
Supertree Toolkit Documentation
Release 2

Jon Hill and Katie Davis

December 14, 2014

CONTENTS

1 Introduction 1
1.1 What is the STK? . 1
1.2 What does it do? . 1
1.3 What does it not do? . 1
1.4 About this document . 2
1.5 The processing pipeline . 2

2 Getting started 3
2.1 Introduction . 3
2.2 Linux . 3
2.3 Windows . 3
2.4 MacOS X . 3
2.5 Source . 4
2.6 Running the STK . 5

3 The STK Graphical User Interface 7
3.1 Starting out . 7
3.2 Entering data . 9
3.3 Using the interface . 10
3.4 Checking data . 10
3.5 Processing data . 12

4 The STK Command Line Interface 19
4.1 The basics . 19
4.2 Data input/export . 20
4.3 Data processing . 21
4.4 Miscellaneous functions . 22

5 STK Tutorial 23
5.1 Introduction . 23
5.2 Conventions . 23
5.3 Collecting Data . 24
5.4 Standardising Terminals . 27
5.5 Data independence . 32
5.6 Data overlap . 33
5.7 Create matrix or export final tree set . 36

6 STK API 37

Python Module Index 43

i

Index 45

ii

CHAPTER

ONE

INTRODUCTION

1.1 What is the STK?

The Supertree Tool Kit (STK) is software for collecting, curating, storing and processing data ready
for inclusion in supertree analyses. It does not build supertrees, however, it does include a number of
functions to get the data ready for running a supertree analysis. This includes standardising nomenclature
and taxonomy, ensuring adequate taxonomic overlap and creating a matrix. These functions can be used
together as a data processing pipeline or independently as stand-alone options for data processing.

1.2 What does it do?

• Import bibliographic files to create a dataset

• Import trees created in most software packages

• Export your data to common formats (Nexus, Newick, Hennig)

• Allow you to summarise your data

• Swap and delete taxa easily

• Create a matrix from your data

• Manage your data graphically

• Ensure data independence

• Ensure adequate taxonomic overlap

• Replace non-monophyletic taxa correctly

• Perform Safe Taxonomic Reduction

• Some post-processing of supertrees (e.g. pruning taxa)

1.3 What does it not do?

• Make supertrees

1

Supertree Toolkit Documentation, Release 2

1.4 About this document

This document is the main manual for the software. Included in the software is context-relevant help
embedded in the GUI, which is complementary to the manual. This manual will help you install and use
the software, but it will still take experience to know which functions are appropriate for your dataset.
In addition to this, many of the functions will require human input e.g. making decisions on how to deal
with non-independent data or choosing an appropriate taxonomy.

1.5 The processing pipeline

The idea behind the STK is to create a processing pipeline that is robust, error-free, repeatable and
easy. A dataset is created by importing bibliographic data and trees, the STK functions are then used
to process these data. Each stage in the pipeline creates a new file, with a history of the previous steps
embedded. This way it is easy to undo steps and come back to your data later and understand how it was
derived.

Warning: This new file does still need to be saved with a new file name, if you “save as” under the
previous saved file you will over-write your previous hard work so be aware!

2 Chapter 1. Introduction

CHAPTER

TWO

GETTING STARTED

2.1 Introduction

This first chapter is a brief guide to setting-up the STK on Linux, Windows and MacOS X. STK comes as
either pre-compiled binaries for some platform or as a source package. Both downloading an archived
source package or downloading via bzr are covered. We assume little knowledge of Linux or DOS
commands, but some knowledge on how to install software. Contact your local sys admin if you need
further help.

We store all source code and downloads on Canonical’s Launchpad system:
http://launchpad.net/supertree-toolkit

2.2 Linux

The STK is distributed via Launchpad PPA. You need to add the Supertree Toolkit PPA
(https://launchpad.net/~stk-developers/+archive/release) to your system, along with an additional one
which contains some dependencies. You can then install the package. Run the commands below to do
all this.

sudo apt-add-repository ppa:fluidity-core/ppa
sudo apt-add-repository ppa:stk-developers/release
sudo apt-get update
sudo apt-get -y install supertree-toolkit

This will install the GUI and CLI to standard locations and add the GUI to your Applications menu.

2.3 Windows

A pre-built binary package is available. Simply download and run to install. Follow the on-screen
instructions.

The STK CLI is also available from a Command Prompt.

2.4 MacOS X

A DMG is available on Launchpad. Drag the STK icon into the Applications folder. This will install the
STK GUI on your Mac.

3

http://launchpad.net/supertree-toolkit
https://launchpad.net/~stk-developers/+archive/release

Supertree Toolkit Documentation, Release 2

To install the CLI you must alter your PATH and PYTHONPATH variables. To do this permanently, edit
your .bash_profile file and add the following lines:

export PYTHONPATH=$PYTHONPATH:\
/Applications/STK.app/Contents/Resources/lib/python2.7/site-packages/
export PATH=/Applications/STK.app/Contents/Resources/bin/:$PATH

You can access the STK CLI from a standard terminal

2.5 Source

The source is available as either a compressed tarball or via bzr. To obtain the tarball, simply download
from Launchpad, then:

tar zxvf supertree-toolkit.tgz

Using bzr, you can either obtain the bleeding-edge development version or the current release (recom-
mended) using:

bzr branch lp:supertree-toolkit/trunk

or

bzr branch lp:supertree-toolkit/release

respectively.

Regardless of how the source was obtained, you can now either use the STK in-place or install it using:

sudo python setup.py install

(for Windows users, the sudo is not required).

2.5.1 Prerequisites and dependencies

When running from source you must install the following prerequisites and dependencies:

• Python 2.5 to 2.7

• Matplotlib

• networkx

• libspud

• numpy

• lxml

• pyGTK

• dxdiff (available from http://launchpad.net/spud)

4 Chapter 2. Getting started

http://launchpad.net/supertree-toolkit
http://launchpad.net/spud

Supertree Toolkit Documentation, Release 2

2.6 Running the STK

There are two ways to run the STK: via the GUI (Graphical User Interface) or the CLI (Command Line
Interface). Most data collecting and curation is done via the GUI. However, either can be used to carry
out data processing. The CLI also contains a few more utility functions that are not available in the GUI.

The GUI is run from the command line using:

stk-gui

The CLI version is run using:

stk

which will produce the following help.

usage: stk [-h] [-v] [-i]

{create_matrix,sub_taxa,import_data,export_data,export_trees,export_bib,
data_summary,safe_taxonomic_reduction,data_ind,data_overlap,permute_trees,
clean_data,replace_genera,convert_files,create_subset}
...

stk: error: too few arguments

The STK GUI can also be accessed via the Start Menu (Windows), the Applications folder (Mac OS X)
or in the Applications menu (most Linux variants).

2.6. Running the STK 5

Supertree Toolkit Documentation, Release 2

6 Chapter 2. Getting started

CHAPTER

THREE

THE STK GRAPHICAL USER INTERFACE

The Graphical User Interface (GUI) is used to perform all of the STK’s primary functionality. It allows
you to enter data, visualise data and process data all within a single interface.

3.1 Starting out

To open the GUI either click on the icon or run the following on the command line:

stk-gui [file]

The GUI looks like this.

Figure 3.1: The STK GUI with no data loaded. The GUI consists of two vertical panels where data are
edited (left) and entered (right).

The GUI consists of two main halves (Fig. 3.1). The left-hand side is a tree-structure that allows you
to navigate the data (tree panel). The data are structured into a project, which in turn contains sources,
which in turn contain trees and meta data. The right-hand side (data panel) contains three sub-panels.
Each of these divisions is called an element (Fig. 3.2). The top gives context-sensitive documentation
on the current selection in the left-hand side. The middle is where you add data. Depending on what

7

Supertree Toolkit Documentation, Release 2

part of the data you are editing, the middle panel will change to suit the data to be edited/input. The
lowermost sub-panel is where you can add any comments for that part of the dataset. This is not enabled
for all sections of the data but should be used wherever it is useful.

