@

Credit Trader Suite User/Developer Guide

L akshmi Krishnamurthy
v2.3 22 January 2014

Introduction

Credit Trader Suitef libraries aims to provide open source analydicd

trading/valuation system solution suite for cretitl fixed income products. To this end,
it implements its functionality in a single libraoyer 6 main components -

CreditAnalytics CreditProductCurveBuilder FixedPointFinderRegressionSuitend
SplineLibrary

Overview and Problem Space Coverage

The main challenges th@redit Trader Suitattempts to address are:

* Implementation of day count conventions, holidagieedars, and rule-based period
generators

» Abstract the functionality behind curves, paranmsgtand products onto defined
interfaces

* Unified/standardized methods for curve calibratjggagameter and product
implementers and constructors

* Environmental system to hold live ticks, closingrksa and reference data containers

* Enhanced analytics testing

» Ease of usage, installation, and deployment

While a number of other libraries - both Open Seunsplementations and proprietary

systems such d&ncad NumeriX, Algorithmics exist, they typically cater to the needs of

the wider financial mathematics community, thusitthig their value towards treating
credit products. Further, few of them inherentlpest a curve/product/product models
that work well with products quotes, marks, an@refice data sources, thereby forcing

development teams to build their own integratigreta from scratch. Finally, building

the components of functional credit-trading systequires additional layers of

development over analytics.

Credit Trader Suités an attempt to overcome these shortcomingank & bring the

aspects mentioned above together in one Open Soopdementation that readily

integrates onto existing systems.

Main Librariesand their Purpose

The libraries the constitute the Credit Trader &aite:

CreditAnalytics— Concerned with the construction and the impldaatan of the

interfaces defined in CreditProduct, analytics emvinent management, and
functional distribution.

CreditProduct Focused on the core analytics, and the curegydinameter, and the
product definitions.

CurveBuilder— Provides the functionality for highly customizgidcount, forward,
credit, and FX curve construction, customized wittle variety of basis splines,
calibration instrument types and measures.

SplineLibrary— Provides the functionality for building, calibireg, and evaluating
different kinds of splines for use in latent stagpresentation.

FixedPointFinder Provides the implmentation of all the standaatketing and

open root finding techniques, along with a cust@iie and configurable framework
that separates the initilization/bracketing funcétity from the eventual root search.

RegressionSuite This aims to ease testing of analytics, measemésnd generation

of the execution time distribution, as well as aske performance characterization.

CreditAnalytics Description and Problem Space Coverage

CreditAnalyticsprovides the functionality behind creation, cadifoon, and

implementation of the curve, the parameter, angtbduct interfaces defined in

CreditProductlt also implements a curve/parameter/productygicalmanagement

environment, and has packaged samples and testers.

CreditAnalyticslibrary achieves its design goal by implementitsgunctionality over

several packages:

Curve calibration and creatioRunctional implementation and creation factofgs

rates curves, credit curves, and FX curves ofgy

Market Parameter implementation and creatioiplementation and creation of

guotes, component/basket market parameters, agsvetienario parameters.

Product implementation and creatidmplementation and creation factories for rates
products (cash/EDF/IRS), credit products (bonds/{;BSwell as basket products.

Reference data/marks loaddreaders for bond/CDX, as well a sub-universe of

closing marks

Calculation Environment Managdmplementation of the market parameter

container, manager for live/closing curves, studhtlfunctionality for
serverization/distribution, input/output serialipat
SamplesSamples for curve, parameters, product, and acglgreation and usage

Unit functional testersDetailed unit scenario test of various analytmsye,

parameter, and product functionality.

CreditProduct Description and Problem Space Cover age

CreditProductims to define the functional and behavioral iiastegs behind curves,

products, and different parameter types (markdtiagi@n, pricing, and product

parameters). To facilitate this, it implements as day count conventions, holiday sets,

period generators, and calculation outputs.

CreditProductibrary achieves its design goal by implementitsgunctionality over

several packages:

Dates and holidays coverageovers a variety of day count conventions, 120+

holiday locations, as well as custom user-definadlhys

Curve and analytics definitionBefines the base functional interfaces for theawds

of discount curves, credit curves, and FX curves

Market Parameter definition®efines quotes, component/basket market parasjeter

and custom scenario parameters

Valuation and Pricing ParameteBefines valuation, settlement/work-out, and

pricing parameters of different variants
Product and product parameter definitioDefines the product creation and behavior
interfaces for Cash/EDF/IRS (all rates), bonds/G&&dit), and basket bond/CDS,

and their feature parameters.

Output measures contain&efines generalized component and basket outpsits,

well customized outputs for specific products

CurveBuilder Description and Problem Space Coverage

CurveBuilderprovides the functionality for highly customizedabunt, forward, credit,

and FX curve construction, customized with widdetgrof basis splines, calibration

instrument types and measures.

CurveBuilderlibrary achieves its design goal by implementisginctionality over

several packages:

Latent State Representation Packages latent state representation package

implements the latent state, the quantificationricv@banifest measure, its labels, the
merge stretch and its manager.

Latent State Estimator Packadéne latent state estimator package provides

functionality to estimate the latent state, lodaldgl state construction controls,

constraint representation, and linear/non-lineébiaor routines.

Latent Curve State Packagéhe latent curve state package provides impleatiemis

of latent state representations of discount cuorgjard curve, zero curve, credit
curve, FX Basis curve, and FX forward curve.

Latent State Creator Packadde latent curve state package provides

implementations of the constructor factories thaate discount curve, forward
curve, zero curve, credit curve, FX Basis curvel BX forward curve.

Analytics Definition Packagelhe analytics definition package provides deitoms

of the generic curve, discount curve, forward curezo curve, credit curve, FX
Basis curve, and FX forward curve, turns list, #mr construction inputs.

Rates Analytics Packag&he rates analytics package provides definitmiitte

discount curve, the forward curve, the zero cutlve discount factor and the forward

rate estimators, the turns list, and their constwadnputs.

FixedPointFinder Description and Problem Space Coverage

RootFinderachieves its design goal by implementing its fiomgtlity over several

packages:

Framework Framework to accommodate bracketing/open connemgmitialization,
execution customization/configuration, iterativeigge evolution, and search
termination detection

Bracket Initialization Techniqguetmplementation of the different techniques fae th

initial bracket extraction.

Open Method Convergence Zone Initialization Techagjimplementation of the

different techniques for the convergence zoneistavariate extraction.

Iterative Open Methodsmplementation of the iterative Open Methods wikm-

Raphson and Secant Methods

Iterative Bracketing Primitive MethodBnplementation of the iterative bracketing

primitives — Bisection, False Position, Quadratiteipolation, Inverse Quadratic

Interpolation, and Ridder.

Iterative Bracketing Compound Methodsiplementation of the iterative bracketing

compound methodologies — Brent’s and Zheng's method

Search Initialization Heuristicémplementation of a number of search heuristics t
make the search targeted and customized.

SamplesSamples for the various bracketing and the opethads, their
customization, and configuration.

DocumentationLiterature review, framework description, mathéiosa and

formulation details of the different componentgtrbnder synthetic knowledge unit
(SKU) composition, and module and API usage guide.

Regression TestStatistical regression analysis and dispersiotricnevaluation for

the initialization and the iteration componentshedf different bracketing and open

root finder methodologies.

RegressionSuite Description and Problem Space Coverage

RegressionSuitaims to incorporate measurement of the startupagsurement of

accurate execution times, generating executiorsstat customized input distributions,

and processable regression specific details aoptre regular unit tests.

RegressionSuitkbrary achieves its design goal by implementisgunctionality over

several packages:

Regression Engindrovides control for distribution set, invocatistnategy, and

load.

Unit Regression ExecutofFramework that implements set up and tear-dowmyel

as generate run details

Regression StatisticExecution time distribution, start-up and otheert delay

measurements, and system load monitoring

Regression OutpuFine grained regressor level output, module aggesl output,

sub-element execution time estimation.

* Regressor SeModule containing set of regressors, group léwei on/off and

execution control

* Regression UtilitiesFormatting and tolerance checking.

SplineLibrary Description and Problem Space Coverage

SplineLibraryprovides the functionality for building, calibnatj, and evaluating different
kinds of splines for use in latent state repregemtalt implements the functionality
behind spline design, spline constructions, custatian, calibration, and evaluation of a

wide variety of spline types and basis functions.

SplineLibraryachieves its design goals by implementing its fionality over several
packages the perform the following:

» Univariate Function Packag&he univariate function package implements the

individual univariate functions, their convolutigrand reflections.

» Univariate Calculus Packag€he univariate calculus package implements urater

difference based arbitrary order derivative, imperts differential control settings,
implements several integrand routines, and muiat@Wengert Jacobian.

» Spline Parameters Packadde spline parameters package implements theesggm

and stretch level construction, design, penalty, strape control parameters.

» Splinbe Basis Function Set Packagke spline basis function set package

implements the basis set, parameters for the diffdyasis functions, parameters for
basis set construction, and parameters for B Spkaeence construction.

» Spline Segment Packagehe spline segment package implements the segment

inelastic state, the segment basis evaluator etpment flexure penalizer, computes
the segment monotonicity behavior, and implemédmssegment’s complete
constitutive state.

» Spline Stretch Packag&he spline stretch package provides single segarehmulti

segment interfaces, builders, and implementatiaiosg with custom boundary

settings.

Spline Grid/Span Packag€he spline grid/span package provides the mtriitch

spanning functionality. It specifies the span ifgee, and provides implementations
of the overlapping and the non-overlapping spatamtes. It also implements the
transition splines with custom transition zones.

Spline PCHIP Packagé@he spline PCHIP package implements most varigintise

local piece-wise cubic Hermite interpolating polgmal smoothing functionality. It
provides a number of tweaks for smoothing custotimzaas well as providing
enhanced implementations of Akima, Preuss, and id¥gast smoothing
interpolators.

Spline B Spline Packag&he spline B Spline package implements the raavthe

processed basis B Spline hat functions. It providestandard implementations for
the monic and the multic B Spline Segments. It algoorts functionality to generate
higher order B Spline Sequences.

Tension Spline Packag&he tension spline package implements closed family

of cubic tension splines laid out in the basic fearark outlined in Koch and Lyche
(1989), Koch and Lyche (1993), and Kvasov (2000).

Design Objectives

This section covers the design objectives acrogsakfacets — functional, software,

system, usage, and deployment aspects.

Financial Feature Design Attributes

The chief design aims from a financial functionaéihgle are:

Interface representations of curve, parameter panducts

Separation of the creation and the implementatiodutes from the exposed
functional interface behavior

Re-usable functional and behavioral abstractioosrat financial products

Provide “open” public implementations of the stamidanalytics functionality such as
day count conventions, holidays, date represemigtiale based period generation
etc

Abstraction of the quote, the market parameterthagricing structures

Abstraction and implementation of the standard ewalibration

Softwar e Feature Design Attributes

The chief design aims from a software design aage

Logical functionality identification/localizatioma functional group partitioning
Clearly defined interface structure
Implementation and creation factory bodies

Reach and interaction through interfaces only

10

System Feature Design Attributes

The key system design aims are:

Functionality needs to be readily serverizable disttibutable

Provide built in serialization, marshalling, andgstence of all the main components
Management containers around the products, theespand the parameter sets, and
establishing the execution control environment

Analytics Usage Design Objectives

The key usage design goals are:

The analytics modules should provide comprehernsieeit product risk, valuation,
and pricing functionality from a set of functiorfsPI

Ease of use

Flexible

When direct object access is needed, use onlyghrthe object model interface (and

amend the interface as appropriate)

Test Design Objectives

The key testing design goals in this area are:

Comprehensive unit testing of curve, parameteis paoduct implementation
Extensive composite scenario testing

Environment and server components testing

Release time performance characterization and éradime and execution resource
statistics calculation

11

Installation, Dependency, and Deployment Design Objectives

The key design goals in this area are:
* Minimize dependency on external modules
» Ease of installation and deployment

» Customizability — for non-standard setups — throtinghsupplied configuration file.

12

Credit Product

Credit Product Librargonsists of the following 14 packages:

1. Date & Time ManipulatorsThis contains functionality for creating, manigirlg,

and adjusting dates, as well as time instantsgtm+second granularity).

2. Day-count Parameters, Conventions, and Date Adgrsti@perationsThis contains

the functionality for day count generation and datpistment according to specific
rules. It also holds parameters needed for speddfyccount conventions.

3. Location Specific Standard Holiday S&his contains all the non-weekend holidays

that correspond to a specific location jurisdictiand its description. Each location

implements it holidays in a separate class.

4. Custom HolidaysThis provides the ability to specify custom holiday the standard

ones provided earlier are insufficient. Differeypes of holidays can be added —

variable, fixed, static, as well as weekends fgivan location.

5. Cash flow PeriodThis contains the cash flow period functionalédyg,well as place

holders for the period related different curve dast

6. Analytics Support UtilitiesThis contains utility functions for manipulatiniget core

Credit Product modules, generic utility functioasd a logger.

7. Quotes, Market, and Scenario Parameters Definitibhis contains the classes that

implement the definitions for all parameters exqapduct feature parameters —
guotes, calibration parameters, market parameteesk parameters, and the scenario

curves.

13

8. Pricer Parameterdhis contains the pricing parameters correspontirgggiven

product and model.

9. Quoting Parameterdhis contains the quoting parameters needed éoprét a

product quote.

10.Valuation Parameter3his contains all the non-market and non-prodacameters

needed for valuing a product at a given date.

11. Product DefinitionsThis contains interface definitions for all protkjalong with

definitions for credit, rates, and FX componentd specific credit/rates/FX products,
and baskets.

12.Product Parameter¥his contains the implementations of the featvegsiired for a

complete construction of an instance of the praduct

13.Product RV and Batch Calculation Outpulhis contains the bulk results of pricing

and relative value calculation for the products.

14. Serializer This interface defines the core object serialmatnethods — serialization

into and de-serialization out of byte arrays, all asthe object serializer version.

14

Credit Product: Date Time Manipulators

Date Time Manipulatorare implemented in the packame.drip.analytics.date. It

contains functionality for creating, manipulatiagd adjusting dates, as well as time

instants (to nano-second granularity).

The functionality is implemented in 2 classBsteTimeandJulianDate and both are

serializable.

JulianDate

This class provides a comprehensive representafidulian date and date manipulation

functionality. It exports the following functiongli

Explicit date construction, as well as date comsion from several input string
formats/today

Date Addition/Adjustment/Elapsed/Difference, adbtsact days/weeks/months/years
and tenor codes

Leap Year Functionality (number of leap days indhen interval, is the given year
a leap year etc.)

Generate the subsequent IMM date (EDF/CME IMM daf@S/Credit ISDA IMM
date etc)

Year/Month/Day in numbers/characters

Days Elapsed/Remaining, is EOM

Comparison with the “Other”, equals/hash-code/caatpa

Export the date to a variety of date formats (Qradlilian, Bloomberg)

Serialization/De-serialization to and from Byte d&ys

15

DateTime

This class provides the representation of the misti#on-time date and time objects. It
provides the following functionality:

* Instantiation-time and Explicit Date/Time Constiant

* Retrieval of Date/Time Fields

» Serialization/De-serialization to and from Byte &ys

16

Credit Product: Day Count Parameter s, Conventions, and

Date Adjustment Oper ations

Day Count Calculatorare implemented in the packame.drip.analytics.daycount. It

contains the functionality for day count generatmal date adjustment according to

specific rules. It also holds parameters neededgdecific day count conventions.

The functionality is implemented across 19 clas8esActDCParamsConvention and
DateAdjustParam®PateEOMAdjustmentDC28 360DC30_360DC30_365
DC30_Act DC30E_36Q0DCAct 36Q DC30_364DC30_365DC30_365L,
DCAct_Act ISDA DCAct_Act, DCFCalculatorDCNL_36Q DCNL_365 and
DCNL_Act.

ActActDCParams

This class contains parameters to represent Actdagicount. It exports the following
functionality:
* Frequency/Start/End Date Fields

» Serialization/De-serialization to and from Byte &ys

Convention

This class contains flags that indicate where tielays are loaded from, as well as the
holiday types and load rules. It exports the follmywate related functionality:
* Add business days according to the specified calend

* The Year Fraction between any 2 days given thecdapt type and the holiday
calendar

17

* Adjust/roll to the next working day according t@thdjustment rule

* Holiday Functions - is the given day a holiday/lbesis day, the number and the set of
holidays/business days between 2 days.

» Calendars and Day counts - Available set of daytoanventions and calendars,
and the weekend days corresponding to a givendaten

DateAdjustParams

This class contains the parameters needed fortadjudates. It exports the following
functionality:
» Accessor for holiday calendar and adjustment type

» Serialization/De-serialization to and from Byte #&ys

DateEOM Adjustment

This class holds the applicable adjustments fav@ngdate pair. It exposes the following
functionality:
» Static Methods for creating 30/360, 30/365, and ECDate Adjustments

» Export Anterior and Posterior EOM Adjustments

DCFCalculator

This interface is the stub for all the day countwantion functionality. It exposes the

base/alternate day count convention names, thefrgedion and the days accrued.

DC28 360

18

This class implements the 28/360 day count coneenti

DC30 360

This class implements the 30/360 day count coneenti

DC30 365

This class implements the 30/365 day count coneenti

DC30 Act

This class implements the 30/Act day count coneenti

DC30E 360

This class implements the 30E/360 day count comwent

DCAct 360

This class implements the Act/360 day count conwant

DCAct 364

19

This class implements the Act/364 day count conwant

DCAct 365

This class implements the Act/365 day count congant

DCAct 365L

This class implements the Act/365L day count cotigen

DCAct Act ISDA

This class implements the Act/Act ISDA day coumntwention.

DCAct Act

This class implements the Act/Act day count conient

DCNL 360

This class implements the NL/360 day count conoeenti

DCNL 365

20

This class implements the NL/365 day count coneenti

DCNL Act

This class implements the NL/Act day count conwanti

21

Credit Product: L ocation Specific Standard Holiday Set

Location Specific Holidayare implemented in the package.drip.analytics.holset. It

contains all the holidays that correspond to aifipdacation jurisdiction, and its

description.

The functionality is implemented in its own locatiqualified class instance - each of

which is an instance of thecationHolidayinterface.

L ocationHoliday

LocationHoliday is an interface that is implemenbgdhll the Location Holiday classes.

It exposes the specific holiday location, as weltree set of location-specific holidays.

Other classes in this package provide explicitdays and the locale name. So faredit
Producthas about 130 locales implemented — please cahediredit Analytics sitgor

what they are.

22

Credit Product: Custom Holidays

Custom Holiday creator@re implemented in the packaae.drip.analytics.holiday. It

provides the ability to add holidays, it the stamidanes provided earlier are insufficient.

Different types of holidays can be addedariable fixed, static as well asveekenddor

a given location.

Different holiday types are implemented in theimoglasses — they aBtatic Fixed and

Variableg each of which extends tiBase holiday clas§Veekends implemented in a

separate class. All holiday instances for a givecaleare maintained on a named

holiday container.

Base

Base is an abstraction around holiday and desgnipfibstract function generates an

optional adjustment for weekends in a given year.

Weekend

Weekend holds the left and the right weekend dapsovides functionality to retrieve

them, check if the given day is a weekend, an@ksgide-serialize weekend days.

Static

Static implements a complete date as a specifiddyl

23

Fixed

Fixed contains the fixed holiday’s date and mohtblidays are generated on a per-year
basis by applying the year, and by adjusting the danerated.

Variable

Variable class contains the rule characterizingvtiv@able holiday's month, day in week,
week in month, and the weekend days. Specific hg#idn the given year are generated
using these rules.

L ocale

Locale contains the set of regular holidays andweekend holidays for a location. It

also provides the functionality to add custom haygland weekends.

24

Credit Product: Cash flow Period

Cash flow periodunctionality is implemented in the packame.drip.analytics.period.

It contains the cash flow period functionality,veall as place holders for the period

related different curve factors.

Functionality in this package is implemented acebstasses Period CouponPeriod

CouponPeriodCurveFacto@ndLossPeriodCurveFactars

Period

Period serves as a holder for the period dateggstart/end, period accrual start/end,

pay, and full period day count fraction.

CouponPeriod

CouponPeriod extends the period class with theviefig coupon day-count specific
parameters: frequency, reset date, and accruatalayconvention. It also exposes static
methods to construct coupon period sets startiogvisrds/forwards, as well as merge

coupon periods.

CouponPeriodCurveFactors

CouponPeriodCurveFactors is an enhancement ofatfiedoclass using the following
period measures: start/end survival probabilisést/end notionals, and period start/end

discount factor.

25

L ossPeriodCurveFactors

LossPeriodCurveFactors is an implementation op#réeod class enhanced by the
following period measures:
» Start/end survival probabilities

» Period effective notional/recovery/discount factor

26

Credit Product: Analytics Support Utilities

Analytics Supporfunctionality is implemented in the packame.drip.anal ytics.support.

It contains utility functions for manipulating tig&redit Productmodules, case insensitive

maps, and a logger.

Functionality in this package is implemented acrbstasses AnalyticsHelper

CaselnsensitiveHashMa@aselnsensitiveTreeMapndLogger

AnalyticsHelper

AnalyticsHelper contains the collection of the gtiaé related utility functions used by
the modules. The following is the functionality tlteexposes:

* Yield to Discount Factor, and vice versa.

» Map Bloomberg Codes to CreditAnalytics Codes.

* Generate rule-based curve bumped nodes.

* Generate loss periods using a variety of diffesehiemes.

» Aggregate/disaggregate coupon period lists.

Casel nsensitiveH ashM ap

CaselnsensitiveMap implements a case insensitiyenka hash map.

Casel nsensitiveT reeM ap

CaselnsensitiveMap implements a case insensitiyénka hash map

27

L ogger

The Logger class implements level-set logging, bddby either the screen or a file.

Logging always includes time-stamps, and happecsrding to the level requested.

