functional interface. The functions exposed are too numerous to list, and can be roughly

grouped into the following:

• Product Creation

• Curve Construction from Market Instruments

• Product Reference Data Examination

• Product Valuation from the Market Parameters

• Product Measure Extraction

• Product RV Measure Computation

• General Finance Math calculation (day count, date adjust etc.)

• Closing points extraction

 86

Credit Analytics: Samples

Credit Analytics samples are available in the package org.drip.service.sample. This

provides samples illustrating the functionality provided by Credit Analytics – samples

demonstrating the creation and usage of curves and products across rates, credit, and FX

components and baskets. Examples are also provided on how to compare against standard

analytics vendors/suppliers (e.g., Bloomberg).

Functionality in this package is implemented over 18 classes – BloombergCDSW,

BloombergSWPM, BloombergYAS, BondAnalyticsAPI, BondBasketAPI,

BondLiveAndEODAPI, BondRVMeasuresAPI, BondStaticAPI, CDSBasketAPI,

CDSLiveAndEODAPI, CreditAnalyticsAPI, DayCountAndCalendarAPI, FXAPI,

MultiLegSwapAPI, RatesAnalyticsAPI, RatesLiveAndEODAPI, StandardCDXAPI, and

TreasuryCurveAPI.

BloombergCDSW

BloombergCDSW contains the sample demonstrating the replication of Bloomberg's

CDSW functionality.

BloombergSWPM

BloombergSWPM contains the sample demonstrating the replication of Bloomberg's

SWPM functionality.

 87

BloombergYAS

BloombergYAS contains the sample demonstrating the replication of Bloomberg's YAS

functionality.

BondAnalyticsAPI

BondAnalyticsAPI contains a demo of the bond analytics API Sample. It generates the

value and the RV measures for essentially the same bond (with identical cash flows)

constructed in 3 different ways:

• As a fixed rate bond.

• As a floater.

• As a bond constructed from a set of custom coupon and principal flows.

It shows these measures reconcile where they should.

BondBasketAPI

BondBasketAPI contains a demo of the bond basket API Sample. It shows the following:

• Build the IR Curve from the Rates' instruments.

• Build the Component Credit Curve from the CDS instruments.

• Create the basket market parameters and add the named discount curve and the credit

curves to it.

• Create the bond basket from the component bonds and their weights.

• Construct the Valuation and the Pricing Parameters.

• Generate the bond basket measures from the valuation, the pricer, and the market

parameters.

 88

BondLiveAndEODAPI

BondLiveAndEODAPI contains the comprehensive sample class demonstrating the usage

of the EOD and Live Curve Bond API functions.

BondRVMeasuresAPI

BondRVMeasuresAPI is a Simple Bond RV Measures API Sample demonstrating the

invocation and usage of Bond RV Measures functionality. It shows the following:

• Create the discount/treasury curve from rates/treasury instruments.

• Compute the work-out date given the price.

• Compute and display the base RV measures to the work-out date.

• Compute and display the bumped RV measures to the work-out date.

BondStaticAPI

BondStaticAPI contains a demo of the bond static API Sample. The Sample demonstrates

the retrieval of the bond's static fields.

CDSBasketAPI

CDSBasketAPI contains a demo of the CDS basket API Sample. It shows the following:

• Build the IR Curve from the Rates' instruments.

• Build the Component Credit Curve from the CDS instruments.

• Create the basket market parameters and add the named discount curve and the credit

curves to it.

 89

• Create the CDS basket from the component CDS and their weights.

• Construct the Valuation and the Pricing Parameters.

• Generate the CDS basket measures from the valuation, the pricer, and the market

parameters.

CDSLiveAndEODAPI

CDSLiveAndEODAPI is a fairly comprehensive sample demo'ing the usage of the EOD

and Live CDS Curve API functions. It demonstrates the following:

• Retrieves all the CDS curves available for the given EOD.

• Retrieves the calibrated credit curve from the CDS instruments for the given CDS

curve name, IR curve name, and EOD. Also shows the 10Y survival probability and

hazard rate.

• Displays the CDS quotes used to construct the closing credit curve.

• Loads all available credit curves for the given curve ID built from CDS instruments

between 2 dates and displays the corresponding 5Y quote.

• Calculate and display the EOD CDS measures for a spot starting CDS based off of a

specific credit curve.

CreditAnalyticsAPI

CreditAnalyticsAPI contains a demo of the CDS Analytics API Sample. It illustrates the

following:

• Credit Curve Creation: From flat Hazard Rate, and from an array of dates and their

corresponding survival probabilities.

• Create Credit Curve from CDS instruments, and recover the input measure quotes.

• Create an SNAC CDS, price it, and display the coupon/loss cash flow.

 90

DayCountAndCalendarAPI

DayCountAndCalendarAPI demonstrates Day-count and Calendar API FUnctionality. It

does the following:

• Get all the holiday locations in CreditAnalytics, and all the holidays in the year

according the calendar set.

• Get all the week day/weekend holidays in the year according the calendar set.

• Calculate year fraction between 2 dates according to semi-annual, Act/360, and USD

calendar.

• Adjust the date FORWARD according to the USD calendar.

• Roll to the PREVIOUS date according to the USD calendar.

FXAPI

FXAPI contains a demo of the FX API Sample. It shows the following:

• Create a currency pair, FX SPot, and FX Forward.

• Calculate the FX forward PIP/outright.

• Calculate the DC Basis on the domestic and the foreign curves.

• Create an FX curve from the spot, and the array of nodes, FX forward, as well as the

PIP indicator.

• Calculate the array of the domestic/foreign basis.

• Calculate the array of bootstrapped domestic/foreign basis.

• Re-imply the array of FX Forward from domestic/foreign Basis Curve.