Figure 3.2: The STK GUI with each pane and panel labelled.

To navigate the left hand side, click the small arrows on the left. These will open and close sub-data
within the hierarchy. On the right-hand side of the tree, there are small “+” and “-” signs to allow you
add or remove data. Where the data are a choice, a dropdown list is activated on the right hand side.

The colour in the left-hand side tree informs you if there is missing data. Blue lines show you are missing
required data. The blue then progresses upwards from the missing data, all the way to the uppermost
level. This allows you to drill downwards to find the missing data. Black text indicates you have fulfilled
the minimum requirements.

There are two types of menus - the main menu on the toolbar and a right-click menu. This toolbar menu
contains:

• File

• Edit

• View

• STK Functions

• Validate

• Tools

• Help

Of these, the File and STK Functions are most often used. More on these will be covered later, but
briefly the File menu contains commands to open and save data, plus import and export data. The STK
Functions menu contains all the STK-only functionality.

8 Chapter 3. The STK Graphical User Interface

Supertree Toolkit Documentation, Release 2

The right click menu allows you to copy and paste elements (e.g. you can copy and past a source from
the same or another file) and change how the data are visualised. These are covered later.

3.2 Entering data

The best way to start a new dataset is to import a bibliographic file. The STK uses bibtex format, which
is a common format and that all decent reference managers can output, as can most journal websites.
We recommend using JabRef, which is free, open source and available on most OS. We have tested the
STK extensively with output from JabRef, but your mileage with other reference managers may vary.

Once you have a Bibtex file you can import it using the File->Import from bibliography and import your
file. This should import all the papers in that bibtex file and create a source for each one (Fig. 3.3).
These are then named in a sensible way and sorted alphabetically. The standard source name is the
author followed by year. Once the sources are created, you can then start editing your data.

Figure 3.3: A source element that consists of a bibliographic entry, with the data contained in that paper
nested below.

The next thing you will want to do is import some trees. You can use any software you wish to digitise
your trees. The STK will read the output of most software. To import a tree, drill down the tree panel
to the correct source, then open the Tree element and click on the Tree string element. The import tree
button will then appear in the status bar, in the lower left of the GUI (Fig. 3.4).

Once done, your tree string will appear in the data panel. This will also name the tree in the STK. The
names follow a standard pattern of “Source_name_d” where d is a number starting from 1. You can
manually edit the tree name if you wish.

Warning: Avoid non-standard characters in taxa names. Your names must not contain commas,
parentheses, colons, asterisks, hyphens, slashes or percentage signs (percentage signs are allowed for
non-monophyletic taxa - see later). These are not allowed in taxa names in Newick format as they
mean other things.

3.2. Entering data 9

http://www.bibtex.org/
http://jabref.sourceforge.net/

Supertree Toolkit Documentation, Release 2

Figure 3.4: The import tree button. Click to import a tree into a source.

Note: Quoted taxa should be done with single quotes only (‘), not double or “smart quotes”

3.3 Using the interface

There are a number of useful functions in the STK GUI to aid in data entering and exploration. They are
slicing data, grouping data, and copy and pasting data sections.

Grouping data allows all elements of a certain type to be displayed simultaneously. For example, group-
ing on, say, “Tree String” will show all trees in the dataset. To group data, right click on an element you
want to group on and select Group. The tree panel will then show the grouping (Fig 3.5). Right-click
and select ungroup to return to the original view.

Slicing data allows an easy way to enter similar data on a large number of elements. Right-click page
number of any source, select Slice and you will see a list of all sources, with the data pane next to each
source. You can now quickly edit all page numbers (Fig. 3.6).

Copy and pasting can be done between files or within the same file. Right-click an element, select Copy,
then select another element of the same type and right-click and select Paste.

3.4 Checking data

There are a number of functions to help summarise the data and aid in data checking. First is the
Data summary, which can be accessed via STK Functions->Data Summary. Activating this brings up a
window containing the number of trees in the dataset, the taxa list, character list, and years (Fig. 3.7).
The output can be saved or copy and pasted as required. This can be used to carefully check the taxa
list for user errors, for example

10 Chapter 3. The STK Graphical User Interface

Supertree Toolkit Documentation, Release 2

Figure 3.5: Data view after grouping on tree string. Note the source name and all tree strings are all
visible.

Figure 3.6: Data view after slicing the data on page number.

3.4. Checking data 11

Supertree Toolkit Documentation, Release 2

Note: Incomplete data (with blue elements) may not produce a sensible data summary.

Note: See the tutorial for more information on how nomenclature and taxonomy should be standardised.

Figure 3.7: Output from the data summary.

Two other functions can also be useful to check the data (and prevent errors when using other functions).
Clean Data removes non-informative trees.

Warning: Do not use Clean Data on partial datasets. It will delete empty sources for example,
which may not be what you wish to happen.

Standardise source names ensures all source names are unique and will re-sort the sources alphabetically.
It will also standardise all tree names.

3.5 Processing data

Processing data is done using a number of functions. These are covered in more detail in the tutorial,
but briefly compose of the following functions:

• Data independence check

• Data overlap

• Sub taxa

• Permute all trees

• Replace genera

• STR

• Create subset

12 Chapter 3. The STK Graphical User Interface

Supertree Toolkit Documentation, Release 2

• Create Matrix

3.5.1 Data independence check

This allows you to check if any of the data in your dataset replicates or is a subset of another data source.
The interface shows which sources are identical and can be safely removed in the upper half (Fig. 3.8).
The lower half shows subsets. The flagged data should be checked and removed if possible.

Figure 3.8: Output from the data independence check.

3.5.2 Data overlap

In order to construct a supertree the source trees must have sufficient taxonomic overlap; that is at least
two taxa in a source tree must occur in at least one other tree. The STK allows you to both check and
visualise this overlap.

The interface (Fig. 3.9) contains options to select the level of overlap (default is 2), which is the number
of taxa trees should have in common to be considered connected. The two graphic check boxes will
show a window with the result as a graphic. There are two options; the normal graphic (Fig 3.10) and
detailed graphic (Fig 3.11). All graphics show each tree or group of trees as a circle, labelled by a
number. The window also contains a list which maps the number to a tree name, allowing you to delete
any trees that don’t sufficiently overlap.

Figure 3.9: Data overlap GUI.

3.5. Processing data 13

Supertree Toolkit Documentation, Release 2

Figure 3.10: Normal graphical view of data overlap. For a correctly connected dataset there should be a
single node (circle). These data are not sufficiently well connected.

Figure 3.11: Detailed graphical view of data overlap. For a correctly connected dataset there should be
no red nodes (circles) in the graph. These data are not sufficiently well connected.

14 Chapter 3. The STK Graphical User Interface

Supertree Toolkit Documentation, Release 2

3.5.3 Sub Taxa

Taxa substitutions and deletions are a key part of ensuring a standardised nomenclature and taxonomy
for supertree analysis. However, it is usually quite cumbersome to carry out this operation on a number
of tree or matrix files. The STK will ensure that taxa substitutions are consistent across the whole dataset
and any taxonomic information is also updated. You can construct taxa deletions and substitutions using
the Sub taxa interface (Fig. 3.12). Move taxa from the dataset to the right-hand side and add the
replacements or leave blank for a deletion. The substitutions created can be saved to a subs file. A subs
file can also be imported, either as a substitution (or subs) file or as a CSV file.

Figure 3.12: Substitute taxa interface. Taxa in the dataset are on the left hand-side. Move taxa to the
right-hand side and either leave the Sub column blank for deletions or add a list of taxa.

A subs file has the following format:

MRPoutgroup =
Dinornithidae = Anomalopteryx didiformis,Megalapteryx benhami
Enantiornithes = Avisaurus archibaldi,Avisaurus gloriae

The above file deletes MRPoutgroup and replaces Dinornithidae and Enantiornithes with polytomies of
the taxa listed. Deletions cause collapsing of nodes where the deletion occurred.

