
ScientificPython User’s Guide

Konrad Hinsen
Centre de Biophysique Moléculaire

CNRS
Rue Charles Sadron

45071 Orléans Cedex 2
France

E-Mail: hinsen@cnrs-orleans.fr

2002-6-13

2

Chapter 1

Introduction

ScientificPython is a collection of Python modules that are useful for
scientific computing. Most modules are rather general, others belong to
specific domains and will be of interest to only a small number of users (e.g.
the module Scientific.IO.PDB). Almost all modules make extensive use of
Numerical Python (NumPy), which must be installed prior to Scientific
Python. Python 1.5 or later is also required, Scientific.BSP requires 2.1 or
later. For more information about Numerical Python and about other
packages for scientific computing, see the Topic Guide ”Scientific
Computing” on the Python home page.
This manual describes version 2.4 of ScientificPython. The 2.x versions are
completely revised and notcompatible with earlier releases. The major
difference is the introduction of a package structure; all modules are now
submodules of the top-level module Scientific. The package structure
should prevent name clashes with other modules, which have occurred in
the past (e.g. the module PDB was indistinguishable from the module pdb
in the Python standard library on operating systems without case
distinction in filenames).
ScientificPython 2.x can coexist with an 1.x version, as all module names
are different. However, the availability of both versions in parallel makes it
difficult to verify that code has been fully ported to use the new one.

3

Introduction

4

Chapter 2

Installation

ScientificPython uses the Python distutils package for compilation and
installation. The distutils is part of the Python standard library as of
Python 1.6. If you use Python 1.5, you must download and install distutils
before installing ScientificPython.

On standard Unix systems, installation requires only

two simple steps:

python setup.py build

python setup.py install

The second command installs ScientificPython in the Python library

directory tree, which requires root priviledges with most installations.

There are various options for installing ScientificPython in other

places, see the distutils documentation for details or type

python setup.py install --help

for a summary.

ScientificPython contains two optional interfaces to

parallelization libraries, MPI and BSPlib. If you want to install any

of them, the corresponding parallelization library must be installed

first. Then change to directory Src/MPI (for the MPI library) or

Src/BSPlib (for BSPlib) and type

python compile.py

5

Installation

This produces an executable mpipython (for MPI) or bsppython (for
BSPlib), which should be copied to any directory on your shell’s search
path. On most systems, /usr/local/bin is a suitable location. To run
programs that use MPI, BSPlib, or a higher-level library building on them
(such as the module Scientific.BSP), you must always use one of these
executables instead of the standard Python interpreter. The MPI and
BSPlib directories also include short shell scripts that run an interactive
parallel interpreter. These scripts are called impipython and ibsppython,
respectively, and should also be placed into a directory on the shell search
path. The impipython script may need editing to adapt file paths to your
MPI and Python installations.
For installation on non-Unix systems, see the distutils documentation.

6

Chapter 3

Reference for Module Scientific

Module Scientific.BSP

This module contains high-level parallelization constructs based on the
Bulk Synchronous Parallel (BSP) model.
Parallelization requires a low-level communications library, which can be
either BSPlib or MPI. Programs must be run with the bsppython or
mpipython executables in order to use several processors. When run with a
standard Python interpreter, only one processor is available.
A warning about object identity: when a communication operation
transmits a Python object to the same processor, the object in the return
list can either be the sent object or a copy of it. Application programs thus
should not make any assumptions about received objects being different
from sent objects.

Class ParValue: Global data

ParValue instances are created internally, but are not meant to be created
directly by application programs. Use the subclasses instead.
ParValue objects (and those of subclasses) implement the standard
arithmetic and comparison operations. They also support attribute requests
which are passed on to the local values; the return values are ParValue
objects. ParValue objects can also be called if their local values are callable.

Methods:

7

Reference for Module Scientific

• put(pid list)
Sends the local data to all processors in pid list (a global object).
Returns a ParValue object whose local value is a list of all the data
received from other processors. The order of the data in that list is
not defined.

• get(pid list)
Requests the local data from all processors in pid list (a global object).
Returns a ParValue object whose local value is a list of all the data
received from other processors. The order of the data in that list is
not defined.

• broadcast(from pid=0)
Transmits the local data on processor from pid to all processors.
Returns a ParValue object.

• fullExchange()
Transmits the local data of each processor to all other processors.
Returns a ParValue object.

• reduce(operator, zero)
Performs a reduction with operatorover the local values of all processors
using zeroas initial value. The result is a ParValue object with the
reduction result on processor 0 and zero on all other processors.

• accumulate(operator, zero)
Performs an accumulation with operatorover the local values of all
processors using zero as initial value. The result is a ParValue object
whose local value on each processor is the reduction of the values
from all processors with lower or equal number.

• alltrue()
Returns 1 (local value) if the local values on all processors are true.

• anytrue()
Returns 1 (local value) if at least one of the local values on all
processors is true.

8

Reference for Module Scientific

Class ParConstant: Global constant

A subclass of ParValue.
Constructor: ParConstant(value)

value any local or global object

Class ParData: Global data

A subclass of ParValue
Constructor: ParData(function)

function a function of two arguments (processor number and number of
processors in the machine) whose return value becomes the local value
of the global object.

Class ParSequence: Global distributed sequence

A subclass of ParValue.
Constructor: ParSequence(full sequence)

full sequence any indexable and sliceable Python sequence

The local value of a ParSequence object is a slice of full sequence, which is
constructed such that the concatenation of the local values of all processors
equals full sequence.

Class ParMessages: Global message list

A subclass of ParValue.
Constructor: ParMessage(messages)

messages a global object whose local value is a list of (pid, data) pairs.

Methods:

• processorIds()
Returns a ParValue object whose local value is a list of all processor
Ids referenced in a message.

9

Reference for Module Scientific

• data()
Returns a ParValue object whose local value is a list of all data items
in the messages.

• exchange()
Sends all the messages and returns a ParValue object containing the
received messages.

