
Taverna	 2.5.4	 Server:	 Installation	 and	 Administration	 Guide	 Page	 1	 of	 16	
Copyright	 ©	 2010–2014	 The	 University	 of	 Manchester	

Taverna 2.5.4 Server: Installation and Admin-
istration Guide
This document relates to the fourth public release of Taverna Server 2.5 that is based
on the Taverna 2.5 Platform, from the myGrid team at the University of Manchester.

About
This release is a version of the Taverna 2.5 Server that is provided as a basis for de-
ployments of server-ized Taverna in a multi-user environment.
In addition to its improved performance, this release supports a number of new fea-
tures:

• Major Feature: Support for Taverna Components.

• Major Feature: Support for the Interaction “service”.

• Major Feature: Updated execution engine to Taverna 2.5.0 Enterprise release.

• Major Feature: Workflow runs now produce a run bundle that describes the inputs
and outputs of the run, together with provenance information about the outputs.

• Start a workflow run by supplying a reference to a workflow document.

• Set an arbitrary name for a workflow run.

• Describes system capabilities, so that it is possible to determine whether a workflow
can be run prior to sending that workflow to the server.

• Improved resource management and logging.

This is in addition to these features supported by Taverna Server 2.4.

• Based on Taverna 2.4

• Multiple users, with strong separation between them.

• Limited persistence over service restarts, depending on exact deployment.

• Workflow run introspection capabilities; clients can ask the server what inputs they
should supply and what outputs were provided.

• Workflow run termination notifications through multiple mechanisms (RSS feed,
email, SMS, twitter, etc. depending on deployment).

• Security, both of access to the service and access by the workflow runs to other ser-
vices.

• Administrative REST interface including resource accounting

o See the https://«SERVER:PORT»/taverna-server/admin for ac-
cess (assuming you installed the server as the taverna-server webapp).

• Streaming of large files both for download and upload.

And these features of Taverna Server 2.2:

• Upload and Execution of arbitrary Taverna 2 workflows

Taverna	 2.5.4	 Server:	 Installation	 and	 Administration	 Guide	 Page	 2	 of	 16	
Copyright	 ©	 2010–2014	 The	 University	 of	 Manchester	

• Access to Workflow's Interim Output Files; no need to wait for the workflow to
finish if the results are available sooner

o Safe File Management for handling results; workflows cannot interfere with
each others files

• Simple mechanism for Removal of Expired Workflows

• Support for both RESTful and SOAP APIs, for easier tooling

• JMX-based Management API

There remain a number of known-missing features; notably these include:

• Support for execution on a back-end cluster, Cloud or Grid.

• Access to the workflow run provenance information (other than by downloading a
raw Apache Derby database).

• Full access to the workflow run working directory via WebDAV.

• Fully surfaced workflow execution model, including to intermediate state infor-
mation.

Known Limitations
There is a known limitation of 100MB on the size of individual atomic values that
may be present on a workflow port, processor port or datalink of a Workflow. With a
list, this is a restriction on the size of the elements in the list, and not on the total size
of the list’s items, though it is recommended that lists be kept substantially smaller
than this to ensure that they fit in memory. The recommended workaround for this is
to keep large values in files on disk or in a database, and to only pass references to
those files (i.e., filenames) along datalinks.

Taverna	 2.5.4	 Server:	 Installation	 and	 Administration	 Guide	 Page	 3	 of	 16	
Copyright	 ©	 2010–2014	 The	 University	 of	 Manchester	

Installation
Prerequisites
You will need Unix of some kind.

This software was developed against Debian Linux 5.0.9, but we anticipate
that these instructions will apply equally to other Unixes.

You will need a Java 7 (or later) installation.

This software was developed and tested against the Oracle JRE 1.7.0_21, and
has also been tested against OpenJDK 7; use of the current version of either of
these Java implementations is recommended. OpenJDK 6 cannot run this ver-
sion of Taverna Server, nor can gcj.