Note: There must be a space either side of the = symbol.

Note that taxa with % signs in the name (see permute taxa below) do not need the % sign in the old
taxon name. For example to replace A_a with A_f in the tree:

(A_a%1, A_b%1, (A_a%2, A_b%2, A_c, A_d));

the subs file should contain:

A_a = A_f

There are also options for substituting in only taxa already in the dataset. This can be a match at species
level or at genus level. This is useful when using a pre-existing subs file on a smaller dataset, e.g. a
subset.

3.5. Processing data 15

Supertree Toolkit Documentation, Release 2

3.5.4 Permute all trees

When recording trees from the literature inclusions of non-monophyletic can be done using a special
encoding of the taxa. Placing a ‘%’ symbol at the end of a taxon name, followed by a number allows the
STK to identify these taxa.

To remove non-monophyletic taxa, the tree permutation function is used. This creates a number of trees
per source tree, each with a different combination of the non-monophyletic taxa. Note that this produces
a tree file containing the unique trees only or a matrix for each source tree in the dataset. The output
are stored in the given format, with each tree permuted stored in a separate directory, given by the tree
name (e.g. Hill_etal_2001_1). The filename given is used, making it easy to script the creation of the
mini-supertrees.

These trees or matrices can then be combined into a single tree using PAUP*, TNT or similar. The
consensus of these trees then become the source tree for this source by importing back into the GUI.

3.5.5 Replace genera

Genus-level taxa can be replaced with a polytomy of all species that belong in that genera and exist in
the dataset. Replace genera automates this process. It can either create a new Phyml file or a subs file;
the latter can be imported into the Sub taxa function.

3.5.6 STR

Safe Taxonomic Reduction identifies possible problem taxa in the dataset, which may cause instabilities
in the supertree analysis. The output files from STR are (Fig. 3.13):

• Subs files for deletion and replacement of appropriate taxa (optional)

• A text file containing the STR output. This contains lists of taxa in the A, B, C, D, and E categories.
Note that this file can be very large for datasets containing hundreds of taxa.

Note: This can take a long time for even small datasets. For anything over 100 taxa use the command
line interface.

For further details on STR see Wilkinson (1995).

Figure 3.13: STR interface. The output file contains the equivalency matrix. The two optional sub files
will automatically allow deletion and reinsertion of taxa where this is safe to do so.

16 Chapter 3. The STK Graphical User Interface

http://sysbio.oxfordjournals.org/content/44/4/501.abstract

Supertree Toolkit Documentation, Release 2

3.5.7 Create subset

You may want to create a subset of your entire dataset, based on, say, year of publication, characters used
or taxa included. The create subset allows you to define criteria on which this subset can be created. The
GUI (Fig. 3.14) allows you to create this search by clicking “Add”. Then select the criterion from the
drop-down list on the left hand side. Then in the right hand column, enter your terms. For years you can
enter a range, like 2000-2010. For all terms, a comma separated list can be used to enter multiple terms
(Fig. 3.15).

Figure 3.14: The initial create subset interface. The two buttons on the right allow you to add and delete
terms. Terms appear in the main part of the window. The left side of this contains a drop down list to
select the criterion. The right hand side is where you enter terms.

Figure 3.15: A search for data published between 2009 and 2013 has been set up.

Once complete, a search will ask you to save the output to a new Phyml file.

3.5. Processing data 17

Supertree Toolkit Documentation, Release 2

Warning: This new file does still need to be saved with a new file name, if you use the same
filename as the existing file you will over-write your previous hard work so be aware!

3.5.8 Create matrix

After all your processing, the final step is to create a matrix of your data. This function will create
a matrix suitable for reading into PAUP**, TNT and most other supertree software. Note that some
software require a set of “input trees”. In this case, use the “Export trees” function under the the “File”
menu. Matrices can be output in Nexus or Hennig (TNT) format. Simply select “Create matrix”, choose
your options, including a filename, and click create matrix. This might take a few minutes for large
datasets. You can also add a taxonomy tree and optionally ignore outgroups that have been specified for
each tree.

Weights will only be used in TNT format and are applied automatically. Remove any “weights” elements
from your data if you do not wish to use weights.

Figure 3.16: The create matrix format. Select your options and click “Create matrix”.

18 Chapter 3. The STK Graphical User Interface

CHAPTER

FOUR

THE STK COMMAND LINE INTERFACE

The STK CLI contains a number of functions for initialising and processing data.

4.1 The basics

The CLI is initialised using:

stk

This will produce:

usage: stk [-h] [-v] [-i]

{create_matrix,sub_taxa,import_data,export_data,export_trees,export_bib,
data_summary,safe_taxonomic_reduction,data_ind,data_overlap,permute_trees,
clean_data,replace_genera,convert_files,create_subset}
...

stk: error: too few arguments

The STK has a number of commands relating to data input and export, processing, and some miscella-
neous functions. These are detailed below.

To run a command, e.g. the create matrix function, the command is:

stk create_matrix

This will produce the help for the create matrix function:

usage: stk create_matrix [-h] [-f {hennig,nexus}] [--overwrite] input output
stk create_matrix: error: too few arguments

More detailed help can be obtained using the ‘’‘-h’‘’ flag.

>$ stk create_matrix -h
usage: stk create_matrix [-h] [-f {hennig,nexus}] [--overwrite] input output

positional arguments:
input The input phyml file
output The output matrix file

optional arguments:
-h, --help show this help message and exit
-f {hennig,nexus}, --format {hennig,nexus}

The format of the matrix. hennig or nexus. Default is
hennig

19

Supertree Toolkit Documentation, Release 2

--overwrite Overwrite the existing file without asking for
confirmation

The options can be given with either the long format (–help) or (-h). Not all arguments have both (e.g.
–overwrite).

Note the stk itself has three options:

• -h – help

• -v – verbose

• -i – ignore warnings

Note that these must come before the function you want to use. For example this is valid:

stk -v create_matrix

This is not.

stk create_matrix -v

The functions are divided into input/output and processing, with one additional miscellaneous function
used for converting data files. Below is a brief description of each function. Use the ‘’‘-h’‘’ flag for
information on options and further details of input/output for the function.

4.2 Data input/export

4.2.1 export_bib

Exports a bibliographic file containing the references for all your sources. This output is a standard
bibtex file.

4.2.2 export_data

Exports the data to the old STK format. This is directory based, with each source in a separate directory.
The sources are split into two files per tree: an XML data file containing the meta-data and a tree file.

4.2.3 export_trees

Export all the trees in the dataset into a single tree file.

4.2.4 import_data

Import data from the old STK format into a Phyml. Note there may be issues with author names which
should be in the format of “FirstName1 LastName1 and FirstName2 LastName2”.

20 Chapter 4. The STK Command Line Interface

Supertree Toolkit Documentation, Release 2

4.3 Data processing

4.3.1 clean_data

Remove all non-informative trees and sources from the dataset. These are trees that contain only three
or fewer taxa.

4.3.2 create_matrix

Create a Hennig or Nexus matrix using Baum and Ragan coding of all trees in the dataset.

4.3.3 create_subset

Create a subset from your data, specifying various criteria, including year published, characters con-
tained and taxa included.

4.3.4 data_ind

Check your data for adequate data independence. The output is a CSV file that can be opened in a
standard spreadsheet package and contains identical and subset categories. It can also give you a new
Phyml with non-independent data removed.

4.3.5 data_overlap

Check your data for adequate taxonomic overlap. Optional extras are graphical outputs.

4.3.6 data_summary

Produce a text summary of the data, containing a taxa list, character list and other useful things.

4.3.7 permute_trees

Permute individual trees or all trees containing non-monophyletic taxa (indicated by a ‘%’ symbol).
Output is tree file or matrix for analysis.