Class ParTuple: Global data tuple

A subclass of ParValue.
Constructor: ParTuple(x1, x2, ...)

x1, x2, ... global objects

ParTuple objects are used to speed up communication when many data
items need to be sent to the same processors. The construct a, b, c =
ParTuple(a, b, c).put(pids) is logically equivalent to a = a.put(pids); b =
b.put(pids); c = c.put(pids) but more efficient.

Class ParAccumulator: Global accumulator

A subclass of ParValue.
Constructor: ParAccumulator(operator, zero)

operator a local function taking two arguments and returning one argument
of the same type.

zero an initial value for reduction.

ParAccumulator objects are used to perform iterative reduction operations in
loops. The initial local value is zero, which is modified by subsequent calls to
the method addValue.

Methods:

• addValue(value)
Replaces the internal value of the accumulator by internal value =
operator(internal value, value).

• calculateTotal()
Performs a reduction operation over the current local values on all
processors. Returns a ParValue object.

10

Reference for Module Scientific

Class ParFunction: Global function

A subclass of ParValue.

Constructor: ParFunction(local function)

local function a local function

Global functions are called with global object arguments. The local values
of these arguments are then passed to the local function, and the result is
returned in a ParValue object.

Class ParRootFunction: Asymmetric global function

Constructor: ParRootFunction(root function, other function=None)

root function the local function for processor 0

other function the local function for all other processors. The default is a
function that returns None.

Global functions are called with global object arguments. The local values
of these arguments are then passed to the local function, and the result is
returned in a ParValue object.

A ParRootFunction differs from a ParFunction in that it uses a different
local function for processor 0 than for the other processors.
ParRootFunction objects are commonly used for I/O operations.

Class ParIterator: Parallel iterator

Constructor: ParIterator(global sequence)

global sequence a global object representing a distributed sequence

A ParIterator is used to loop element by element over a distributed
sequence. At each iteration, the returned item (a global object) contains
different elements of the distributed sequence.

11

Reference for Module Scientific

Class ParIndexIterator: Parallel index iterator

Constructor: ParIndexIterator(global sequence)

global sequence a global object representing a distributed sequence

A ParIndexIterator is used to loop index by index over one or more
distributed sequences. At each iteration, the returned item (a global index
object) contains indices of different elements of the distributed sequence(s).
The index objects can be used to index any ParValue object whose local
value is a sequence object.

Class ParClass: Global class

Constructor: ParClass(local class)

local class a local class

Global classes are needed to construct global objects that have more
functionalities than offered by the ParValue class hierarchy. When an instance
of a global class is generated, each processor generates an instance of
local class that becomes the local value of the new global object. Attribute
requests and method calls are passed through to the local objects and the
results are assembled into global objects (ParValue or ParFunction). The
arguments to methods of a global class must be global objects, the local
class methods are then called with the corresponding local values.
The local objects are initialized via the special method parinit instead of
the usual init . This method is called with two special arguments
(processor number and total number of processors) followed by the local
values of the arguments to the global object initialization call.
The local classes must inherit from the base class ParBase (see below),
which also provides communication routines.

Class ParBase: Distributed data base class

Local classes that are to be used in global classes must inherit from this
class.

Methods:

12

Reference for Module Scientific

• put(data, pid list)
Send datato all processors in pid list. Returns the list of received
objects.

• get(data, pid list)
Requests the local values of dataof all processors in pid list. Returns the
list of received objects.

• broadcast(data, from pid=0)
Sends the local value of dataon processor from pid to all processors.
Returns the list of received objects.

• exchangeMessages(message list)
Sends the (pid, data) messages in message list to the destination
processors. Returns the list of incoming data.

Module Scientific.BSP.Console

Module Scientific.BSP.IO

This module provides parallel acces to netCDF files. One netCDF
dimension is defined for splitting the data among processors such that each
processor is responsible for one slice of the file along that dimension.
Since netCDF files can be very big, the distribution algorithm gives priority
to memory efficiency over CPU time efficiency. The processor that handles
the file treats only one slice per superstep, which means that at no time
more than one slice must be stored in any processor.

Class ParNetCDFFile: Distributed netCDF file

Constructor: ParNetCDFFile(filename, split dimension, mode=r, local access =
0)

filename the name of the netCDF file

split dimension the name of the dimension along which the data is
distributed over the processors

mode read (r), write (w), or append (a). Default is r.

13

Reference for Module Scientific

local access if 0 (default), processor 0 is the only one to

access the file, all others communicate with processor 0.

If 1 (only for reading), each processor accesses the file

directly. In the latter case, the file must be accessible

on all processors under the same name. A third mode is

auto, which uses some heuristics to decide if the file is accessible
everywhere: it checks for existence of the file, then compares the size
on all processors, and finally verifies that the same variables exist
everywhere, with identical names, types, and sizes.

A ParNetCDFFile object acts as much as possible like a NetCDFFile object.
Variables become ParNetCDFVariable objects, which behave like distributed
sequences. Variables that use the dimension named by split dimension are
automatically distributed among the processors such that each treats only
one slice of the whole file.

14

Reference for Module Scientific

Module Scientific.DictWithDefault

Class DictWithDefault: Dictionary with default values

Constructor: DictWithDefault(default)
Instances of this class act like standard Python dictionaries, except that
they return a copyof default for a key that has no associated value.