28

Credit Product: Quote, Market, and Scenario Parameters

Quote, Market, Tweak, and Scenario parameter diefitsiare specified in the package

org.drip.param.definition. It contains the classes that implement the dedims for all

parameters except product feature parameters esjuealibration parameters, market

parameters, tweak parameters, and the scenariesurv

Functionality in this package is implemented actd3glasses and 5 groups —

CalibrationParamshe quote parameters groupuote andComponentQuolethe tweak

parameters groupNodeTweakParamandCreditNodeTweakParar)sand the scenario

curves groupRatesScenarioCunandCreditScenarioGroypand the market parameters
group ComponentMarketParanBasketMarketParamMarketParams

CalibrationParams

CalibrationParams the calibration parameters frteasure to be calibrated, the
type/nature of the calibration to be performed, redwork-out date to which the

calibration is done.

Quote

Quote interface contains the stubs correspondiagai@duct quote. It contains the quote

value and quote instant for the different quotesitbid/ask/mid).

ComponentQuote

29

ComponentQuote abstract class holds the diffeypeistof quotes for a given
component. It contains a single market field/quuzie, but multiple alternate named

guotes (to accommodate quotes on different meagurédse component).

NodeT weak Params

NodeTweakParams is the place-holder for the saehaeak parameters, for either a
specific curve node, or the entire curve (flatxaP@eter bumps can be parallel or

proportional.

CreditNodeT weak Par ams

CreditNodeTweakParams is the place-holder for thditcurve scenario tweak
parameters: the measure, the curve node, and tia¢ calibration type (entire curve/flat

or a given tenor point).

RatesScenarioCurve

RatesScenarioCurve abstract class exposes thiaggehe constructs scenario discount
curves. The following curve construction scenaassupported:

* Base, flat/tenor up/down by arbitrary bumps.

* Tenor bumped discount curve set - keyed usingethert

« NTP-based custom scenario curves.

CreditScenarioCurve

30

CreditScenarioCurve abstract class exposes the pamameters and the curves for the
following credit curve scenarios:

* Base, Flat Spread/Recovery bumps.

» Spread/Recovery Tenor bumped up/down credit cuetgelkeyed using the tenor.

« NTP-based custom scenario curves.

ComponentM ar ketPar ams

ComponentMarketParams abstract class providedatuibe
ComponentMarketParamsRef interface. It is a plautden for the market parameters
needed to value the component object — the disaumae, the forward curve, the
treasury curve, the EDSF curve, the credit cutve component quote, the treasury quote

map, and the fixings map.

BasketM ar ketParams

BasketMarketParams class extends the BaketMarleti3&ef for a specific scenario. It
provides access to maps holding named discounesunamed credit curves, named

treasury quote, named component quote, and fixobgesct.

M ar ketPar ams

MarketParams is the place-holder for the compreherssiite of the market set of curves
for the given date. It exports the following furoetality:

* Add/remove/retrieve scenario discount curve.

* Add/remove/retrieve scenario zero curve.

* Add/remove/retrieve scenario credit curve.

31

Add/remove/retrieve scenario recovery curve.
Add/removel/retrieve scenario FXForward curve.
Add/remove/retrieve scenario FXBasis curve.
Add/remove/retrieve scenario fixings.
Add/remove/retrieve Treasury/component quotes.
Retrieve scenario CMP/BMP.

Retrieve map of flat rates/credit/recovery CMP/BMP.
Retrieve double map of tenor rates/credit/reco@vpP/BMP.

Retrieve rates/credit scenario generator.

32

Credit Product: Pricing Parameters

Pricing parametes implemented in the packagey.drip.param.priceft contains the

pricing parameters corresponding to a given prodndtmodel.

Currently only the credit-pricing model is implented — it is implemented in

PricerParams

Pricer Par ams

PricerParams contains the pricer parameters -itlceete unit size, calibration mode

on/off, survival to pay/end date, and the discegion scheme.

33

Credit Product: Quoting Parameters

Pricing parameteis implemented in the package.drip.param.quotingrhis contains

the quoting parameters needed to interpret a ptapiate.

Functionality in this package is implemented ac®skasses Measurelnterpreter

QuotedSpreadinterpreterndYieldinterpreter

M easur el nter pr eter

Measurelnterpreter is the abstract shell stub ¢tass which all product measure quoting

parameters are derived. It contains fields need@uérpret a measure quote.

QuotedSpread| nter preter

QuotedSpreadinterpreter holds the fields needétdearet a Quoted Spread Quote. It

contains the contract type and the coupon.

Yieldlnterpreter

YieldInterpreter holds the fields needed to intetjar Yield Quote. It contains the quote
day count, quote frequency, quote EOM Adjustmembte Act/Act parameters, and

guote Calendar.

34

Credit Product: Valuation Parameters

Valuation parameterare implemented in the packawe.drip.param.valuation. It

contains all the non-market and non-product parareeteeded for valuing a product at a

given date.

Functionality in this package is implemented acebstasses QuotingParams

CashSettleParam#/orkoutinfo, andValuationParams

CashSettleParams

CashSettleParams is the place-holder for the egtieraent parameters for a given

product. It contains the cash settle lag, the clgrand the date adjustment mode.

QuotingParams

QuotingParams holds the parameters needed torietéhe input quotes. It contains the
guote day count, quote frequency, quote EOM Adjestiquote Act/Act parameters,
and quote Calendar. It also indicates if the najwete is spread based.

ValuationPar ams

ValuationParams is the place-holder for the vatumapiarameters for a given product. It
contains the valuation and the cash pay/settlesdasawell as the calendar. It also

exposes a number of methods to construct standdwdtion parameters.

35

Wor koutl nfo

Workoutinfo is the place-holder for the work-out@aeters. It contains the date, the

factor, the type, and the yield of the work-out.

36

Credit Product: Product Definitions

Product definitionsare implemented in the package.drip.product.definition. It

contains interface definitions for all productraj with definitions for credit, rates, and

FX components and specific credit/rates/FX produantsl baskets.

Product definitionsre implemented in different groups — base compiogi®up

(ComponentMarketParamsR&omponentCalibrateComponejtbase basket group

(BasketMarketParamRdBasketProdugt RatesComponenCredit Component Group

(CreditComponenCreditDefaultSwapBondProductBond), and FX Component group
(EXSpotandEXForwarg.

ComponentM ar ketPar amRef

ComponentMarketParamRef interface provides stubsdmponent name, IR curve,

forward curve, credit curve, TSY curve, and EDSFvewneeded to value the component.

Component

Component abstract class extends ComponentMarlketifaf and provides the
following methods:

» Get the component's initial notional, notional, @odpon.

» Get the Effective date, Maturity date, First Coujate.

» List the coupon periods.

» Set the market curves - discount, TSY, forward d@reand EDSF curves.

* Retrieve the component's settlement parameters.

* Value the component using standard/custom markahpeters.

37

* Retrieve the component's named measures and nagasiira values.

CalibratableComponent

CalibratableComponent abstract class provides imgteation of Component's
calibration interface. It exposes stubs for getiatling the component’s calibration
code, generate calibrated measure values from dnketninputs, and compute micro-
Jacobians (QuoteDF and PVDF micro-Jacks).

BasketM ar ketPar amRef

BasketMarketParamRef interface provides stubsdorponent's IR and credit curves
that constitute the basket.

BasketProduct

BasketProduct abstract class extends BasketMarieeti®Ref. It provides methods for
getting the basket's components, notional, couptiactive date, maturity date, coupon

amount, and list of coupon periods.

RatesComponent

RatesComponent is the abstract class that extesids&ableComponent on top of

which all rates components are implemented.

38

CreditComponent

CreditComponent is the base abstract class onftepioh all credit components are
implemented. Its methods expose Credit Valuatiaarfaters, and coupon/loss cash

flows.

CreditDefaultSwap

CreditDefaultSwap is the base abstract class imgatésithe pricing, the valuation, and
the RV analytics functionality for the CDS product.

BondProduct

BondProduct interface implements the product stita behind bonds of all kinds.
Bond static data is captured in a set of 11 coataitasses — BondTSYParams,
BondCouponParams, BondNotionalParams, BondFloaterida BondCurrencyParams,
BondldentifierParams, ComponentValuationParams, iZorentRatesValuationParams,
ComponentCreditValuationParams, ComponentTerminktrent,
BondFixedPeriodParams, and one EmbeddedOptionSehelject instance each for the

call and the put objects. Each of these parametsrcan be set separately.

Bond

Bond abstract class implements the pricing, theatain, and the RV analytics

functionality for the bond product.

39

FXSpot

FXSpot is the abstract class exposes the functigrhind the FXSpot Contract.

Derived implementations return the spot date aectthrency pair.

FXForward

FXForward is the abstract class exposes the fumaity behind the FXForward
Contract. Derived implementations expose the prfsacondary codes, the
effective/maturity dates, the currency pair, imiplg discount curve basis and the FX

Forward from a set of market parameters. The Valnetion carries out a full valuation.

40

Credit Product: Product Parameters

Product parameter definitiomse implemented in the packaweg.drip.product.param#t

contains the implementations of the features requior a complete construction of an

instance of the product.

Product parameteere implemented across 20 clas$&didatableis the base interface
that underpins most of them. Others are identfa@ameters@DXIdentifier,
CDXRefDataParamddentifierSet StandardCDXParamsCouponSettingCreditSetting
CurrencySetEmbeddedOptionScheduleactorScheduléNotionalSetting

PeriodGeneratoPeriodSetFloaterSettingRatesSetingl erminationSetting

QuoteConventionTreasury Parameter§réasuryBenchmark syBmkSe}, and

CurrencyPair

Validatable

Validatable interface defines the validate functiwhich validates the current object

state.

CDXldentifier

CDXldentifier implements the creation and the stdgtails of the all the NA, EU, SovX,
EMEA, and ASIA standardized CDS indexes. It corgdhre index, the tenor, the series,

and the version of a given CDX.

CDXRefDataParams

41

CDXRefDataParams contains the complete set ofeeferdata that corresponds to the

contract of a standard CDX. It consists of thedwihg category and fields:

Descriptive => Index Label, Index Name, Curve Namdex Class, Index Group
Name, Index Short Group.

Name, Index Short Name, Short Name.

Issuer ID => Curve ID, Red ID, Series, Version, §uCurve ID, Location,
Bloomberg Ticker.

Quote Details => Quote As CDS.

Date => Issue Date, Maturity Date.

Coupon Parameters => Coupon Rate, Currency, DaptCBull First Stub,
Frequency.

Component Details => Original Count, Defaulted Ctoun

Payoff Details => Knock out on Default, Pay Accriidount, Recovery on Default.

Other => Index Life Span, Index Factor

| dentifier Set

IdentifierSet contains the component's identifi@rgoneters - ISIN, CUSIP, ID, and

ticker.

StandardCDXPar ams

StandardCDXParams implements the parameters useddte the standard CDX - the

coupon, the number of components, and the currency.

CouponSetting

42

CouponSetting contains the coupon type, schedntkthee coupon amount for the
component. If available, the floor and/or the cgjlimay also be applied to the coupon, in

a pre-determined order of precedence.

CreditSetting

CreditSetting contains the credit related valuaparameters - use default pay lag, use
curve or the component recovery, component recoeeegdit curve name, and whether

there is accrual on default.

CurrencySet

CurrencySet contains the component's trade, theartguand the redemption currencies.

EmbeddedOptionSchedule

EmbeddedOptionSchedule is a place-holder for theeeohed option schedule for the
component. It contains the schedule of exercisesdantd factors, the exercise notice
period, and the option is to call or put. Furthiethe option is of the type fix-to-float on
exercise, contains the post-exercise floater iradekfloating spread. If the exercise is not
discrete (American option), the exercise datessfacire discretized according to a pre-

specified discretization grid.

Factor Schedule

43

FactorSchedule contains the array of dates andrfact

Notional Setting

NotionalSetting contains the product's notionaksitile and the amount. It also
incorporates hints on how the notional factorstaree interpreted - off of the original or
the current notional. Further flags tell whether tiotional factor is to be applied at the

start/end/average of the coupon period.

PeriodGener ator

PeriodGenerator generates the component coupardpdrom flexible inputs. Periods
can be generated forwards or backwards, with Itigistubs. For customization, date
adjustment parameters can be applied to each lcagldéte of the period - effective,
maturity, period start start/end, accrual start/g@y and reset can each be generated

according to the date adjustment rule applied tainal period start/end.

PeriodSet

PeriodSet is the place holder for the componemt®d generation parameters. It
contains the component's date adjustment paranfetgeeriod start/end, period accrual
start/end, effective, maturity, pay and resetf imipon date, and interest accrual start

date.

Floater Setting

44

FloaterSetting contains the component's floating parameters. It holds the rate index,

floater day count, and one of either the couporapor the full current coupon.

RatesSetting

RatesSetting contains the rate related valuatioanpeters - the discount curves to be

used for discounting the coupon, the redemptiaaptimcipal, and the settle cash flows.

TerminationSetting

TerminationSetting class contains the current Hesgs" state of the component, and, if

inactive, how it entered that state.

QuoteConvention

QuoteConvention contains the Component Market Catite Parameters - the quote

convention, the calculation type, the first setid¢e, and the redemption amount.

TreasuryBenchmark

TreasuryBenchmark contains component treasury Inesuéhparameters - the treasury

benchmark set, and the names of the treasury an@DISF IR curves.

TsyBmkSet

45

TsyBmkSet contains the treasury benchmark set pringary treasury benchmark, and

an array of secondary treasury benchmarks.

CurrencyPair

CurrencyPair class contains the numerator currgheydenominator currency, the quote
currency, and the PIP Factor.

46

Credit Product: Product RV and Batch Calculation Outputs

Product bulk outputare implemented in the package.drip.analytics.output. It

contains the bulk results of pricing and relatiadue calculation for the products.

Outputs are implemented in 6 class&SemponentMeasurebond specific calculation

outputs Exerciselnfo BondCouponMeasureBondWorkoutMeasures

BondRVMeasurgs andBasketMeasures

ComponentM easur es

ComponentMeasures is the place-holder for analydingle component output
measures, optionally across scenarios. It contagesure maps for the following
scenarios:

* Unadjusted Base IR/credit curves

* Flat delta/lgamma bump measure maps for IR/creditgocurves

* Tenor bump double maps for IR/credit curves

* Flat/recovery bumped measure maps for recovery bdmpedit curves

* Measure Maps generated for Custom Scenarios

Exerciselnfo

Exerciselnfo is a place-holder for the full seegercise information. It contains the

exercise date, the exercise factor, and the exetype.

BondCouponM easur es

47

This class encapsulates the parsimonius but coenpéttof the cash-flow oriented
coupon measures generated out of a full bond acslytn to a given work-out. These
are:

« DVO1

* PV Measures (Coupon PV, Index Coupon PV, PV)

BondW or koutM easur es

BondWorkoutMeasures encapsulates the parsimontuygplete set of measures

generated out of a full bond analytics run to @&giwork-out. It contains the following:

» Credit Risky/Credit Riskless Clean/Dirty Coupon Ideies

» Credit Risky/Credit Riskless Par/Principal PV

* Loss Measures such as expected Recovery, Losstamianeous default, and default
exposure with/without recovery

» Unit Coupon measures such as Accrued 01, first@oumex rate

BondRVM easur es

BondRVMeasures encapsulates the comprehensivé R&t measures calculated for the
bond to the appropriate exercise:

* Workout Information.

* Price, Yield, and YieldO1.

» Spread Measures: Asset Swap/Credit/G/I/OAS/PECSIZSY

» Basis Measures: Bond Basis, Credit Basis, YieldBas

» Duration Measures: Macaulay/Modified Duration, Cexity

48

BasketM easur es

BasketMeasures is the place holder for the analyiasket measures, optionally across
scenarios. It contains the following scenario measwaps:

* Unadjusted Base Measures

* Flat delta/gamma bump measure maps for IR/credii®Rp curves

» Component/tenor bump double maps for IR/credit/RR&s

* Flat/component recovery bumped measure maps foveeg bumped credit curves

» Custom scenario measure map

49

Credit Product: Serializer

Serializer interfacare implemented in the package.drip.service.stream. The interface

defines methods for serializing out of and de-$enmy into a byte stream, as well as the

object serialization version.

There is just one interface in this packadggerializer

Serializer

Serializer interface defines the core object segaimethods — serialization into and de-

serialization out of byte arrays, as well as thipctversion.

50

Credit AnalvticsLibrary

Credit Analytics Libraryconsists of the following 12 packages:

1. Reference Data LoaderEhis package contains functionality that loadskibed and

the CDS reference data, as well as closing marks few date ranges.

2. Analytics ConfiguratarThis package contains functionality to configuegious

aspects of Credit Analytics.

3. Market, Quote, and Scenario Parameter Implemengfitis contains the

implementations of th€redit Product interfacagpresenting the quotes, the

basket/component market parameters, and the scenawie containers.

4. Market, Quote, and Scenario Parameter Crealdnis contains the builder factories

for the quotes, market parameters, and the scenames.

5. Rates Component Implementatioifis contains the implementations of heedit

Product interfacefor Cash, Euro-dollar future, fixed/floating stnes, interest rate

swap instruments, and rates basket products.

6. Credit Product ImplementationEhis contains the implementations of heedit
Product interfacefr Bonds, CDS, basket CDS, and bond baskets.

7. EX Product Implementation3 his contains the implementation of tBesdit Product

interfacefor FX products.

8. Product CreatorsThis contains the creators for the various rates]it, and FX

component and basket products.

51

9. Analytics Environment ManageThis provides functionality for loading products

from their reference data and managing them, alsasareating/accessing

live/closing curves.

10. Analytics Bridge This provides the stub and proxy functionality foroking Credit

Analyticsfunctionality in a remote server and extracting tésults.

11. Analytics APt This provides a unified and comprehensive funetipstatic interface
of all the mainCredit Analyticsfunctionality.

12. Functional TestersThis contains a fairly extensive set of unit andhposite testers

for the curve, products, serialization, and anedyfunctionality provided by the

Credit Analytics suitewith a special focus on bonds.

52

Credit Analytics: Reference Data L oaders

Data loadersire implemented in the packawe).drip.feed.loaders. This package

contains functionality that loads the bond and@IxS reference data, as well as closing

marks for a few date ranges.

Functionality in this package is implemented ovetddses BondRefData
CDXRefDatg andCreditStaticAndMarks

BondRefData

BondRefData contains functionality to load a varieft Bond Product reference data and
closing marks. It exposes the following functiotali

* Load the bond valuation-based reference data, @atoin schedule and EOS

» Build the bond instance entities from the valuati@sed reference data

e Load the bond non-valuation-based reference data

BondRefData assumes the appropriate connectioras/ar@ble to load the data.

CDXRefData

CDXRefData contains the functionality to load thenslard CDX reference data and

definitions, and create compile time static clageethese definitions.

CreditStaticAndM ar ks

53

CreditStaticAndMarks contains functionality to loadariety of Credit and Rates
Product reference data and closing marks. It exyptteefollowing functionality:

* Load the bond reference data, static data, ambdizachedule and EOS.

* Build the bond instance entities from the referetaia.

* Load the bond, CDS, and Rates product Closing Marks

* Load and build the Holiday Calendars.

CreditStaticAndMarks assumes the appropriate cdiomscare available to load the data.

54

Credit Analytics: Analytics Configur ator

Credit Analytics configuratois implemented in the packageg.drip.param.config. This

package contains functionality to configure variagpects oCredit Analytics

Functionality in this package is implemented inmgke class -ConfigLoader

ConfigL oader

ConfigLoader implements the configuration functilityalt exposes the following:
» Parses the XML configuration file and extract thg pairs information.

* Retrieve the logger.

* Load the holiday calendars and retrieve the loodtiaidays.

» Connect to analytics server and the database server

Depending on the configuration setting, ConfigLaddads the above from either a file

or the specified database.

55

Credit Analytics: Market Parameter s, Quotes, and Scenario

Par ameter | mplementations

Quotes and Market Parametare implemented in the packawyg.drip.param.market

This contains the implementations of theedit Product interfacagpresenting the

guotes, the basket/component market parametersharstenario curve containers.

Functionality in this package is implemented ovetg&ses -MultiSidedQuote

ComponentTickQuoteComponentMultiMeasureQuqtRatesCurveScenarioContaiper

CreditCurveScenarioContain€omponentMarketParamsSBasketMarketParamSet

andMarketParamsContainer

MultiSidedQuote

MultiSidedQuote implements the Quote interface,clvtgontains the stubs
corresponding to a product quote. It contains thaevalue and the quote time-snap for

the different quote sides (bid/ask/mid).

ComponentTickQuote

ComponentTickQuote holds the tick related compoparameters - it contains the
product ID, the quote composite, the source, thmiay party, and whether the quote can

be treated as a mark.

ComponentM ultiM easur eQuote

56

ComponentMultiMeasureQuote holds the different $ypequotes for a given
component. It contains a single market field/quuzie, but multiple alternate named

guotes (to accommodate quotes on different meagurédse component).

RatesCurveScenarioContainer

RatesCurveScenarioContainer implements the RateaBo€urve abstract class that
exposes the interface the constructs scenariouhsonrves. The following curve
construction scenarios are supported:

* Base, flat/tenor up/down by arbitrary bumps

» Tenor bumped discount curve set - keyed usingethert

« NTP-based custom scenario curves

CreditCurveScenarioContainer

CreditCurveScenarioContainer is the place-holdetife bump parameters and the
curves for the different credit curve scenariosn@ms the spread and the recovery
bumps, and the credit curve scenario generatocothjat wraps the calibration
instruments. It also contains the base credit glapeead bumped up/down credit curves,

recovery bumped up/down credit curves, and therterapped up/down credit curves.

ComponentM ar ketPar amSet

ComponentMarketParamSet provides implementatigheof
ComponentMarketParamsRef interface. It is the plaatder for the market parameters
needed to value the component object — discountg¢iwrward curve, treasury curve,

EDSF curve, credit curve, component quote, treaguoge map, and fixings map.

57

BasketM ar ketPar amSet

BasketMarketParamSet provides an implementatiddasketMarketParamsRef for a
specific scenario. It contains maps holding namsdodint curves, named credit curves,

named component quote, and fixings object.

M ar ketPar amsContainer

MarketParamsContainer extends MarketParams abstesst and is the place-holder for
the comprehensive suite of the market set of cuiethe given date. It exports the
following functionality:

» Add/remove/retrieve scenario discount curve.

* Add/remove/retrieve scenario zero curve.

» Add/remove/retrieve scenario credit curve.