4.3.8 replace_genera

Replace all generic level taxa with a polytomy of all species of that genus already in the dataset.

4.3.9 safe_taxonomic_reduction

Perform safe taxonomic reduction on the dataset. Output is the equivalency matrix, plus the option to
give subs files to safely delete and re-insert taxa

4.3. Data processing 21

Supertree Toolkit Documentation, Release 2

4.3.10 sub_taxa

Substitute or delete taxa from the dataset. Returns a new Phyml.

4.4 Miscellaneous functions

4.4.1 convert_files

Convert a tree file or matrix into Nexus, Newick (tree only) or Hennig (matrix only) formats.

22 Chapter 4. The STK Command Line Interface

CHAPTER

FIVE

STK TUTORIAL

5.1 Introduction

The following is an example of how the scripts were used in creating a species-level supertree of
Anomura - an infraorder of decapods.

There are several files included in the tutorial dataset, stored in directories based on the section num-
bering below. These files contain the necessary input to complete the tutorial, as well as the expected
output.

Note: This is a test dataset, which has been amended to show all the features and functions of the STK.
Do not use these data in a real analysis.

The aim of this tutorial is to guide you through the stages of collecting, storing and curating supertree
source data (Fig. 5.1). This can be divided into a number of steps:

• Collect and import bibliographic data

• Collect, digitise and import trees

• Deal with non-monophyletic taxa

• Standardise nomenclature (remove synonyms, misspellings, vernacular names, etc.)

• Standardise taxonomy (e.g. remove higher level taxa)

• Check data independence

• Check taxonomic overlap

• Create a subset

• Create a matrix

In carrying out this tutorial, you will cover most of the functions of the STK.

5.2 Conventions

The bulk of the tutorial can be done using either the GUI or the command line. Command line instruc-
tions are denoted by:

an example command

GUI instructions are denoted by:

23

http://en.wikipedia.org/wiki/Anomura

Supertree Toolkit Documentation, Release 2

Figure 5.1: An illustration of the pipeline that can be created using the STK processing functions.

Start → Programs

Filenames are given by the following:

an_important/file.phyml

There are also notes along the way, which are shown like this:

Note: These are hints and tips

Finally, some warnings are also given:

Warning: This is a warning

5.3 Collecting Data

Data collection occurs in two stages: literature collection and tree digitisation.

Literature collection is carried out searching for relevant taxonomic terms in conjunction with terms such
as “phylog*” in order to obtained literature containing original phylogenetic trees. Bibliographic data
is stored in Bibtex format, as the STK can import Bibtex files directly. Bibtex is a common format and
all decent reference managers can output, as can most journal websites. We recommend using JabRef,
which is free, open source and available on most operating systems. We have tested the STK extensively
with output from JabRef, but your mileage with other reference managers may vary.

Once all bibliographic data are collected they can be imported into the STK to provide the basic infor-
mation for your dataset.

Open a new instance of the GUI by double clicking the installed icon, or typing stk_gui at a terminal.
Using the menus, go to File → Import from bibliography. Use the GUI dialog to navigate to the Bibtex
file tutorial/Section_5.3_data/bibliography.bib and open it. You will now see a list

24 Chapter 5. STK Tutorial

http://www.bibtex.org/
http://jabref.sourceforge.net/

Supertree Toolkit Documentation, Release 2

of sources in the left hand side of the GUI. Note that all sources appear blue as there is a lot of missing
meta data that needs completing.

Figure 5.2: The result of importing the bibliographic file included in the tutorial. Note the blue colour,
which means there is missing data (the trees and associated metadata).

The next step is to digitise your trees and import them, whilst completing the meta data. We’ve al-
ready done this, so open tutorial/Section_5.3_data/1.starting_data.phyml which
will have the bibliographic data, meta data and source trees completed. However, we’ve deliberately
missed a source, which needs adding. The missing source is the single tree in: Hall, S. and Thatje, S.
(2009), Global bottlenecks in the distribution of marine Crustacea: temperature constraints in the family
Lithodidae. Journal of Biogeography, 36: 2125–2135. doi: 10.1111/j.1365-2699.2009.02153.x

You’ll also need the supplementary data. We cannot distribute these due to copyright, so click above and
download the PDF and supplementary data.

You can practice digitising trees using Treeview, Mesquite or similar software.

Warning: Avoid non-standard characters in taxa names. Your names must not contain commas,
parentheses, colons, asterisks, hyphens, slashes or percentage signs (percentage signs are allowed for
non-monophyletic taxa - see later). These are not allowed in taxa names in Newick format as they
mean other things.

Note: Quoted taxa should be done with single quotes only (‘), not double or “smart quotes”

5.3. Collecting Data 25

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2699.2009.02153.x/abstract
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
http://mesquiteproject.org/mesquite/mesquite.html

Supertree Toolkit Documentation, Release 2

The tree missing from the dataset is shown below - duplicate this using your tree drawing software of
choice.

Figure 5.3: This is the tree missing from the dataset

First, import the bibliographic data. This can be found in
tutorial/5.3_DataEntry/additional_reference.bib. Importing additional bibli-
ographic data does not overwrite existing ones and all duplicates are imported. You would have to
remove duplicates by hand.

You now need to read the paper and fill in the missing meta data, such as what characters were used, the
analysis algorithm and outgroups. Navigate to the new source (easy, as it’s the only blue one) and fill in
this information.

We know need to import the tree. Drill down to reach the tree_string entry (again, the only
blue one). On the lower left of the GUI, click Import tree and navigate to the tree file
tutorial/5.3_DataEntry/HallThatje_2009.tre (or use your own digitised tree). This
will place the tree file into the GUI.

Figure 5.4: Using the blue colour as a guide, navigate to the source with missing tree. Click Import tree
(circled in red) and load the tree.

Now save your Phyml using the File → Save As and type in a name.

26 Chapter 5. STK Tutorial

Supertree Toolkit Documentation, Release 2

Note: Once done, this is your original file before any processing. Keep this safe. When you extend or
alter the data later, you should begin with this file.

At this point it’s worth creating a data summary – this will allow you to spot data input errors: typos,
copy and paste errors, etc. Execute the data summary command using the GUI or command line:

STK Functions → Data Summary

stk data_summary -d summary.txt Anomura.phyml

Carefully check the output for errors. However, it is important not to correct “errors” that exist in the
original paper – these are dealt with later. However, the data summary will allow you to spot where you
might have mistyped a character (CYtb instead of Cytb, for example) or didn’t quite copy and paste the
taxa correctly (missing the last few characters for example). All lists are sorted alphabetically, which
makes spotting these kinds of errors relatively straightforward.

There are other basic housekeeping tasks that can be useful at this point too. First, standardising the
source names using STK Functions → Standardise source names to ensure each source has a unique
name. Second, cleaning the data using STK → Clean data to remove all uninformative trees and remove
non-monophyletic taxa where only one possible combination exists.

The above tasks will not alter the tutorial data, so it’s safe to save the file again. Normally you would use
File → Save As to be sure of not overwriting data. Note that the file has altered though. If you navigate
to the History section you will see that the data summary and clean data commands have been recorded,
along with the date and time. This enables you to track what commands have been run on this Phyml
dataset.

You can compare your final data file to the one distributed in the tutorial data set:
tutorial/5.3_DataEntry/5.3_2.finish.phyml and the data summary of those data
tutorial/5.3_DataEntry/5.3_2.data_summaryFinish.txt .

5.4 Standardising Terminals

Warning: From this point on we will create a new file for each step of the process. This is good
practice in case of user or software errors. Take note of the filename changes as we process the data.