You will need a suitable servlet container.
This software was developed using Tomcat 6.0.26 as the servlet container, but
other versions of Tomcat are known to work (back to at least 6.0.20) and other
containers may also function correctly as no Tomcat-specific APIs are used in
the deployable code. We welcome feedback on which containers work, as well
as on how to configure them (if they are not Tomcat versions). Using the cur-
rent production release of Tomcat 6 is recommended.

Installation into Tomcat
Note that these instructions are Tomcat-specific.

Step 1. Configure Tomcat for JMX
If you're going to use JMX to administer the server (good for demos; jvisualvm is
recommended if you've got the JMX support plugin, and jconsole is acceptable)
then you need to edit Tomcat's «TOMCATDIR»/bin/startup.sh script to include
the setting:
export CATALINA_OPTS=-Dcom.sun.management.jmxremote

This works around a minor bug in Spring which prevents correct registration of man-
agement beans in the default internal management service. You should also add addi-
tional options there to ensure that the JMX management layer is secure; see the Java
JMX documentation for a discussion of how to do this.

Step 2. Configure Tomcat for General Management
Add a user entry in «TOMCATDIR»/conf/tomcat-users.xml so that the man-
ager webapp can know who you are and that you have permission to deploy webapps
(i.e., the "manager" role).

The system security integration does not work with the Windows security model,
and the restrictions on command-line lengths on that platform are another signifi-
cant issue. Because of this, Taverna Server 2.5 does not support Windows at this
stage. Tools and services hosted on Windows may be used, but only via remote
access protocols such as SSH, SOAP, etc.

Taverna	 2.5.4	 Server:	 Installation	 and	 Administration	 Guide	 Page	 4	 of	 16	
Copyright	 ©	 2010–2014	 The	 University	 of	 Manchester	

You also need to configure Tomcat to support HTTPS if you are planning to use the
default secure configuration; to do this, follow the instructions on the Tomcat site
(http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html).

Now start Tomcat (or restart it).

Step 3. Prepare for T2Server WebApp Installation
Save the text below as context.xml on the machine where you are going to install
the server. This is the minimum content of that file:
<Context path="/taverna-server">
</Context>

Additional configuration properties can be set in the context.xml file; see the de-
tailed deployment description section of this document for more information.

Step 4. Download the Webapp ARchive
Make sure that the .war file is also saved to the machine on which you will be in-
stalling the server.

Step 5. Install the WebApp
Navigate to http://«SERVER:PORT»/manager/html and go to the Deploy box.
Fill in the form there with:

Field Value
Context Path (required): /taverna-server
XML Configuration File
URL:

file:/path/to/context.xml

WAR or Directory URL: file:/path/to/TavernaServer.war

Press the Deploy button; after a few seconds, Tomcat should respond with OK (at the
top of the reloaded page) and you'll have the Taverna Server webapp installed at
http://«SERVER:PORT»/taverna-server.
Note that you should also review the section below on impersonation via sudo,
which describes a reasonable minimal approach for securing the invocation of work-
flows as limited-authority users. Also be aware that many features of this server soft-
ware are disabled by default, especially in relation to the pushing of notifications
through other services (e.g., email, SMS). These features would be set through the use
of context parameters, as described in the next section.

The default configuration of the server requires HTTPS — either on port 443 or on port
8443 — and will refuse to provide the large majority of its operations (including all SOAP
actions and all REST actions relating to workflow runs) if it is not detected. We recom-
mend that a public Certificate Authority sign the public certificate of the server, as this
tremendously simplifies client deployment.

The non-default insecure configuration does not require connections to be made by HTTPS
or that different users be configured. When it is used, other steps should be taken to ensure
that the connections to the server are secure (e.g., through the use of a strong firewall and
a co-located front-end service or a VPN).

There is also a part-secure configuration that requires HTTPS, but which does not enable
the advanced user separation mechanism. This makes it easier to configure, but reduces
the degree of separation between users’ workflow runs.