15

Reference for Module Scientific

Module Scientific.Functions

Module Scientific.Functions.Derivatives

This module provides automatic differentiation for functions with any
number of variables up to any order. An instance of the class DerivVar
represents the value of a function and the values of its partial derivatives
with respect to a list of variables. All common mathematical operations
and functions are available for these numbers. There is no restriction on the
type of the numbers fed into the code; it works for real and complex
numbers as well as for any Python type that implements the necessary
operations.
If only first-order derivatives are required, the module FirstDerivatives
should be used. It is compatible to this one, but significantly faster.
Example:
print sin(DerivVar(2))

produces the output
(0.909297426826, [-0.416146836547])

The first number is the value of sin(2); the number in the following list is
the value of the derivative of sin(x) at x=2, i.e. cos(2).
When there is more than one variable, DerivVar must be called with an
integer second argument that specifies the number of the variable.
Example:

x = DerivVar(7., 0)

y = DerivVar(42., 1)

z = DerivVar(pi, 2)

print (sqrt(pow(x,2)+pow(y,2)+pow(z,2)))

produces the output

(42.6950770511, [0.163953328662, 0.98371997197, 0.0735820818365])

The numbers in the list are the partial derivatives with respect to x, y, and
z, respectively.
Higher-order derivatives are requested with an optional third argument to
DerivVar.
Example:

16

Reference for Module Scientific

x = DerivVar(3., 0, 3)

y = DerivVar(5., 1, 3)

print sqrt(x*y)

produces the output

(3.87298334621,

[0.645497224368, 0.387298334621],

[[-0.107582870728, 0.0645497224368],

[0.0645497224368, -0.0387298334621]],

[[[0.053791435364, -0.0107582870728],

[-0.0107582870728, -0.00645497224368]],

[[-0.0107582870728, -0.00645497224368],

[-0.00645497224368, 0.0116189500386]]])

The individual orders can be extracted by indexing:

print sqrt(x*y)[0]

3.87298334621

print sqrt(x*y)[1]

[0.645497224368, 0.387298334621]

An n-th order derivative is represented by a nested list of depth n.
When variables with different differentiation orders are mixed, the result
has the lower one of the two orders. An exception are zeroth-order
variables, which are treated as constants.
Caution: Higher-order derivatives are implemented by recursively using
DerivVars to represent derivatives. This makes the code very slow for high
orders.
Note: It doesn’t make sense to use multiple DerivVar objects with different
values for the same variable index in one calculation, but there is no check
for this. I.e.

print DerivVar(3, 0)+DerivVar(5, 0)

produces

(8, [2])

but this result is meaningless.

17

Reference for Module Scientific

Class DerivVar: Variable with derivatives

Constructor: DerivVar(value, index= 0, order = 1)

value the numerical value of the variable

index the variable index (an integer), which serves to distinguish between
variables and as an index for the derivative lists. Each explicitly
created instance of DerivVar must have a unique index.

order the derivative order

Indexing with an integer yields the derivatives of the corresponding order.

Methods:

• toOrder(order)
Returns a DerivVar object with a lower derivative order.

Functions

• isDerivVar()
Returns 1 if x is a DerivVar object.

• DerivVector()
Returns a vector whose components are DerivVar objects.

x, y, z vector components (numbers)

index the DerivVar index for the x component. The y and z
components receive consecutive indices.

order the derivative order

Module Scientific.Functions.FindRoot

Functions

• newtonRaphson()
Finds the root of functionwhich is bracketed by values loxand hixto an
accuracy of +/- xacc. The algorithm used is a safe version of
Newton-Raphson (see page 366 of NR in C, 2ed). function must be a

18

Reference for Module Scientific

function of one variable, and may only use operations defined for the
DerivVar objects in the module FirstDerivatives.

Example:

from Scientific.Functions.FindRoot import newtonRaphson

from math import pi

def func(x):

return (2*x*cos(x) - sin(x))*cos(x) - x + pi/4.0

newtonRaphson(func, 0.0, 1.0, 1.0e-12)

yields 0.952847864655.

Module Scientific.Functions.FirstDerivatives

This module provides automatic differentiation for functions with any
number of variables. Instances of the class DerivVar represent the values of
a function and its partial derivatives with respect to a list of variables. All
common mathematical operations and functions are available for these
numbers. There is no restriction on the type of the numbers fed into the
code; it works for real and complex numbers as well as for any Python type
that implements the necessary operations.
This module is as far as possible compatible with the n-th order derivatives
module Derivatives. If only first-order derivatives are required, this module
is faster than the general one.
Example:

print sin(DerivVar(2))

produces the output

(0.909297426826, [-0.416146836547])

The first number is the value of sin(2); the number in the following list is
the value of the derivative of sin(x) at x=2, i.e. cos(2).
When there is more than one variable, DerivVar must be called with an
integer second argument that specifies the number of the variable.
Example:

19

Reference for Module Scientific

x = DerivVar(7., 0)

y = DerivVar(42., 1)

z = DerivVar(pi, 2)

print (sqrt(pow(x,2)+pow(y,2)+pow(z,2)))

produces the output

(42.6950770511, [0.163953328662, 0.98371997197, 0.0735820818365])

The numbers in the list are the partial derivatives with respect to x, y, and
z, respectively.

Note: It doesn’t make sense to use DerivVar with different values for the
same variable index in one calculation, but there is no check for this. I.e.

print DerivVar(3, 0)+DerivVar(5, 0)

produces

(8, [2])

but this result is meaningless.

Class DerivVar: Variable with derivatives

Constructor: DerivVar(value, index = 0)

value the numerical value of the variable

index the variable index (an integer), which serves to distinguish between
variables and as an index for the derivative lists. Each explicitly
created instance of DerivVar must have a unique index.

Indexing with an integer yields the derivatives of the corresponding order.

20

Reference for Module Scientific

Functions

• isDerivVar()
Returns 1 if x is a DerivVar object.

• DerivVector()
Returns a vector whose components are DerivVar objects.

x, y, z vector components (numbers)

index the DerivVar index for the x component. The y and z
components receive consecutive indices.

Module Scientific.Functions.Interpolation

Class InterpolatingFunction: Function defined by values on a grid
using interpolation

An interpolating function of n variables with m-dimensional values is
defined by an (n+m)-dimensional array of values and n one-dimensional
arrays that define the variables values corresponding to the grid points.
The grid does not have to be equidistant.
Constructor: InterpolatingFunction(axes, values, default=None)

axes a sequence of one-dimensional arrays, one for each variable, specifying
the values of the variables at the grid points

values an array containing the function values on the grid

default the value of the function outside the grid. A value of

None means that the function is undefined outside the grid and that
any attempt to evaluate it there yields an exception.