MultiLegSwapAPI

 91

MultiLegSwapAPI illustrates the creation, invocation, and usage of the MultiLegSwap. It

shows how to:

• Create the Discount Curve from the rates instruments.

• Set up the valuation and the market parameters.

• Create the Rates Basket from the fixed/float streams.

• Value the Rates Basket.

RatesAnalyticsAPI

RatesAnalyticsAPI contains a demo of the Rates Analytics API Usage. It shows the

following:

• Build a discount curve using: cash instruments only, EDF instruments only, IRS

instruments only, or all of them strung together.

• Re-calculate the component input measure quotes from the calibrated discount curve

object.

• Compute the PVDF Wengert Jacobian across all the instruments used in the curve

construction.

RatesLiveAndEODAPI

RatesLiveAndEODAPI contains the sample API demonstrating the usage of the Rates

Live and EOD functions. It does the following:

• Pulls all the closing rates curve names (of any type, incl. TSY) that exist for a given

date.

• Load the full IR curve created from all the single currency rate quotes (except TSY)

for the given currency and date.

• Calculate the discount factor to an arbitrary date using the constructed curve.

 92

• Retrieve the components and their quotes that went into constructing the curve, and

display them.

• Load all the rates curves available between the dates for the currency specified, and

step through.

• Load all the Cash quotes available between the dates for the currency specified, and

step through.

• Load all the EDF quotes available between the dates for the currency specified, and

step through.

• Load all the IRS quotes available between the dates for the currency specified, and

step through.

• Load all the TSY quotes available between the dates for the currency specified, and

step through.

StandardCDXAPI

StandardCDXAPI contains a demo of the CDS basket API Sample. It shows the

following:

• Construct the CDX.NA.IG 5Y Series 17 index by name and series.

• Construct the on-the-run CDX.NA.IG 5Y Series index.

• List all the built-in CDX's - their names and descriptions.

• Construct the on-the run CDX.EM 5Y corresponding to T - 1Y.

• Construct the on-the run ITRAXX.ENERGY 5Y corresponding to T - 7Y.

• Retrieve the full set of date/index series set for ITRAXX.ENERGY.

TreasuryCurveAPI

TreasuryCurveAPI contains a demo of construction and usage of the treasury discount

curve from government bond inputs. It shows the following:

 93

• Create on-the-run TSY bond set.

• Calibrate a discount curve off of the on-the-run yields and calculate the implied

zeroes and DF's.

• Price an off-the-run TSY.

 94

Credit Analytics: Functional Testers

Credit Analytics functional testers are available in the package org.drip.tester.functional.

This contains a fairly extensive set of unit and composite testers for the curve, products,

serialization, and analytics functionality provided by the Credit Analytics suite, with a

special focus on bonds.

Functionality in this package is implemented over 4 classes – BondTestSuite,

CreditAnalyticsTestSuite, ProductTestSuite, and SerializerTestSuite.

BondTestSuite

BondTestSuite tests more-or-less the full suite of bond functionality exposed in

CreditAnalytics API.

CreditAnalyticsTestSuite

CreditAnalyticsTestSuite tests more-or-less the full suite of functionality exposed in

CreditAnalytics API across all products, curves, quotes, outputs, and parameters, and

their variants.

ProductTestSuite

ProductTestSuite tests more-or-less the full suite of the product valuation functionality

exposed in CreditAnalytics API. The following variants are tested.

 95

• Full suite of products - rates, credit and FX, both components and baskets.

• Base flat/tenor bumped scenario tests.

SerializerTestSuite

SerializerTestSuite tests the serialization functionality across all products, curves, quotes,

outputs, and parameters, and their variants.

 96

Regression Suite Library

Regression Suite Library consists of the following 2 packages:

1. Core Regression Library: This contains the full set of Regression Suite’s core

framework and the set of extensible interfaces.

2. Curve Regression Suite: This contains the suite for regression testing of the Curve

construction and usage functionality.

3. Curve Jacobian Regression Suite: This contains the suite for regression testing of the

Curve Jacobian extraction and usage functionality.

4. Fixed Point Finder Regression Suite: This contains the suite for regression testing of

the non-linear univariate fixed-point finder.

5. Basis Spline Regression Suite: This contains the suite for regression testing of the

basis spline set construction, usage, and the span interpolation functionality.

 97

Regression Suite: Core

The core functionality of the regression suite library is implemented in the package

org.drip.regression.core. This contains the full set of Regression Suite’s core framework

and the set of extensible interfaces.

Functionality in this package is implemented over 7 classes – RegressionEngine,

RegressionRunDetail, RegressionRunOutput, RegressorSet, UnitRegressionExecutor,

UnitRegressionStat, and UnitRegressor.

RegressionEngine

RegressionEngine provides the control and frame-work functionality for the General

Purpose Regression Suite. It invokes the following steps as part of the execution:

• Initialize the regression environment. This step sets up the regression sets, and adds

individual regressors to the set.

• Invoke the regressors in each set one by one.

• Collect the results and details of the regression runs.

• Compile the regression statistics.

• Optionally display the regression statistics.

RegressionRunDetail

RegressionRunDetail contains named field level detailed output of the regression activity.

 98

RegressionRunOutput

RegressionRunOutput contains the output of a single regression activity. It holds the

following:

• The execution time

• The Success/failure status of the run

• The regression scenario that was executed

• The Completion time for the regression module

• The Regression Run Detail for the regression run

RegressorSet

RegressorSet interface provides the Regression set stubs. It contains a set of regressors

and is associated with a unique name. It provides the functionality to set up the contained

regressors.