Taverna	 2.5.4	 Server:	 Installation	 and	 Administration	 Guide	 Page	 5	 of	 16	
Copyright	 ©	 2010–2014	 The	 University	 of	 Manchester	

Firewall Requirements
Taverna Server is a fairly network-intensive application, and the workflows it runs
typically assume that they have access to a wide range of external ports by default.
Because of that, it is recommended that outgoing ports on the system running Taver-
na Server be mainly not blocked (a few exceptions are reasonable, such as preventing
access to external SMTP services). In particular, it is not safe to just assume that all
web services accessed by workflows run on “standard” ports like 80 or 443; this is not
seen in practice.
For incoming ports, we recommend restricting them as much as is practical. In partic-
ular, we note that port 1099 is used by the service along with a substantial number of
high-numbered ports: none of those need any access from outside the host system.
The only ports that need to be opened are those that handle incoming user requests: in
the default configuration of Tomcat, this would be port 8080 for HTTP traffic and
8443 for HTTPS traffic. (You will probably want to keep some other ports at least
partially open for administration traffic, e.g., 22 for ssh access, but this is formally
outside the scope of this document: Taverna Server itself does not need that.)
If you configure your firewall (or some sort of proxy) so that the host, port and web-
application root that the user sees is not that which you are actually running the ser-
vice on, you should set the default.webapp application parameter — typically via a
deployment parameter — to a URL fragment giving the host, port and webapp root
that you wish to use. (Taverna Server forces the protocol used separately.)

Details of Configuration
Deployment of web applications into Tomcat can be done through multiple mecha-
nisms, notably through command line tools and through Tomcat's online administra-
tion interface. This document describes the latter mechanism. Note also that we cur-
rently only support the use of Taverna Server within a Unix environment (e.g., Linux,
Mac OS X); there is no reason in principle why the code should not be adaptable to
Microsoft Windows, but there is currently no impersonation module written to inte-
grate Taverna Server with that operating platform.
This assumes that you installing into Tomcat 6 running on top of Java 7; this was test-
ed with Tomcat 7.0.21 over the Oracle JRE 1.7.0_21. Later patch versions from the
same major version are recommended, if available. This software has not been fully
tested with Tomcat 7.
The configuration of the Taverna Server installation is done by writing a context de-
scriptor document, only some parts of which can be configured afterwards via the
management interface. An example of that XML document is below:
<Context path="/taverna-server">
 <!-- Sample logging configuration. -->
 <Valve className="org.apache.catalina.valves.AccessLogValve" />

 <Parameter name="default.localusername"
 value="localtavernauser" />

 <!-- For email-dispatched notifications. -->
 <Parameter name="email.host" value="localhost" />
</Context>

Taverna	 2.5.4	 Server:	 Installation	 and	 Administration	 Guide	 Page	 6	 of	 16	
Copyright	 ©	 2010–2014	 The	 University	 of	 Manchester	

The context descriptor is typically in a file called context.xml and there is a sam-
ple context descriptor with this distribution, in the context.sample.xml file.
There are a substantial number of properties that may be tuned during installation (see
below).
The actual deployment is done by giving the actual context location (i.e., the base
URL of the webapp relative to the whole Tomcat container) as a separate field, to-
gether with URLs (it is useful to use file: URLs for this) to the context descriptor doc-
ument and the distributed WAR file.

Configuration Property List
This is a list of all the properties that are set by default in the Server (NB: the proper-
ties in red are actually unset or commented out by default, but they are all under-
stood). They may be all overridden by the use of context configuration parameters as
described above; for example, to override the default local user name, the
default.localusername configuration parameter would be set.
The majority of these properties should not be set, as they default to reasonable pa-
rameters. The exceptions are:

• Those used to control how many runs exist and are operating at once. The
default.runlimit and default.operatinglimit have reasonable
initial values, but must be tuned according to the actual expected workload.
They can be set at runtime via the administration web interface and via JMX.

• Those used to enable optional notification mechanisms; those are all disabled
by default unless the required extra properties are set (see below for instruc-
tions).