Evaluation: function(x1, x2, ...) yields the function value obtained
by linear interpolation.
Indexing: all array indexing operations except for the NexAxis operator are
supported.

Methods:

21

Reference for Module Scientific

• selectInterval(first, last, variable=0)
Returns a new InterpolatingFunction whose grid is restricted to the
interval from firstto lastalong the variable whose number is variable.

• derivative(variable=0)
Returns a new InterpolatingFunction describing the derivative with
respect to variable (an integer).

• integral(variable=0)
Returns a new InterpolatingFunction describing the integral with respect
to variable(an integer). The integration constant is defined in such a way
that the value of the integral at the first grid point along variable is zero.

• definiteIntegral(variable=0)
Returns a new InterpolatingFunction describing the definite integral with
respect to variable(an integer). The integration constant is defined in
such a way that the value of the integral at the first grid point along
variable is zero. In the case of a function of one variable, the definite
integral is a number.

• fitPolynomial(order)
Returns a polynomial of order with parameters obtained from a
least-squares fit to the grid values.

Class NetCDFInterpolatingFunction: Function defined by values
on a grid in a netCDF file

A subclass of InterpolatingFunction.
Constructor: NetCDFInterpolatingFunction(filename, axesnames, variablename,
default=None)

filename the name of the netCDF file

axesnames the names of the netCDF variables that contain the axes
information

variablename the name of the netCDF variable that contains the data values

default the value of the function outside the grid. A value of

None means that the function is undefined outside the grid and that
any attempt to evaluate it there yields an exception.

22

Reference for Module Scientific

Evaluation: function(x1, x2, ...) yields the function value obtained
by linear interpolation.

Module Scientific.Functions.LeastSquares

Functions

• leastSquaresFit()
General non-linear least-squares fit using the Levenberg-Marquardt
algorithm and automatic derivatives.

The parameter model specifies the function to be fitted. It will be
called with two parameters: the first is a tuple containing all fit
parameters, and the second is the first element of a data point (see
below). The return value must be a number. Since automatic
differentiation is used to obtain the derivatives with respect to the
parameters, the function may only use the mathematical functions
known to the module FirstDerivatives.

The parameter parameter is a tuple of initial values for the fit
parameters.

The parameter data is a list of data points to which the model is to be
fitted. Each data point is a tuple of length two or three. Its first
element specifies the independent variables of the model. It is passed
to the model function as its first parameter, but not used in any other
way. The second element of each data point tuple is the number that
the return value of the model function is supposed to match as well as
possible. The third element (which defaults to 1.) is the statistical
variance of the data point, i.e. the inverse of its statistical weight in
the fitting procedure.

The function returns a list containing the optimal parameter values
and the chi-squared value describing the quality of the fit.

• polynomialLeastSquaresFit()
Least-squares fit to a polynomial whose order is defined by the
number of parameter values.

Module Scientific.Functions.Polynomial

23

Reference for Module Scientific

Class Polynomial: Multivariate polynomial

Instances of this class represent polynomials of any order and in any
number of variables. They can be evaluated like functions.
Constructor: Polynomial(coefficients), where coefficients is an array whose
dimension defines the number of variables and whose length along each axis
defines the order in the corresponding variable. The coefficients are ordered
according to increasing powers, i.e. [1., 2.] stands for 1.+2.*x.

Methods:

• derivative(variable=0)
Returns the derivative with respect to variable.

• integral(variable=0)
Returns the indefinite integral with respect to variable.

• zeros()
Returns an array containing the zeros (one variable only).

Module Scientific.Functions.Rational

Class RationalFunction: Rational Function

Instances of this class represent rational functions in a single variable. They
can be evaluated like functions.
Constructor: RationalFunction(numerator, denominator)

numerator, denominator polynomials or sequences of numbers that represent
the polynomial coefficients

Rational functions support addition, subtraction, multiplication, and
division.

Methods:

• divide(shift=0)
Returns a polynomial and a rational function such that the sum of
the two is equal to the original rational function. The returned
rational function’s numerator is of lower order than its denominator.

24

Reference for Module Scientific

The argument shift (default: 0) specifies a positive integer power of the
independent variable by which the numerator is multiplied prior to
division.

• zeros()
Returns an array containing the zeros.

• poles()
Returns an array containing the poles.

Module Scientific.Functions.Romberg

Functions

• trapezoid()
Returns the integral of function(a function of one variable) over
interval(a sequence of length two containing the lower and upper limit of
the integration interval), calculated using the trapezoidal rule using
numtraps trapezoids.

Example:

from Scientific.Functions.Romberg import romberg

from Numeric import pi

romberg(tan, (0.0, pi/3.0))

yields 0.693147180562

• romberg()
Returns the integral of function(a function of one variable) over
interval(a sequence of length two containing the lower and upper limit of
the integration interval), calculated using Romberg integration up to the
specified accuracy. If show is 1, the triangular array of the
intermediate results will be printed.

25

Reference for Module Scientific

Module Scientific.Geometry

This subpackage contains classes that deal with geometrical quantities and
objects. The geometrical quantities are vectors and tensors,
transformations, and quaternions as descriptions of rotations. There are
also tensor fields, which were included here (rather than in the subpackage
Scientific.Functions) because they are most often used in a geometric
context. Finally, there are classes for elementary geometrical objects such
as spheres and planes.