UnitRegressionExecutor

UnitRegressionExecutor implements the UnitRegressor, and splits the regression

execution into pre-, execute, and post-regression. It provides default implementations for

pre-regression and post-regression. Most typical regressors only need to over-ride the

execRegression method.

UnitRegressionStat

UnitRegressionStat creates the statistical details for the Unit Regressor. It holds the

following:

 99

• Execution Initialization Delay

• Execution time mean, variance, maximum, and minimum

• The full list of individual execution times

UnitRegressor

UnitRegressor provides the stub functionality for the Individual Regressors. Its derived

classes implement the actual regression run. Individual regressors are named.

 100

Curve Regression Suite

The core functionality of the curve regression library is implemented in the package

org.drip.regression.curve. This contains the suite for regression testing of the Curve

construction and usage functionality.

Functionality in this package is implemented over 5 classes – DiscountCurveRegressor,

ZeroCurveRegressor, CreditCurveRegressor, FXCurveRegressor, and

CreditAnalyticsRegressionEngine.

DiscountCurveRegressor

DiscountCurveRegressor implements the regression set analysis for the Discount Curve.

DiscountCurveRegressor regresses 11 scenarios:

• #1: Create the discount curve from a set 30 instruments (cash/future/swap).

• #2: Create the discount curve from a flat discount rate.

• #3: Create the discount curve from a set of discount factors.

• #4: Create the discount curve from the implied discount rates.

• #5: Extract the discount curve instruments and quotes.

• #6: Create a parallel shifted discount curve.

• #7: Create a rate shifted discount curve.

• #8: Create a basis rate shifted discount curve.

• #9: Create a node tweaked discount curve.

• #10: Compute the effective discount factor between 2 dates.

• #11: Compute the effective implied rate between 2 dates.

 101

ZeroCurveRegressor

ZeroCurveRegressor implements the regression analysis set for the Zero Curve. The

regression tests do the following:

• Build a discount curve, followed by the zero curve.

• Regressor #1: Compute zero curve discount factors.

• Regressor #2: Compute zero curve zero rates.

CreditCurveRegressor

CreditCurveRegressor implements the regression set analysis for the Credit Curve.

CreditCurveRegressor regresses 12 scenarios:

• #1: Create an SNAC CDS.

• #2: Create the credit curve from a set of CDS instruments.

• #3: Create the credit curve from a flat hazard rate.

• #4: Create the credit curve from a set of survival probabilities.

• #5: Create the credit curve from an array of hazard rates.

• #6: Extract the credit curve instruments and quotes.

• #7: Create a parallel hazard shifted credit curve.

• #8: Create a parallel quote shifted credit curve.

• #9: Create a node tweaked credit curve.

• #10: Set a specific default date on the credit curve.

• #11: Compute the effective survival probability between 2 dates.

• #12: Compute the effective hazard rate between 2 dates.

FXCurveRegressor

 102

FXCurveRegressor implements the regression analysis set for the FX Curve.

FXCurveRegressor implements 3 regression tests:

• #1: FX Basis and FX Curve Creation: Construct a FX forward Curve from an array of

FX forward nodes and the spot.

• #2: Imply the FX Forward given the domestic and foreign discount curves.

• #3a: Compute the domestic and foreign basis given the market FX forward.

• #3b: Build the domestic/foreign basis curve given the corresponding basis nodes.

• #3c: Imply the array of FX forward points/PIPs from the array of basis and

domestic/foreign discount curves.

CreditAnalyticsRegressionEngine

CreditAnalyticsRegressionEngine implements the RegressionEngine for the curve

regression. It adds the CreditCurveRegressor, DiscountCurveRegressor,

FXCurveRegressor, and ZeroCurveRegressor, and launches the regression engine.

 103

Curve Jacobian Regression Suite

The core functionality of the curve Jacobian regression library is implemented in the

package org.drip.regression.curveJacobian. This contains the suite for regression testing

of the Curve construction and usage functionality.

Functionality in this package is implemented over 5 classes – CashJacobianRegressorSet,

EDFJacobianRegressorSet, IRSJacobianRegressorSet,

DiscountCurveJacobianRegressorSet, and CurveJacobianRegressionEngine.

CashJacobianRegressorSet

CashJacobianRegressorSet implements the regression analysis set for the Cash product

related Sensitivity Jacobians. Specifically, it computes the PVDF micro-Jack.

EDFJacobianRegressorSet

EDFJacobianRegressorSet implements the regression analysis set for the EDF product

related Sensitivity Jacobians. Specifically, it computes the PVDF micro-Jack.

IRSJacobianRegressorSet

IRSJacobianRegressorSet implements the regression analysis set for the IRS product

related Sensitivity Jacobians. Specifically, it computes the PVDF micro-Jack.

 104

DiscountCurveJacobianRegressorSet

DiscountCurveJacobianRegressorSet implements the regression analysis for the full

discount curve (built from cash/future/swap) Sensitivity Jacobians. Specifically, it

computes the PVDF micro-Jack.

CurveJacobianRegressionEngine

CurveJacobianRegressionEngine implements the RegressionEngine for the curve

Jacobian regression. It adds the CashJacobianRegressorSet, the

EDFJacobianRegressorSet, the IRSJacobianRegressorSet, and the

DiscountCurveJacobianRegressorSet, and launches the regression engine.

 105

Fixed-Point Finder Regression Suite

The core functionality of the non-linear fixed-point finder regression library is

implemented in the package org.drip.regression.fixedpointfinder. This contains the suite

for regression testing of the non-linear univariate fixed-point finder.

Functionality in this package is implemented over 4 classes – OpenRegressorSet,

BracketingRegressorSet, CompoundBracketingRegressorSet, and

FixedPointFinderRegressionEngine.

OpenRegressorSet

OpenRegressorSet implements the regression run for the Open (i.e., Newton) Fixed Point

Search Method.