5.4.1 Removing non-monophyletic taxa

Non-monophyletic taxa need some special attention. The STK allows you to permute the positions of
these taxa and generate a tree with all possible combination of places of the taxa. These permuted trees
can then be dealt with later. However, you must be aware of this when digitising trees. To indicate a
taxon is non-monophyletic append a ‘%d’ on the end of the name where d is an integer. For example,
Fig. 5.6 can be encoded as:

(Artemia_salina, (((Pagurus_pollicaris, Pagurus_longicarpus%1),
((Labidochirus_splendescens, (Elassochirus_tenuimanus, (Pagurus_bernhardus,
Pagurus_acadianus, Pagurus_longicarpus%2))), (Lithodes_aequispinus,
Paralithodes_camtschaticus))), (Clibanarius_vittatus, Coenobita_sp.)));

You can see such a tree in the tutorial dataset in Cunningham et al 1992. We will see how to permute
these trees later in the tutorial.

5.4. Standardising Terminals 27

Supertree Toolkit Documentation, Release 2

Figure 5.5: Example data summary.

Artemia salina

Pagurus pollicaris
Pagurus longicarpus%1

Labidochirus splendescens
Elassochirus tenuimanus
Pagurus bernhardus
Pagurus acadianus
Pagurus longicarpus%2

Lithodes aequispinus
Paralithodes camtschaticus

Clibanarius vittatus
Coenobita sp.

Figure 5.6: Non-monophyletic clades can be denoted with %n in the name as above.

28 Chapter 5. STK Tutorial

Supertree Toolkit Documentation, Release 2

To remove non-monophyletic taxa, the tree permutation function is used. As mentioned above, non-
monophyletic taxa are dealt with separately and denoted with a ‘%n’ in the taxon name where n is an
integer. We deal with these taxa by permuting every possible location of these taxa. This creates a
number of trees per source tree, each with a different combination of the non-monophyletic taxa. Note
that this produces unique trees only. These can then be output in a single tree file or as matrix. You take
this and create a ‘mini-supertree’ which becomes your single source tree. For example load into PAUP*
or TNT and get the tree required with a branch-and-bound search or heuristic search for larger trees.

There is one tree in our test dataset that requires removal of non-monophyletic taxa. Create a matrix
using either STK Functions → Permute all trees (call the output anomura_poly.tnt and use Hennig
format) or use the command:

stk permute_trees -c hennig Anomura_subbed.phyml Anomura_poly.tnt

The above command will create a matrix for each permutable tree (in this case one matrix) which will be
called tutorial/Section_5.4.1_data/cunningham_etal_1992_1/anomura_poly.tnt.

Run this matrix in TNT to generate a mini-supertree. The commands below are suggestions for how to
do this in TNT.

run cunningham_etal_1992_1/anomura_poly.tnt;
ienum;
taxname=;
tsave *cunningham_etal_1992_1_permuted.tnt;
save;
tsave /;
nelsen*;
tsave *cunningham_etal_1992_1_permuted_strict.tnt;
save /;
tsave /;
quit;

We’ve already done this for you, so you can then re-import this tree
into your dataset, replacing the original tree with the strict consensus
tutorial/Section_5.4.1_data/cunningham_etal_1992_1_permuted_strict.tnt.
Navigate to Cunningham_et_al_1992 and replace the tree with the % symbols in the taxa name by
clicking Import tree. Now File → Save as to filename Anomura_poly.phyml.

You can compare to the expected data, which is in tutorial/5.4.1_NonMonophyleticTaxa/5.4.1_2.non-monophyly_removed.phyml.

5.4.2 Standardising Nomenclature

The next stage is to standardise the taxa - removing synonyms and higher taxa.

Note: The tutorial dataset has a sub file already defined. Below is for information only.

Removing synonyms requires that a “standard” taxonomy is used. It does not matter what this is, but it
does matter that two taxa that are actually the same taxa have the same name to avoid artificial inflation of
the taxa number and also to improve overlap between the source trees. Services such as ITIS, WORMS,
Encyclopedia of Life and other online, specialised, databases are useful. In future the functionality of
creating a standardised taxonomy is planned to be included in STK. Once a standardised taxa has been
decided, the names can be replaced.

Use your taxonomy to create a subs file. This can be done manually in a standard text editor or using the
STK GUI. A subs file is a simple text file where taxa equivalency is denoted. Using a text editor, create

5.4. Standardising Terminals 29

http://www.itis.gov/
http://www.marinespecies.org/
http://eol.org/

Supertree Toolkit Documentation, Release 2

a file like this one:

Aegla denticulata denticulata = Aegla denticulata
Axius vivesi = Neaxius vivesi
Calcinus tibicen = Gilvossius setimanus
Callianqssa tyrrhena = Callianassa tyrrhena
Cambarus bartoni = Cambarus bartonii
Cliopagurus galzini = Ciliopagurus galzini

Note that spaces can be replaced with underscores if needed, but spaces must occur both sides of the
‘=’ sign. The above is an excerpt from the subs file included in the tutorial dataset, which replaces a
sub-species and corrects some common misspellings and synonyms.

Alternatively, create a simple CSV (Comma Separated Value) file in Excel or similar. The first column
contains the taxa already in the dataset and the subsequent columns are the taxa to be substituted into
the dataset. Each substitution is on a new row. Ensure you save the file as a Comma Separated Value
(CSV) file.

The above can be created using the GUI which ensures you only add taxa already in the dataset on the
left-hand side. Using STK Functions → Sub taxa, you will be presented with the interface to create your
substitutions.

Move taxa from the left to the right using the arrows. Then double-click the second column on the
right-hand side and add the taxa to be subbed to this column. Using the subs defined above, the GUI
will look like this.

Note you should export the substitutions at this point into a subs file, which you can import back into
the interface at a later date.

Once you have a subs file you can replace the taxa. Using either the GUI or the command line run the
sub taxa function on your Phyml. In the GUI, import your subs file (or CSV file) and, fill in a new
filename and click Sub taxa. For the CLI, run this command:

stk sub_taxa -s subs_file input.phyml output.phyml

This replaces and deletes the taxa defined in your subs file in all trees in your dataset.

For our tutorial dataset, we have already created the subs file for you. Run this on Anomura.phyml
using the GUI or command line:

stk sub_taxa -s standard_taxonomy.dat Anomura.phyml Anomura_subbed.phyml

In the GUI use STK Function → Sub taxa and then Import subs to import the subs file. Then click
Substitute Taxa. Give the filename Anomura_subbed.phyml and click save. This will give you a
warning message. This is fine, so click OK (we want to put in new taxa). You’ll get confirmation the
substitutions have been successfully carried out and saved to a new file. Now save the currently open
file (Anomura.phyml) as a new history entry has been added, containing details of the substitution.
You now have two files: your original with an additional history event detailing the substitutions done
(Anomura.phyml), and a new file where the substitutions have taken place, including a history event
stating how the file was created (Anomura_subbed.phyml or whichever name you saved as).

5.4.3 Remove higher taxa

Our dataset currently contains vernacular names and higher-order (e.g. family) names. These have to be
removed and replaced with polytomies. As this must happen each time a supertree is produced, it is best
done with via a taxa substitution file. You can create this file once, amend as appropriate and run each
time you alter the data before supertree analysis is done. For example:

30 Chapter 5. STK Tutorial

Supertree Toolkit Documentation, Release 2

Albuneidae = Albunea,Austrolepidopa,Harryhausenia

replaces any source tree containing the higher order taxa Albuneidae with polytomies.

We can replace using genus or species names. When replacing with genera, species will be replaced in
a later step. Therefore, it is recommended you make your substitution file as comprehensive as possible.
You can then keep it for later when you extend the dataset. Note that the species listed should be in the
dataset already, but you can avoid thoroughly checking this as you can use the “replace existing taxa
only” option in the replacement. When replacing with genera this is not necessary. You can use the data
summary output to check how well these substitutions have worked.

Once your substitution file is ready, you can use either the GUI or CLI to replace taxa in a Phyml. The
output of this is a new Phyml with the taxa replace or deleted as dictated in your subs file.

The command line would be:

stk sub_taxa -e -s SUBFILE input.phyml output.phyml

To use the GUI, simply clicking STK Functions -> Sub Taxa, loading your subs file, and clicking Sub
taxa.