* Add/remove/retrieve scenario recovery curve.

* Add/remove/retrieve scenario FXForward curve.

* Add/remove/retrieve scenario FXBasis curve.

» Add/remove/retrieve scenario fixings.

* Add/remove/retrieve Treasury/component quotes.

* Retrieve scenario CMP/BMP.

* Retrieve map of flat rates/credit/recovery CMP/BMP.

* Retrieve double map of tenor rates/credit/recoGP/BMP.

* Retrieve rates/credit scenario generator.

58

Credit Analytics: Market Parameter s, Quotes, and Scenario

Parameter Creators

Builders for quotes, market parameters, and saeiarves are implemented in the

packageorg.drip.param.creator. This contains the builder factories for the gspte

market parameters, and the scenario curves.

Functionality in this package is implemented ovefe&ses -QuoteBuildey
ComponentQuoteBuilde€omponentTickQuoteBuildeRatesScenarioCurveBuilder

CreditScenarioCurveBuilde€omponentMarketParamsBuilder

BasketMarketParamsBuildévlarketParamsBuilder

QuoteBuilder

QuoteBuilder contains the quote builder objeatohtains static functions that build two-

sided quotes from inputs, as well as from a bytast.

ComponentQuoteBuilder

ComponentQuoteBuilder contains the component duaitder object. It contains static
functions that build component quotes from the quoputs, as well as from byte

streams.

ComponentTickQuoteBuilder

59

ComponentTickQuoteBuilder implements the compotiektquote builder object. It
contains static functions that build component gadtom the inputs, as well as from
byte array.

RatesScenarioCurveBuilder

RatesScenarioCurveBuilder implements the the cactsdn of the scenario discount

curve using the input discount curve instruments.

CreditScenarioCurveBuilder

CreditScenarioCurveBuilder implements the consibactdeserialization, and building
of the custom scenario based credit curves.

ComponentM ar ketPar amsBuilder

ComponentMarketParamsBuilder implements the vanoays of constructing, de-
serializing, and building the Component Market Raeters.

BasketM ar ketPar amsBuilder

BasketMarketParamsBuilder implements the variougswe constructing, de-serializing,
and building the Basket Market Parameters.

M ar ketPar amsBuilder

60

MarketParamsBuilder implements the functionalitydonstructing, de-serializing, and

building the Market Universe Curves Container.

61

Credit Analytics: Rates Component | mplementations

Rates componentze implemented in the packawel.drip.product.rates. This contains

the implementations of théredit Product interfacder Cash, Euro-dollar future,

fixed/floating streams, interest rate swap instratseand rates basket products.

Functionality in this package is implemented ovetagses -€ashComponent

EDFComponentFixedStreamFloatingStreamRSComponentandRatesBasket

CashComponent

CashComponent contains the implementation of thet @eoduct and its
contract/valuation details.

EDFComponent

EDFComponent contains the implementation of theoElallar future contract/valuation
(EDF).

FixedStream

FixedStream contains an implementation of the fiegdcash flow stream product.

FloatingStream

62

FloatingStream contains an implementation of tloaftihg leg cash flow stream.

| RSComponent

IRSComponent contains the implementation of therésgt Rate Swap product

contract/valuation details. It is made off one ébaream and one floating stream.

RatesBasket

RatesBasket contains the implementation of the &asfkRates Component legs.

RatesBasket is made from zero/more fixed and figagtreams.

63

Credit Analytics: Credit Product | mplementations

Credit product definitionare implemented in the packaug.drip.product.credit. This

contains the implementations of teedit Product interfacdsr Bonds, CDS, basket

default swaps, and bond baskets.

Functionality in this package is implemented ovetasses BondComponent
BondBasketCDSComponentandCDSBasket

BondComponent

BondComponent is the base class that extends Cadjonent abstract class and
implements the functionality behind bonds of aids. Bond static data is captured in a
set of 11 container classes — BondTSYParams, Bamgl@?d arams,
BondNotionalParams, BondFloaterParams, BondCurRareyns, BondldentifierParams,
BondIRValuationParams, CompCRValParams, BondCFTrextimnEvent,
BondFixedPeriodGenerationParams, and one EmbeddiedSphedule object instance

each for the call and the put objects. Each ofetlpesameter sets can be set separately.

BondBask et

BondBasket implements the bond basket product aondietails. Contains the basket
name, basket notional, component bonds, and treghis.

CDSComponent

64

CDSComponent implements the credit default swapymbcontract details. Contains
effective date, maturity date, coupon, coupon aant coupon frequency, contingent
credit, currency, basket notional, credit valuag@nameters, and optionally the

outstanding notional schedule.

CDSBasket

CDSBasket implements the basket default swap ptaduntract details. Contains
effective date, maturity date, coupon, coupon aayt, coupon frequency, basket
components, basket notional, loss pay lag, andwogly the outstanding notional

schedule and the flat basket recovery.

65

Credit Analytics: FX Component | mplementations

EX componentaire implemented in the packaayeg).drip.product.fx. This contains the

implementations of th€redit Product interfacdsr FX spot and forward contracts.

Functionality in this package is implemented ovetdsses FXSpotContracand

FXForwardContract

FXForwardContract

FXForwardContract contains the FX forward produmitcact details - the effective date,

the maturity date, the currency pair and the prbdade.

FXSpotContract

FXSpotContract contains the FX spot contract patarse the spot date and the currency

pair.

66

Credit Analytics: Product Creators

Product creatorare implemented in the package.drip.product.creator. This contains

the creators for the various rates, credit, ancéXiponent and basket products.

Functionality in this package is implemented ov2rclhsses €ashBuilder
EDFutureBuilderRatesStreamBuilde€DSBuilder bond creator classes
(BondRefDataBuilderBondProductBuilderBondBuilde), CDS basket creator classes
(CDSBasketBuilderCDXRefDataHoldey, BondBasketBuilderand FX product builder
classesKXSpotBuilderandEXForwardBuilde). Of theseCDXRefDataHoldeis

generated from the CDX reference/static information

BondBasketBuilder

BondBasketBuilder contains the suite of helper fioms for creating the bond Basket

Product from different kinds of inputs and byteeams.

BondBuilder

BondBuilder contains the suite of helper functiforscreating simple fixed/floater
bonds, user defined bonds, optionally with custashdlows and embedded option
schedules (European or American). It also consgtoohds by de-serializing the byte

stream.

BondProductBuilder

67

BondProductBuilder holds the static parametersi@fiiond product needed for the full

bond valuation. It contains:

* Bond identifier parameters (ISIN, CUSIP)

* Issuer level parameters (Ticker, SPN or the ciadite string)

» Coupon parameters (coupon rate, coupon frequeonapon type, day count)

» Maturity parameters (maturity date, maturity tyfpeal maturity, redemption value)

» Date parameters (announce, first settle, first oaymterest accrual start, and issue
dates)

* Embedded option parameters (callable, putableb&as exercised)

* Currency parameters (trade, coupon, and redemgtioencies)

» Floater parameters (floater flag, floating couponwention, current coupon, rate
index, spread)

* Whether the bond is perpetual or has defaulted

BondRefDataBuilder

BondRefDataBuilder holds the entire set of statimmeters for the bond product. In

particular, it contains

* Bond identifier parameters (ISIN, CUSIP, BBG IDpm&ashort name)

* Issuer level parameters (Ticker, category, indussue type, issuer country, issuer
country code, collateral type, description, seguyipe, unique Bloomberg ID, long
company name, issuer name, SPN or the credit ctinve)

* Issue parameters (issue amount, issue price, ndistpamount, minimum piece,
minimum increment, par amount, lead manager, exgghande, country of
incorporation, country of guarantor, country of doife, industry sector, industry
group, industry sub-group, senior/sub)

» Coupon parameters (coupon rate, coupon frequeonapon type, day count)

* Maturity parameters (maturity date, maturity tyfpeal maturity, redemption value)

68

» Date parameters (announce, first settle, first oaumterest accrual start, next
coupon, previous coupon, penultimate coupon, asukislates)

» Embedded option parameters (callable, putableb&as exercised)

* Currency parameters (trade, coupon, and redemgtioencies)

* Floater parameters (floater flag, floating couponwention, current coupon, rate
index, spread)

* Trade status

* Ratings (S & P, Moody, and Fitch),

* Whether the bond is private placement, is regidieésea bearer bond, is reverse

convertible, is a structured note, can be unitddads perpetual or has defaulted.

CashBuilder

CashBuilder contains the suite of helper functifmmnreating the Cash product from the

parameters/codes/byte array streams.

CDSBasketBuilder

CDSBasketBuilder contains the suite of helper fimmat for creating the CDS Basket

Product from different kinds of inputs and byteeas.

CDSBuilder

CDSBuilder contains the suite of helper functiomsdreating the CreditDefaultSwap
product from the parameters/byte array streanadsdi creates the standard EU, NA,

ASIA contracts, CDS with amortization schedules] &S from product codes/tenors.

69

CDXRefDataHolder

CDXRefDataHoldercontains all the generated standard CDX Produetisined as

instances o€reditProduct’'s BasketProdudterface. Since this is a generated file, please
do not delete this.

EDFutureBuilder

EDFutureBuilder contains the suite of helper fumasi for creating the EDFuture product

from the parameters/codes/byte array streams.

FXForwardBuilder

FXForwardBuilder contains the suite of helper fumts for creating the

FXForwardBuilder product from the parameters/bytayastreams.

FXSpotBuilder

FXSpotBuilder contains the suite of helper funcsidor creating the FXSpot from the
corresponding parameters/byte array streams.

RatesStreamBuilder

RatesStreamBuilder contains the suite of helpertfons for creating the Stream-based

Rates Products from different kinds of inputs. dmtjgular, it demonstrates the following:

70

» Construction of the custom/standard fixed/floastigams from parameters.
» Construction of the custom/standard IRS from patarae

» Construction of the fixed/floating streams and fiR#n byte arrays.

71

Credit Analytics: Analytics Environment M anaqger

Analytics Environment Manage@omponent are implemented in the package

org.drip.service.env. This contains the creators for the various rates]it, and FX

component and basket products.

Functionality in this package is implemented ovetasses BondManager
CDSManagerEnvManagerEODCurvesRatesManageStandardCDXManageand
StaticBACurves

BondM anager

BondManager implements a container that holds B Bnd bond static information on

a per issuer basis. It exposes the following fuumetiity:

* Retrieve the available tickers, and all the ISipés ticker.

* Load the full set of bond reference data, embedqi¢idn schedules, and
amortization schedules.

* Load the full set of bond marks.

» Calculate the bond RV/Value measures for a tickttond set, given the EOD and
the appropriate curves and market measures.

* Save the computed measures for a given EOD.

* (Optionally) Generate a Bond Creator File.

CDSM anager

CDSManager is the container that retrieves the B&IDCDS/credit curve information

on a per-issuer basis and populates the MPC.

72

EnvM anager

EnvManagessets the environment and connection parametedlp@pulates the market

parameters (quotes, curves, and fixings) for ag&@D.

EODCurves

EODCurves that creates the closing curves frontliteng marks available in the DB

for a given EOD and populates them onto the MP@uilds the following:

* Discount Curve (from cash/future/swap - typicalwsstce), EDSF Curve, and TSY
Curve

* Credit Curve from CDS quotes

* On-the-run TSY yield quotes

RatesM anager

RatesManagemanages the creation/loading of the rates curivdgferent kinds for a
given EOD.

StaticBACurves

StaticBACurves that creates the closing curves ftastom/user defined marks for a
given EOD and populates them onto the MPC. It lsuitek following:
» Discount Curve (from cash/future/swap - typicalsstce), EDSF Curve, and TSY

Curve

73

* Credit Curve from CDS quotes
* On-the-run TSY yield quotes

StandardCDXM anager

StandardCDXManager implements the creation andttitec details of the all the NA,

EU, SovX, EMEA, and ASIA standardized CDS indidégxposes the following

functionality:

» Retrieve the full set of pre-set/pre-loaded CDX mafdescriptions.

» Retrieve all the CDX's given an index name.

» Get the index, index series, and the effective/nitgitdates for a given CDX.

* Get all the on-the-runs for an index, date, andrten

* Retrieve the full basket product corresponding ABU/ASIA IG/HY/EM and other
available standard CDX.

* Build a custom CDX product.

74

Credit Analytics: Analytics Bridge

Analytics Bridgeis implemented in the packagey.drip.service.bridge. This provides

the stub and proxy functionality for invoki@@redit Analytics functionalityn a remote

server and extracting the results.

Functionality in this package is implemented ovetasses -€reditAnalyticsRequest

CreditAnalyticsRespons€reditAnalyticsStupandCreditAnalyticsProxy

CreditAnalyticsRequest

CreditAnalyticsRequest contains the requests ®redit Analytics server from the
client. It contains the following parameters:

* The GUID and the time-stamp of the request.

* The component that is being valued.

* The valuation, the pricer, and the quoting pararsete

* The market parameters assembled in the ComponekehParams.

Typical usage is: Client fills in the entities imetrequest, serializes them, and sends them

to the server, and receives a serialized respadeflom the server.

CreditAnalyticsResponse

CreditAnalyticsResponse contains the response tinenCredit Analytics server to the
client. It contains the following parameters:
* The GUID and of the request.

* The type and time-stamp of the response.

75

* The string version of the response body.

CreditAnalyticsProxy

CreditAnalyticsProxy captures the requests forGhedit Analytics server from the
client, formats them, and sends them to the Chaatilytics Stub.

CreditAnalyticsStub

CreditAnalyticsStub serves as a sample servehthsts the Credit Analytics
functionality. It receives requests from the aniad/tlient as a serialized message, and

invokes the CreditAnalytics functionality, and serde client the serialized results.

76

Credit Analytics: Analytics API

Analytics APlis implemented in the packagey.drip.service.api. This provides a

unified and comprehensive functional, static irdeef of all the mairedit Analytics
functionality.

Functionality in this package is implemented ovemagle class €reditAnalytics

CreditAnalytics

CreditAnalytics exposes all the CreditAnalytics A®klients — this class is the main
functional interface. The functions exposed arertomerous to list, and can be roughly
grouped into the following:

* Product Creation

* Curve Construction from Market Instruments

* Product Reference Data Examination

* Product Valuation from the Market Parameters

* Product Measure Extraction

* Product RV Measure Computation

* General Finance Math calculation (day count, ddjpesa etc.)

* Closing points extraction

77

Credit Analytics: Functional Testers

Credit Analytics functional testeese available in the packagey.drip.tester.functional.

This contains a fairly extensive set of unit anchposite testers for the curve, products,

serialization, and analytics functionality provideyltheCredit Analytics suitewith a

special focus on bonds.

Functionality in this package is implemented ovetasses BondTestSuite
CreditAnalyticsTestSuitdProductTestSuiteandSerializerTestSuite

BondTestSuite

BondTestSuite tests more-or-less the full suitearfd functionality exposed in
CreditAnalytics API.

CreditAnalyticsT estSuite

CreditAnalyticsTestSuite tests more-or-less theduite of functionality exposed in
CreditAnalytics API across all products, curvesptgs, outputs, and parameters, and
their variants.

ProductTestSuite

ProductTestSuite tests more-or-less the full afithe product valuation functionality
exposed in CreditAnalytics API. The following varta are tested.

* Full suite of products - rates, credit and FX, batmponents and baskets.

78

* Base flat/tenor bumped scenario tests.

Serializer TestSuite

SerializerTestSuite tests the serialization fumaliy across all products, curves, quotes,

outputs, and parameters, and their variants.

79

Curve Builder

Curve Builder Libraryconsists of the following 6 packages:

1. Latent State Representatidine latent state representation package implentieats

latent state, the quantification metric/manifesamge, its labels, the merge stretch

and its manager.

2. Latent Curve Statdhe latent curve state package provides implertientaof latent

state representations of discount curve, forwarde;izero curve, credit curve, FX

Basis curve, and FX forward curve.

3. Latent State EstimatoFhe latent state estimator package provides fonality to

estimate the latent state, local/global state coasbn controls, constraint

representation, and linear/non-linear calibratotines.

4. Latent State CreatoFhe latent curve state package provides implertientaof the
constructor factories that create discount curweydrd curve, zero curve, credit

curve, FX Basis curve, and FX forward curve.

5. Curve Analytics DefinitiorisThe analytics definition package provides defams of

the generic curve, discount curve, forward cureep zurve, credit curve, FX Basis

curve, and FX forward curve, turns list, and tloeinstruction inputs.

6. Rates AnalyticsThe rates analytics package provides definitidnih@discount

curve, the forward curve, the zero curve, the diatdactor and the forward rate

estimators, the turns list, and their constructigruts.

80

Curve Builder: L atent State Representation

Curve Builder Latent State Representation functamesavailable in the package

org.drip.state.representation. The latent state representation package implesbat

latent state, the quantification metric/manifesamge, its labels, the merge stretch and

its manager.

Functionality in this package is implemented ovetdsses +tatentStatelLabel
LatentStateMergeSubStrefdflergeSubStretchManagématentStateMetricMeasurand
LatentState

L atentStatel abel

LatentStateLabel is the interface that containdahels inside the sub-stretch of the
alternate state. The functionality its derivatiamplement provide fully qualified label

names and their matches.

L atentStateM er geSubStretch

LatentStateMergeSubStretch implements merged Bttieat is common to multiple

latent states. It is identified by the start/entedaedictor ordinates, and the Latent State
Label. Its methods provide the following functiahal

* Identify if the specified predictor ordinate belsrtg the sub stretch

» Shift that sub stretch start/end

» |dentify if the this overlaps the supplied sub tthe and coalesce them if possible

* Retrieve the label, start, and end

81

M er geSubStr etchM anager

MergeSubStretchManager manages the different disdouwvard merge stretches. It

provides functionality to create, expand, or casttthe merge stretches.

L atentStateM etricM easur e

LatentStateMetricMeasure holds the latent stateishesstimated, its quantification
metric, and the corresponding product manifest omeasnd its value that it is estimated

off of during the calibration run.

L atentState

LatentState exposes the functionality to manipulagehidden Variable's Latent State.
Specifically it exports functions to:

* Retrieve the Array of the LatentStateMetricMeasure

* Produce node shifted, parallel shifted, and cust@nifest-measure tweaked variants
of the Latent State

* Produce parallel shifted and custom quantificatraairic tweaked variants of the
Latent State

82

Curve Builder: L atent Curve State

Curve Builder Latent Curve State functicare available in the package

org.drip.state.curve. The latent curve state package provides impleatienss of latent

state representations of discount curve, forwardeswzero curve, credit curve, FX Basis

curve, and FX forward curve.

Functionality in this package is implemented ovete®ses —

DiscountFactorDiscountCuryBlonlinearDiscountFactorDiscountCurve

ZeroRateDiscountCury®erivedZeroRateFlatForwardDiscountCurye

BasisSplineForwardRatEorwardHazardCreditCury®erivedFXForwardand
DerivedFXBasis

DiscountFactor DiscountCurve

DiscountFactorDiscountCurve manages the Discouhtaignt State, using the Discount

Factor as the State Response Representation.ditexpe following functionality:

» Compute the discount factor, forward rate, or e zate from the Discount Factor
Latent State

» Create a ForwardRateEstimator instance for thengivdex

* Retrieve Array of the Calibration Components arelrthatentStateMetricMeasure's

* Retrieve the Curve Construction Input Set

» Compute the Jacobian of the Discount Factor Leiéate to the input Quote

* Synthesize scenario Latent State by parallel sigitustom tweaking the
guantification metric

* Synthesize scenario Latent State by parallel/custuifting/custom tweaking the
manifest measure

» Serialize into and de-serialize out of byte array

83

Nonlinear DiscountFactor DiscountCurve

NonlinearDiscountFactorDiscountCurve manages tised@inting Latent State, using the

Forward Rate as the State Response Representagaports the following

functionality:

* Boot Methods - Set/Bump Specific Node QuantificatMetric, or Set Flat Value

» Boot Calibration - Initialize Run, Compute Caliboat Metric

» Compute the discount factor, forward rate, or e zate from the Forward Rate
Latent State

» Create a ForwardRateEstimator instance for thengivdex

* Retrieve Array of the Calibration Components arelrthatentStateMetricMeasure's

» Retrieve the Curve Construction Input Set

» Compute the Jacobian of the Discount Factor L&&¢aie to the input Quote

* Synthesize scenario Latent State by parallel sigitustom tweaking the
guantification metric

» Synthesize scenario Latent State by parallel/custafting/custom tweaking the
manifest measure

» Serialize into and de-serialize out of byte array

ZeroDiscountCurve

ZeroRateDiscountCurve manages the Discounting L&&te, using the Zero Rate as

the State Response Representation. It export®Hllog/ing functionality:

» Compute the discount factor, forward rate, or thie zate from the Zero Rate Latent
State

» Create a ForwardRateEstimator instance for thengivdex

* Retrieve Array of the Calibration Components arelrthatentStateMetricMeasure's

84

* Retrieve the Curve Construction Input Set

» Compute the Jacobian of the Discount Factor Leiéate to the input Quote

» Synthesize scenario Latent State by parallel sigitustom tweaking the
guantification metric

* Synthesize scenario Latent State by parallel/custuifting/custom tweaking the
manifest measure

» Serialize into and de-serialize out of byte array

DerivedZeroRate

DerivedZeroRate implements the delegated ZeroClunvetionality. Beyond discount
factor/zero rate computation at specific cash males, all other functions are delegated

to the embedded discount curve.