Script in Taverna installation to run to actually execute workflows
executeWorkflowScript: /usr/taverna/executeworkflow.sh

Override the hostname, port and webapp; leave at 'NONE' if no
override desired. If set, set it to something like:
foo.example.com:8000/tav-serv
default.webapp: NONE

User name to use by default for impersonation if nothing else
specified
default.localusername: taverna

The HTTP authorization realm; should be different from all other
webapps on the deployment server
http.realmName: tavernaserver

Force the RMI registry to only listen to connections from localhost
Should be true unless you have a good reason to open it up.
rmi.localhostOnly: true

How to pick a user name out of a global identity
localusernameregexp: ^TAVERNAUSER=(.*)$
Whether to log incoming workflows; noisy if enabled
default.logworkflows: false
Whether to log outgoing exceptions; noisy if enabled
default.logexceptions: false
Whether to allow workflows to be submitted; adjustable via admin
interfaces
default.permitsubmit: true

Taverna	 2.5.4	 Server:	 Installation	 and	 Administration	 Guide	 Page	 7	 of	 16	
Copyright	 ©	 2010–2014	 The	 University	 of	 Manchester	

How long a workflow run should live by default, in seconds
default.lifetime: 1440
Maximum number of simultaneous workflow runs, in any state
default.runlimit: 100
Maximum number of simultaneous *operating* workflow runs (i.e.,
that are actually running)
default.operatinglimit: 10

Location of impersonation credentials
secureForkPasswordFile: /usr/local/tomcat6.0/conf/sudopass.txt

URI to server's REST interface
taverna.preferredUserUri:
 https://some.host:8443/taverna-server/rest/

Delays used in the task executor, both in milliseconds
purge.interval: 30000
finish.interval: 10000

Thread pool sizing
pool.size: 2

Usage Record handling
usage.logFile: none
usage.disableDB: no

General configuration of messaging
cooldown in seconds
message.cooldown: 300
message.termination.subject: Taverna workflow run finished
message.termination.body: Your job with ID={0} has finished with
 exit code {1,number,integer}.

Email-specific options
email.from: taverna.server@localhost
email.type: text/plain
email.host: localhost

Jabber-specific options
xmpp.server: xmpp://some.host:5222
xmpp.resource: TavernaServer
xmpp.user: taverna
xmpp.password: *******

Atom/RSS feed; lifespan in days, cleaninterval in milliseconds
atom.language: en
atom.lifespan: 7
atom.cleaninterval: 3600000

SMS-specific options
sms.service:
 https://www.intellisoftware.co.uk/smsgateway/sendmsg.aspx
sms.userfield: username
sms.passfield: password
sms.destfield: to
sms.msgfield: text
sms.user: taverna
sms.pass: *******

Twitter-specific options
twitter.oauth.accessToken: *******
twitter.oauth.accessTokenSecret: *******

Taverna	 2.5.4	 Server:	 Installation	 and	 Administration	 Guide	 Page	 8	 of	 16	
Copyright	 ©	 2010–2014	 The	 University	 of	 Manchester	

Special options
Do detailed logging of security. The information logged is enough
to allow an administrator to recover arbitrary user credentials,
so this should be false under normal circumstances.
log.security.details: false

Enables a special project-specific security setting.
Leave at false unless you have been specifically told otherwise.
helio.cis.enableTokenPassing: false

Enabling Notification Options
With the exception of the Atom feed, all the notification methods supported by Ta-
verna Server are disabled by default. They require additional configuration in order to
work correctly. This is done through configuration options. Only once all options for a
particular notification method are set will Taverna Server enable that method for use.
Note that many of these methods require additional services to be deployed or ac-
counts with remote services to be created.