Note: It is important here to only substitute in existing taxa so use the -e flag on the CLI and click the
Only existing taxa in the GUI if you are substituting in species to avoid adding extra taxa. You can select
if a match is done at a genus level (usually the case, but not the default setting) or at species level.

Finally, to guard against errors and bugs, back-up your data ‘’‘before’‘’ carrying each set of substitutions.
If you come across something that went wrong, report a bug on our Launchpad. Replacing taxa in trees
is not straightforward at times so this is definitely the time to check your backups.

Our Anomura data have one such higher taxa and we have introduced an extra taxon by creating the
mini-supertrees earlier: MRP_Outgroup. Carry out a data summary on Anomura_poly.phyml and
you should see the MRP_Outgroup, Albuneidae, and Aeglidae in the list. We therefore need to create a
simple subs file using one of the three possible ways (CSV, subs or via the GUI) such that we have the
following substitutions (below is in subs file format):

Albuneidae = Albunea,Austrolepidopa,Harryhausenia
Aeglidae = Aegla
MRPOutgroup =

Note: There are two spaces either side of the ‘=’ for the MRP_Outgroup. This will delete the taxon.

In the GUI, use STK Functions → Sub taxa to move MRP_Outgroup from the left to the right of the
interface; likewise for Albuneidae and Aeglidae. Leave the second column blank for MRP_Outgroup,
but fill in Albuneidae with Albunea,Austrolepidopa,Harryhausenia and fill in Aeglidae with Aegla. Then
click Substitute taxa to do the substitutions. Save the file as Anomura_no_higher.pyml.

On the command line use the following command to delete the MRP_Outgroup:

stk sub_taxa -o MRP_Outgroup Anomura_poly.phyml Anomura_no_higher1.phyml

which will delete the taxon. Then do (on a single line):

stk sub_taxa -e -g -o Albuneidae -n “Albunea, Austrolepidopa, Harryhausenia”
Anomura_no_higher1.phyml Anomura_no_higher2.phyml

Followed by:

5.4. Standardising Terminals 31

Supertree Toolkit Documentation, Release 2

stk sub_taxa -e -g -o Aeglidae -n “Aegla” Anomura_no_higher2.phyml
Anomura_no_higher.phyml

To do the replacement of Albuneidae and then Aeglidae. Note that we have not needed a subs file when
using the CLI for this trivial substitution.

Replacing genera

The final part of this process is to replace all genera with their constituent species that are already present
in the dataset, e.g. Aegla is replaced with a polytomy of all species belonging to Aegla. This is done with
the replace genera function. Only species already in the dataset are added. This is a similar function to
the general substitute taxa functions, but it generates the substitutions for you.

To run this you can either use the GUI or CLI. The CLI command is:

stk replace_genera Anomura_no_higher.phyml Anomura_species.phyml

In the GUI, use STK Functions → Replace genera. Get the STK to create a new Phyml for you, named
Anomura_species.phyml

5.5 Data independence

The data independence check is done via the data independence function. The function checks if any
source meets the following conditions:

• Uses the same characters

• and is either a subset of, or contains the same taxa as, another source.

If these two conditions are met, the two sources are not independent. If the two sources are identical
(same taxa and same characters) it is up to you which one is included, or you can create a mini-supertree
of them to create a single source. When one source uses the same characters but is a taxonomic subset of
another, you should include the larger source tree. The data independence function places source trees
into these two categories and informs you of the equivalent source. You can then simply delete sources
as required using the GUI. The STK can automate most of this process (but do check the result to make
sure you agree).

Using the command line, type the following:

stk data_ind Anomura_species.phyml -n Anomura_ind.phyml

This will create a new Phyml with all non-independent subset data removed, using the above rules. Trees
that are identical will not be removed. You have to decide which one should be removed or combine
them using a mini-supertree. The same can be achieved in the GUI using the STK Functions → Data
Independence Check and clicking Remove subsets and save, giving Anomura_ind.phyml as the
filename.

To deal with identical data, open a new STK GUI and give it a temporary name. Then copy and paste
the sources that contain the identical trees from your existing dataset into your new one. You can delete
any trees that aren’t identical but were copied over at this point. You can now make a matrix using Stk
Functions → Create Matrix and create a supertree.

For our tutorial dataset we have the following non-independent data:

32 Chapter 5. STK Tutorial

Supertree Toolkit Documentation, Release 2

Source trees that are identical to others
Flagged tree, is identical to:
Ahyong_etal_2009_2,Ahyong_etal_2009_1

Source trees that are subsets of others
Flagged tree, is a subset of:
boyko_harvey_2009_1,mclaughlin_etal_2007_1

So, running

stk data_ind Anomura_species.phyml -n Anomura_ind.phyml

or via the GUI, you can remove Boyko and Harvey 2009, tree 1 manually or use the STK Functions →
Data Independence Check and clicking Remove subsets and save, giving Anomura_ind.phyml as
the filename.

Warning: If you removed the source manually, remember to “Save as”

To deal with the two identical trees, we can weight them down by half. Drill down to the trees in Ahyong
et al 2009 and under the Tree element, you’ll find ‘Weight’. Click the plus sign and make the weight
0.5. Do the same for the other tree in Ahyong et al 2009.

Note: Weights are currently only implemented in Hennig matrices.

5.6 Data overlap

This stage makes sure that the data is suitable for inclusion in the final supertree analysis. The first step
is to create a data summary. This creates a list of useful information, such as taxa and characters. The
information is printed alphabetically, which makes it easy to check for final errors. Although this is not
necessary, it allows manual checking of the data, e.g. were genera replaced where species are also in the
dataset?

Have a look in the file output and check that everything looks correct. If not, go back and fix things.
Note that some of the statistics in the file might be useful - how many trees, over what years the data are
from, types of characters in the dataset, etc.

The final step is to ensure that there is sufficient taxonomic overlap between source trees. We need to
check that all the trees share at least two taxa with another source tree. You may also want to experiment
with using higher numbers. The output can either be a simple yes/no or graphical output. Graphical
output can either be a detailed view where a graph is produced whereby each source is a vertex and
edges are drawn between sources that share the required number of taxa (Fig 5.8) . In this view all
nodes should be blue, with no red (unconnected) nodes. However, for large datasets, this consumes a
lot of memory and can take a long time to calculate. Instead use the normal view where connected trees
compose a node in the graph (Fig 5.7). In this view there should be a single node only.

To carry out this step on our data in the CLI run this command:

stk data_overlap Anomura_ind_final2.phyml

It will return a message saying your data are not sufficiently well connected. We can find out which trees
are not connected using:

stk data_overlap -g overlap_2.png -d Anomura_ind_final.phyml

5.6. Data overlap 33

Supertree Toolkit Documentation, Release 2

Figure 5.7: Graphical view of data overlap. For a correctly connected dataset there should be no uncon-
nected nodes – i.e. there should be a single node. These data are not sufficiently well connected.

Figure 5.8: Detailed graphical view of data overlap. There should be no red nodes in a dataset that is
well connected.

34 Chapter 5. STK Tutorial

Supertree Toolkit Documentation, Release 2

Using the GUI, use STK Functions → Check data overlap. Click Check overlap and it will return a
message about insufficient overlap. Run it again, with graphical output and you will see the following
output.

Remove the following sources from the dataset (the sources contain all the trees that do not contain
sufficient overlap):

• Cabezas et al 2009

• Werding et al 2001

You should then have 12 trees remaining. Remove the above and regenerate the overlap graphic – this
time it should return a message saying your data are sufficiently well connected. Save your data to
Anomura_final.phyml.

Figure 5.9: Graphical view of data overlap. For a correctly connected dataset there should be no uncon-
nected nodes – i.e. there should be a single node. These data are now well connected.

Figure 5.10: Detailed graphical view of data overlap. There are now no red nodes.