FlatForwar dDiscountCurve

FlatForwardDiscountCurve manages the DiscountingnteState, using the Forward

Rate as the State Response Representation. Ittexperfollowing functionality:

» Boot Methods - Set/Bump Specific Node QuantificatMetric, or Set Flat Value

* Boot Calibration - Initialize Run, Compute Caliboat Metric

» Compute the discount factor, forward rate, or e zate from the Forward Rate
Latent State

» Create a ForwardRateEstimator instance for thengivdex

* Retrieve Array of the Calibration Components arelrthatentStateMetricMeasure's

* Retrieve the Curve Construction Input Set

* Compute the Jacobian of the Discount Factor L&&¢aie to the input Quote

* Synthesize scenario Latent State by parallel sigitustom tweaking the

guantification metric

85

® Synthesize scenario Latent State by parallel/custufting/custom tweaking the

manifest measure

® Serialize into and de-serialize out of byte array

BasisSplineForwar dRate

BasisSplineForwardRate manages the Forward Latate,$ising the Forward Rate as
the State Response Representation. It export®llog/ing functionality:
» Calculate implied forward rate / implied forwardedacobian

» Serialize into and de-serialize out of byte arrays

ForwardHazar dCreditCurve

ForwardHazardCreditCurve manages the Survival t&tate, using the Hazard Rate as

the State Response Representation. It export®Hliog/ing functionality:

* Boot Methods - Set/Bump Specific Node QuantificatiMetric, or Set Flat Value

» Boot Calibration - Initialize Run, Compute Caliboat Metric

» Compute the survival probability, recovery ratether hazard rate from the Hazard
Rate Latent State

* Retrieve Array of the Calibration Components arelrthatentStateMetricMeasure's

* Retrieve the Curve Construction Input Set

* Synthesize scenario Latent State by parallel sigitustom tweaking the
guantification metric

* Synthesize scenario Latent State by parallel/custuifting/custom tweaking the
manifest measure

» Serialize into and de-serialize out of byte array

86

DerivedFXForward

DerivedFXForward manages the constant forward bBXe8orward Curve holder

object. It exports the following functionality:

» Extract currency, currency pair, spot epoch and Bjo

* Compute Zero/boot-strap Basis, as well as boop stesis DC

» Compute the spot implied rate/implied rate nodes

* Retrieve Array of the Calibration Components arelrthatentStateMetricMeasure's

* Retrieve the Curve Construction Input Set

* Synthesize scenario Latent State by parallel sigitustom tweaking the
guantification metric

* Synthesize scenario Latent State by parallel/custuifting/custom tweaking the
manifest measure

» Serialize into and de-serialize out of byte array

DerivedFXBasis

DerivedFXBasis manages the constant forward bassdFX Basis Curve holder

object. It exports the following functionality:

» Extract currency, currency pair, spot epoch, spgtahd whether the basis is boot-
strapped

* Compute the FX Forward Array

* Retrieve Array of the Calibration Components arelrthatentStateMetricMeasure's

* Retrieve the Curve Construction Input Set

* Synthesize scenario Latent State by parallel sigitustom tweaking the
guantification metric

* Synthesize scenario Latent State by parallel/custuifting/custom tweaking the
manifest measure

» Serialize into and de-serialize out of byte array

87

Curve Builder: L atent State Estimator

Curve Builder Latent State Estimator functi@re available in the package

org.drip.state.estimator. The latent state estimator package provides iumality to

estimate the latent state, local/global state coatbn controls, constraint representation,

and linear/non-linear calibrator routines.

Functionality in this package is implemented overclhsses —

StretchRepresentationSp&edictorResponseWeightConstraint

SmoothingCurveStretchParan@®obalCurveControlParamkocalCurveControlParams

CurveStretchRatesSegmentSequenceBuildenearCurveCalibrator

NonlinearCurveCalibratopRatesCurveScenarioGeneratand

CreditCurveScenarioGenerator

StretchRepr esentationSpec

StretchRepresentationSpec carries the calibratistnuments and the corresponding
calibration parameter set in LSMM instances. Togetthese inputs are used for
constructing an entire latent state stretch. StReépresentationSpec exports the
following functionality:

» Alternate ways of constructing custom Stretch re@néations

* Retrieve indexed instrument/LSMM

* Retrieve the full set calibratable instrument/LSMM

Pr edictor ResponseW eightConstr aint

88

PredictorResponseWeightConstraint holds the LimedrConstraints (and, optionally,

their quote sensitivities) necessary needed foLithear Calibration. Linearized

Constraints are expressed@s= ZWiy(xj) where x; is the predictor ordinate at node

i,y isthe respons&) is the weight applied for the ResponsendC,; s the value of

constraintj . The function can either be univariate functionyweighted spline basis set.
To this end, it implements the following functioityl

* Update/Retrieve Predictor/Response Weights and @hete Sensitivities

» Update/Retrieve Predictor/Response Constraint \éadinel their Quote Sensitivities

» Display the contents of PredictorResponseWeightCains

SmoothingCur veStr etchParams

SmoothingCurveStretchParams contains the Paranmeteded to hold the Stretch. It
provides functionality to:

» The Stretch Best fit Response and the correspori@uaie Sensitivity

* The Calibration Detail and the Curve Smootheningui@@iication Metric

* The Segment Builder Parameters

Global CurveControlPar ams

GlobalControlCurveParams enhances the SmoothingSiretchParams to produce
globally customized curve smoothing. Currently, l&zllControlCurveParams uses

custom boundary setting and spline details to impl& the global smoothing pass.

L ocal CurveControlParams

89

LocalControlCurveParams enhances the SmoothingStnetehParams to produce
locally customized curve smoothing. Flags impleradrity LocalControlCurveParams
control the following:

» The C1 generator scheme to be used
* Whether to eliminate spurious extrema

® Whether or not to apply monotone filtering

CurveStretch

CurveStretch expands the regular Multi-Segment@&tr® aid the calibration of Boot-
strapped Instruments. In particular, CurveStretgpléments the following functions that
are used at different stages of curve construs@muence:

* Mark the Range of the "built" Segments

» Clear the built range mark to signal the start fseah calibration run

» Indicate if the specified Predictor Ordinate isdesthe "Built" Range

* Retrieve the MergeSubStretchManager

RatesSegmentSequenceBuilder

RatesSegmentSequenceBuilder holds the logic béhiding the bootstrap segments
contained in the given Stretch. It extends the Seg8equenceBuilder interface by
implementing/customizing the calibration of theritey as well as the subsequent

segments.

Linear CurveCalibr ator

90

LinearCurveCalibrator creates the discount cunagppm the instrument cash flows.
The span construction may be customized using fepsettings provided in

GlobalControlCurveParams.

Nonlinear CurveCalibrator

NonlinearCurveCalibrator calibrates the discourt aeredit/hazard curves from the

components and their quotes. NonlinearCurveCabbmtnploys a set of techniques for

achieving this calibration.

» It bootstraps the nodes in sequence to calibrateuhve

* In conjunction with splining estimation techniquisnay also be used to perform
dual sweep calibration. The inner sweep achievesalbration of the segment
spline parameters, while the outer sweep calibitgestively for the targeted

boundary conditions

® It may also be used to custom calibrate a singerdst Rate/Hazard Rate Node from

the corresponding Component

® CurveCalibrator bootstraps/cooks both discountesiand credit curves

RatesCurveScenarioGener ator

RatesCurveScenarioGenerator uses the interestaigteation instruments along with the
component calibrator to produce scenario inteagstcurves.
RatesCurveScenarioGenerator typically first coms$srthe actual curve calibrator
instance to localize the intelligence around cuwestruction. It then uses this curve
calibrator instance to build individual curves loe sequence of node bumped scenario

curves. The curves in the set may be an arragnarikeyed.

91

CreditCurveScenarioGener ator

CreditCurveScenarioGenerator uses the hazardahlbeation instruments along with the
component calibrator to produce scenario hazagdaatves.
CreditCurveScenarioGenerator typically first consts the actual curve calibrator
instance to localize the intelligence around cuwwestruction. It then uses this curve
calibrator instance to build individual curves loe sequence of node bumped scenario

curves. The curves in the set may be an arragnarikeyed.

92

Curve Builder: L atent State Cr eator

Curve Builder Latent State Creator functi@re available in the package

org.drip.state.creator. The latent curve state package provides impleatients of the

constructor factories that create discount curweyédrd curve, zero curve, credit curve,
FX Basis curve, and FX forward curve.

Functionality in this package is implemented ovetdsses -DiscountCurveBuilder

ZeroCurveBuilderCreditCurveBuilderEXForwardCurveBuilderand

FXBasisCurveBuilder

DiscountCurveBuilder

This class contains the builder functions that troies the discount curve (comprising
both the rates and the discount factors) instdhcentains static functions that build
different types of discount curve from 3 major tyjé inputs:

* From a variety of ordered DF-sensitive calibratiostruments and their quotes

* From an array of ordered discount factors

* From a serialized byte stream of the discount curstance

ZeroCurveBuilder

This class contains the builder functions that troies the zero curve instance. It contains
static functions that build different types of zewove from 2 major types of inputs:
* From a source discount curve, a set of coupon gerend the Zero Bump

* From a serialized byte stream of the Zero curviaimse

93

CreditCurveBuilder

This class contains the builder functions that troies the credit curve (comprising both
survival and recovery) instance. It contains stafictions that build different types of
credit curve from 3 major types of inputs:

» From a variety of ordered credit-sensitive calilm@instruments and their quotes

* From an array of ordered survival probabilities

* From a serialized byte stream of the credit cunstaince

FXForwardCurveBuilder

This class contains the baseline FX Forward cunielér object. It contains static
functions that build FX Forward curves from the 8jon inputs:

* An ordered array of Forward FX

* An ordered array of Forward Basis Points

* A byte Stream representing the serialized instafitlke FXForwardCurve

FXBasisCurveBuilder

This class contains the baseline FX Basis curvielduobject. It contains static functions
that build FX Basis curves from the 3 major inputs:

* An ordered array of Forward FX

* An ordered array of Forward Basis Points

* A byte Stream representing the serialized instahtkee FXBasisCurve

94

Curve Builder: Analytics Definition

Curve Builder Analytics Definition functiorsre available in the package

org.drip.analytics.definition. The analytics definition package provides deifmis of the

generic curve, discount curve, forward curve, zenwe, credit curve, FX Basis curve,

and FX forward curve, turns list, and their constian inputs.

Functionality in this package is implemented ov@rclhsses —

CurveConstructionlnputSeEurveSpanConstructionlnp@hapePreservingCCIS

BootCurveConstructionlnppu€urve CreditCurve ExplicitBootCurve

ExplicitBootCreditCurveFXForwardCurveandFXBasisCurve

CurveConstr uctionl nput Set

CurveConstructioninputSet interface contains thamaters needed for the Curve
Calibration/Estimation. It's methods expose actes$ise following:

» Calibration Valuation Parameters

» Calibration Quoting Parameters

* Array of Calibration Instruments

* Map of Calibration Quotes

* Map of Calibration Measures

» Double Map of the Date/Index Fixings

CurveSpanConstr uctionl nput

CurveSpanConstructionlnput contains the Parameesded for the Curve
Calibration/Estimation. It contains the following:

95

Calibration Valuation Parameters

Calibration Quoting Parameters

Calibration Market Parameters

Calibration Pricing Parameters

Array of Calibration Stretch Representation

Map of Calibration Quotes

Map of Calibration Measures

Double Map of the Date/Index Fixings

Additional functions provide for retrieval of thb@ve and specific instrument quotes.

Derived Classes implement Targeted Curve Calibsator

ShapePreservingCCI S

ShapePreservingCCIS extends the CurveSpanConetrbmgiut Instance. Additionally, it

exposes the Shape Preserving Linear Curve Calibrato

BootCurveConstructionl nput

BootCurveConstructioninput contains the Parameteesled for the Curve

Calibration/Estimation. It contains the following:

Calibration Valuation Parameters
Calibration Quoting Parameters
Array of Calibration Instruments
Map of Calibration Quotes

Map of Calibration Measures

Double Map of the Date/Index Fixings

96

Curve

Curve extends the Latent State to abstract theituradity required among all financial
curve. It exposes the following functionality:

» Set the Epoch and the Identifiers
® Set up/retrieve the Calibration Inputs

®* Retrieve the Latent State Metric Measures

CreditCurve

CreditCurve is the stub for the survival curve fiimaality. It extends the Curve object by
exposing the following functions:

» Set of curve and market identifiers

* Recovery to a specific date/tenor, and effectie®very between a date interval

» Hazard Rate to a specific date/tenor, and effe¢tazard rate between a date interval
» Survival to a specific date/tenor, and effectivevatal between a date interval

» Set/unset date of specific default

» Generate scenario curves from the base credit ¢flatgparallel/custom)

» Set/unset the Curve Construction Inputs, LaterteStand the Manifest Metrics

» Serialization/De-serialization to and from Byte &ys

ExplicitBootCurve

In ExplicitBootCurve, the segment boundaries exiiyiine up with the instrument
maturity boundaries. This feature is exploited unding a boot-strappable curve.
Functionality is provides set the Latent StatéhatExplicit Node, adjust the Latent State

at the given Node, or set a common Flat Value acatisNodes.

97

ExplicitBootCreditCurve

ExplicitBootCreditCurve exposes the functionalissaciated with the bootstrapped
Credit Curve.

FXForwardCurve

FXForwardCurve implements the curve representiegekForward nodes. It extends
the Curve class, and exposes the following funefion

* Retrieve the spot parameters (FX Spot, Spot Datétlee currency pair)

» Calculate the Zero set of FX Basis/Zero Rate nadegsponding to each basis node
» Bootstrap basis points/discount curves correspgniirthe FXForward node set

* Imply the zero rate to a given date from the FXFaodhcurve

FXBasisCurve

FXBasisCurve implements the curve representing-Xigasis nodes. It extends the
Curve class, and exposes the following functiopalit

* Retrieve the spot parameters (FX Spot, Spot Datétlge currency pair)

* Indicate if the basis has been bootstrapped

» Calculate the Complete set of FX Forward correspantb each basis node

98

Curve Builder: Rates Analytics

Curve Builder Rates Analytics functioase available in the package

org.drip.rates.analytics. The rates analytics package provides definitafrthe discount

curve, the forward curve, the zero curve, the diatdactor and the forward rate

estimators, the turns list, and their constructiguts.

Functionality in this package is implemented overclhsses BiscountFactorEstimator
ForwardRateEstimatpiurn, TurnListDiscountFactgiRatesLSMM SmoothingCCIS
DiscountForwardEstimatpForwardCurveDiscountCurveExplicitBootDiscountCurve

andZeroCurve

DiscountFactor Estimator

DiscountFactorEstimator is the interface that eegdbke calculation of the Discount

Factor for a specific Sovereign/Jurisdiction Sgaaxposes the following functionality:

* Curve Epoch Date

» Discount Factor Target/Effective Variants - to 3fied Julian Dates and/or Tenors

» Forward Rate Target/Effective Variants - to Spedfiulian Dates and/or Tenors

» Zero Rate Target/Effective Variants - to Specifiedian Dates and/or Tenors

* LIBOR Rate and LIBORO1 Target/Effective Variant® -Specified Julian Dates
and/or Tenors

* Curve Implied Arbitrary Measure Estimates

Forwar dRateEstimator

99

ForwardRateEstimator is the interface that exptsesalculation of the Forward Rate
for a specific Index. It exposes methods to comfurteard rates to a given date/tenor,

extract the forward rate index and the Tenor.

Turn

Turn implements rate spread at discrete time spaosntains the turn amount and the

start/end turn spans.

TurnListDiscountFactor

TurnListDiscountFactor implements the discountiagdd off of the turns list. Its
functions add a turn instance to the current set,cancurrently apply the discount factor

inside the range to each relevant turn.

RatesL. SM M

RatesLSMM contains the Rates specific Latent Sitefor the Rates Curve. Current it
holds the turn list discount factor.

SmoothingCCI S

SmoothingCCIS enhances the Shape Preserving CCtsfaothing customizations. It

exposes the shape preserving discount curve argitbething curve stretch parameters.

100

DiscountForwar dEstimator

DiscountForwardEstimator exposes the "native" fodsarve associated with the
specified discount curve. It exposes functiondbtgxtract forward rate index/tenor, as

well as to compute the forward rate implied oftlod discount curve.

ForwardCurve

ForwardCurve is the stub for the forward curve fiomality. It extends the Curve object

by exposing the following functions:

* The name/epoch of the forward rate instance

* The index/currency/tenor associated with the fodwvate instance

» Forward Rate to a specific date/tenor

» Generate scenario-tweaked Latent State from thefoasard curve corresponding to
mode adjusted (flat/parallel/custom) manifest megguantification metric.

* Retrieve array of latent state manifest measusgument quantification metric, and
the array of calibration components.

» Set/retrieve curve construction input instrumeis.se

DiscountCurve

DiscountCurve is the stub for the discount curvecfionality. It extends the both the

Curve and the DiscountFactorEstimator instancampiementing their functions, and

exposing the following:

* Forward Rate to a specific date/tenor, and effeatate between a date interval

» Discount Factor to a specific date/tenor, and @&ffealiscount factor between a date
interval

» Zero Rate to a specific date/tenor

101

Value Jacobian for Forward rate, discount factod zero rate

Cross Jacobian between each of Forward rate, dis¢actor, and zero rate
Quote Jacobian to Forward rate, discount factat,zzmo rate

QM (DF/Zero/Forward) to Quote Jacobian

Latent State Quantification Metric, and the quacaiion metric transformations
Implied/embedded ForwardRateEstimator

Turns - set/unset/adjust

ExplicitBootDiscountCurve

ExplicitBootDiscountCurve exposes the functionadissociated with the bootstrapped

Discount Curve.

Generate a curve shifted using targeted basiseatfgpnodes

Generate scenario tweaked Latent State from theefoasard curve corresponding to
mode adjusted (flat/parallel/custom) manifest megguantification metric

Retrieve array of latent state manifest measust#ument quantification metric, and
the array of calibration components

Set/retrieve curve construction input instrumeis se

ZeroCurve

ZeroCurve exposes the node set containing theczeve node points. In addition to the

discount curve functionality that it automaticghisovides by extension, it provides the

functionality to calculate the zero rate.

102

Regression SuitelLibrary

Regression Suite Libramgonsists of the following 5 packages:

1. Core Regression Libraryhis contains the full set étegression Suite’sore

framework and the set of extensible interfaces.

2. Curve Regression Suit&he Curve Regression Package demonstrates thewwe

regression functionality — regression of discounte, credit curve, FX forward/basis

curve, and zero curves.

3. Curve Jacobian Regression Suthe Product Curve Jacobian Regression package

carries out regression across the core suite afysts Jacobian to the curve - Cash,
EDF, and Fix-float IRS. It also implements the Gudacobian Regression Engine.

4. Fixed Point Finder Regression Suildis contains the suite for regression testing of

the non-linear univariate fixed-point finder.

5. Basis Spline Regression Suifhis package contains the random input regression

runs on the spline and stretch instances. Runeseg@n C1Hermite, local control
smoothing, single segment Lagrangians, multi-segis@auences using a variety of

spline/stretch basis functions and controls.

103

Regression Suite: Core

Thecore functionality of the regression suite libre&gymplemented in the package

org.drip.regression.core. This contains the full set &egression Suite core framework

and the set of extensible interfaces.

Functionality in this package is implemented ovetasses -RegressionEngine

RegressionRunDetaiRegressionRunOutpuRegressorSetnitRegressionExecutor

UnitRegressionStaandUnitRegressar

RegressionEngine

RegressionEngine provides the control and framee\eorctionality for the General

Purpose Regression Suite. It invokes the folloveitaps as part of the execution:

* Initialize the regression environment. This stefs s the regression sets, and adds
individual regressors to the set.

* Invoke the regressors in each set one by one.

» Collect the results and details of the regressims.r

» Compile the regression statistics.

» Optionally display the regression statistics.

Regr essionRunDetail

RegressionRunDetail contains named field leveliget@utput of the regression activity.

Regr essionRunOutput

104

RegressionRunOutput contains the output of a siegjeession activity. It holds the
following:

* The execution time

» The Success/failure status of the run

* The regression scenario that was executed

* The Completion time for the regression module

* The Regression Run Detail for the regression run

Regr essor Set

RegressorSet interface provides the Regressituges. It contains a set of regressors
and is associated with a unique name. It providedunctionality to set up the contained

regressors.

UnitRegr essionExecutor

UnitRegressionExecutor implements the UnitRegressuat splits the regression
execution into pre-, execute, and post-regrestigmovides default implementations for
pre-regression and post-regression. Most typicakessors only need to over-ride the

execRegression method.

UnitRegr essionStat

UnitRegressionStat creates the statistical ddtailghe Unit Regressor. It holds the
following:

» Execution Initialization Delay

105

e Execution time mean, variance, maximum, and minimum

e The full list of individual execution times

UnitRegr essor

UnitRegressor provides the stub functionality for tndividual Regressors. Its derived

classes implement the actual regression run. lddaliregressors are named.

106

Curve Regression Suite

The core functionality of theurve regression librarg implemented in the package

org.drip.regression.curv&he Curve Regression Package demonstrates taewore

regression functionality — regression of discounte, credit curve, FX forward/basis

curve, and zero curves.

Functionality in this package is implemented ovefgsses DiscountCurveRegressor

ZeroCurveRegressoCreditCurveRegressdeXCurveReqgressoand

CreditAnalyticsRegressionEngine

DiscountCurveReqr essor

DiscountCurveRegressor implements the regressicamsdysis for the Discount Curve.

DiscountCurveRegressor regresses 11 scenarios:

#1:
#2:
#3:
#4.:
#5:
#6:
#7:
#8:
#9:

Create the discount curve from a set 30 ingnim(cash/future/swap).
Create the discount curve from a flat discoatg.

Create the discount curve from a set of disttaators.

Create the discount curve from the implied alist rates.

Extract the discount curve instruments andegiot

Create a parallel shifted discount curve.

Create a rate shifted discount curve.

Create a basis rate shifted discount curve.

Create a node tweaked discount curve.

#10: Compute the effective discount factor betw2elates.

#11: Compute the effective implied rate betweemt2sl

107

ZeroCurveRegr essor

ZeroCurveRegressor implements the regression analgtsfor the Zero Curve. The
regression tests do the following:

* Build a discount curve, followed by the zero curve.

* Regressor #1: Compute zero curve discount factors.

* Regressor #2: Compute zero curve zero rates.

CreditCurveRegr essor

CreditCurveRegressor implements the regressiocarsdysis for the Credit Curve.
CreditCurveRegressor regresses 12 scenarios:

* #1: Create an SNAC CDS.

» #2: Create the credit curve from a set of CDS umsénts.

» #3: Create the credit curve from a flat hazard.rate

* #4: Create the credit curve from a set of survprababilities.

» #5: Create the credit curve from an array of haraies.

* #6: Extract the credit curve instruments and quotes

» #7: Create a parallel hazard shifted credit curve.