Method “URL” Scheme Properties

General N/A message.cooldown — All the notification methods
below except for the Atom feed are subject to rate limiting;
this property is the minimum amount of time (in seconds)
between two notifications by the same mechanism. The de-
fault is 300 seconds (5 minutes).

message.termination.subject — Where a notifi-
cation mechanism needs to attach a subject to a message,
this property contains the value to use. Does not need to be
changed unless the service is being adapted to use a lan-
guage other than English.

message.termination.body — This property con-
tains a template that is used to produce a notification mes-
sage. The template itself contains {0} to indicate where
the terminating run’s ID goes, and {1} (or its derivatives)
to indicate where the termination code goes. Does not need
to be changed unless the service is being adapted to use a
language other than English.

Atom N/A1 atom.language — Language to claim that the message
is published in. Recommended left at default (English of
unspecified locale).

atom.lifespan — How many days will a particular
notification persist in the feed.

atom.cleaninterval — How often will the code
check for whether it can remove a particular notification, in
milliseconds.

1 This is always enabled; termination notifications are automatically published to a per-user
Atom feed that users cannot post directly to. This feed is located at

Taverna	 2.5.4	 Server:	 Installation	 and	 Administration	 Guide	 Page	 9	 of	 16	
Copyright	 ©	 2010–2014	 The	 University	 of	 Manchester	

Method “URL” Scheme Properties

Email mailto: email.host — Name of a machine with a suitable relay-
ing SMTP server that all emails will be sent via. Must be
set to enable this notification method.

email.from — What account will the message appear to
be sent from. Changing from the default is recommended.

email.type — What MIME type will be used with the
message. Can be left at the default.

Jabber xmpp: xmpp.server — Name of a machine that runs a suitably-
configured XMPP server. Must be set to enable this notifi-
cation method.

xmpp.user — User name to use when contacting the
XMPP server. Must be set to enable this notification meth-
od.

xmpp.password — Password to use when contacting the
XMPP server. Must be set to enable this notification meth-
od.

xmpp.resource — Resource descriptor used to disam-
biguate messages sent by Taverna Server. Can be left at the
default.

http://«SERVER:PORT»/taverna-server/feed relative to the webapp root re-
source.

Taverna	 2.5.4	 Server:	 Installation	 and	 Administration	 Guide	 Page	 10	 of	 16	
Copyright	 ©	 2010–2014	 The	 University	 of	 Manchester	

Method “URL” Scheme Properties

SMS sms: sms.service — Address of a RESTful SMS service
interface for sending SMS messages. Must be set to enable
this notification method. Note that this has only ever been
developed against a single service interface2, and is not
guaranteed to work with any other.

sms.user — The user account to use with the above ser-
vice. Must be set to enable this notification method. Note
that creating such an account has some financial implica-
tions; these are out of the scope of this document.

sms.pass — The password to use with the above service.
Must be set to enable this notification method.

sms.userfield — The name of the field to use for the
user name when conveying the message in the POST re-
quest. Allows for limited adaptation to other services, but
may be left at the default.

sms.passfield — The name of the field to use for the
password when conveying the message in the POST re-
quest. Allows for limited adaptation to other services, but
may be left at the default.

sms.destfield — The name of the field to use for the
destination phone number when conveying the message in
the POST request. Allows for limited adaptation to other
services, but may be left at the default.

sms.msgfield — The name of the field to use for the
message content when conveying the message in the POST
request. Allows for limited adaptation to other services, but
may be left at the default.

Twitter twitter: twitter.oauth.accessToken — The public part of
the OAuth access token to use when authenticating a Ta-
verna Server deployment to Twitter. Must be set to enable
this notification method. Note that users must take addition-
al steps to allow the ability to set status messages; this is
outside the scope of this document.

twitter.oauth.accessTokenSecret — The pri-
vate part of the OAuth access token to use when authenti-
cating a Taverna Server deployment to Twitter. Must be set
to enable this notification method. Note that users must take
additional steps to allow the ability to set status messages;
this is outside the scope of this document.