Class Tensor: Tensor in 3D space

Constructor: Tensor([[xx, xy, xz], [yx, yy, yz], [zx, zy, zz]])
Tensors support the usual arithmetic operations (t1, t2:

tensors, v: vector, s: scalar):

• t1+t2 (addition)

• t1-t2 (subtraction)

• t1*t2 (tensorial (outer) product)

• t1*v (contraction with a vector, same as t1.dot(v.asTensor()))

• s*t1, t1*s (multiplication with a scalar)

• t1/s (division by a scalar)

The coordinates can be extracted by indexing; a tensor of rank N can be
indexed like an array of dimension N.
Tensors are immutable, i.e. their elements cannot be changed.
Tensor elements can be any objects on which the standard arithmetic
operations are defined. However, eigenvalue calculation is supported only
for float elements.

Methods:

• asVector()
Returns an equivalent vector object (only for rank 1).

26

Reference for Module Scientific

• dot(other)
Returns the contraction with other.

• trace(axis1=0, axis2=1)
Returns the trace of a rank-2 tensor.

• transpose()
Returns the transposed (index reversed) tensor.

• symmetricalPart()
Returns the symmetrical part of a rank-2 tensor.

• asymmetricalPart()
Returns the asymmetrical part of a rank-2 tensor.

• eigenvalues()
Returns the eigenvalues of a rank-2 tensor in an array.

• diagonalization()
Returns the eigenvalues of a rank-2 tensor and a tensor representing
the rotation matrix to the diagonalized form.

• inverse()
Returns the inverse of a rank-2 tensor.

Class Vector: Vector in 3D space

Constructor:

• Vector(x, y, z) (from three coordinates)

• Vector(coordinates) (from any sequence containing three coordinates)

Vectors support the usual arithmetic operations (v1, v2:

vectors, s: scalar):

• v1+v2 (addition)

• v1-v2 (subtraction)

• v1*v2 (scalar product)

27

Reference for Module Scientific

• s*v1, v1*s (multiplication with a scalar)

• v1/s (division by a scalar)

The three coordinates can be extracted by indexing.

Vectors are immutable, i.e. their elements cannot be changed.

Vector elements can be any objects on which the standard arithmetic
operations plus the functions sqrt and arccos are defined.

Methods:

• x()
Returns the x coordinate.

• y()
Returns the y coordinate.

• z()
Returns the z coordinate.

• length()
Returns the length (norm).

• normal()
Returns a normalized copy.

• cross(other)
Returns the cross product with vector other.

• asTensor()
Returns an equivalent tensor object of rank 1.

• dyadicProduct(other)
Returns the dyadic product with vector or tensor other.

• angle(other)
Returns the angle to vector other.

28

Reference for Module Scientific

Module Scientific.Geometry.Objects3D

Class GeometricalObject3D: Geometrical object in 3D space

This is an abstract base class; to create instances, use one of the subclasses.

Methods:

• intersectWith(other)
Returns the geometrical object that results from the intersection with
other. If there is no intersection, the result is None.

Note that intersection is not implemented for all possible

pairs of objects. A ValueError is raised for combinations that
haven’t been implemented yet.

• hasPoint(point)
Returns 1 if point is in the object.

• distanceFrom(point)
Returns the distance of point from the closest point of the object.

• volume()
Returns the volume. The result is None for unbounded objects
and zero for lower-dimensional objects.

Class Sphere: Sphere

A subclass of GeometricalObject3D.
Constructor: Sphere(center, radius), where centeris a vector and radius a float.

Class Plane: Plane

A subclass of GeometricalObject3D.
Constructor:

• Plane(point, normal), where point(a vector) is an arbitrary point in the
plane and normal (a vector) indicated the direction normal to the
plane.

• Plane(p1, p2, p3), where each argument is a vector and describes a
point in the plane. The three points may not be colinear.

29

Reference for Module Scientific

Methods:

• projectionOf(point)
Returns the projection of point onto the plane.

• rotate(axis, angle)
Returns a copy of the plane rotated around the coordinate origin.

Class Cone: Cone

A subclass of GeometricalObject3D.
Constructor: Cone(tip, axis, angle), where tipis a vector indicating the location
of the tip, axisis a vector that describes the direction of the line of symmetry,
and angle is the angle between the line of symmetry and the cone surface.

Class Circle: Circle

A subclass of GeometricalObject3D.
Constructor: Circle(center, normal, radius), where centeris a vector indicating
the center of the circle, normalis a vector describing the direction normal to the
plane of the circle, and radius is a float.

Class Line: Line

A subclass of GeometricalObject3D.
Constructor: Line(point, direction), where pointis a vector indicating any point
on the line and direction is a vector describing the direction of the line.

Methods:

• projectionOf(point)
Returns the projection of point onto the line.

Class RhombicLattice: Lattice with rhombic elementary cell

A lattice object contains values defined on a finite periodic structure that is
created by replicating a given elementary cell along the three lattice
vectors. The elementary cell can contain any number of points.
Constructor: RhombicLattice(elementary cell, lattice vectors, cells,
function=None, base=None)

30

Reference for Module Scientific

elementary cell a list of the points (vectors) in the elementary cell

lattice vectors a tuple of three vectors describing the edges of the
elementary cell

cells a tuple of three integers, indicating how often the elementary cell
should be replicated along each lattice vector

function the function to be applied to each point in the lattice in order to
obtain the value stored in the lattice. If no function is specified, the
point itself becomes the value stored in the lattice.

base an offset added to all lattice points

Class BravaisLattice: General Bravais lattice

This is a subclass of RhombicLattice, describing the special case of an
elementary cell containing one point.
Constructor: BravaisLattice(lattice vectors, cells, function=None, base=None)

lattice vectors a tuple of three vectors describing the edges of the
elementary cell

cells a tuple of three integers, indicating how often the elementary cell
should be replicated along each lattice vector

function the function to be applied to each point in the lattice in order to
obtain the value stored in the lattice. If no function is specified, the
point itself becomes the value stored in the lattice.

base an offset added to all lattice points

Class SCLattice: Simple cubic lattice

This is a subclass of BravaisLattice, describing the special case of a cubic
elementary cell.
Constructor: SCLattice(cellsize, cells, function=None, base=None)

cellsize the edge length of the cubic elementary cell

cells a tuple of three integers, indicating how often the elementary cell
should be replicated along each lattice vector