» #8: Create a parallel quote shifted credit curve.

* #9: Create a node tweaked credit curve.

* #10: Set a specific default date on the crediteurv

* #11: Compute the effective survival probabilityween 2 dates.

* #12: Compute the effective hazard rate betweertésda

FXCurveRegr essor

108

FXCurveRegressor implements the regression analgsir the FX Curve.

FXCurveRegressor implements 3 regression tests:

#1: FX Basis and FX Curve Creation: Construct aéiard Curve from an array of
FX forward nodes and the spot.

#2: Imply the FX Forward given the domestic anckign discount curves.

#3a: Compute the domestic and foreign basis givemtarket FX forward.

#3b: Build the domestic/foreign basis curve giviea ¢orresponding basis nodes.
#3c: Imply the array of FX forward points/PIPs frdine array of basis and

domestic/foreign discount curves.

CreditAnalyticsRegr ess onEngine

CreditAnalyticsRegressionEngine implements the BegjonEngine for the curve

regression. It adds the CreditCurveRegressor, Drig€urveRegressor,

FXCurveRegressor, and ZeroCurveRegressor, andhaaribe regression engine.

109

Curve Jacobian Regr ession Suite

The core functionality of theurve Jacobian regression librasyimplemented in the

packageorg.drip.regression.curveJacohidie Product Curve Jacobian Regression

package carries out regression across the coeedysroducts Jacobian to the curve—

Cash, EDF, and Fix-float IRS. It also implements @urve Jacobian Regression Engine.

Functionality in this package is implemented ovetdsses €ashJacobianRegressorSet

EDFJacobianRegressorSiSJacobianRegressorSet

DiscountCurveJacobianRegressor@edCurveJacobianRegressionEngine

CashJacobianRegr essor Set

CashJacobianRegressorSet implements the regresstysis set for the Cash product
related Sensitivity Jacobians. Specifically, it gutes the PVDF micro-Jack.

EDFJacobianReqgr essor Set

EDFJacobianRegressorSet implements the regressabyss set for the EDF product
related Sensitivity Jacobians. Specifically, it gutes the PVDF micro-Jack.

| RSJacobianRegr essor Set

IRSJacobianRegressorSet implements the regressatyses set for the IRS product
related Sensitivity Jacobians. Specifically, it gutes the PVDF micro-Jack.

110

DiscountCurveJacobianRegr essor Set

DiscountCurveJacobianRegressorSet implements gnesson analysis for the full
discount curve (built from cash/future/swap) Sewisit Jacobians. Specifically, it

computes the PVDF micro-Jack.

CurvelacobianRegr onEngine

CurveJacobianRegressionEngine implements the Regn&sgine for the curve
Jacobian regression. It adds the CashJacobianRedbes, the
EDFJacobianRegressorSet, the IRSJacobianRegressm&é¢he

DiscountCurveJacobianRegressorSet, and launchesgtession engine.

111

Fixed-Point Finder Regression Suite

The core functionality of theon-linear fixed-point finder regression librasy

implemented in the packageg.drip.regression.fixedpointfindeFhis contains the suite

for regression testing of the non-linear univariated-point finder.

Functionality in this package is implemented ovetagses -OpenRegressorSet

BracketingRegressorS€&lompoundBracketingRegressorSaid

FixedPointFinderRegressionEngine

OpenRegr essor Set

OpenRegressorSet implements the regression ruhdaddpen (i.e., Newton) Fixed Point
Search Method.

BracketingRegr essor Set

BracketingRegressorSet implements regression muthéoPrimitive Bracketing Fixed
Point Search Method. It implements the followingrémitive bracketing schemes:

Bisection, False Position, Quadratic, and Invergadpatic.

CompoundBracketingReqgr essor Set

CompoundBracketingRegressorSet implements regressiofor the Compound
Bracketing Fixed Point Search Method. It implemehegsfollowing 2 compound

bracketing schemes: Brent and Zheng.

112

FixedPointFinder Regr essonEngine

FixedPointFinderRegressionEngine implements thed®sgnEngine for the Fixed Point
Finder regression. It adds the OpenRegressor®eBracketingRegressorSet, and the

CompoundBracketingRegressorSet, and launchesdhesston engine.

113

Basis Spline Regression Suite

The core functionality of theasis spline regression librag/implemented in the

packageorg.drip.regression.splind@his package contains the random input regression

runs on the spline and stretch instances. Runseseg@n C1Hermite, local control
smoothing, single segment Lagrangians, multi-segs@auences using a variety of

spline/stretch basis functions and controls.

Functionality in this package is implemented ovetadses BasisSplineRegressor

HermiteBasisSplineRegressbaagrangePolynomialStretchRegressor

LocalControlBasisSplineRegressBasisSplineRegressorSand

BasisSplineRegressionEngine

BasisSplineRegr essor

BasisSplineRegressor implements the custom bdse spgressor for the given basis
spline. As part of the regression run, it execthesollowing:

» Calibrate and compute the left and he right Jacobia

* Reset right node and re-run calibration.

» Compute an intermediate value Jacobian.

Her miteBasi sSplineReqgr essor

HermiteBasisSplineRegressor implements the BasigSpégressor using the Hermite

basis spline regressor.

114

L agr angePolynomial Str etchRegr essor

LagrangePolynomialStretchRegressor implements #ssBplineRegressor using the

SingleSegmentLagrangePolynomial regressor.

L ocal ControlBasisSplineRegr essor

LocalControlBasisSplineRegressor implements thalloontrol basis spline regressor for
the given basis spline. As part of the regression it executes the following:

» Calibrate and compute the left and the right Jaoobi

» Insert the Local Control Hermite, Cardinal, andr@ait-Rom knots

* Run Regressor for the C1 Local Control C1 Slopertitn Bessel/Hermite Spline

* Compute an intermediate value Jacobian

BasisSplineRegr essor Set

BasisSplineRegressorSet carries out regressiangdst the following series of basis
splines:

» Polynomial Basis Spline, n = 2 basis functions, énd

« Polynomial Basis Spline, n = 3 basis functions, @d

« Polynomial Basis Spline, n = 4 basis functions, @d

» Polynomial Basis Spline, n = 4 basis functions, &id

» Polynomial Basis Spline, n = 5 basis functions, @d

« Polynomial Basis Spline, n = 5 basis functions, &id

« Polynomial Basis Spline, n = 5 basis functions, &id

+ Polynomial Basis Spline, n = 6 basis functions, @d

+ Polynomial Basis Spline, n = 6 basis functions, &id

115

« Polynomial Basis Spline, n = 6 basis functions, &id

» Polynomial Basis Spline, n = 6 basis functions, &id

» Polynomial Basis Spline, n = 7 basis functions, énd

« Polynomial Basis Spline, n = 7 basis functions, &id

» Polynomial Basis Spline, n = 7 basis functions, &id

» Polynomial Basis Spline, n = 7 basis functions, &id

« Polynomial Basis Spline, n = 7 basis functions, &id

+ Bernstein Polynomial Basis Spline, n = 4 basis fions, andC?

+ Exponential Tension Spline, n = 4 basis functidres)sion = 1., an€C®
+ Hyperbolic Tension Spline, n = 4 basis functionsndion = 1., an€C?
+ Kaklis-Pandelis Tension Spline, n = 4 basis fum&jdP = 2, andC?

+ C1 Hermite Local Spline, n = 4 basis functions, &1d

» Hermite Local Spline with Local, Catmull-Rom, andr@inal Knots, n = 4 basis

functions, andC*

BasisSplineRegr ess onEngine

BasisSplineRegressionEngine implements the Regrdssgine class for the basis spline

functionality.

116

DRIP MATH

DRIP MATH Library consists of the following 5 packages:

1. Univariate Function PackagEhe univariate function package implements the

individual univariate functions, their convolutigrand reflections.

2. Univariate Calculus PackadEhe univariate calculus package implements uratari

difference based arbitrary order derivative, impdais differential control settings,
implements several integrand routines, and muiat@Wengert Jacobian.

3. Univariate DistributionThis package implements the univariate distrimgie

currently normal and its variants.

4. Linear AlgebraThis package implements the linear algebra funatity — matrix

manipulation, inversion, and transformation, linggstem solving, and linearization

output representation.

5. DRIP Math HelpetsThis package implements a collection of DRIP MARé&lper

utilities - collections processing, date manipwatiworking with strings, real number

utilities, and formatting functionality.

6. Univariate Non-linear Fixed Point Finder SotvEhis package implements a number

of univariate, non-linear fixed-point search roesnMethodology separates
execution initialization from variate iteration.\Aariety of open and closed variate
iteration techniques are implemented, along witipive/complex closed variate

iteration techniques.

117

DRIP MATH: Univariate Function

DRIP MATH Univariate Functionare available in the package

org.drip.quant.function1D. The univariate function package implements tigividual

univariate functions, their convolutions, and refiens.

Functionality in this package is implemented overclasses AbstractUnivariate

UnivariateConvolutionUnivariateReflectionPolynomial BernsteinPolynomial

NaturalLogSeriesElemerExponentialTensiorHyperbolicTension

LinearRationalShapeContrduadraticRationalShapeContrahd

LinearRationalTensionExponential

AbstractUnivariate

This abstract class provides the evaluation ofythen basis/objective function and its
derivatives for a specified variate. Default imp#artations of the derivatives are for

black box, non-analytical functions.

UnivariateConvolution

This class provides the evaluation of the pointgalnd the derivatives of the

convolution of 2 univariate functions for the sgied variate.

UnivariateReflection

118

For a given variate, this class provides the evaluation and derivatofethe reflection

atl-x.

Polynomial

This class provides the evaluation of tHeonder polynomial and its derivatives for a

specified variate. The degree n specifies the arfitre polynomial.

BernsteinPolynomial

This class provides the evaluation of Bernsteitypaiial and its derivatives for a

specified variate. The degree exponent specifesttier of the Bernstein polynomial.

NaturalL ogSeriesElement

This class provides the evaluation of a single terthe expansion series for the natural
log. The exponent parameter specifies which tertherseries is being considered.

Exponential Tension

This class provides the evaluation of exponengiasion basis function and its
derivatives for a specified variate. It can be custed by the choice of exponent, the

base, and the tension parameter.

HyperbolicT ension

119

This class provides the evaluation of hyperbolitsien basis function and its derivatives
for a specified variate. It can be customized leydhoice of the hyperbolic function and

the tension parameter.

L inear Rational ShapeControl

This class implements the deterministic rationalpghcontrol functionality on top of the

estimate of the basis splines insid®,-..1) - Globally[X,,....x): y= ﬁ where is
X

. . X=X
the normalized ordinate mappedmsﬁ.

T ANa

Quadr aticRational ShapeContr ol

This class implements the deterministic rationalpghcontrol functionality on top of the

estimate of the basis splines insid®;-...1) - Globally[X,,...,x): y = _t
1+ Ax(1-X)

: : : X=X
where is the normalized ordinate mapped#.

-1

L inear Rational TensionExponential

This class provides the evaluation of the Convotutif the Linear Rational and the

Tension Exponential Function and its derivativasaf@pecified variate.

120

DRIP MATH: Univariate Calculus

DRIP MATH Univariate Calculus functiorare available in the package

org.drip.quant.calculus. The univariate calculus package implements uratar

difference based arbitrary order derivative, impdais differential control settings,

implements several integrand routines, and muiataWengert Jacobian.

Functionality in this package is implemented ovetasses DerivativeContraol

Differential, Integrator andWengertJacobian

DerivativeControl

DerivativeControl provides bumps needed for nunadifiapproximating derivatives.

Bumps can be absolute or relative, and they defawltfloor.

Differential

Differential holds the incremental differentials fbe variate and the objective functions.

W engertJacobian

WengertJacobian contains the Jacobian of the gigenf Wengert variables to the set of
parameters. It exposes the following functionality:

» Set/Retrieve the Wengert variables

* Accumulate the Partials

» Scale the partial entries

121

* Merge the Jacobian with another
* Retrieve the WengertJacobian elements

» Display the contents of the WengertJacobian

I ntegrator

Integrator implements the following routines foteigrating the objective functions:
* Linear Quadrature

* Mid-Point Scheme

* Trapezoidal Scheme

* Simpson/Simpson38 Schemes

* Boole Scheme

122

DRIP MATH: Univariate Distribution

DRIP MATH Univariate Distributionsre available in the package

org.drip.quant.distribution. This package implements the univariate distrdngi—

currently normal and its variants.

Functionality in this package is implemented oveta&sses tnivariateand

UnivariateNormal

Univariate

Univariate implements the base abstract class Hehiivariate distributions. It exports

methods for incremental, cumulative, and inversauwative distribution densities.

UnivariateNor mal

UnivariateNormal implements the univariate normatrébution. It implements

incremental, cumulative, and inverse cumulativéridbistion densities.

123

DRIP MATH: Linear Algebra

DRIP MATH Linear Algebra Functionare available in the package

org.drip.quant.linearalgebra. This package implements the linear algebra fonelity —

matrix manipulation, inversion, and transformatitbmear system solving, and

linearization output representation.

Functionality in this package is implemented ovetasses LinearizationOutpuyt

MatricComplementTransfornMatrix, andLinearSystemSolver

L inearizationOutput

LinearizationOutput holds the output of a sequesfdmearization operations. It contains
the transformed original matrix, the transformedSRRldnd the method used for the

linearization operation.

M atrixComplementTransform

This class holds the results of Matrix transformglte source and the complement, e.g.,

during a Matrix Inversion Operation.

Matrix
Matrix implements Matrix manipulation routinesebtports the following functionality:

* Matrix Inversion using Closed form solutions (fomd-dimension matrices), or using

Gaussian elimination

124

* Matrix Product
» Matrix Diagonalization and Diagonal Pivoting

* Matrix Regularization through Row Addition/Row Swap

M atrixComplementTransform

LinearSystemSolver implements the solver for aesysdf linear equations given by
Ax = B, whereA is the matrix,x the set of variables, aril is the result to be solved
for. It exports the following functions:

* Row Regularization and Diagonal Pivoting

» Check for Diagonal Dominance

* Solving the linear system using any one of theofeihg: Gaussian Elimination,

Gauss Seidel reduction, or matrix inversion

125

DRIP MATH: Helper Utilities

DRIP MATH Helper Utilitiesare available in the packagey.drip.quant.common. This

package implements a collection of DRIP MATH helpgilities - collections processing,
date manipulation, working with strings, real numbglities, and formatting

functionality.

Functionality in this package is implemented ovetdsses €ollectionUtil, DateUtil,
StringUtil, NumberUtil andFormatUtil

CollectionUtil

The CollectionUtil class implements generic utifiitymctions used in DRIP modules.
Some of the functions it exposes are:

* Map Merging Functionality

* Map Key Functionality - key-value flatteners, kegifixers

» Decompose/transform List/Set/Array Contents

* Multi-Dimensional Map Manipulator Routines

» Construct n-derivatives array from Slope

» Collate Wengerts to a bigger Wengert

DateUtil

DateUtil implements date utility functions those axtraneous to the JulianDate
implementation. It exposes the following functiatyal

* Retrieve Day, Month, and Year From Java Date

126

* Switch between multiple date formats (Oracle DB®G Date, different string

representations etc)

Stringutil

StringUtil implements string utility functions. éxports the following functions:

» Decompose + Transform string arrays into approptiatget type set/array/list, and
vice versa

» General-purpose String processor functions, su¢hld® generator, splitter, type

converter and input checker

Number Util

NumberUtil implements number utility functions eltposes the following functions:
* Verify number/number array validity, and closengigsl match

» Factorial Permutation/Combination functionality

* Dump multi-dimensional array contents

* Min/Max/Bound the array entries within limits

FormatUtil

FormatUtil implements formatting utility function€urrently it just exports functions to

pad and format.

127

DRIP MATH: Univariate Non-linear Fixed Point Finder

Solver

The core functionality of thBRIP _non-linear fixed-point search librais/implemented

in the packagerg.drip.math.solver1DThis package implements a number of univariate,

non-linear fixed-point search routines. Methodolsgparates execution initialization
from variate iteration. A variety of open and closeariate iteration techniques are

implemented, along with primitive/complex closediate iteration techniques.

Functionality in this package is implemented ov@rclhsses BracketingControlParams

BracketingOutpytConvergenceControlParan@onvergenceQutpuExecutionContrgl

ExecutionControlParamgxecutionlnitializationOutputExecutionlnitializer
FixedPointFinderFixedPointFinderBracketindrixedPointFinderBrent

FixedPointFinderNewtqrFixedPoinderOutpuFixedPointFinderZheng

InitializationHeuristicslteratedBracketliteratedVariate

VariatelterationSelectionParapandVariatelteratorPrimitive

BracketingContr olParams

BracketingControlParams implements the controlpatars for bracketing solutions.
BracketingControlParams provides the following pasters:

* The starting variate from which the search for kegiag begins.

* The initial width for the brackets.

* The factor by which the width expands with eactleiige search.

« The number of such iterations.

BracketingOutput

128

BracketingOutput carries the results of the brangahitialization. In addition to the
fields of ExecutionlnitializationOutput, Bracketi@gtput holds the left/right bracket

variates and the corresponding values for the tlgtunction.

Conver genceControlParams

ConvergenceControlParams holds the fields needeati¢acontrolling the execution of
Newton's method. ConvergenceControlParams doesisivag the following parameters:
* The determinant limit below which the convergenoeezis deemed to have reached.
» Starting variate from where the convergence seaarkitked off.

» The factor by which the variate expands across #gacdtive search.

« The number of search iterations.

Conver genceQOutput

ConvergenceOutput extends the Executionlnitialize@iutput by retaining the starting
variate that results from the convergence zoneke&onvergenceOutput does not add

any new field to ExecutionlnitializationOutput.

ExecutionContr ol

ExecutionControl implements the core fixed-poirdrsé execution control and
customization functionality. ExecutionControl issdsfor a) calculating the absolute
tolerance, and b) determining whether the OF hashed the goal. ExecutionControl

determines the execution termination using its BkenControlParams instance.

129

ExecutionContr olParams

ExecutionControlParams holds the parameters ndededntrolling the execution of the

fixed-point finder. ExecutionControlParams fielastrol the fixed-point search in one of

the following ways:

Number of iterations after which the search is degto have failed.

Relative Objective Function Tolerance Factor whighen reached by the objective
function, will indicate that the fixed point hasdmereached.

Variate Convergence Factor, factor applied to tiiteal variate to determine the
absolute convergence.

Absolute Tolerance fall-back, which is used to datee that the fixed point has been
reached when the relative tolerance factor becaews

Absolute Variate Convergence Fall-back, fall-baskdito determine if the variate

has converged.

ExecutionlnitializationOutput

ExecutionlnitializationOutput holds the output bétroot initializer calculation. The

following are the fields held by ExecutionlnitiadizonOutput:

Whether the initialization completed successfully.
The number of iterations, the number of objectivection calculations, and the time
taken for the initialization.

The starting variate from the initialization

Executionlnitializer

130

Executionlnitializer implements the initializati@xecution and customization

functionality. Executionlinitializer performs twoggs of variate initializations:

* Bracketing initialization: This brackets the fixpdint using the bracketing algorithm
described in http://www.credit-trader.org. If susskll, a pair of variate/OF
coordinate nodes that bracket the fixed-point reegated. These brackets are
eventually used by routines that iteratively detamhe fixed-point. Bracketing
initialization is controlled by the parameters iraBketingControlParams.

» Convergence Zone initialization: This generatearate that lies within the
convergence zone for the iterative determinatiotheffixed point using the Newton's
method. Convergence Zone Determination is conttddethe parameters in

ConvergenceControlParams.

Executionlnitializer behavior can be customizedfofed through several of the

initialization heuristics techniques implementedha InitializationHeuristics class.

FixedPointFinder

FixedPointFinder is the base abstract class thatgeemented by customized
invocations, e.g., Newton's method, or any of ttaeketing methodologies.
FixedPointFinder invokes the core routine for deiaing the fixed point from the goal.
The ExecutionControl determines the execution teation. The initialization heuristics

implements targeted customization of the search.

FixedPointFinder main flow comprises of the follogisteps:

* Initialize the fixed-point search zone by determgeither a) the brackets, or b) the
starting variate.

» Compute the absolute OF tolerance that establitleesttainment of the fixed point.

» Launch the variate iterator that iterates the varia

» Iterate until the desired tolerance has been atfain

* Return the fixed-point output.

131

Fixed point finders that derive from this provideplementations for the following:

» Variate initialization: They may choose either leting initializer, or the
convergence initializer - functionality is providéat both in this module.

» Variate Iteration: Variates are iterated usingra) af the standard primitive built-in

variate iterators (or custom ones), or b) a vasatector scheme for each iteration.

FixedPointFinder Bracketing

FixedPointFinderBracketing customizes the Fixedfamaler for bracketing based fixed-

point finder functionality.

FixedPointFinderBracketing applies the followingtmization:
* Initializes the fixed-point finder by computing tetarting brackets.

» lterating the next search variate using one ofpexified variate iterator primitives.

By default, FixedPointFinderBracketing does notdmpound iterations of the variate

using any schemes - that is done by classes thateK.

FixedPointFinder Brent

FixedPointFinderBrent customizes FixedPointFindadReting by applying the Brent's

scheme of compound variate selector.
Brent's scheme, as implemented here, is descniblettd://www.credit-trader.org. This

implementation retains absolute shifts that haygpbaed to the variate for the past 2

iterations as the discriminant that determinestyd variate to be generated.

132

FixedPointFinderBrent uses the following paramesgexcified in

VariatelterationSelectorParams:

* The Variate Primitive that is regarded as the "fastthod.

* The Variate Primitive that is regarded as the "stbhmethod.

* The relative variate shift that determines when"tbbust" method is to be invoked
over the "fast".

* The lower bound on the variate shift between itenstthat serves as the fall-back to

the "robust".

FixedPointFinder Newton

FixedPointFinderNewton customizes the FixedPoirtt€irfor Open (Newton's) fixed-

point finder functionality.

FixedPointFinderNewton applies the following cusization:
* Initializes the fixed point finder by computing @iing variate in the convergence
zone.

» lterating the next search variate using the Newtoréthod.