User Accounts
Once you have deployed the server, you can use either JMX or the
http://«SERVER:PORT»/taverna-server/admin interface to create and

2 https://www.intellisoftware.co.uk/smsgateway/sendmsg.aspx

Taverna	 2.5.4	 Server:	 Installation	 and	 Administration	 Guide	 Page	 11	 of	 16	
Copyright	 ©	 2010–2014	 The	 University	 of	 Manchester	

manage accounts. Only accounts with administrative permission can do such man-
agement. The initial set of users is loaded into the database from the WEB-
INF/security/users.properties file in the deployment package; see the
comments in that file for a more complete description of its contents; the file is only
used if the user database is empty.
By default, two enabled users are created. One is a normal user (taverna, with
password taverna) and the other is an administrative user (admin, password
admin). These defaults should be changed after installation, as they are not consid-
ered secure by default. More information about the mapping process is in the security
summary document.

Configuration of Impersonation
If it is desired to separate each user of Taverna Server from the others, it is necessary
to configure impersonation of users. That is, the user account that is running the
servlet container (Tomcat, etc.) must have permission somehow to execute code as
other users. (If this is not desired, the service should be configured to use the simpler
non-impersonating worker factory — see the backEndFactory property above —
or the fall-back user identity to use for impersonation should be set in the
default.localusername to the same identity as the user account used for run-
ning the server.)
This is done by either instructing the service what password is to be used with sudo
(typically the password for the account that is invoking the sudo command) or by
configuring sudo itself so that the service account is more highly authorized than a
normal account. The first style of impersonation, which requires that the service ac-
count have a password at all, is enabled by creating a file (in a suitably secured direc-
tory) that contains the password as its only content, and telling Taverna Server about
it during deployment by giving the full pathname of the file in the
secureForkPasswordFile deployment parameter.
The second style of impersonation is done by leaving that parameter unset and instead
adding some extra configuration to the system's /etc/sudoers file, as seen below
(typically set with the visudo command). Note that conventionally the three parts of
the configuration are in separate sections of the file, and that care should be taken dur-
ing configuration as mistakes can result in a system that is broken. In the example be-
low, we assume that the servlet container is running as the Unix user tavserv and
that local user accounts that may be targets for impersonation are all members of the
taverna UNIX group.
Flags for the tavserv user (keep things quiet)
Defaults:tavserv !lecture, timestamp_timeout=0, passwd_tries=1

Who can we impersonate? Manage via Unix group called 'taverna'
Runas_Alias TAV = %taverna

The actual permission to impersonate, with permission to run
anything
tavserv ALL=(TAV) NOPASSWD: ALL

Care should be taken as without a password specified and without permission to exe-
cute as another user, an attempt to create a workflow run will hang instead of failing.

Taverna	 2.5.4	 Server:	 Installation	 and	 Administration	 Guide	 Page	 12	 of	 16	
Copyright	 ©	 2010–2014	 The	 University	 of	 Manchester	

Security in Taverna 2 Server

General
Taverna Server normally operates in a mode where it executes each user's workflow
runs under a user-id that is specific to that user. This keeps the users from seeing each
other’s workflow runs by back-door mechanisms, and makes it far easier to apply
standard server resource accounting.
In order to do this, it needs to be able to run code (specifically, a Java program) as ef-
fectively arbitrary other users. On Unix (currently the only fully supported hosting
platform) this is implemented through the use of sudo with a special configuration,
which allows the user hosting the Java container special access. Because of this, it is
strongly recommended that other web applications be not run in the same container,
or that if it is necessary to share webapps that way, the subprocess execution module
be instructed where to find a password for use with the sudo thunk.
It is recommended that Taverna Server always be operated in secure mode, with all
connections normally being made via HTTPS. Given that this requires that the con-
tainer be configured with an SSL certificate, it should be noted that a single-host cer-
tificate is available from many certificate authorities for extremely limited cost (even
free in some cases). Please consult your container's documentation on how to install
the SSL certificate and configure the container for HTTPS operation.
If JMX is used for the management interface (depends on the container) it is recom-
mended that it be configured to only accept authenticated connections over SSL.
There is also an http://«SERVER:PORT»/taverna-server/admin REST
interface to the server, which allows access to the same capabilities; it is only accessi-
ble to users which have the ROLE_tavernasuperuser authority granted to them.
Not all parts of the configuration can be managed in this way though; some properties
are sufficiently fundamental that they can only be set through the configuration of the
deployment descriptor.