31

Reference for Module Scientific

function the function to be applied to each point in the lattice in order to
obtain the value stored in the lattice. If no function is specified, the
point itself becomes the value stored in the lattice.

base an offset added to all lattice points

Module Scientific.Geometry.Quaternion

Class Quaternion: Quaternion (hypercomplex number)

This implementation of quaternions is not complete; only the features
needed for representing rotation matrices by quaternions are implemented.
Constructor:

• Quaternion(q0, q1, q2, q3) (from four real components)

• Quaternion(q) (from a sequence containing the four components)

Quaternions support addition, subtraction, and multiplication, as well as
multiplication and division by scalars. Division by quaternions is not
provided, because quaternion multiplication is not associative. Use
multiplication by the inverse instead.
The four components can be extracted by indexing.

Methods:

• norm()
Returns the norm.

• normalized()
Returns the quaternion scaled to norm 1.

• inverse()
Returns the inverse.

• asMatrix()
Returns a 4x4 matrix representation.

• asRotation()
Returns the corresponding rotation matrix (the quaternion must be
normalized).

32

Reference for Module Scientific

Functions

• isQuaternion()
Returns 1 if x is a quaternion.

Module Scientific.Geometry.TensorAnalysis

Class TensorField: Tensor field of arbitrary rank

A tensor field is described by a tensor at each point of a three-dimensional
rectangular grid. The grid spacing may be non-uniform. Tensor fields are
implemented as a subclass of InterpolatingFunction from the module
Scientific.Functions.Interpolation and thus share all methods defined in
that class.
Constructor: TensorField(rank, axes, values, default=None)

rank a non-negative integer indicating the tensor rank

axes a sequence of three one-dimensional arrays, each of which specifies one
coordinate (x, y, z) of the grid points

values an array of rank+3 dimensions. Its first three dimensions
correspond to the x, y, z directions and must have lengths compatible
with the axis arrays. The remaining dimensions must have length 3.

default the value of the field for points outside the grid. A

value of None means that an exception will be raised for an attempt
to evaluate the field outside the grid. Any other value must a tensor
of the correct rank.

Evaluation:

• tensorfield(x, y, z) (three coordinates)

• tensorfield(coordinates) (any sequence containing three
coordinates)

Methods:

33

Reference for Module Scientific

• zero()
Returns a tensor of the correct rank with zero elements.

• derivative(variable)
Returns the derivative with respect to variable, which must be one of 0,
1, or 2.

• allDerivatives()
Returns all three derivatives (x, y, z).

Class ScalarField: Scalar field (tensor field of rank 0)

Constructor: ScalarField(axes, values, default=None)
A subclass of TensorField.

Methods:

• gradient()
Returns the gradient (a vector field).

• laplacian()
Returns the laplacian (a scalar field).

Class VectorField: Vector field (tensor field of rank 1)

Constructor: VectorField(axes, values, default=None)
A subclass of TensorField.

Methods:

• divergence()
Returns the divergence (a scalar field).

• curl()
Returns the curl (a vector field).

• strain()
Returns the strain (a tensor field of rank 2).

• divergenceCurlAndStrain()
Returns all derivative fields: divergence, curl, and strain.

34

Reference for Module Scientific

• laplacian()
Returns the laplacian (a vector field).

• length()
Returns a scalar field corresponding to the length (norm) of the
vector field.

Module Scientific.Geometry.Transformation

Class Transformation: Linear coordinate transformation.

Transformation objects represent linear coordinate

transformations in a 3D space. They can be applied to vectors,

returning another vector. If tis a transformation and vis a

vector, t(v) returns the transformed vector.
Transformations support composition: if t1and t2are

transformation objects, t1*t2is another transformation object which
corresponds to applying t1 after t2.
This class is an abstract base class. Instances can only be created of
concrete subclasses, i.e. translations or rotations.

Methods:

• rotation()
Returns the rotational component.

• translation()
Returns the translational component. In the case of a mixed
rotation/translation, this translation is executed after the rotation.

• inverse()
Returns the inverse transformation.

• screwMotion()
Returns the four parameters (reference, direction, angle,

distance)of a screw-like motion that is equivalent to the

transformation. The screw motion consists of a

displacement of distance(a float) along direction(a

35

Reference for Module Scientific

normalized vector) plus a rotation of angleradians around

an axis pointing along directionand passing through the

point reference (a vector).

Class Translation: Translational transformation.

This is a subclass of Transformation.
Constructor: Translation(vector), where vector is the displacement vector.

Methods:

• displacement()
Returns the displacement vector.

Class Rotation: Rotational transformation.

This is a subclass of Transformation.
Constructor:

• Rotation(tensor), where tensor is a tensor object containing the
rotation matrix.

• Rotation(axis, angle), where axisis a vector and angle a number (the
angle in radians).

Methods:

• axisAndAngle()
Returns the axis (a normalized vector) and angle (a float, in radians).

Class RotationTranslation: Combined translational and rotational
transformation.

This is a subclass of Transformation.
Objects of this class are not created directly, but can be the result of a
composition of rotations and translations.

36

Reference for Module Scientific

Module Scientific.IO

Module Scientific.IO.ArrayIO

This module contains elementary support for I/O of one- and
two-dimensional numerical arrays to and from plain text files. The text file
format is very simple and used by many other programs as well:

• each line corresponds to one row of the array

• the numbers within a line are separated by white space

• lines starting with # are ignored (comment lines)

An array containing only one line or one column is returned as a
one-dimensional array on reading. One-dimensional arrays are written as
one item per line.

Numbers in files to be read must conform to Python/C syntax. For reading
files containing Fortran-style double-precision numbers (exponent prefixed
by D), use the module Scientific.IO.FortranFormat.