FixedPointFinder Output

FixedPointFinderOutput holds the result of the dibpoint search.

FixedPointFinderOutput contains the following figld

* Whether the search completed successfully

* The number of iterations, the number of objectivection base/derivative
calculations, and the time taken for the search

» The output from initialization

133

FixedPointFinder Zheng

FixedPointFinderZheng implements the fixed-poimakor using Zheng's improvement

to Brent's method.

FixedPointFinderZheng overrides the iterateCompbianidte method to achieve the

desired simplification in the iterative variateesgion.

InitializationHeuristics

InitializationHeuristics implements several heucstused to kick off the fixed-point

bracketing/search process.

The following custom heuristics are implementegas of the heuristics based kick-off:

» Custom Bracketing Control Parameters: Any of tlaadard bracketing control
parameters can be customized to kick-off the bramksearch.

» Soft Left/Right Bracketing Hints: The left/rightesting bracket edges are used as soft
bracketing initialization hints.

» Soft Mid Bracketing Hint: A mid bracketing level specified to indicate the soft
bracketing kick-off.

» Hard Bracketing Floor/Ceiling: A pair of hard floand ceiling limits is specified as a
constraint to the bracketing.

» Hard Search Boundaries: A pair of hard left ant@itrlgpundaries is specified to kick-

off the final fixed-point search.

These heuristics are further interpreted and deeelanside the Executionlnitializer and

the ExecutionControl implementations.

134

|ter atedBracket

IteratedBracket holds the left/right bracket vaasaand the corresponding values for the

objective function during each iteration.

IteratedVariate

IteratedVariate holds the variate and the corredimgrvalue for the objective function

during each iteration.

Variatel ter ationSelectionPar ams

VariatelterationSelectorParams implements the obpaarameters for the compound

variate selector scheme used in Brent's method.

Brent's method uses the following fields in VaritgmtionSelectorParams to generate

the next variate:

* The Variate Primitive that is regarded as the "fastthod.

* The Variate Primitive that is regarded as the "stbmethod.

* The relative variate shift that determines when"tbbust" method is to be invoked
over the "fast".

* The lower bound on the variate shift between itenstthat serves as the fall-back to

the "robust".

Variatelterator Primitive

135

VariatelteratorPrimitive implements the variousnfitive Variate Iterator routines.

VariatelteratorPrimitive implements the followirtgration primitives:
* Bisection

* False Position

* Quadratic

* Inverse Quadratic

* Ridder

It may be readily enhanced to accommodate additgmmaitives.

136

Spline Builder

Spline Builder Libraryconsists of the following 8 packages:

1. Spline Parameter¥he spline parameters package implements the s¢gme

stretch level construction, design, penalty, arapsicontrol parameters.

2. Spline Basis Function Séthe spline basis function set package implemdéeats t

basis set, parameters for the different basis fomgt parameters for basis set

construction, and parameters for B Spline sequeogstruction.

3. Spline SegmenThe spline segment package implements the segsriaatastic

state, the segment basis evaluator, the segme&ntdi@enalizer, computes the
segment monotonicity behavior, and implements dgenent’'s complete

constitutive state.
4. Spline StretchThe spline stretch package provides single segarehmulti
segment interfaces, builders, and implementatiaiosg with custom boundary

settings.

5. Spline Grid/SparnThe spline grid/span package provides the muiktc

spanning functionality. It specifies the span if#ee, and provides
implementations of the overlapping and the nondapging span instances. It

also implements the transition splines with cust@nsition zones.

6. Spline PCHIPThe spline PCHIP package implements most variaiise local
piece-wise cubic Hermite interpolating polynomiedaothing functionality. It
provides a number of tweaks for smoothing custotiwizaas well as providing
enhanced implementations of Akima, Preuss, and id¥gast smoothing

interpolators.

137

7. Spline B SplineThe spline B Spline package implements the rawthad
processed basis B Spline hat functions. It providestandard implementations
for the monic and the multic B Spline Segmentaldb exports functionality to

generate higher order B Spline Sequences.

8. Tension SplineThe tension spline package implements closed family of
cubic tension splines laid out in the basic framdgwautlined in Koch and Lyche

(1989), Koch and Lyche (1993), and Kvasov (2000).

138

Spline Builder: Spline Parameters

Spline Builder Spline Parameters functi@me available in the package

org.drip.spline.params. The spline parameters package implements theesggand

stretch level construction, design, penalty, arapsicontrol parameters.

Functionality in this package is implemented overclhsses —

ResponseScalingShapeCont@®tgmentBasisFlexureConstraint

SegmentResponseValueConstraBggmentResponseConstraintSet

SegmentBestFitRespon$&iretchBestFitResponseegmentFlexurePenaltyControl

SegmentDesigninelasticContr8egmentCustomBuilderControl

SegmentPredictorResponseDerivatimerdSegmentStateCalibration

ResponseScalingShapeContr ol

This class implements the segment level basis ifiumeproportional adjustment to
achieve the desired shape behavior of the respbnaddition to the actual shape
controller function, it interprets whether the aohis applied on a local or global

predicate ordinate basis.

SegmentBasi skFlexur eConstr aint

This class holds the set of fields needed to cheniae a single local linear Constraint,
expressed linearly as a combination of the locatiletor Ordinates and their

corresponding Response Basis Function Realizatiomsstraints are expressed as

C = ZWi,Bi (xj) wherex; is the predictor ordinate at node £ is the Coefficient for

the Response Basis FunctionW is the weight applied for the Response Basis komct

139

i, andC;is the value of constraint SegmentBasisFlexureConstraint may be viewed as

the localized basis function transpose of Segmea&eseValueConstraint.

SegmentResponseV alueConstr aint

This class holds the following set of fields thaaracterize a single global linear

constraint between the predictor and the respoasables within a single segment,

expressed linearly across the constituent nocgnéntBasisFlexureConstraint may be

viewed as the localized basis function transposgegimentResponseValueConstraint.

SegmentResponseValueConstraint exports the foltpfuinctionality:

* Retrieve the Array of Predictor Ordinates

* Retrieve the Array of Response Weights at eachi®oedrdinate

* Retrieve the Constraint Value

» Convert the Segment Constraint onto Local Predi©talinates, the corresponding
Response Basis Function, and the Shape ContradigiiZzations

* Get the Position of the Predictor Knot relativaite Constraints

* Generate a SegmentResponseValueConstraint indtancé¢he given

predictor/response pair

SegmentResponseConstr aint Set

This class holds the set of SegmentResponseValst@ort (Base + One/more
Sensitivities) for the given Segment. It exposesfions to add/retrieve the base

response value constraints as well as additiosalorese value constraint sensitivities.

SegmentBestFitResponse

140

This class implements basis per-segment Fithessltipétarameter Set. Currently it
contains the Best Fit Penalty Weight Grid Matrixidhe corresponding Segment Local

Predictor Ordinate/Response Match Pair.

StretchBestFitResponse

This class implements basis per-Stretch FitnesalBdnarameter Set. Currently it

contains the Best Fit Penalty Weight Grid Matrixidhe corresponding Local Predictor

Ordinate/Response Match Pair. StretchBestFitRegpexsorts the following methods:

* Retrieve the Array of the Fithess Weights

* Retrieve the Indexed Fitness Weight Element

* Retrieve the Array of Predictor Ordinates

* Retrieve the Indexed Predictor Ordinate Element

* Retrieve the Array of Responses

» Retrieve the Indexed Response Element

» Retrieve the Number of Fitness Points

» Generate the Segment Local Best Fit Weighted Ragpoontained within the
specified Segment

» Construct the StretchBestFitResponse Instance thergiven Inputs

» Construct the StretchBestFitResponse Instance thergiven Predictor

Ordinate/Response Pairs, using Uniform Weightings

SegmentFlexur ePenaltyContr ol

This class implements basis per-segment FlexuralydParameter Set. Currently it
contains the Flexure Penalty Derivative Order dr@dRoughness Coefficient Amplitude.
Flexure Penalty Control may be used to implemegttmt Curvature Control and/or

Segment Length Control.

141

SegmentDesignl nelasticContr ol

This class implements basis per-segment inelaatanpeter set. It exports the following
functionality:

* Retrieve the Continuity Order.

* Retrieve the Length Penalty and the Curvature BeRarameters.

+ Create theC® Design Inelastic Parameters.

« Create the Design Inelastic Parameters for theatk€i* Criterion and the

Roughness Penalty Order.

SegmentCustomBuilder Control

This class holds the parameters the guide theiorda¢havior of the segment. It holds

the segment elastic/inelastic parameters and timea#®éasis function set.

SegmentPr edictor ResponseDerivative

This class contains the segment local parametexdsfos the segment calibration. It

holds the edge Input Response value and its demegatit exposes the following

functions:

* Retrieve the Response Value as well as the DRespéhiedictorOrdinate Array

* Aggregate the 2 Predictor Ordinate Response Déeresby applying the Cardinal
Tension Weight

SegmentStateCalibr ation

142

This class implements basis per-segment Calibr&amameter Set. It exposes the
following functionality:

* Retrieve the Array of the Calibration Predictor (Dedes

* Retrieve the Array of the Calibration Response ¥salu

* Retrieve the Array of the Left/Right Edge Derivasv

* Retrieve the Segment Best Fit Response

» Retrieve the Array of Segment Basis Flexure Comga

143

Spline Builder: Spline Basis Function Set

Spline Builder Spline Basis Function Set functians available in the package

org.drip.spline.basis. The spline basis function set package implenthetbasis set,

parameters for the different basis functions, patans for basis set construction, and

parameters for B Spline sequence construction.

Functionality in this package is implemented oveté&ses FunctionSet

FunctionSetBuilderParamSegmentBestFitRespon$exponentialTensionSetParams

ExponentialRationalSetParanfolynomialFunctionSetParams

KaklisPandelisSetParanfsunctionSetBuilderandBSplineSequenceParams

FunctionSet

This class implements the general-purpose basigesjpinction set.

FunctionSetBuilder Par ams

This is an empty stub class whose derived impleatiems hold the per-segment basis

set parameters.

Exponential M ixtur eSetPar ams

ExponentialMixtureSetParams implements per-segpardmeters for the exponential
mixture basis set - the array of the exponentiaditn parameters, one per each entity in

the mixture.

144

Exponential TensionSetParams

ExponentialTensionSetParams implements per-segoaeaieters for the exponential

tension basis set — currently it only containstédmsion parameter.

Exponential Rational SetPar ams

ExponentialRationalSetParams implements per-segpagaieters for the exponential

rational basis set — the exponential tension aadatonal tension parameters.

Polynomial FunctionSetPar ams

PolynomialFunctionSetParams implements per-seghasis set parameters for the

polynomial basis spline - currently it holds themher of basis functions.

K aklisPandelisSetPar ams

KaklisPandelisSetParams implements per-segmentngéees for the Kalkis-Pandelis

basis set — currently it only holds the polynontemision degree.

FunctionSetBuilder

This class implements the basis set and splineéior the following types of splines:

» Exponential basis tension splines

145

* Hyperbolic basis tension splines

* Polynomial basis splines

» Bernstein Polynomial basis splines

» Kaklis-Pandelis basis tension splines

The elastic coefficients for the segment us@fgbasis splines insidf,...1) - globally

[%.....x): y=BasisSplineFunction(C*, x)x ShapeController (x) where is the

, . X=X . , . o
normalized ordinate mapped asﬁ. The inverse quadratic/rational spline is

X=X
a typical shape controller spline used.

BSplineSeqguencePar ams

BSplineSequenceParams implements the parameter senstructing the B Spline
Sequence. It provides functionality to:

Retrieve the B Spline Order

Retrieve the Number of Basis Functions

Retrieve the Processed Basis Derivative Order

Retrieve the Basis Hat Type

Retrieve the Shape Control Type

Retrieve the Tension

©O O O O o o o

Retrieve the Array of Predictor Ordinates

146

Spline Builder: Spline Segment

Spline Builder Segment functioase available in the packagey.drip.spline.segment.

The spline segment package implements the segmeel&stic state, the segment basis
evaluator, the segment flexure penalizer, compiesegment monotonicity behavior,

and implements the segment’s complete constitstiaes.

Functionality in this package is implemented ovetadses helasticConstitutiveState

BasisEvaluatqrSegmentBasisEvaluatdvlonotonicity, BestFitFlexurePenalizeand
ConstitutiveState

I nelasticConstitutiveState

This class contains the spline segment in-elatidd - in this case the start/end ranges.
It exports the following functions:

* Retrieve the Segment Left/Right Predictor Ordinate

* Find out if the Predictor Ordinate is inside thgreent - inclusive of left/right

* Get the Width of the Predictor Ordinate in this iBegt

» Transform the Predictor Ordinate to the Local Segrieedictor Ordinate

» Transform the Local Predictor Ordinate to the Segri¥dinate

BasisEvaluator

This interface implements the Segment's Basis BwaiuFunctions. It exports the
following functions:
* Retrieve the number of Segment's Basis Functions

» Set the Inelastics that provides the envelopingt€drithe Basis Evaluation

147

» Clone/Replicate the current Basis Evaluator Instanc

» Compute the Response Value of the indexed Basistibarat the specified Predictor
Ordinate

* Compute the Basis Function Value at the specifiediPtor Ordinate

* Compute the Response Value at the specified Poedztiinate

» Compute the Ordered Derivative of the Responseé/atiiof the indexed Basis
Function at the specified Predictor Ordinate

* Compute the Ordered Derivative of the Responsee/atiiof the Basis Function Set
at the specified Predictor Ordinate

» Compute the Response Value Derivative at the gpddfredictor Ordinate

SegmentBasisEvaluator

This class implements the BasisEvaluator interfacéhe given Set of the Segment

Basis Evaluator Functions.

M onotonicity

This class contains the monotonicity details reldtethe given segment. It computes
whether the segment is monotonic, and if not, wéreithcontains a maximum, a

minimum, or an inflection.

BestFitFlexurePenalizer

This Class implements the Segment's Best Fit, Qursaand Length Penalizers. It
provides the following functionality:

» Compute the Cross-Curvature Penalty for the givasiBPair

148

Compute the Cross-Length Penalty for the given 8Rair
Compute the Best Fit Cross-Product Penalty fogtten Basis Pair

Compute the Basis Pair Penalty Coefficient forBlest Fit and the Curvature

Penalties

Compute the Penalty Constraint for the Basis Pair

ConstitutiveState

ConstitutiveState implements the single segmeris lsadibration and inference

functionality. It exports the following functiongli

Build the ConstitutiveState instance from the B&siaction/Shape Controller Set
Build the ConstitutiveState instance from the B&sialuator Set

Retrieve the Number of Parameters, Basis EvaluAtoay of the Response Basis
Coefficients, and Segment Design Inelastic Control

Calibrate the Segment State from the Calibraticarmater Set

Sensitivity Calibrator: Calibrate the Segment Qulzteobian from the Calibration
Parameter Set

Calibrate the coefficients from the prior PrediR@sponse Segment, the Constraint,
and fitness Weights

Calibrate the coefficients from the prior Segmerd the Response Value at the Right
Predictor Ordinate

Calibrate the Coefficients from the Edge Resporskeiés and the Left Edge
Response Slope

Calibrate the coefficients from the Left Edge Res@Value Constraint, the Left
Edge Response Value Slope, and the Right Edge Resplue Constraint

Retrieve the Segment Curvature, Length, and the BeEBPE

Calculate the Response Value and its Derivatitkeagiven Predictor Ordinate

Calculate the Ordered Derivative of the Coefficienthe Quote

149

Calculate the Jacobian of the Segment's Resporss Banction Coefficients to the
Edge Inputs

Calculate the Jacobian of the Response to the EBpgés at the given Predictor
Ordinate

Calculate the Jacobian of the Response to the Bagficients at the given
Predictor Ordinate

Calibrate the segment and calculate the Jacobittreddegment's Response Basis
Function Coefficients to the Edge Parameters

Calibrate the Coefficients from the Edge Resporskeids and the Left Edge
Response Value Slope and calculate the Jacobidwe &egment's Response Basis
Function Coefficients to the Edge Parameters

Calibrate the coefficients from the prior Segmerd the Response Value at the Right
Predictor Ordinate and calculate the JacobianeBggment's Response Basis
Function Coefficients to the Edge Parameters

Indicate whether the given segment is monoton@aoliotone, may optionally
indicate the nature of the extrema contained ingidgima/minima/infection)

Clip the part of the Segment to the Right of thecsiied Predictor Ordinate. Retain
all other constraints the same

Clip the part of the Segment to the Left of thec#fiped Predictor Ordinate. Retain all
other constraints the same

Display the string representation for diagnostigses

150

Spline Builder: Spline Stretch

Spline Builder Spline Stretch functioase available in the package

org.drip.spline.stretch. The spline stretch package provides single segarehmulti

segment interfaces, builders, and implementatiaiosig with custom boundary settings.

Functionality in this package is implemented oveté&ses BoundarySettings

SingleSegmentSequen&ingleSegmentLagrangePolynomidiultiSegmentSeqguence

SegmentSequenceBuild€&kSegmentSequenceBuilder

CalibratableMultiSegmentSequenséultiSegmentSequenceBuildeand

MultiSegmentSeguenceModifier

BoundarySettings

This class implements the Boundary Settings thigroene the full extent of description

of the stretch's State. It exports functions that:

» Specify the type of the boundary condition (NATURKLOATING/IS-A-KNOT)

* Boundary Condition specific additional parametexrg.(Derivative Orders and
Matches)

» Static methods that help construct standard boyrssstings

SingleSegmentSequence

SingleSegmentSequence is the interface that expasetsonality that spans multiple
segments. Its derived instances hold the ordergesat sequence, the segment control
parameters, and, if available, the spanning JanoBiagleSegmentSequence exports the

following group of functionality:

151

Construct adjoining segment sequences in accordaitttehe segment control
parameters

Calibrate according to a varied set of (i.e., NATALRFINANCIAL) boundary
conditions

Estimate both the value, the ordered derivatived,the Jacobian (quote/coefficient)
at the given ordinate

Compute the monotonicity details - segment/Stretell monotonicity, co-
monotonicity, local monotonicity

Predictor Ordinate Details - identify the left/righredictor ordinate edges, and

whether the given predictor ordinate is a knot

SingleSegmentL agr angePolynomial

SingleSegmentLagrangePolynomial implements thel&ssgmentSequence Stretch

interface using the Lagrange Polynomial Estimaisrsuch it provides a perfect fit that

travels through all the predictor/response paitsicey Runge's instability.

M ulti Segment Sequence

MultiSegmentSequence is the interface that exposesionality that spans multiple

segments. Its derived instances hold the ordergesat sequence, the segment control

parameters, and, if available, the spanning JanoMaltiSegmentSequence exports the

following group of functionality:

Retrieve the Segments and their Builder Parameters

Compute the monotonicity details - segment/Stretehl monotonicity, co-
monotonicity, local monotonicity

Check if the Predictor Ordinate is in the Stret@née, and return the segment index

in that case

152

* Set up (i.e., calibrate) the individual Segmentha Stretch by specifying one/or
more of the node parameters and Target Constraints

* Set up (i.e., calibrate) the individual Segmerthim Stretch to the Target Segment
Edge Values and Constraints. This is also calledH&rmite setup - where the
segment boundaries are entirely locally set

» Generate a new Stretch by clipping all the Segmteritse Left/Right of the specified
Predictor Ordinate. Smoothness Constraints wilhnaéntained.

* Retrieve the Span Curvature/Length, and the Be®FE's

» Retrieve the Merge Stretch Manager

» Display the Segments

SegmentSequenceBuilder

SegmentSequenceBuilder is the interface that amtae stubs required for the
construction of the segment stretch. It exposesall@ving functions:

Set the Stretch whose Segments are to be calibrated

Retrieve the Calibration Boundary Condition

Calibrate the Starting Segment using the Left Slope

Calibrate the Segment Sequence in the Stretch

CkSegmentSequenceBuilder

CkSegmentSequenceBuilder implements the SegmereBegfuilder interface to
customize segment sequence construction. Custoamizatapplied at several levels:
» Segment Calibration Boundary Setting/Segment Bie&dSponse Settings

* Segment Response Value Constraints for the staatidghe subsequent Segments

153

Calibr atableM ultiSegmentSeguence

CalibratableMultiSegmentSequence implements thaiSkgmentSequence span that

spans multiple segments. It holds the ordered segseguence, segment sequence

builder, the segment control parameters, and dilable, the spanning Jacobian. It

provides a variety of customization for the segnuamistruction and state representation

control.

M ulti Segment SequenceBuilder

MultiSegmentSequenceBuilder exports Stretch creatadibration methods to generate

customized basis splines, with customized segmambor using the segment control. It

exports the following methods of Stretch Creation:

Create an uncalibrated Stretch instance over tbeifsgrd Predictor Ordinate Array
using the specified Basis Spline Parameters foSdwment

Create a calibrated Stretch Instance over the fspearray of Predictor Ordinates
and Response Values using the specified Basise3plin

Create a calibrated Stretch Instance over the fspeéétredictor Ordinates, Response
Values, and their constraints, using the spectiegdment Builder Parameters
Create a Calibrated Stretch Instance from the AofdBredictor Ordinates and a flat
Response Value

Create a Regression Spline Instance over the gxkaifray of Predictor Ordinate
Knot Points and the Set of the Points to be Bést Fi

M ulti Segment SequenceM odifier

154

MultiSegmentSequenceModifier exports Stretch modifon/alteration methods to

generate customized basis splines, with custonsegthent behavior using the segment

control. It exposes the following stretch modifioatmethods:

Insert the specified Predictor Ordinate Knot ifite specified Stretch, using the
specified Response Value

Append a Segment to the Right of the Specifiedt@tresing the Supplied Constraint
Insert the Predictor Ordinate Knot into the spedifstretch

Insert a Cardinal Knot into the specified Stretttha specified Predictor Ordinate
Location

Insert a Catmull-Rom Knot into the specified Sthedt the specified Predictor

Ordinate Location

155

Spline Builder: Spline Grid/Span

Spline Builder Spline Grid/Span functioase available in the package

org.drip.spline.grid. The spline grid/span package provides the mtrigtch spanning

functionality. It specifies the span interface, andvides implementations of the

overlapping and the non-overlapping span instaritatso implements the transition

splines with custom transition zones.