Architecture
The communication between the back end workflow executor managers and the front-
end webapp is done via RMI, which has been configured to not accept connections
from off the local host or class definitions that it does not already know about.

Authorisation of users is done through the use of Spring Security to assign them on
each connection a set of security authorities. In particular, the key authorities are:

• ROLE_tavernauser — allows the user to access the main operational
parts of the server.

• ROLE_tavernasuperuser — allows the user to read and write all non-
security characteristics of all workflows, and also grants access to the
http://«SERVER:PORT»/taverna-server/admin pages.

You should configure your firewall to not permit incoming connections to port 1099 (the
default RMI registry port). This is not critical though; if there is no existing RMI registry
running on the machine, the version created will not allow connections from other than
(the non-routable) local address, 127.0.0.1, by default.

Taverna	 2.5.4	 Server:	 Installation	 and	 Administration	 Guide	 Page	 13	 of	 16	
Copyright	 ©	 2010–2014	 The	 University	 of	 Manchester	

• LOCALUSER_* (where the * is replaced with a local user name) — specifies
what local user name the user should be executing workflows as; the prefix
(LOCALUSER_) is simply stripped and the remainder is used as a user name.
If absent, the default user name (taverna in the default configuration) will
be used; two users mapped to the same user name will be able to see each oth-
ers workflows if they can work out where the job working directories are lo-
cated, but will not be able to see them inside Taverna Server itself (unless one
user grants the other authority to do so, of course).

The default source of authorities is the file WEB-
INF/security/users.properties (relative to the directory which is the ex-
panded webapp) that is used to populate the database if that is empty.

Insecure Mode
The server can be switched into insecure mode by editing its WEB-INF/web.xml
file so that it pulls its Spring configuration from insecure.xml instead of from
secure.xml (the default) via the contextConfigLocation parameter. When
editing WEB-INF/web.xml, the webapp must be stopped and restarted for any
changes to be noticed. This alternate configuration disabled URI rewriting, restricts
the set of users to a single one (taverna with a password taverna) and arranges
for execution of workflow runs to be done in the same local userid as is running the
host servlet container (Tomcat, etc.)
If you are using this, it is strongly recommended that you place the server behind a
strong firewall and portal, and only permit vetted workflows to be used.

Part-Secure Mode
There is a partially-secured configuration as well. This enables the forced use of
HTTPS, but disables the use of user separation by the back-end engine, giving an in-
termediate level of security suitable for the case where the network is not trusted but
the permitted users are trusted. You may enable this mode by using
partsecure.xml as the value of the contextConfigLocation parameter in
WEB-INF/web.xml after installation (the webapp must be stopped while you make
this change). Note that because HTTPS is being used, you will still need to configure
the servlet container with an SSL keypair for this to work.

Taverna	 2.5.4	 Server:	 Installation	 and	 Administration	 Guide	 Page	 14	 of	 16	
Copyright	 ©	 2010–2014	 The	 University	 of	 Manchester	

Managing the Server
The server is designed to support JMX for management. This allows the use of tools
such as jconsole or jvisualvm (with appropriate plugin) to connect to the serv-
er so that they can view, chart, and manipulate properties of the server. The exact list
of properties is liable to change, but is as follows in this release:

Component: Taverna/Server/Webapp
This is the component that interfaces with the external world.

Property Type Description
AllowNewWorkflowRuns Writable Whether to permit any new workflow runs to be

created; has no effect on existing runs.
CurrentRunCount Read-

Only
Count of currently existing runs.

InvocationCount Read-
Only

Count of SOAP and REST calls made to the
Webapp.

LogIncomingWorkflows Writable Whether to put submitted workflows in the log.
LogOutgoingExceptions Writable Whether outgoing exceptions should be exten-

sively logged.