BracketingRegressorSet

BracketingRegressorSet implements regression run for the Primitive Bracketing Fixed

Point Search Method. It implements the following 4 primitive bracketing schemes:

Bisection, False Position, Quadratic, and Inverse Quadratic.

CompoundBracketingRegressorSet

CompoundBracketingRegressorSet implements regression run for the Compound

Bracketing Fixed Point Search Method. It implements the following 2 compound

bracketing schemes: Brent and Zheng.

 106

FixedPointFinderRegressionEngine

FixedPointFinderRegressionEngine implements the RegressionEngine for the Fixed Point

Finder regression. It adds the OpenRegressorSet, the BracketingRegressorSet, and the

CompoundBracketingRegressorSet, and launches the regression engine.

 107

Basis Spline Regression Suite

The core functionality of the basis spline regression library is implemented in the

package org.drip.regression.spline. This contains the suite for regression testing of the

basis spline set construction, usage, and the span interpolation functionality.

Functionality in this package is implemented over 3 classes – BasisSplineRegressor,

BasisSplineRegressorSet, and BasisSplineRegressionEngine.

BasisSplineRegressor

BasisSplineRegressor implements the custom basis spline regressor for the given basis

spline. As part of the regression run, it executes the following:

• Calibrate and compute the left and he right Jacobian.

• Reset right node and re-run calibration.

• Compute an intermediate value Jacobian.

BasisSplineRegressorSet

BasisSplineRegressorSet carries out regression testing for the following series of basis

splines:

• #1: Polynomial Basis Spline, n = 2 basis functions, and 0=kC .

• #2: Polynomial Basis Spline, n = 3 basis functions, and 1=kC .

• #3: Polynomial Basis Spline, n = 4 basis functions, and 1=kC .

• #4: Polynomial Basis Spline, n = 4 basis functions, and 2=kC .

• #5: Polynomial Basis Spline, n = 5 basis functions, and 1=kC .

• #6: Polynomial Basis Spline, n = 5 basis functions, and 2=kC .

 108

• #7: Polynomial Basis Spline, n = 5 basis functions, and 3=kC .

• #8: Polynomial Basis Spline, n = 6 basis functions, and 1=kC .

• #9: Polynomial Basis Spline, n = 6 basis functions, and 2=kC .

• #10: Polynomial Basis Spline, n = 6 basis functions, and 3=kC .

• #11: Polynomial Basis Spline, n = 6 basis functions, and 4=kC .

• #12: Polynomial Basis Spline, n = 7 basis functions, and 1=kC .

• #13: Polynomial Basis Spline, n = 7 basis functions, and 2=kC .

• #14: Polynomial Basis Spline, n = 7 basis functions, and 3=kC .

• #15: Polynomial Basis Spline, n = 7 basis functions, and 4=kC .

• #16: Polynomial Basis Spline, n = 7 basis functions, and 5=kC .

• #17: Bernstein Polynomial Basis Spline, n = 4 basis functions, and 2=kC .

• #18: Exponential Tension Spline, n = 4 basis functions, Tension = 1., and 2=kC .

• #19: Hyperbolic Tension Spline, n = 4 basis functions, Tension = 1., and 2=kC .

• #20: Kaklis-Pandelis Tension Spline, n = 4 basis functions, KP = 2, and 2=kC .

BasisSplineRegressionEngine

BasisSplineRegressionEngine implements the RegressionEngine class for the basis spline

functionality.

 109

DRIP Math

DRIP Math Library consists of the following 9 packages:

1. DRIP Calculus Routines: This contains functionality for mathematical integration and

differentiation.

2. DRIP Common Utility Routines: This contains functionality that is common across

all DRIP modules.

3. DRIP Probability Distribution Library: This contains functionality to generate/utilize

probability distributions.

4. DRIP Univariate Function Library: This contains functionality to generate a wide

variety of univariate functions.

5. DRIP Span/Grid Library: This package implements the layout of the n-D grid

functionality in accordance with the calibration schema set out in the corresponding

specification.

6. DRIP Linear Algebra Routines: This package implements a selected set of linear

algebra routines needed by the different segments of Credit Analytics.

7. DRIP Math Samples: This package provides an illustration of the usage of the DRIP

math functionality. Samples here demonstrate linear equation set solution/matrix

inversion, basis spline set creation and usage, highly customized polynomial spline

construction and properties evaluation, fixed point search examples, and span

interpolation samples.

 110

8. DRIP Non-linear Fixed Point Search Library: This package implements a number of

univariate, non-linear fixed-point search routines. Methodology separates execution

initialization from variate iteration. A variety of open and closed variate iteration

techniques are implemented, along with simple/complex closed variate iteration

techniques.

9. DRIP Spline Library: This package implements the basis set across the different

splines – their creation, the segment level calibration, the customization, and

segment-level inference values. It customizes the spline construction into spline-

independent segment-control parameters, and spline-dependent basis set generator

parameters. Finally it implements the spline functionality according to the

specification and formulation laid out in detail.

 111

DRIP Calculus Routines

The core functionality of the DRIP calculus routines is implemented in the package

org.drip.math.calculus. This contains functionality for mathematical integration and

differentiation. Differentiation is carried out using algorithmic and automated

differentiation techniques, and modeule specific Jacobian generation methods are

introduced. Several types of integration techniques are introduced too.

Functionality in this package is implemented over 4 classes – DerivativeControl,

Differential, Integrator, and WengertJacobian.

DerivativeControl

DerivativeControl provides bumps needed for numerically approximating derivatives.

Bumps can be absolute or relative, and they default to a floor.

Differential

Differential holds the incremental differentials for the variate and the objective function.