5.6. Data overlap 35

Supertree Toolkit Documentation, Release 2

5.7 Create matrix or export final tree set

You now have a dataset ready for creating a supertree. If you are using an algorithm that requires a
matrix representation then the final step is to create a matrix.

Open Anomura_final.phyml and use STK Functions → Create matrix and fill in the GUI to create
a matrix. Create a TNT matrix and save to Anomura_matrix.tnt

Alternatively, use:

stk create_matrix Anomura_final.phyml Anomura_matrix.tnt

The Anomura_final.phyml is included in the tutorial for comparison to yours.

You can then load this matrix into TNT and generate your supertree using any suitable method. You can
of course change the output format suitable for PAUP* or any other tree building software.

If you are using an algorithm that requires a set of trees then you can export your trees using File →
Export trees.

36 Chapter 5. STK Tutorial

CHAPTER

SIX

STK API

The STK has been split such that the main functionality can be imported into your own Python script
and used programmatically. If you have downloaded the source package there are a number of example
scripts in the stk/scripts directory. If you know Python, simply import the stk.supertree_toolkit module.
If you don’t, then go and learn Python – it’s very useful.

Below is a description of the functions that are available in the API.

stk.supertree_toolkit.add_historical_event(XML, event_description)
Add a historial_event element to the XML. The element contains a description of the event and
the the current date will ba added

stk.supertree_toolkit.all_sourcenames(XML, trees=False)
Create a sensible sourcename for all sources in the current dataset. This includes appending a, b,
etc for duplicate names.

stk.supertree_toolkit.amalgamate_trees(XML, format=’nexus’, anony-
mous=False, ignoreWarnings=False)

Create a string containing all trees in the XML. String can be formatted to one of Nexus, Newick or
TNT. Only Nexus formatting takes into account the anonymous flag - the other two are anonymous
anyway Any errors and None is returned - check for this as this is the callers responsibility

stk.supertree_toolkit.check_subs(XML, new_taxa)
Check a subs file and issue a warning if any of the incoming taxa are not already in the dataset.
This is often what is wanted, but sometimes it is not. We run this before we do the subs to alert
the user of this but they may continue

stk.supertree_toolkit.clean_data(XML)
Cleans up (i.e. deletes) non-informative trees and empty sources Same function as check data, but
instead of raising message, simply fixes the problems.

stk.supertree_toolkit.create_matrix(XML, format=’hennig’, quote=False, tax-
onomy=None, outgroups=False, ignore-
Warnings=False)

From all trees in the XML, create a matrix

stk.supertree_toolkit.create_matrix_from_trees(trees, format=’hennig’)
Given a dictionary of trees, create a matrix

stk.supertree_toolkit.create_name(authors, year, append=’‘)
Construct a sensible from a list of authors and a year for a source name. Input: authors - list of
last (family, sur) names (string).

year - the year (string). append - append something onto the end of the name.

Output: source_name - (string)

37

Supertree Toolkit Documentation, Release 2

stk.supertree_toolkit.create_subset(XML, search_terms, andSearch=True,
includeMultiple=True, ignoreWarn-
ings=False)

Create a new dataset which is a subset of the incoming one. searchTerms is a dict, with the
following keys: years - list consisting of the years to include. An entry can contain two years
seperated by -. A range will then

be used.

characters - list of charcters to include character_types - list of character types to include (Molec-
ular, Morphological, Behavioural or Other) analyses - list of analyses to include (MRP, etc) taxa -
list of taxa that must be in a source tree fossil - all_fossil or all_extant

Multiple requests produce and matches (so between 2000-2010 and Molecular and contain Gallus
gallus) unless andSearch is false. If it is, an or search is used. So the example would be years
2000-2010 or Molecular or contain Gallus gallus

includeMultiple means that a source can contain Molecular and Morophological characters and
match Molecular (or, indeed, Morpholoigcal). Set to False to include if it’s only Molecular you’re
after (i.e. trees with mixed character sets will be ignored). This applies to characters and charac-
ter_types only (as the other terms don’t make sense with this off).

Note: this funtion is not (yet) taxonomically aware, so Galliformes will only return trees that
actually have a leaf called Galliformes. Gallus gallus will not match.

Also note: The tree strings are searched for taxa, not the taxa elements (which are optional)

A new PHYML file will be produced. The calling function must do something sensible with that

stk.supertree_toolkit.create_tree_name(XML, source_tree_element)
Creates a tree name for a given source Simply the source_name with a number added
source_tree_element is the element that contains the source tree, i.e. sources/source/source_tree

stk.supertree_toolkit.data_independence(XML, make_new_xml=False, ignore-
Warnings=False)

Return a list of sources that are not independent. This is decided on the source data and the
characters.

stk.supertree_toolkit.data_overlap(XML, overlap_amount=2, filename=None,
detailed=False, show=False, ver-
bose=False, ignoreWarnings=False)

Calculate the amount of taxonomic overlap between source trees. The output is a True/False by
default, but you can specify an optional filename, which will save a nice graphic. For the GUI, the
output can also be a PNG graphic to display (and then save).

If filename is None, no graphic is generated. Otherwise a simple graphic is generated showing
the number of cluster. If detailed is set to true, a graphic is generated showing all trees. For data
containing >200 source tres this could be very big and take along time. More likely, you’ll run out
of memory.

stk.supertree_toolkit.data_summary(XML, detailed=False, ignoreWarn-
ings=False)

Creates a text string that summarises the current data set via a number of statistics such as the
number of character types, distribution of years of publication, etc.

Up to the calling function to display string nicely

stk.supertree_toolkit.export_bibliography(XML, filename, format=’bibtex’)
Export all source papers as a bibliography in either bibtex, xml, html, short or long formats

38 Chapter 6. STK API

Supertree Toolkit Documentation, Release 2

stk.supertree_toolkit.get_all_characters(XML, ignoreErrors=False)
Returns a dictionary containing a list of characters within each character type

stk.supertree_toolkit.get_all_source_names(XML)
From a full XML-PHYML string, extract all source names.

stk.supertree_toolkit.get_all_taxa(XML, pretty=False, ignoreErrors=False)
Produce a taxa list by scanning all trees within a PHYML file.

The list is return sorted (alphabetically).

Setting pretty=True means all underscores will be replaced by spaces

stk.supertree_toolkit.get_analyses_used(XML, ignoreErrors=False)
Return a sorted, unique array of all analyses types used in this dataset

stk.supertree_toolkit.get_character_numbers(XML, ignoreErrors=False)
Return the number of trees that use each character

stk.supertree_toolkit.get_character_types_from_tree(XML, name,
sort=False)

Get the character types that were used in a particular tree

stk.supertree_toolkit.get_characters_from_tree(XML, name, sort=False)
Get the characters that were used in a particular tree

stk.supertree_toolkit.get_characters_used(XML)
Return a sorted, unique array of all character names used in this dataset

stk.supertree_toolkit.get_fossil_taxa(XML)
Return a list of fossil taxa

stk.supertree_toolkit.get_outgroup(XML)
For each tree, get the outgroup defined in the schema

stk.supertree_toolkit.get_publication_year_tree(XML, name)
Return a dictionary of years and the number of publications within that year

stk.supertree_toolkit.get_publication_years(XML)
Return a dictionary of years and the number of publications within that year

stk.supertree_toolkit.get_taxa_from_tree(XML, tree_name, sort=False)
Return taxa from a single tree based on name

stk.supertree_toolkit.get_weights(XML)
Get weights for each tree. Returns dictionary of tree name (key) and weights (value)

stk.supertree_toolkit.import_bibliography(XML, bibfile, skip=False)
Create a bunch of sources from a bibtex file. This includes setting the sourcenames for each
source.

stk.supertree_toolkit.import_tree(filename, gui=False, tree_no=-1)
Takes a NEXUS formatted file and returns a list containing the tree strings

stk.supertree_toolkit.import_trees(filename)
Return an array of all trees in a file. All formats are supported that we’ve come across but submit
a bug if a (common-ish) tree file shows up that can’t be parsed.

stk.supertree_toolkit.load_phyml(filename)
Super simple function that returns XML string from PHYML file

39

Supertree Toolkit Documentation, Release 2

stk.supertree_toolkit.obtain_trees(XML)
Parse the XML and obtain all tree strings Output: dictionary of tree strings, with key indicating
treename (unique)

stk.supertree_toolkit.parse_subs_file(filename)
Reads in a subs file and returns two arrays: new_taxa and the corresponding old_taxa

None is used to indicated deleted taxa

stk.supertree_toolkit.permute_tree(tree, matrix=’hennig’, treefile=None, ver-
bose=False)

Permute a tree where there is uncertianty in taxa location. Output either a tree file or matrix file
of all possible permutations.