Functions

• readArray()
Return an array containing the data from file filename. This function
works for arbitrary data types (every array element can be given by
an arbitrary Python expression), but at the price of being slow. For
large arrays, use readFloatArray or readIntegerArray if possible.

• readFloatArray()
Return a floating-point array containing the data from file filename.

• readIntegerArray()
Return an integer array containing the data from file filename.

• writeArray()
Write array ato file filename. modecan be w(new file) or a

(append).

37

Reference for Module Scientific

• writeDataSets()
Write each of the items in the sequence datasetsto the file filename,
separating the datasets by a line containing separator. The items in the
data sets can be one- or two-dimensional arrays or equivalent nested
sequences. The output file format is understood by many plot
programs.

Module Scientific.IO.FortranFormat

Fortran-compatible input/output

This module provides two classes that aid in reading and writing
Fortran-formatted text files.

Examples:

Input:

s = ’ 59999’

format = FortranFormat(’2I4’)

line = FortranLine(s, format)

print line[0]

print line[1]

prints

5

9999

Output:

format = FortranFormat(’2D15.5’)

line = FortranLine([3.1415926, 2.71828], format)

print str(line)

prints

3.14159D+00 2.71828D+00

38

Reference for Module Scientific

Class FortranLine: Fortran-style record in formatted files

FortranLine objects represent the content of one record of a

Fortran-style formatted file. Indexing yields the contents as

Python objects, whereas transformation to a string (using the

built-in function str) yields the text representation.

Constructor: FortranLine(data, format, length=80)

data either a sequence of Python objects, or a string formatted according
to Fortran rules

format either a Fortran-style format string, or a FortranFormat object. A
FortranFormat should be used when the same format string is used
repeatedly, because then the rather slow parsing of the string is
performed only once.

length the length of the Fortran record. This is relevant only when data is a
string; this string is then extended by spaces to have the indicated
length. The default value of 80 is almost always correct.

Restrictions:

1) Only A, D, E, F, G, I, and X formats are supported (plus string
constants for output).

2) No direct support for complex numbers; they must be split into real and
imaginary parts before output.

3) No overflow check. If an output field gets too large, it will take more
space, instead of being replaced by stars according to Fortran conventions.

Class FortranFormat: Parsed fortran-style format string

Constructor: FortranFormat(format), where format is a format specification
according to Fortran rules.

Module Scientific.IO.NetCDF

39

Reference for Module Scientific

Class NetCDFFile: netCDF file

Constructor: NetCDFFile(filename, mode="r")

filename name of the netCDF file. By convention, netCDF files have the
extension ”.nc”, but this is not enforced. The filename may contain a
home directory indication starting with ” ”.

mode access mode. ”r” means read-only; no data can be modified. ”w”
means write; a new file is created, an existing file with the same name
is deleted. ”a” means append (in analogy with serial files); an existing
file is opened for reading and writing, and if the file does not exist it
is created. ”r+” is similar to ”a”, but the file must already exist. An
”s” can be appended to any of the modes listed above; it indicates
that the file will be opened or created in ”share” mode, which reduces
buffering in order to permit simultaneous read access by other
processes to a file that is being written.

A NetCDFFile object has two standard attributes: dimensionsand

variables. The values of both are dictionaries, mapping dimension names
to their associated lengths and variable names to variables, respectively.
Application programs should never modify these dictionaries.
All other attributes correspond to global attributes defined in the netCDF
file. Global file attributes are created by assigning to an attribute of the
NetCDFFile object.

Methods:

• close()
Closes the file. Any read or write access to the file or one of its
variables after closing raises an exception.

• createDimension(name, length)
Creates a new dimension with the given nameand length. lengthmust be

a positive integer or None, which stands for the unlimited
dimension. Note that there can be only one unlimited dimension in a
file.

• createVariable(name, type, dimensions)
Creates a new variable with the given name, type, and dimensions. The
typeis a one-letter string with the same meaning as the typecodes for

40

Reference for Module Scientific

arrays in module Numeric; in practice the predefined type constants from
Numeric should be used. dimensions must be a tuple containing
dimension names (strings) that have been defined previously.

The return value is the NetCDFVariable object describing the new
variable.

• sync()
Writes all buffered data to the disk file.

Class NetCDFVariable: Variable in a netCDF file

NetCDFVariable objects are constructed by calling the method

createVariable on the NetCDFFile object.
NetCDFVariable objects behave much like array objects defined

in module Numeric, except that their data resides in a file.

Data is read by indexing and written by assigning to an indexed

subset; the entire array can be accessed by the index [:]or

using the methods getValueand assignValue. NetCDFVariable objects
also have attribute ”shape” with the same meaning as for arrays, but the
shape cannot be modified. There is another read-only attribute
”dimensions”, whose value is the tuple of dimension names.
All other attributes correspond to variable attributes defined in the
netCDF file. Variable attributes are created by assigning to an attribute of
the NetCDFVariable object.
Note: If a file open for reading is simultaneously written by another
program, the size of the unlimited dimension may change. Every time the
shape of a variable is requested, the current size will be obtained from the
file. For reading and writing, the size obtained during the last shape
request is used. This ensures consistency: foo[-1] means the same thing no
matter how often it is evaluated, as long as the shape is not re-evaluated in
between.

Methods:

• assignValue(value)
Assigns value to the variable. This method allows assignment to scalar
variables, which cannot be indexed.

• getValue()

41

Reference for Module Scientific

Returns the value of the variable. This method allows access to scalar
variables, which cannot be indexed.

• typecode()
Return the variable’s type code (a string).