Integrator

Integrator implements the following routines for integrating the objective function:

• Mid-Point Scheme

• Trapezoidal Scheme

 112

• Simpson/Simpson38 schemes

• Boole Scheme

WengertJacobian

WengertJacobian contains the Jacobian of the given set of Wengert variables to the set of

parameters. It exposes the following functionality:

• Set the Wengert variables

• Accumulate the Partials

• Scale the partial entries

• Merge the Jacobian with another

• Retrieve the WengertJacobian elements

 113

DRIP Common Utility Routines

The core functionality of the DRIP common utility routines is implemented in the

package org.drip.math.common. This contains functionality that is common across all

DRIP modules. Utilities include date manipulation, string parsing and formatting, map

manipulation, and number operations that are not readily covered.

Functionality in this package is implemented over 5 classes – DateUtil, FormatUtil,

MapUtil, NumberUtil, and StringUtil.

DateUtil

DateUtil implements date utility functions those are extraneous to the JulianDate

implementation. It exposes the following functionality:

• Retrieve Day, Month, and Year From Java Date.

• Switch between multiple date formats (Oracle Date, BBG Date, different string

representations etc).

FormatUtil

FormatUtil implements formatting utility functions. Currently it just exports functions to

pad and format.

MapUtil

 114

The MapUtil class implements generic utility functions used in DRIP modules. Some of

the functions it exposes are:

• Map Merging Functionality.

• Map Key Functionality - key-value flatteners, key prefixers.

• Decompose/transform List/Set/Array Contents.

• Multi-Dimensional Map Manipulator Routines.

NumberUtil

NumberUtil implements number utility functions. It exposes the following functions:

• Verify number/number array validity, and closeness match.

• Factorial Permutation/Combination functionality

• Dump multi-dimensional array contents

StringUtil

StringUtil implements string utility functions. It exports the following functions:

• Decompose + Transform string arrays into appropriate target type set/array/list, and

vice versa.

• General-purpose String processor functions, such as GUID generator, splitter, type

converter and input checker.

 115

DRIP Probability Distribution Library

The core functionality of the DRIP probability distribution library is implemented in the

package org.drip.math.distribution. This contains functionality to generate/utilize

probability distributions. Supported distributions include the univariate normal

distribution and its variants..

Currently, functionality in this package is implemented over 2 classes – Univariate and

UnivariateNormal.

Univariate

Univariate implements the base abstract class behind univariate distributions. It exports

methods for incremental, cumulative, and inverse cumulative distribution densities.

UnivariateNormal

UnivariateNormal implements the univariate normal distribution. It implements

incremental, cumulative, and inverse cumulative distribution densities.

 116

DRIP Univariate Function Library

The core functionality of the DRIP Univariate function library is implemented in the

package org.drip.math.function. These are currently most commonly used in the fixed

point searching schemes, as well as spline approximation functionality.

Supported univariate functions include polynomial variants (regular, Bernstein), Cauchy

convergent series (e.g., natural log series), exponential and hyperbolic tension

univariates, rational univariates. Also supported are function convolutions and function

reflections.

Functionality in this package is implemented over 9 classes – AbstractUnivariate,

BernsteinPolynomial, ExponentialTension, HyperbolicTension,

NaturalLogSeriesElement, Polynomial, RationalShapeControl, UnivariateConvolution,

and UnivariateReflection.

AbstractUnivariate

AbstractUnivariate provides the evaluation of the objective function and its derivatives

for a specified variate. Default implementation of the derivatives is for non-analytical

black box objective functions.

BernsteinPolynomial

BernsteinPolynomial provides the evaluation of the BernsteinPolynomial and its

derivatives for a specified variate.

 117

ExponentialTension

ExponentialTension provides the evaluation of the Exponential Tension Function and its

derivatives for a specified variate.

HyperbolicTension

HyperbolicTension provides the evaluation of the Hyperbolic Tension Function and its

derivatives for a specified variate.

NaturalLogSeriesElement

NaturalLogSeriesElement implements an element in the natural log series expansion.

Polynomial

Polynomial provides the evaluation of the n-th order Polynomial and its derivatives for a

specified variate.

RationalShapeControl

RationalShapeControl implements the deterministic rational shape control functionality

on top of interpolating basis splines inside [)1,...,0 , and globally [)10,...,xx :

()xx
y

−+
=

11

1

λ
where x is the normalized ordinate mapped as

1

1

−

−

−
−

⇒

ii

i

xx

xx
x .

 118

UnivariateConvolution

This class provides the evaluation of the Convolution () ()xfxf 21 × and its derivatives for

a specified variate.

UnivariateReflection

UnivariateReflection provides the evaluation ()xf −1 instead of ()xf for a given f .

 119

DRIP Span/Grid Library

The core functionality of the DRIP span/grid library is implemented in the package

org.drip.math.grid. This package implements the layout of the n-D grid functionality in

accordance with the calibration schema set out in the corresponding specification. It lays

the basic segment/span separation, partition the segment parameters into elastics and

inelastics, and evaluates segment characteristics (monotonicity, variational smoothening

effectivenss, etc.).

Functionality in this package is implemented over 5 classes – Inelastics, Segment,

SegmentControlParams, SegmentMonotonicity, and Span.

Inelastics

This class the inelastic fields of the given segment – in this case the start/end co-

ordinates.

Segment

This abstract class extends Inelastics, and incorporates segment specific inelastic

parameters. Interpolating segment spline functions and their coefficients are

implemented/calibrated in the overriding spline classes. It provides functionality for

assessing the various segment attributes:

• Segment Monotonicity.

• Interpolated Function Value, the ordered derivative, and the corresponding Jacobian.

• Segment Local/Global Derivative.

• Evaluation of the Segment Micro-Jack.