Functionality in this package is implemented oveta&sses Span and

OverlappingStretchSpan

Span

Span is the interface that exposes the functigniaéihind the collection of Stretches that

may be overlapping or non-overlapping. It exposesfbllowing stubs:

Retrieve the Left/Right Span Edge

Indicate if the specified Label is part of the Me$tate at the specified Predictor
Ordinate

Compute the Response from the containing Stretches

Add a Stretch to the Span

Retrieve the first Stretch that contains the Ptedi©rdinate

Retrieve the Stretch by Name

Calculate the Response Derivative to the Quoteeaspecified Ordinate

Display the Span Edge Coordinates

OverlappingStr etchSpan

156

OverlappingStretchSpan implements the Span interfaad the collection functionality
of overlapping Stretches. In addition to providangustom implementation of all the
Span interface stubs, it also converts the OvemgpPtretch Span to a non-overlapping

Stretch Span. Overlapping Stretches are clipped the Left.

157

Spline Builder: Spline PCHIP

Spline Builder Spline PCHIP functiorse available in the packagey.drip.spline.pchip.

The spline PCHIP package implements most varidrtsedocal piece-wise cubic
Hermite interpolating polynomial smoothing functadity. It provides a number of
tweaks for smoothing customization, as well as jliog enhanced implementations of

Akima, Preuss, and Hagan-West smoothing interpdato

Functionality in this package is implemented ovetdsses -AkimalocalClGenerator

MinimalQuadraticHaganWed¥lonotoneConvexHaganWest

LocalMonotoneCkGeneratoandLocalControlStretchBuilder

Akimal ocal C1Gener ator

AkimaLocalC1Generator generates the local coroBlope using the Akima (1970)
Cubic Algorithm.

M inimal Quadr aticHaganW est

This class implements the regime using the Hagdn/éest (2006) Minimal Quadratic

Estimator.

M onotoneConvexHagan\West

This class implements the regime using the Hagdn/éest (2006) Estimator. It provides

the following functionality:

158

» Static Method to create an instance of Monotone€rHaganWest
* Ensure that the estimated regime is monotone avegon

* If need be, enforce positivity and/or apply ameltan

* Apply segment-by-segment range bounds as needed

* Retrieve predictor ordinates/response values

L ocal M onotoneCk Gener ator

LocalMonotoneCkGenerator generates customized [Stcatch by trading of€* for

local control. This class implements the followwagiants: Akima, Bessel, Harmonic,

Hyman83, Hyman89, Kruger, Monotone Convex, as a&lhe Van Leer and the

Huynh/Le Floch limiters. It also provides the follmg custom control on the resulting

c':

+ Eliminate the Spurious Extrema in the IngZiEntry

+ Apply the Monotone Filter in the Inp@*Entry

« Generate a Vanill&€* Array from the specified Array of Predictor Ordieatand the
Response Values

» Verify if the given Quintic Polynomial is Monotonsing the Hyman89 Algorithm,

and generate it if necessary

L ocal ControlStretchBuilder

LocalControlStretchBuilder exports Stretch credtiahbration methods to generate

customized basis splines, with customized segmam\bor using the segment control. It

provides the following local-control functionality:

» Create a Stretch off of Hermite Splines from thecsiged the Predictor Ordinates, the
Response

* Values, the Custom Slopes, and the Segment Bltldeameters

159

Create Hermite/Bessel C1 Cubic Spline Stretch

Create Hyman (1983) Monotone Preserving Stretch

Create Hyman (1989) enhancement to the Hyman (1d88ptone Preserving
Stretch

Create the Harmonic Monotone Preserving Stretch

Create the Van Leer Limiter Stretch

Create the Huynh Le Floch Limiter Stretch

Generate the local control C1 Slope using the Aknaic Algorithm
Generate the local control C1 Slope using the Hajest Monotone Convex

Algorithm

160

Spline Builder: Spline B Spline

Spline Builder Spline B Spline functioase available in the package

org.drip.spline.bspline. The spline B Spline package implements the raivthe

processed basis B Spline hat functions. It providestandard implementations for the
monic and the multic B Spline Segments. It alscoetspfunctionality to generate higher

order B Spline Sequences.

Functionality in this package is implemented ovérclasses TensionBasisHat

TensionProcessedBasisHBasisHatShapeContrdleftHatShapeControl
RightHatShapeControCubicRationalLeftRawCubicRationalRightRaw
ExponentialTensionLeftHaExponentialTensionRightHaEXponentialTensionLeftRaw

ExponentialTensionRightRaBasisHatPairGeneratd8egmentBasisFunction

SegmentMonicBasisFunctipBegmentMulticBasisFunctio®egmentBasisFunctionSet

andSegmentBasisFunctionGenerator

TensionBasisHat

TensionBasisHat implements the common basis hatitmthat forms the basis for all B

Splines. It contains the left/right ordinates, thesion, and the normalizer.

TensionProcessedBasisHat

TensionProcessedBasisHat implements the proceassédsis function of the form laid
out in the basic framework outlined in Koch and hg¢1989), Koch and Lyche (1993),
and Kvasov (2000).

161

BasisHatShapeContr ol

BasisHatShapeControl implements the shape contnatibn for the hat basis set as laid
out in the framework outlined in Koch and Lyche 2% Koch and Lyche (1993), and
Kvasov (2000). Currently BasisHatShapeControl inr@ats the following shape control
customizers:

* Cubic Polynomial with Rational Linear Shape Coréol

* Cubic Polynomial with Rational Quadratic Shape Calfer

* Cubic Polynomial with Rational Exponential ShapenCaller

L eftHatShapeControl

LeftHatShapeControl implements the BasisHatShap&Gldnterface for the left hat
basis set as laid out in the basic framework ocedlim Koch and Lyche (1989), Koch and
Lyche (1993), and Kvasov (2000).

RightHatShapeContr ol

RightHatShapeControl implements the BasisHatShap&alanterface for the right hat
basis set as laid out in the basic framework cedlim Koch and Lyche (1989), Koch and
Lyche (1993), and Kvasov (2000).

CubicRationalL eftRaw

162

CubicRationalLeftRaw implements the TensionBasishiatrface in accordance with the
raw left cubic rational hat basis function laid authe basic framework outlined in Koch
and Lyche (1989), Koch and Lyche (1993), and Kva2800).

CubicRational RightRaw

CubicRationalRightRaw implements the TensionBasisitarface in accordance with
the raw right cubic rational hat basis functiordlaut in the basic framework outlined in
Koch and Lyche (1989), Koch and Lyche (1993), andd6v (2000).

Exponential TensonlL eftHat

ExponentialTensionLeftHat implements the Tensiond4at interface in accordance
with the left exponential hat basis function laitt o the basic framework outlined in
Koch and Lyche (1989), Koch and Lyche (1993), andd¢v (2000).

Exponential TensonRightHat

ExponentialTensionRightHat implements the Tensiai&4at interface in accordance
with the right exponential hat basis function laig in the basic framework outlined in
Koch and Lyche (1989), Koch and Lyche (1993), andd¢v (2000).

Exponential TensonlL eftRaw

163

ExponentialTensionLeftRaw implements the Tensiondtet interface in accordance
with the raw left exponential hat basis functioiu laut in the basic framework outlined
in Koch and Lyche (1989), Koch and Lyche (1993} &wasov (2000).

Exponential TensonRightRaw

ExponentialTensionRightRaw implements the Tensisid#at interface in accordance
with the raw right exponential hat basis functiaidlout in the basic framework outlined
in Koch and Lyche (1989), Koch and Lyche (1993) &wasov (2000).

BasisHatPair Gener ator

BasisHatPairGenerator implements the generatioctifimality behind the hat basis

function pair. It provides the following functionist

a. Generate the array of the Hyperbolic Phy andHd\yunction Pair

b. Generate the array of the Hyperbolic Phy andHgyFunction Pair From their Raw
Counterparts

c. Generate the array of the Cubic Rational PhyRsydHat Function Pair From their
Raw Counterparts

d. Generate the array of the Custom Phy and Ps¥itaition Pair From their Raw

Counterparts

SegmentBasisFunction

SegmentBasisFunction is the abstract class overtwthe local ordered envelope
functions for the B Splines are implemented. It@sgs the following stubs:
* Retrieve the Order of the B Spline

» Retrieve the Leading Predictor Ordinate

164

* Retrieve the Following Predictor Ordinate

* Retrieve the Trailing Predictor Ordinate

» Compute the complete Envelope Integrand - thisseitve as the Envelope
Normalizer

» Evaluate the Cumulative Normalized Integrand ugh&ogiven ordinate

SegmentM onicBasisFunction

SegmentMonicBasisFunction implements the local m@nspline that envelopes the
predictor ordinates, and the corresponding setdihates/basis functions.
SegmentMonicBasisFunction uses the left/right TamBasisHat instances to achieve its
implementation goals.

SegmentM ulticBasisFunction

SegmentMulticBasisFunction implements the localtm@ Spline that envelopes the
predictor ordinates, and the corresponding setdihates/basis functions.
SegmentMulticBasisFunction uses the left/right SexgtBasisFunction instances to

achieve its implementation goals.

SegmentBasisFunctionSet

SegmentBasisFunctionSet class implements per-sedumetion set for B Splines and

tension splines. Derived implementations exposdi@kfargeted basis functions.

SegmentBasisFunctionGener ator

165

SegmentBasisFunctionGenerator generates B Splmetibos of different order. It
provides the following functionality:

» Create a Tension Monic B Spline Basis Function
® Construct a Sequence of Monic Basis Functions

* Create a sequence of B Splines of the specifieerdrdm the given inputs

166

Spline Builder: Tension Spline

Spline Builder Tension Spline functioase available in the package

org.drip.spline.tension. The tension spline package implements closed family of

cubic tension splines laid out in the basic framdwautlined in Koch and Lyche (1989),
Koch and Lyche (1993), and Kvasov (2000).

Functionality in this package is implemented ovefatses -

KLKHyperbolicTensionPhyKLKHyperbolicTensionPsyKochLocheKvasovBasjsand

KochLycheKvasovFamily

KLKHyperbolicT ensionPhy

KLKHyperbolicTensionPhy implements the custom easdy, differentiator, and
integrator for the KLK Tension Phy Functions outlihin the publications above.

KLKHyperbolicT ensonPsy

KLKHyperbolicTensionPsy implements the custom eatdy, differentiator, and

integrator for the KLK Tension Psy Functions owgtinn the publications above.

K ochL ycheK vasovBasis

This class exposes functions that implement theienguoadratic, and the cubic basis B
Splines as outlined in the publications above.

167

K ochL ycheK vasovFamily

This class implements the basic framework andahsly of C*> Tension Splines

outlined above. Functions exposed here implemenB#sis Function Set from:

Hyperbolic Hat Primitive Set
Cubic Polynomial Numerator and Linear Rational Dremator
Cubic Polynomial Numerator and Quadratic Rationah@minator

Cubic Polynomial Numerator and Exponential Denortana

168

DRIP Samples

DRIP Samples Implementati@monsists of the following 8 packages:

1. DRIP MATH SamplesThis illustrates some of the targeted math fumetiiby

exported in DRIP — integrand quadrature/algorithdifferentiation routines,

non-linear fixed point searches, and linear algrboalules.

2. Spline Sampledhe spline sample package contains samples thadrosrate the

construction and usage of different basis splimesEaSpline Sequences.

3. Stretch SampleJhe stretch sample package contains samplesehatrtstrate

the construction, modification, and usage of strescbased off of different basis
splines. They illustrate the computation of thevature and the length penalties,
and construction of best-fit regression spline dasg-inally they bring it all

together in showing how to build latent state from@asurements.
4. Bond SamplesThe bond sample package contains samples thatérate the
API to access bond static/closing fields, bondIskfigld analytics, and RV

measures. It also illustrates usage of the bonkiebad!.

5. Credit SamplesThe Credit Sample Package demonstrates the cealé cr

analytics functionality — construction of creditrees, pricing of CDS and CDS

basket, and retrieve the built-in pre-construct&X®askets and CDS closes.

6. Rates Sample¥he Rates Sample Package demonstrates the cesearalytics
functionality — construction of rates and forwatohes (shape
preserving/smoothing/transition spline variantg) pricing of rates, treasury, and

rates basket products.

169

7. Miscellaneous SampteNliscellaneous Samples demonstrates the set oflsamp

not covered in the other sections — in particliar@ay Count, the Calendar, and

FXAPI samples.

8. Bloomberg Sample3he Bloomberg Sample Package implements the
Bloomberg's calls CDSW, SWPM, and YAS.

170

DRIP MATH Samples

The DRIP MATH Sample functiorare available in the packagen.drip.sample.quant.

This illustrates some of the targeted math funetibywexported in DRIP — integrand
guadrature/algorithmic differentiation routinespAmear fixed point searches, and linear
algrbra modules.

Functionality in this package is implemented oveta®ses FixedPointSeargh

IntegrandQuadratur@andLinearAlgebra

FixedPointSear ch

FixedPointSearch contains a sample illustrationsaige of the Root Finder Library. It
demonstrates the fixed-point extraction using tilwing techniques:

* Newton-Raphson method

* Bisection Method

* False Position

* Quadratic Interpolation

* Inverse Quadratic Interpolation

* Ridder's method

* Brent's method

* Zheng's method

I ntegrandQuadr ature

IntegrandQuadrature shows samples for the followangines for integrating the
objective function:

171

* Mid-Point Scheme
* Trapezoidal Scheme
* Simpson/Simpson38 schemes

 Boole Scheme

Linear Algebra

LinearAlgebra implements Samples for Linear Algedomd Matrix Manipulations. It

demonstrates the following:

» Compute the inverse of a matrix, and multiply vtk original to recover the unit
matrix

* Solves system of linear equations using one thesegtechniques

172

DRIP Samples: Spline

The Spline Sample functiorse available in the packagey.drip.sample.spline. The

spline sample package contains samples that deratsndte construction and usage of

different basis splines and B Spline Sequences.

Functionality in this package is implemented ovetases BasisSplineSet
PolynomialBasisSplindBasisTensionSplineSdBasisBSplineSet

BasisMonicHatComparisoBasisMonicBSplineBasisMulticBSpline and

BSplineSequence

BasisSplineSet

BasisSplineSet implements Samples for the Congtruand the usage of various basis

spline functions. It demonstrates the following:

» Construction of segment control parameters - patyab(regular/Bernstein) segment
control, exponential/hyperbolic tension segmentnKaklis-Pandelis tension
segment control, an@" Hermite

« Control the segment using the rational shape cihetrand the appropria@*

» Estimate the node value and the node value Jacuhilarthe segment, as well as at
the boundaries

» Calculate the segment monotonicity

PolynomialBasisSpline

173

PolynomialBasisSpline implements Samples for thesftaction and the usage of

polynomial (both regular and Hermite) basis spfungctions. It demonstrates the

following:

Control the polynomial segment using the ratiohalpg controller, the
appropriat€®, and the basis function

Demonstrate the variational shape optimization iena

Estimate the node value and the node value Jaculithe segment, as well as at
the boundaries

Calculate the segment monotonicity and the curegbenalty

BasisT ensionSplineSet

BasisTensionSplineSet implements Samples for thest@action and the usage of

various basis spline functions. It demonstrategdahewing:

Construction of Kocke-Lyche-Kvasov tension spliegment control parameters -
using hyperbolic, exponential, rational linear, aatlonal quadratic primitives
Control the segment using the rational shape cibeityand the appropriat€*
Estimate the node value and the node value Jacuhiarthe segment, as well as at
the boundaries

Calculate the segment monotonicity

BasisBSplineSet

BasisBSplineSet implements Samples for the Cornstruend the usage of various basis

B Spline functions.

BasisM onicHatComparison

174

BasisMonicHatComparison implements the comparisaheobasis hat functions used in
the construction of the monic basis B Splinesethdnstrates the following:

* Construction of the Linear Cubic Rational Raw Hanhé&tions

* Construction of the Quadratic Cubic Rational Raw Flanctions

» Construction of the Corresponding Processed Terasis Hat Functions

» Construction of the Wrapping Monic Functions

» Estimation and Comparison of the Ordered Derivative

BasisM onicBSpline

BasisMonicBSpline implements Samples for the Coeion and the usage of various
monic basis B Splines. It demonstrates the follgwin

» Construction of segment B Spline Hat Basis Funstion

» Estimation of the derivatives and the basis envempnulative integrands

» Estimation of the normalizer and the basis envetaysulative normalized integrand

BasisM ulticBSpline

BasisMulticBSpline implements Samples for the Cartdion and the usage of various
multic basis B Splines. It demonstrates the folloyvi

» Construction of segment higher order B Spline HagiB Functions

» Estimation of the derivatives and the basis envempnulative integrands

» Estimation of the normalizer and the basis envetapsulative normalized integrand

BSplineSequence

175

BSplineSequence implements Samples for the Conistnugnd the usage of various
monic basis B Spline Sequences. It demonstrateslibe/ing:
* Construction and Usage of segment Monic B Splirgu8ece

» Construction and Usage of segment Multic B Spliagugnce

176

DRIP Samples: Stretch

The Stretch Sample functioase available in the packagey.drip.sample.stretch. The

stretch sample package contains samples that démenthe construction, modification,
and usage of stretches based off of different Isdises. They illustrate the computation
of the curvature and the length penalties, andtoactson of best fit regression spline
samples. Finally they bring it all together in slwgvhow to build latent state from

measurements.

Functionality in this package is implemented ovetasses StretchEstimation

TensionStretchEstimatiotretchAdjusterRegressionSplineEstimator

PenalizedCurvatureFiPenalizedCurvatureLengthFandCustomCurveBuilder

StretchEstimation

StretchEstimation demonstrates the Stretch budddrusage API. It shows the

following:

» Construction of segment control parameters - patyab(regular/Bernstein) segment
control, exponential/hyperbolic tension segmentmnKaklis-Pandelis tension
segment control

» Perform the following sequence of tests for a gisegment control for a
predictor/response range

0 Assign the array of Segment Builder Parameters-pan segment

o Construct the Stretch Instance

o Estimate, compute the segment-by-segment monotpmicd the Stretch
Jacobian

o Construct a new Stretch instance by inserting eqigiredictor/response
knots

177

o Estimate, compute the segment-by-segment monotpaicd the Stretch
Jacobian
* Demonstrate the construction, the calibration, thedusage of Local Control
Segment Spline
* Demonstrate the construction, the calibration, thedisage of Lagrange Polynomial
Stretch
* Demonstrate the construction, the calibration, tedusage of C1 Stretch with the

desired customization.

TensionStretchEstimation

TensionStretchEstimation demonstrates the Stretittids and usage API. It shows the

following:

» Construction of segment control parameters - patyab(regular/Bernstein) segment
control, exponential/hyperbolic tension segmentmnKaklis-Pandelis tension
segment control

* Tension Basis Spline Test using the specified ptedresponse set and the array of
segment custom builder control parameters

» Complete the full tension stretch estimation sangsé

StretchAdjuster

StretchAdjuster demonstrates the Stretch Manimriaand Adjustment API. It shows the
following:

» Construct a simple Base Stretch

* Clip a left Portion of the Stretch to construce#t-clipped Stretch

» Clip aright Portion of the Stretch to construcight-clipped Stretch

178

Compare the values across all the stretches tbliséta) the continuity in the base
smoothness is, preserved, and b) Continuity atchespredictor ordinate for the

implied response value is also preserved

Regr essionSplineEstimator

RegressionSplineEstimator shows the sample comistnuend usage of Regression

Splines. It demonstrates the construction of tigenemt's predictor ordinate/response

value combination, and eventual calibration.

PenalizedCur vatur eFit

PenalizedCurvatureFit demonstrates the settinghdple usage of the curvature and

closeness of fit penalizing spline. It illustratesietail the following steps:

Set up the X Predictor Ordinate and the Y Respdiadee Set

Construct a set of Predictor Ordinates, their Reses, and corresponding Weights to
serve as weighted closeness of fit

Construct a rational shape controller with the @esshape controller tension
parameters and Global Scaling

Construct the segment inelastic parameter tha2jswith 2nd order roughness
penalty derivative, and without constraint

Construct the base, the base + 1 degree segméaebcontrol

Construct the base, the elevated, and the bdsdis spline stretches
Compute the segment-by-segment monotonicity fathallthree stretches
Compute the Stretch Jacobian for all the thre¢cttes

Compute the Base Stretch Curvature Penalty Estimate

Compute the Elevated Stretch Curvature Penaltyriass

Compute the Best Fit Stretch Curvature Penaltynizs

179

PenalizedCurvatur el engthFit

PenalizedCurvatureLengthFit demonstrates the gatprand the usage of the curvature,

the length, and the closeness of fit penalizingepIThis sample shows the following:

Set up the X Predictor Ordinate and the Y Respdiadee Set

Construct a set of Predictor Ordinates, their Reses, and corresponding Weights to
serve as weighted closeness of fit

Construct a rational shape controller with the iesshape controller tension
parameters and Global Scaling

Construct the Segment Inelastic Parameter tha2 jsvith First Order Segment
Length Penalty Derivative, Second Order Segmentv&ture Penalty Derivative,
their Amplitudes, and without Constraint

Construct the base, the base + 1 degree segméaecontrol

Construct the base, the elevated, and the bdsdis spline stretches
Compute the segment-by-segment monotonicity fathallthree stretches
Compute the Stretch Jacobian for all the thre¢cttes

Compute the Base Stretch Curvature, Length, anBeise Fit DPE

Compute the Elevated Stretch Curvature, Length tlaadest Fit DPE
Compute the Best Fit Stretch Curvature, Length,thedBest Fit DPE

CustomCurveBuilder

CustomCurveBuilder contains samples that demo ledvuild a discount curve from

purely the cash flows. It provides for elaboratevelwbuilder control, both at the segment

level and at the Stretch level. In particular hibws the following:

Construct a discount curve from the discount factvailable purely from the cash
and the euro-dollar instruments

Construct a discount curve from the cash flowslalbte from the swap instruments

180

In addition, the sample demonstrates the followwags of controlling curve
construction:
» Control over the type of segment basis spline
« Control over the polynomial basis spline or@, and tension parameters
o Provision of custom shape controllers (in this qasenal shape controller)

» Calculation of segment monotonicity and convexity

181

DRIP Samples: Bond

The Bond Sample functiorse available in the packagey.drip.sample.bond. The bond

sample package contains samples that demonsteafePihto access bond static/closing
fields, bond single-field analytics, and RV measutealso illustrates usage of the bond
basket API.