Component: Taverna/Server/RunFactory
This component is responsible for manufacturing workflow runs and maintaining
connections to existing runs. Note that the writable properties typically have sensible
values by default.

Property Type Description
CurrentRunNames Read-Only The names of the currently existing runs.
DefaultLifetime Writable How many minutes should a workflow live by

default?
ExecuteWorkflowScript Writable The full pathname of the script to run to start

running a workflow. Must be readable by any
user of the system.

ExtraArguments Writable The list of additional arguments used to make a
worker process.

FactoryProcessMapping Read-Only The mapping of user names to RMI factory IDs.
JavaBinary Writable The full pathname of the Java executable to run.
LastExitCode Read-Only What was the exit code from the last time the

factory subprocess was killed?
LastStartupCheckCount Read-Only How many checks were done for the worker

process the last time a spawn was tried. (Larger
values indicate problems with system loading.)

MaxRuns Writable The maximum number of simultaneous runs
supported by the server. Note that this includes
runs that have finished executing but have not
yet been deleted.

OperatingLimit Writable The maximum number of simultaneous operat-
ing runs supported by the server. This is only
the runs that are in the Operating state.

PasswordFile Writable The full pathname of a file containing a pass-
word to use when running a program as another
user (e.g., with sudo).

Taverna	 2.5.4	 Server:	 Installation	 and	 Administration	 Guide	 Page	 15	 of	 16	
Copyright	 ©	 2010–2014	 The	 University	 of	 Manchester	

Property Type Description
RegistryHost Writable The host holding the RMI registry to communi-

cate via.
RegistryPort Writable The port number of the RMI registry. Should

not normally be set.
ServerForkerJar Writable The full pathname of the JAR implementing the

secure-fork process.
ServerWorkerJar Writable The full pathname of the JAR implementing the

server worker processes.
SleepTime Writable How many milliseconds to wait between checks

to see if a worker process has registered.
TotalRuns Read-Only How many times has a workflow run been

spawned by this engine.
WaitSeconds Writable How many seconds to wait for a worker process

to register itself before causing the creation op-
eration to fail.

Component: Taverna/Server/Users
This is an interface for adding, deleting and otherwise managing user accounts on the
server. It does not manage the underlying system accounts, but does allow control
over the mapping of users to those accounts. Note that newly created accounts are
disabled by default. More information about the mapping process is in the security
summary document.

Property Type Description
UserNames Read-Only The list of server accounts known about.

Operation Description
addUser(nm,pw,cpl) Adds the user called nm to the database, with password pw. If

cpl is true, set the local user account to be the same as the user
name, otherwise use a default set at system configuration time.
The user will be a non-admin and disabled by default.

deleteUser(nm) Remove the user called nm from the database.
getUserInfo(nm) Get a description of the user called nm from the database.
setUserAdmin(nm,ad) Set whether the user called nm is an admin or not (according

to the boolean, ad).
setUserEnabled(nm,en) Set whether the user called nm is an admin or not (according

to the boolean, en).
setUserLocalUser(nm,lu) Set what the user called nm will be mapped to as a local user

to lu (which must be the name of an account understood by the
local system).

setUserPassword(nm,pw) Set the password for the user nm to be pw. This implementa-
tion stores the value directly in the database.

The server also supports a RESTful administration interface on its
http://«SERVER:PORT»/taverna-server/admin resource (a sibling to the
main RESTful http://«SERVER:PORT»/taverna-server/rest resource and
the Atom feed on http://«SERVER:PORT»/taverna-server/feed). This
interface is only available to users who authenticate with admin permissions. Current-

Taverna	 2.5.4	 Server:	 Installation	 and	 Administration	 Guide	 Page	 16	 of	 16	
Copyright	 ©	 2010–2014	 The	 University	 of	 Manchester	

ly, there is no rendering of the interface in a form that is suitable for use from a nor-
mal web browser; this is expected to change in future versions.