 120

• Head / Regular Segment calibration - both of the basis function coefficients and the

Jacobian.

SegmentControlParams

This class holds the parameters the guide the creation and the behavior of the segment. It

holds the segment elastic/inelastic parameters and the named basis function set.

SegmentMonotonicity

This class contains the monotonicity details related to the given segment. Indicates

whether the segment is monotonic, and if not, whether it contains a maximum, a

minimum, or an inflection.

Span

This class implements the span that spans multiple segments. It holds the ordered

segment sequence, the segment control parameters, and, if available, the spanning

Jacobian. It exports the following group of functionality:

o Construct adjoining segment sequences in accordance with the segment control

parameters

o Calibrate according to a varied set of (i.e., NATURAL/FINANCIAL) boundary

conditions

o Interpolate both the value, the ordered derivatives, and the Jacobian at the given

ordinate

o Compute the monotonicity details - segment/span level monotonicity, co-

monotonicity, local monotonicity.

o Insert knots

 121

Span also exports several static span creation/calibration methods to generate customized

basis splines, with customized segment behavior using the segment control.

 122

DRIP Linear Algebra Routines

The core functionality of the DRIP linear algebra routines is implemented in the package

org.drip.math.linearalgebra. This package implements a selected set of linear algebra

routines needed by the different segments of Credit Analytics. Functionality it exports

includes solving systems of linear equations, matrix manipulation

(inversion/diagonalization/components extraction etc), and Jacobian generation.

Functionality in this package is implemented over 4 classes – LinearizationOutput,

LinearSystemSolver, Matrix, and MatrixComplementTransform.

LinearizationOutput

LinearizationOutput holds the output of a sequence of linearization operations. It contains

the transformed original matrix, the transformed RHS, and the method used for the

linearization operation.

LinearSystemSolver

LinearSystemSolver implements the solver for a system of linear equations given

by BAx = , where A is the matrix, x the set of variables, and B is the result to be solved

for. It exports the following functions:

• Row Regularization and Diagonal Pivoting.

• Check for Diagonal Dominance.

• Solving the linear system using any one of the following: Gaussian Elimination,

Gauss Seidel reduction, or matrix inversion.

 123

Matrix

Matrix implements Matrix manipulation routines. It exports the following functionality:

• Matrix Inversion using Closed form solutions (for low-dimension matrices), or using

Gaussian elimination

• Matrix Product

• Matrix Diagonalization, Regularization, and Diagonal Pivoting

MatrixComplementTransform

This class holds the results of Matrix transforms on the source and the complement, e.g.,

during a Matrix Inversion Operation.

 124

DRIP Math Samples

The core functionality of the DRIP Math Samples is implemented in the package

org.drip.math.sample. This package provides an illustration of the usage of the DRIP

math functionality. Samples here demonstrate linear equation set solution/matrix

inversion, basis spline set creation and usage, highly customized polynomial spline

construction and properties evaluation, fixed point search examples, and span

interpolation samples.

Functionality in this package is implemented over 5 classes – BasisSplineSet,

LinearAlgebra, PolynomialBasisSpline, RootFinder, and SpanInterpolator.

BasisSplineSet

BasisSplineSet implements Samples for the Construction and the usage of various basis

spline functions. It demonstrates the following:

• Construction of segment control parameters - polynomial (regular/Bernstein) segment

control, exponential/hyperbolic tension segment control, Kaklis-Pandelis tension

segment control.

• Control the segment using the rational shape controller, and the appropriate kC

• Interpolate the node value and the node value Jacobian with the segment, as well as at

the boundaries

• Calculate the segment monotonicity

LinearAlgebra

 125

LinearAlgebra implements Samples for Linear Algebra and Matrix Manipulations. It

demonstrates the following:

• Compute the inverse of a matrix, and multiply with the original to recover the unit

matrix

• Solves system of linear equations using one the exposed techniques

PolynomialBasisSpline

PolynomialBasisSpline implements Samples for the Construction and the usage of

polynomial basis spline functions. It demonstrates the following:

• Control the polynomial segment using the rational shape controller, the appropriate

kC , and the basis function.

• Demonstrate the variational shape optimization behavior.

• Interpolate the node value and the node value Jacobian with the segment, as well as at

the boundaries.

• Calculate the segment monotonicity.

RootFinder

RootFinder contains a sample illustration of usage of the Root Finder Library. It

demonstrates the root extraction using the following techniques:

• Newton-Raphson method

• Bisection Method

• False Position

• Quadratic Interpolation

• Inverse Quadratic Interpolation

• Ridder's method

• Brent's method

 126

• Zheng's method

SpanInterpolator

SpanInterpolator demonstrates the Span builder and usage API. It shows the following:

• Construction of segment control parameters - polynomial (regular/Bernstein) segment

control, exponential/hyperbolic tension segment control, Kaklis-Pandelis tension

segment control.

• Control the segment using the rational shape controller, and the appropriate kC

• Construct a calibrated span interpolator

• Insert a knot into the Span

• Interpolate the node value and the node value Jacobian

• Calculate the segment/span monotonicity

 127

DRIP Non-linear Fixed-Point Search Library

The core functionality of the DRIP non-linear fixed-point search library is implemented

in the package org.drip.math.solver1D. This package implements a number of univariate,

non-linear fixed-point search routines. Methodology separates execution initialization

from variate iteration. A variety of open and closed variate iteration techniques are

implemented, along with primitive/complex closed variate iteration techniques.

Functionality in this package is implemented over 19 classes – BracketingControlParams,

BracketingOutput, ConvergenceControlParams, ConvergenceOutput, ExecutionControl,

ExecutionControlParams, ExecutionInitializationOutput, ExecutionInitializer,

FixedPointFinder, FixedPointFinderBracketing, FixedPointFinderBrent,

FixedPointFinderNewton, FixedPoinderOutput, FixedPointFinderZheng,

InitializationHeuristics, IteratedBracket, IteratedVariate,

VariateIterationSelectionParams, and VariateIteratorPrimitive.