Note this is a recursive algorithm.

stk.supertree_toolkit.read_matrix(filename)
Read a Nexus or Hennig formatted matrix file. Returns the matrix and taxa.

stk.supertree_toolkit.replace_genera(XML, dry_run=False, ignoreWarn-
ings=False)

Remove all generic taxa by replacing them with a polytomy of all species in the dataset belonging
to that genera

stk.supertree_toolkit.safe_taxonomic_reduction(XML, matrix=None,
taxa=None, ver-
bose=False, queue=None,
ignoreWarnings=False)

Perform STR on data to remove taxa that provide no useful additional information. Based on
PerEQ (Jeffery and Wilkson, unpublished).

stk.supertree_toolkit.set_all_tree_names(XML, overwrite=False)
Set all unset tree names

stk.supertree_toolkit.set_unique_names(XML)
Ensures all sources have unique names.

stk.supertree_toolkit.single_sourcename(XML, append=’‘)
Create a sensible source name based on the bibliographic data. XML should contain the xml_root
for the source that is to be altered only. NOTE: It is the responsibility of the calling process of this

function to check for name uniqueness.

stk.supertree_toolkit.subs_file_from_str(str_output)
From the textual output from STR (safe_taxonomic_reduction), create the subs file to put the C
category taxa back into the dataset. We work with the text out as it’s the same as PerlEQ, which
means this might work from them also...

stk.supertree_toolkit.subs_from_csv(filename)
Create taxonomic subs from a CSV file, where the first column is the old taxon and all other
columns are the new taxa to be subbed in-place

stk.supertree_toolkit.substitute_taxa(XML, old_taxa, new_taxa=None,
only_existing=False, ig-
noreWarnings=False, ver-
bose=False, skip_existing=False,
generic_match=False)

Swap the taxa in the old_taxa array for the ones in the new_taxa array

If the new_taxa array is missing, simply delete the old_taxa

40 Chapter 6. STK API

Supertree Toolkit Documentation, Release 2

only_existing will ensure that the new_taxa are already in the dataset

Returns a new XML with the taxa swapped from each tree and any taxon elements for those taxa
removed. It’s up to the calling function to do something sensible with this infomation

stk.supertree_toolkit.substitute_taxa_in_trees(trees, old_taxa,
new_taxa=None,
only_existing=False,
ignoreWarnings=False,
verbose=False,
generic_match=False)

Swap the taxa in the old_taxa array for the ones in the new_taxa array

If the new_taxa array is missing, simply delete the old_taxa

only_existing will ensure only taxa in the dataset are subbed in.

Returns a new list of trees with the taxa swapped from each tree It’s up to the calling function to
do something sensible with this infomation

41

Supertree Toolkit Documentation, Release 2

42 Chapter 6. STK API

PYTHON MODULE INDEX

s
stk.supertree_toolkit, 37

43

Supertree Toolkit Documentation, Release 2

44 Python Module Index

INDEX

A
add_historical_event() (in module

stk.supertree_toolkit), 37
all_sourcenames() (in module

stk.supertree_toolkit), 37
amalgamate_trees() (in module

stk.supertree_toolkit), 37

B
bibtex, 9

C
check_subs() (in module stk.supertree_toolkit), 37
clean_data, 21
clean_data() (in module stk.supertree_toolkit), 37
CLI, 18
convert_files, 22
copy, 10
create_matrix, 21
create_matrix() (in module stk.supertree_toolkit),

37
create_matrix_from_trees() (in module

stk.supertree_toolkit), 37
create_name() (in module stk.supertree_toolkit),

37
create_subset, 21
create_subset() (in module stk.supertree_toolkit),

37
create_tree_name() (in module

stk.supertree_toolkit), 38

D
data summary, 10
data_ind, 21
data_independence() (in module

stk.supertree_toolkit), 38
data_overlap, 21
data_overlap() (in module stk.supertree_toolkit),

38
data_summary, 21
data_summary() (in module stk.supertree_toolkit),

38

E
export_bib, 20
export_bibliography() (in module

stk.supertree_toolkit), 38
export_data, 20
export_trees, 20

G
get_all_characters() (in module

stk.supertree_toolkit), 38
get_all_source_names() (in module

stk.supertree_toolkit), 39
get_all_taxa() (in module stk.supertree_toolkit), 39
get_analyses_used() (in module

stk.supertree_toolkit), 39
get_character_numbers() (in module

stk.supertree_toolkit), 39
get_character_types_from_tree() (in module

stk.supertree_toolkit), 39
get_characters_from_tree() (in module

stk.supertree_toolkit), 39
get_characters_used() (in module

stk.supertree_toolkit), 39
get_fossil_taxa() (in module stk.supertree_toolkit),

39
get_outgroup() (in module stk.supertree_toolkit),

39
get_publication_year_tree() (in module

stk.supertree_toolkit), 39
get_publication_years() (in module

stk.supertree_toolkit), 39
get_taxa_from_tree() (in module

stk.supertree_toolkit), 39
get_weights() (in module stk.supertree_toolkit), 39
grouping, 10

I
import_bibliography() (in module

stk.supertree_toolkit), 39
import_data, 20
import_tree() (in module stk.supertree_toolkit), 39

45

Supertree Toolkit Documentation, Release 2

import_trees() (in module stk.supertree_toolkit),
39

L
load_phyml() (in module stk.supertree_toolkit), 39

O
obtain_trees() (in module stk.supertree_toolkit), 39

P
parse_subs_file() (in module

stk.supertree_toolkit), 40
paste, 10
permute_tree() (in module stk.supertree_toolkit),

40
permute_trees, 21

R
read_matrix() (in module stk.supertree_toolkit), 40
replace_genera, 21
replace_genera() (in module stk.supertree_toolkit),

40

S
safe_taxonomic_reduction, 21
safe_taxonomic_reduction() (in module

stk.supertree_toolkit), 40
set_all_tree_names() (in module

stk.supertree_toolkit), 40
set_unique_names() (in module

stk.supertree_toolkit), 40
single_sourcename() (in module

stk.supertree_toolkit), 40
slicing, 10
stk.supertree_toolkit (module), 37
sub_taxa, 21
subs_file_from_str() (in module

stk.supertree_toolkit), 40
subs_from_csv() (in module stk.supertree_toolkit),

40
substitute_taxa() (in module stk.supertree_toolkit),

40
substitute_taxa_in_trees() (in module

stk.supertree_toolkit), 41

46 Index

	Introduction
	What is the STK?
	What does it do?
	What does it not do?
	About this document
	The processing pipeline

	Getting started
	Introduction
	Linux
	Windows
	MacOS X
	Source
	Running the STK

	The STK Graphical User Interface
	Starting out
	Entering data
	Using the interface
	Checking data
	Processing data

	The STK Command Line Interface
	The basics
	Data input/export
	Data processing
	Miscellaneous functions

	STK Tutorial
	Introduction
	Conventions
	Collecting Data
	Standardising Terminals
	Data independence
	Data overlap
	Create matrix or export final tree set

	STK API
	Python Module Index
	Index