Functionality in this package is implemented ovetdsses BondAnalyticSAP)
BondBasketARIBondLiveAndEODAP) BondRVMeasuresARBandBondBasketAPI

BondAnalyticsAPI

BondAnalyticsAPI contains a demo of the bond amedyAPl Sample. It generates the
value and the RV measures for essentially the $mmd (with identical cash flows)
constructed in 3 different ways:

* As a fixed rate bond

* As a floater

* As a bond constructed from a set of custom coupdrpaincipal flows

It shows these measures reconcile where they should

BondBasketAPI

BondBasketAPI contains a demo of the bond baskéSample. It shows the following:
* Build the IR Curve from the Rates' instruments

* Build the Component Credit Curve from the CDS imstents

» Create the basket market parameters and add thedndistount curve and the credit

curves to it

182

» Create the bond basket from the component bondthandveights
» Construct the Valuation and the Pricing Parameters
* Generate the bond basket measures from the valy#ti® pricer, and the market

parameters

BondL iveAndEODAPI

BondLiveAndEODAPI contains the comprehensive sarofgies demonstrating the usage
of the EOD and Live Curve Bond API functions.

BondRVM easur esAPI

BondRVMeasuresAPI is a Simple Bond RV Measures $dthple demonstrating the
invocation and usage of Bond RV Measures functignat shows the following:

» Create the discount/treasury curve from ratestirgaastruments

» Compute the work-out date given the price

» Compute and display the base RV measures to theoutrdate

* Compute and display the bumped RV measures to dhie-out date

BondStaticAPI

BondStaticAPI contains a demo of the bond statit $dmple. The Sample demonstrates

the retrieval of the bond's static fields.

183

DRIP Samples: Credit

The Credit Sample functiorese available in the packagen.drip.sample.credit. The

Credit Sample Package demonstrates the core arsilittics functionality — construction
of credit curves, pricing of CDS and CDS basked, @atrieve the built-in pre-constructed
CDX baskets and CDS closes.

Functionality in this package is implemented ovetasses €reditAnalyticsAP)
CDSLiveAndEODAP] StandardCDXAPlandCDSBasketAPI

CreditAnalyticsAPI

CreditAnalyticsAPI contains a demo of the CDS Atiak/API Sample. It illustrates the

following:

» Credit Curve Creation: From flat Hazard Rate, andifan array of dates and their
corresponding survival probabilities

» Create Credit Curve from CDS instruments, and recthe input measure quotes

* Create an SNAC CDS, price it, and display the caollpss cash flow

CDSLiveANndEODAPI

CDSLiveAndEODAPI is a fairly comprehensive samptdendnstrating the usage of the

EOD and Live CDS Curve API functions. It demongsathe following:

* Retrieves all the CDS curves available for the giZ©D

» Retrieves the calibrated credit curve from the @& uments for the given CDS
curve name, IR curve name, and EOD. Also show4 @esurvival probability and

hazard rate

184

» Displays the CDS quotes used to construct thergjagiedit curve

* Loads all available credit curves for the givenveutD built from CDS instruments
between 2 dates and displays the correspondingidteq

» Calculate and display the EOD CDS measures fooastprting CDS based off of a

specific credit curve

StandardCDXAPI

StandardCDXAPI contains a demo of the CDS baskétSaple. It shows the
following:

» Construct the CDX.NA.IG 5Y Series 17 index by naame series

» Construct the on-the-run CDX.NA.IG 5Y Series index

» List all the built-in CDX - their names and destiops

» Construct the on-the run CDX.EM 5Y corresponding tolY

» Construct the on-the run ITRAXX.ENERGY 5Y corresdongto T - 7Y

* Retrieve the full set of date/index series selTRAXX.ENERGY

CDSBasketAPI

CDSBasketAPI contains a demo of the CDS basketS&Riple. It shows the following:
* Build the IR Curve from the Rates' instruments
Build the Component Credit Curve from the CDS imstents

* Create the basket market parameters and add thedndistount curve and the credit
curves to it

» Create the CDS basket from the component CDS andvieights

» Construct the Valuation and the Pricing Parameters

* Generate the CDS basket measures from the valu#tiepricer, and the market

parameters

185

DRIP Samples. Rates

The Rates Sample functioage available in the packagey.drip.sample.rates. The

Rates Sample Package demonstrates the core ratgcarfunctionality — construction
of rates and forward curves (shape preserving/smagtransition spline variants) and

pricing of rates, treasury, and rates basket pitsduc

Functionality in this package is implemented ov2rclasses -

HaganWestForwardInterpolai@hapeDFZeroLocalSmoqth

ShapePreservingDFZeroSmopoBustomDiscountCurveBuilder

CustomDiscountCurveReconcij@&@iscountCurveQuoteSensitivity

TemplatedDiscountCurveBuildggustomForwardCurveBuildeRatesAnalyticsAPI
TreasuryCurveAPIRatesLiveAndEODAPIandMultiLegSwapAPI

HaganW estForwar dl nter polator

This sample illustrates using the Hagan and W&QGPEstimator. It provides the

following functionality:

» Set up the Predictor ordinates and the responsewal

» Construct the rational linear shape control with $pecified tension

» Create the Segment Inelastic design using the @lCamvature Penalty Derivatives

* Build the Array of Segment Custom Builder Contrar&#meters of the KLK
Hyperbolic Tension Basis Type, the tension, thersag inelastic design control, and
the shape controller

* Setup the monotone convex stretch using the abettiags, and with no linear
inference, no spurious extrema, or no monotonexifiiy applied

» Setup the monotone convex stretch using the abettiags, and with linear

inference, no spurious extrema, or no monotonexifiiy applied

186

* Compute and display the monotone convex output thigHinear forward state

» Compute and display the monotone convex output thigrharmonic forward state

ShapeDFZerol ocal Smooth

ShapeDFZeroLocalSmooth demonstrates the usagéerkdit local smoothing

techniques involved in the discount curve creatibshows the following:

» Construct the Array of Cash/Swap Instruments aeit Quotes from the given set of
parameters

» Construct the Cash/Swap Instrument Set StretcldBuil

» Set up the Linear Curve Calibrator using the follayyparameters:

0 Cubic Exponential Mixture Basis Spline Set

o C* =2, Segment Curvature Penalty = 2

(@)

Quadratic Rational Shape Controller
o Natural Boundary Setting
* Set up the Akima Local Curve Control parameter®bsws:
o C' Akima Monotone Smoothener with spurious extrenraishtion and
monotone filtering applied
0 Zero Rate Quantification Metric
0 Cubic Polynomial Basis Spline Set
o C* =2, Segment Curvature Penalty = 2
0 Quadratic Rational Shape Controller
o Natural Boundary Setting
» Set up the Harmonic Local Curve Control paramedsrillows:
o C' Harmonic Monotone Smoothener with spurious extretimination and
monotone filtering applied
0 Zero Rate Quantification Metric
o Cubic Polynomial Basis Spline Set

o C* =2, Segment Curvature Penalty = 2

187

0 Quadratic Rational Shape Controller

o

Natural Boundary Setting

* Set up the Hyman 1983 Local Curve Control parametsifollows:

o

o

o

C'Hyman 1983 Monotone Smoothener with spurious exdrelimination
and monotone filtering applied

Zero Rate Quantification Metric

Cubic Polynomial Basis Spline Set

C* = 2, Segment Curvature Penalty = 2

Quadratic Rational Shape Controller

Natural Boundary Setting

* Set up the Hyman 1989 Local Curve Control parametsifollows:

o

o

o

C' Akima Monotone Smoothener with spurious extremaiekation and
monotone filtering applied

Zero Rate Quantification Metric

Cubic Polynomial Basis Spline Set

C* = 2, Segment Curvature Penalty = 2

Quadratic Rational Shape Controller

Natural Boundary Setting

» Set up the Huynh-Le Floch Delimited Local Curve @ohparameters as follows:

o

o

o

C' Huynh-Le Floch Delimited Monotone Smoothener veiffurious extrema
elimination and monotone filtering applied

Zero Rate Quantification Metric

Cubic Polynomial Basis Spline Set

C* =2, Segment Curvature Penalty = 2

Quadratic Rational Shape Controller

Natural Boundary Setting

» Set up the Kruger Local Curve Control parameterf®liswvs:

o

C' Kruger Monotone Smoothener with spurious extrelimairation and

monotone filtering applied

0 Zero Rate Quantification Metric

188

0 Cubic Polynomial Basis Spline Set

o C* =2, Segment Curvature Penalty = 2

0 Quadratic Rational Shape Controller

o0 Natural Boundary Setting
Construct the Shape Preserving Discount Curve plyeg the linear curve
calibrator to the array of Cash and Swap Stretches
Construct the Akima Locally Smoothened Discountv@usy applying the linear
curve calibrator and the Local Curve Control par@mseto the array of Cash and
Swap Stretches and the shape-preserving discord cu
Construct the Harmonic Locally Smoothened Discdiumve by applying the linear
curve calibrator and the Local Curve Control par@mseto the array of Cash and
Swap Stretches and the shape preserving discotvd cu
Construct the Hyman 1983 Locally Smoothened Dist@umve by applying the
linear curve calibrator and the Local Curve Conpadameters to the array of Cash
and Swap Stretches and the shape preserving disoawe
Construct the Hyman 1989 Locally Smoothened Dist@umve by applying the
linear curve calibrator and the Local Curve Conpanlameters to the array of Cash
and Swap Stretches and the shape preserving disoawe
Construct the Huynh-Le Floch Delimiter Locally Srttoened Discount Curve by
applying the linear curve calibrator and the LaCalve Control parameters to the
array of Cash and Swap Stretches and the shapaaresdiscount curve
Construct the Kruger Locally Smoothened DiscountvE€uloy applying the linear
curve calibrator and the Local Curve Control par@mseto the array of Cash and
Swap Stretches and the shape preserving discowd cu
Cross-Comparison of the Cash/Swap Calibrationunstnt "Rate" metric across the
different curve construction methodologies
Cross-Comparison of the Swap Calibration InstruniBate" metric across the
different curve construction methodologies for guemce of bespoke swap

instruments

189

ShapePreservingDFZer oSmooth

ShapePreservingDFZeroSmooth demonstrates the akdggerent shape preserving and
smoothing techniques involved in the discount cuneation. It shows the following:
o Construct the Array of Cash/Swap Instruments aeit Quotes from the given set of
parameters
0 Construct the Cash/Swap Instrument Set StretcldBuil
0 Set up the Linear Curve Calibrator using the follayyparameters:
0 Cubic Exponential Mixture Basis Spline Set
0o C* =2, Segment Curvature Penalty = 2
0 Quadratic Rational Shape Controller
o Natural Boundary Setting
0 Set up the Global Curve Control parameters asvi@iio
0 Zero Rate Quantification Metric

0 Cubic Polynomial Basis Spline Set

o C* =2, Segment Curvature Penalty = 2
0 Quadratic Rational Shape Controller
o Natural Boundary Setting
0 Set up the Local Curve Control parameters as faiow
0o C'Bessel Monotone Smoothener with no spurious exteimanation and no
monotone filter
0 Zero Rate Quantification Metric
0 Cubic Polynomial Basis Spline Set
o C* =2, Segment Curvature Penalty = 2
0 Quadratic Rational Shape Controller
o Natural Boundary Setting
o Construct the Shape Preserving Discount Curve plyeyg the linear curve
calibrator to the array of Cash and Swap Stretches
o Construct the Globally Smoothened Discount Curvegplying the linear curve
calibrator and the Global Curve Control parametiethie array of Cash and Swap

Stretches and the shape preserving discount curve

190

o

Construct the Locally Smoothened Discount Curvapgylying the linear curve
calibrator and the Local Curve Control parameterthé array of Cash and Swap
Stretches and the shape preserving discount curve

Cross-Comparison of the Cash/Swap Calibrationuns#nt "Rate" metric across the
different curve construction methodologies

Cross-Comparison of the Swap Calibration InstruniBiate" metric across the
different curve construction methodologies for qusnce of bespoke swap

instruments

CustomDiscountCurveBuilder

CustomDiscountCurveBuilder discount curve calilmatnd input instrument calibration

guote recovery. It shows the following:

o

Construct the Array of Cash/Swap Instruments aea tQuotes from the given set of
parameters
Construct the Cash/Swap Instrument Set StretcldBuil
Set up the Linear Curve Calibrator using the follgyyarameters:
0 Cubic Exponential Mixture Basis Spline Set
o C* =2, Segment Curvature Penalty = 2
0 Quadratic Rational Shape Controller
o Natural Boundary Setting
Construct the Shape Preserving Discount Curve plyeng the linear curve
calibrator to the array of Cash and Swap Stretches
Cross-Comparison of the Cash/Swap Calibrationuns#nt "Rate" metric across the

different curve construction methodologies

CustomDiscountCurveReconciler

191

CustomDiscountCurveReconciler demonstrates the4studitch transition custom

discount curve construction, turns applicationcdist factor extraction, and calibration

guote recovery. It shows the following steps:

o

o

o

Setup the linear curve calibrator

Setup the cash instruments and their quotes fdoraéibn

Setup the cash instruments stretch latent stategeptation - this uses the discount
factor quantification metric and the "rate" manifegeasure

Setup the swap instruments and their quotes fdsrasibn

Setup the swap instruments stretch latent stateseptation - this uses the discount
factor quantification metric and the "rate" manifegeasure

Calibrate over the instrument set to generate acwanlapping latent state span
instance

Retrieve the "cash" stretch from the span

Retrieve the "swap" stretch from the span

Create a discount curve instance by convertingteelapping stretch to an exclusive
non-overlapping stretch

Compare the discount factors and their monotonasitytted from the discount curve,
the non-overlapping span, and the "swap" stretobisadhe range of tenor predictor
ordinates

Cross-Recovery of the Cash Calibration Instrum&até" metric across the different
curve construction methodologies

Cross-Recovery of the Swap Calibration Instrum&até" metric across the different
curve construction methodologies

Create a turn list instance and add new turn igs&n

Update the discount curve with the turn list

Compare the discount factor implied the discoumtewith and without applying the

turns adjustment

DiscountCurveQuoteSensitivity

192

DiscountCurveQuoteSensitivity demonstrates theutation of the discount curve
sensitivity to the calibration instrument quoteésides the following:
o Construct the Array of Cash/Swap Instruments aeit Quotes from the given set of
parameters
0 Construct the Cash/Swap Instrument Set StretchdBuil
0 Set up the Linear Curve Calibrator using the follayyparameters:
0 Cubic Exponential Mixture Basis Spline Set
o C* =2, Segment Curvature Penalty = 2
0 Quadratic Rational Shape Controller
o Natural Boundary Setting
o Construct the Shape Preserving Discount Curve plyeyg the linear curve
calibrator to the array of Cash and Swap Stretches
o Cross-Comparison of the Cash/Swap Calibrationunsént "Rate” metric across the
different curve construction methodologies
o Display of the Cash Instrument Discount Factor @ulatcobian Sensitivities

o Display of the Swap Instrument Discount Factor @ulztcobian Sensitivities

TemplatedDiscountCurveBuilder

TemplatedDiscountCurveBuilder sample demonstréiesisage of the different pre-built

Discount Curve Builders. It shows the following:

» Construct the Array of Cash Instruments and theiot®s from the given set of
parameters

» Construct the Array of Swap Instruments and theiot®s from the given set of
parameters

» Construct the Cubic Tension KLK Hyperbolic Discotraictor Shape Preserver

* Construct the Cubic Tension KLK Hyperbolic Discotraictor Shape Preserver with
Zero Rate Smoothening applied

» Construct the Cubic Polynomial Discount Factor $apeserver

193

» Construct the Cubic Polynomial Discount Factor @Rapeserver with Zero Rate
Smoothening applied

» Construct the Discount Curve using the Bear St&EBHSE Methodology

» Construct the Discount Curve using the Bear St&lbALDENSE Methodology

* Cross-Comparison of the Cash Calibration Instrurfi@ate" metric across the
different curve construction methodologies

» Cross-Comparison of the Swap Calibration InstrunfiRate" metric across the
different curve construction methodologies

* Cross-Comparison of the generated Discount Factosa the different curve

construction Methodologies for different node psint

CustomForwardCurveBuilder

CustomForwardCurveBuilder contains the sample detnatiing the full functionality

behind creating highly customized spline based &dxcurves.

The first sample illustrates the creation and usddke xM-6M Tenor Basis Swap:

» Construct the 6M-xM float-float basis swap

» Calculate the corresponding starting forward rét@fthe discount curve

» Construct the shape preserving forward curve o€ubic Polynomial Basis Spline

» Construct the shape preserving forward curve ooértic Polynomial Basis Spline

» Construct the shape preserving forward curve oHygerbolic Tension Based Basis
Spline

» Set the discount curve based component market paeasn

» Set the discount curve + cubic polynomial forwandve based component market
parameters

* Set the discount curve + quartic polynomial forwamdve based component market
parameters

» Set the discount curve + hyperbolic tension forward/e based component market

parameters

194

* Compute the following forward curve metrics for lea@é cubic polynomial forward,
guartic polynomial forward, and KLK Hyperbolic teos forward curves:
o0 Reference Basis Par Spread
o Derived Basis Par Spread
* Compare these with a) the forward rate off of tlse@unt curve, b) The LIBOR rate,
and c) The Input Basis Swap Quote
The second sample illustrates how to build andthesforward curves across various
tenor basis. It shows the following steps:
» Construct the Discount Curve using its instrumamis quotes
* Build and run the sampling for the 1M-6M Tenor BaSwap from its instruments
and quotes
* Build and run the sampling for the 3M-6M Tenor BaSwap from its instruments
and quotes
* Build and run the sampling for the 6M-6M Tenor BaSivap from its instruments
and quotes
* Build and run the sampling for the 12M-6M Tenor B&Swap from its instruments
and quotes

RatesAnalyticsAPI

RatesAnalyticsAPI contains a demo of the Rates yaigal APl Usage. It shows the

following:

* Build a discount curve using: cash instruments ,d&F instruments only, IRS
instruments only, or all of them strung together

* Re-calculate the component input measure quotesttie calibrated discount curve
object

» Compute the PVDF Wengert Jacobian across all gteuiments used in the curve

construction

195

TreasuryCurveAP|

TreasuryCurveAPI contains a demo of constructiahwsage of the treasury discount

curve from government bond inputs. It shows thioWang:

Create on-the-run TSY bond set

Calibrate a discount curve off of the on-the-ruelgs and calculate the implied
zeroes and DF's

Price an off-the-run TSY

Ratesl iveAndEODAPI

RatesLiveAndEODAPI contains the sample API demattisty the usage of the Rates
Live and EOD functions. It does the following:

Pulls all the closing rates curve names (of ang,typcl. TSY) that exist for a given
date

Load the full IR curve created from all the singlerency rate quotes (except TSY)
for the given currency and date

Calculate the discount factor to an arbitrary desieg the constructed curve
Retrieve the components and their quotes that imemtonstructing the curve, and
display them

Load all the rates curves available between thesdat the currency specified, and
step through

Load all the Cash quotes available between thesdatehe currency specified, and
step through

Load all the EDF quotes available between the datethe currency specified, and
step through

Load all the IRS quotes available between the databe currency specified, and

step through

196

Load all the TSY quotes available between the datethe currency specified, and

step through

MultiL egSwapAPI

MultiLegSwapAPI illustrates the creation, invocati@nd usage of the MultiLegSwap. It

shows how to:

Create the Discount Curve from the rates instrument
Set up the valuation and the market parameters
Create the Rates Basket from the fixed/float steeam

Value the Rates Basket

197

DRIP Samples: Miscellaneous

The Miscellaneous Sample functioa® available in the packagey.drip.sample.misc.

Miscellaneous Samples demonstrates the set of eampt covered in the other sections

— in particular the Day Count, the Calendar, andAFXsamples.

Functionality in this package is implemented ovetésses DayCountAndCalendarAPI
andEXAPI.

DayCountAndCalendar API

DayCountAndCalendarAPI demonstrates Day-count aldridar API FUnctionality. It

does the following:

* Get all the holiday locations in CreditAnalyticedaall the holidays in the year
according the calendar set

* Get all the week day/weekend holidays in the yeaomling the calendar set

» Calculate year fraction between 2 dates accordirggintannual, Act/360, and USD
calendar

* Adjust the date FORWARD according to the USD catend

* Roll to the PREVIOUS date according to the USD rodée

EXAPI

FXAPI contains a demo of the FX APl Sample. It shdhe following:
* Create a currency pair, FX SPot, and FX Forward
» Calculate the FX forward PIP/outright

» Calculate the DC Basis on the domestic and thegior@urves

198

Create an FX curve from the spot, and the arranodes, FX forward, as well as the
PIP indicator

Calculate the array of the domestic/foreign basis
Calculate the array of bootstrapped domestic/forbigsis

Re-imply the array of FX Forward from domestic/igreBasis Curve

199

DRIP Samples: Bloomberg

The Bloomberg Sample functioase available in the package

org.drip.sample.bloomberg. The Bloomberg Sample Package implements the
Bloomberg's calls CDSW, SWPM, and YAS.

Functionality in this package is implemented ovetddses €DSW, SWPM, andYAS.

CDSW

CDSW replicates Bloomberg’'s CDSW functionality.

SWPM

SWPM replicates Bloomberg’'s SWPM functionality.

YAS

YAS replicates Bloomberg’s YAS functionality.

200

| nstallation and Deployment Notes

Installation is really simple just drop of eachtloé jars CreditAnalytics CreditProduct

CurveBuilder FixedPointFinderRegressionSuiteandSplineLibrary - or the common

DRIP jar - in the class-path.
Configuration is done off of the configuration &leorresponding to each of the libraries.
For most typical set-ups, the standard configunasizould suffice. Please consult the

configuration documentation on each of the libat@configure each of the modules.

Because there is no other dependency, deploymeuatdshlso be straightforward. Use

the regression output as a guide for module capasttimation.

201