BracketingControlParams

BracketingControlParams implements the control parameters for bracketing solutions.

BracketingControlParams provides the following parameters:

• The starting variate from which the search for bracketing begins.

• The initial width for the brackets.

• The factor by which the width expands with each iterative search.

• The number of such iterations.

BracketingOutput

 128

BracketingOutput carries the results of the bracketing initialization. In addition to the

fields of ExecutionInitializationOutput, BracketingOutput holds the left/right bracket

variates and the corresponding values for the objective function.

ConvergenceControlParams

ConvergenceControlParams holds the fields needed for the controlling the execution of

Newton's method. ConvergenceControlParams does that using the following parameters:

• The determinant limit below which the convergence zone is deemed to have reached.

• Starting variate from where the convergence search is kicked off.

• The factor by which the variate expands across each iterative search.

• The number of search iterations.

ConvergenceOutput

ConvergenceOutput extends the ExecutionInitializationOutput by retaining the starting

variate that results from the convergence zone search. ConvergenceOutput does not add

any new field to ExecutionInitializationOutput.

ExecutionControl

ExecutionControl implements the core fixed-point search execution control and

customization functionality. ExecutionControl is used for a) calculating the absolute

tolerance, and b) determining whether the OF has reached the goal. ExecutionControl

determines the execution termination using its ExecutionControlParams instance.

 129

ExecutionControlParams

ExecutionControlParams holds the parameters needed for controlling the execution of the

fixed-point finder. ExecutionControlParams fields control the fixed-point search in one of

the following ways:

• Number of iterations after which the search is deemed to have failed.

• Relative Objective Function Tolerance Factor which, when reached by the objective

function, will indicate that the fixed point has been reached.

• Variate Convergence Factor, factor applied to the initial variate to determine the

absolute convergence.

• Absolute Tolerance fall-back, which is used to determine that the fixed point has been

reached when the relative tolerance factor becomes zero.

• Absolute Variate Convergence Fall-back, fall-back used to determine if the variate

has converged.

ExecutionInitializationOutput

ExecutionInitializationOutput holds the output of the root initializer calculation. The

following are the fields held by ExecutionInitializationOutput:

• Whether the initialization completed successfully.

• The number of iterations, the number of objective function calculations, and the time

taken for the initialization.

• The starting variate from the initialization

ExecutionInitializer

ExecutionInitializer implements the initialization execution and customization

functionality. ExecutionInitializer performs two types of variate initializations:

 130

• Bracketing initialization: This brackets the fixed point using the bracketing algorithm

described in http://www.credit-trader.org. If successful, a pair of variate/OF

coordinate nodes that bracket the fixed-point is generated. These brackets are

eventually used by routines that iteratively determine the fixed-point. Bracketing

initialization is controlled by the parameters in BracketingControlParams.

• Convergence Zone initialization: This generates a variate that lies within the

convergence zone for the iterative determination of the fixed point using the Newton's

method. Convergence Zone Determination is controlled by the parameters in

ConvergenceControlParams.

ExecutionInitializer behavior can be customized/optimized through several of the

initialization heuristics techniques implemented in the InitializationHeuristics class.

FixedPointFinder

FixedPointFinder is the base abstract class that is implemented by customized

invocations, e.g., Newton's method, or any of the bracketing methodologies.

FixedPointFinder invokes the core routine for determining the fixed point from the goal.

The ExecutionControl determines the execution termination. The initialization heuristics

implements targeted customization of the search.

FixedPointFinder main flow comprises of the following steps:

• Initialize the fixed-point search zone by determining either a) the brackets, or b) the

starting variate.

• Compute the absolute OF tolerance that establishes the attainment of the fixed point.

• Launch the variate iterator that iterates the variate.

• Iterate until the desired tolerance has been attained.

• Return the fixed-point output.

Fixed point finders that derive from this provide implementations for the following:

 131

• Variate initialization: They may choose either bracketing initializer, or the

convergence initializer - functionality is provided for both in this module.

• Variate Iteration: Variates are iterated using a) any of the standard primitive built-in

variate iterators (or custom ones), or b) a variate selector scheme for each iteration.

FixedPointFinderBracketing

FixedPointFinderBracketing customizes the FixedPointFinder for bracketing based fixed-

point finder functionality.

FixedPointFinderBracketing applies the following customization:

• Initializes the fixed-point finder by computing the starting brackets.

• Iterating the next search variate using one of the specified variate iterator primitives.

By default, FixedPointFinderBracketing does not do compound iterations of the variate

using any schemes - that is done by classes that extend it.

FixedPointFinderBrent

FixedPointFinderBrent customizes FixedPointFinderBracketing by applying the Brent's

scheme of compound variate selector.

Brent's scheme, as implemented here, is described in http://www.credit-trader.org. This

implementation retains absolute shifts that have happened to the variate for the past 2

iterations as the discriminant that determines the next variate to be generated.

FixedPointFinderBrent uses the following parameters specified in

VariateIterationSelectorParams:

• The Variate Primitive that is regarded as the "fast" method.

 132

• The Variate Primitive that is regarded as the "robust" method.

• The relative variate shift that determines when the "robust" method is to be invoked

over the "fast".

• The lower bound on the variate shift between iterations that serves as the fall-back to

the "robust".

FixedPointFinderNewton

FixedPointFinderNewton customizes the FixedPointFinder for Open (Newton's) fixed-

point finder functionality.

FixedPointFinderNewton applies the following customization:

• Initializes the fixed point finder by computing a starting variate in the convergence

zone.

• Iterating the next search variate using the Newton's method.

FixedPointFinderOutput

FixedPointFinderOutput holds the result of the fixed-point search.

FixedPointFinderOutput contains the following fields:

• Whether the search completed successfully

• The number of iterations, the number of objective function base/derivative

calculations, and the time taken for the search

• The output from initialization

FixedPointFinderZheng

 133

FixedPointFinderZheng implements the fixed-point locator using Zheng's improvement

to Brent's method.

FixedPointFinderZheng overrides the iterateCompoundVariate method to achieve the

desired simplification in the iterative variate selection.

InitializationHeuristics

InitializationHeuristics implements several heuristics used to kick off the fixed-point

bracketing/search process.

The following custom heuristics are implemented as part of the heuristics based kick-off:

• Custom Bracketing Control Parameters: Any of the standard bracketing control

parameters can be customized to kick-off the bracketing search.

• Soft Left/Right Bracketing Hints: The left/right-starting bracket edges are used as soft

bracketing initialization hints.

• Soft Mid Bracketing Hint: A mid bracketing level is specified to indicate the soft

bracketing kick-off.

• Hard Bracketing Floor/Ceiling: A pair of hard floor and ceiling limits is specified as a

constraint to the bracketing.

• Hard Search Boundaries: A pair of hard left and right boundaries is specified to kick-

off the final fixed-point search.

These heuristics are further interpreted and developed inside the ExecutionInitializer and

the ExecutionControl implementations.

IteratedBracket

 134

IteratedBracket holds the left/right bracket variates and the corresponding values for the

objective function during each iteration.

IteratedVariate

IteratedVariate holds the variate and the corresponding value for the objective function

during each iteration.

VariateIterationSelectionParams

VariateIterationSelectorParams implements the control parameters for the compound

variate selector scheme used in Brent's method.

Brent's method uses the following fields in VariateIterationSelectorParams to generate

the next variate:

• The Variate Primitive that is regarded as the "fast" method.

• The Variate Primitive that is regarded as the "robust" method.

• The relative variate shift that determines when the "robust" method is to be invoked

over the "fast".

• The lower bound on the variate shift between iterations that serves as the fall-back to

the "robust".

VariateIteratorPrimitive

VariateIteratorPrimitive implements the various Primitive Variate Iterator routines.

 135

VariateIteratorPrimitive implements the following iteration primitives:

• Bisection

• False Position

• Quadratic

• Inverse Quadratic

• Ridder

It may be readily enhanced to accommodate additional primitives.

 136

DRIP Spline Library

The core functionality of the DRIP spline library is implemented in the package

org.drip.math.spline. This package implements the basis set across the different splines –

their creation, the segment level calibration, the customization, and segment-level

inference values. It customizes the spline construction into spline-independent segment-

control parameters, and spline-dependent basis set generator parameters. Finally it

implements the spline functionality according to the specification and formulation laid

out in detail.

Functionality in this package is implemented over 8 classes – BasisSetParams,

ExponentialTensionBasisSetParams, KaklisPandelisBasisSetParams,

PolynomialBasisSetParams, SegmentBasisSetBuilder, SegmentCk, SegmentConstraint,

and SegmentInelasticParams.

BasisSetParams

BasisSetParams is an empty stub class whose derived implementations hold the per-

segment basis set parameters.

ExponentialTensionBasisSetParams

ExponentialTensionBasisSetParams implements per-segment parameters for the

exponential tension basis set - currently it only contains the tension parameter.

KaklisPandelisBasisSetParams

 137

KaklisPandelisBasisSetParams implements per-segment parameters for the Kaklis

Pandelis basis set - currently it only holds the polynomial tension degree.

PolynomialBasisSetParams

PolynomialBasisSetParams implements per-segment basis set parameters for the

polynomial basis spline - currently it holds the number of basis functions.

SegmentBasisSetBuilder

This class implements the basis set and spline builder for the following types of splines:

o Exponential basis tension splines

o Hyperbolic basis tension splines

o Polynomial basis splines

o Bernstein Polynomial basis splines

o Kaklis Pandelis basis tension splines

The elastic coefficients for the segment using kC basis splines inside)1,...,0[- globally

),...,[10 xx are extracted for () ()xollerShapeContrxCorInterpolaty k *,= where x is the

normalized ordinate mapped as:
1

1

−

−

−
−→

ii

i

xx

xx
x . The inverse quadratic/rational spline is a

typical shape controller spline used.

SegmentCk

 138

This concrete class extends segment, and implements the segment's kC based spline

functionality. It exports the following:

o Calibration => Head Calibration, Regular Calibration

o Estimated Segment Elastics => The Basis Functions and their coefficients, kC , the

shape controller

o Local Point Evaluation => Value, Ordered Derivative

o Local Monotonicity

o Local coefficient/derivative micro-Jack, and value/coefficient micro-Jack

o Local Jacobians => Value Micro Jacobian, Value Elastic Jacobian, Composite Value

Jacobian

SegmentConstraint

This class holds the segment coefficient constraints and their values.

SegmentInelasticParams

This class implements basis per-segment elastics parameter set. Currently it contains kC

and the segment specific constraints.

 139

Installation and Deployment Notes

Installation is really simple just drop of each of the jars (CreditProduct, CreditAnalytics,

SplineLibrary, FixedPointFinder, and RegressionSuite) in the class-path.

Configuration is done off of the configuration files corresponding to each of the libraries.

For most typical set-ups, the standard configuration should suffice. Please consult the

configuration documentation on each of the libraries to configure each of the modules.

Because there is no other dependency, deployment should also be straightforward. Use

the regression output as a guide for module capacity estimation.