Module Scientific.IO.PDB

This module provides classes that represent PDB (Protein Data Bank) files
and configurations contained in PDB files. It provides access to PDB files
on two levels: low-level (line by line) and high-level (chains, residues, and
atoms).
Caution: The PDB file format has been heavily abused, and it is probably
impossible to write code that can deal with all variants correctly. This
modules tries to read the widest possible range of PDB files, but gives
priority to a correct interpretation of the PDB format as defined by the
Brookhaven National Laboratory.
A special problem are atom names. The PDB file format

specifies that the first two letters contain the

right-justified chemical element name. A later modification

allowed the initial space in hydrogen names to be replaced by a

digit. Many programs ignore all this and treat the name as an

arbitrary left-justified four-character name. This makes it

difficult to extract the chemical element accurately; most

programs write the "CA" for C alpha in such a way that it actually
stands for a calcium atom! For this reason a special element field has been
added later, but only few files use it.
The low-level routines in this module do not try to deal with the atom
name problem; they return and expect four-character atom names including
spaces in the correct positions. The high-level routines use atom names
without leading or trailing spaces, but provide and use the element field
whenever possible. For output, they use the element field to place the atom
name correctly, and for input, they construct the element field content from
the atom name if no explicit element field is found in the file.
Except where indicated, numerical values use the same units and
conventions as specified in the PDB format description.
Example:

conf = Structure(’example.pdb’)

42

Reference for Module Scientific

print conf

for residue in conf.residues:

for atom in residue:

print atom

Class HetAtom: HetAtom in a PDB structure

A subclass of Atom, which differs only in the return value of the method
type().

Constructor: HetAtom(name, position, **properties).

Class Group: Atom group (residue or molecule) in a PDB file

This is an abstract base class. Instances can be created using one of the
subclasses (Molecule, AminoAcidResidue, NucleotideResidue).

Group objects permit iteration over atoms with for-loops, as well as
extraction of atoms by indexing with the atom name.

Methods:

• addAtom(atom)
Adds atom (an Atom object) to the group.

• deleteAtom(atom)
Removes atom(an Atom object) from the group. An exception will be
raised if atom is not part of the group.

• deleteHydrogens()
Removes all hydrogen atoms.

• changeName(name)
Sets the PDB residue name to name.

• writeToFile(file)
Writes the group to file (a PDBFile object or a string containing a file
name).

43

Reference for Module Scientific

Class Chain: Chain of PDB residues

This is an abstract base class. Instances can be created using one of the
subclasses (PeptideChain, NucleotideChain).
Chain objects respond to len() and return their residues by indexing with
integers.

Methods:

• sequence()
Returns the list of residue names.

• addResidue(residue)
Add residue at the end of the chain.

• removeResidues(first, last)
Remove residues starting from firstup to (but not including) last. If
lastis None, remove everything starting from first.

• deleteHydrogens()
Removes all hydrogen atoms.

• writeToFile(file)
Writes the chain to file (a PDBFile object or a string containing a file
name).

Class Molecule: Molecule in a PDB file

A subclass of Group.
Constructor: Molecule(name, atoms=None, number=None), where nameis the
PDB residue name. An optional list of atomscan be specified, otherwise the
molecule is initially empty. The optional number is the PDB residue number.
Note: In PDB files, non-chain molecules are treated as residues, there is no
separate molecule definition. This modules defines every residue as a
molecule that is not an amino acid residue or a nucleotide residue.

Class PDBFile: PDB file with access at the record level

Constructor: PDBFile(filename, mode="r"), where filenameis the file name and
modeis "r"for reading and "w" for writing, The low-level file access is

44

Reference for Module Scientific

handled by the module Scientific.IO.TextFile, therefore compressed files
and URLs (for reading) can be used as well.

Methods:

• readLine()
Returns the contents of the next non-blank line (= record). The
return value is a tuple whose first element (a string) contains the
record type. For supported record types (HEADER, ATOM,
HETATM, ANISOU, TERM, MODEL, CONECT), the items from
the remaining fields are put into a dictionary which is returned as the
second tuple element. Most dictionary elements are strings or
numbers; atom positions are returned as a vector, and anisotropic
temperature factors are returned as a rank-2 tensor, already
multiplied by 1.e-4. White space is stripped from all strings except for
atom names, whose correct interpretation can depend on an initial
space. For unsupported record types, the second tuple element is a
string containing the remaining part of the record.

• writeLine(type, data)
Writes a line using record type and data dictionary in the same
format as returned by readLine(). Default values are provided for
non-essential information, so the data dictionary need not contain all
entries.

• writeComment(text)
Writes textinto one or several comment lines. Each line of

the text is prefixed with REMARK and written to the file.

• writeAtom(name, position, occupancy=0.0, temperature factor=0.0,
element=’’)
Writes an ATOM or HETATM record using the name, occupancy,
temperatureand element information supplied. The residue and chain
information is taken from the last calls to the methods nextResidue()
and nextChain().

• nextResidue(name, number=None, terminus=None)
Signals the beginning of a new residue, starting with the next call to
writeAtom(). The residue name is name, and a numbercan be supplied
optionally; by default residues in a chain will be numbered sequentially

45

Reference for Module Scientific

starting from 1. The value of terminuscan be None, "C", or "N"; it
is passed to export filters that can use this information in order to use
different atom or residue names in terminal residues.

• nextChain(chain id=None, segment id=’’)
Signals the beginning of a new chain. A chain identifier (string of length
one) can be supplied as chain id, by default consecutive letters from the
alphabet are used. The equally optional segment id defaults to an empty
string.

• terminateChain()
Signals the end of a chain.

• close()
Closes the file. This method must be called for write mode because
otherwise the file will be incomplete.

Class Atom: Atom in a PDB structure

Constructor: Atom(name, position, **properties), where nameis the PDB atom
name (a string), positionis a atom position (a vector), and properties can
include any of the other items that can be stored in an atom record.
The properties can be obtained or modified using indexing, as for Python
dictionaries.

Methods:

• type()
Returns the six-letter record type, ATOM or HETATM.

• writeToFile(file)
Writes an atom record to file (a PDBFile object or a string containing
a file name).

Class AminoAcidResidue: Amino acid residue in a PDB file

A subclass of Group.
Constructor: AminoAcidResidue(name, atoms=None, number=None), where
nameis the PDB residue name. An optional list of atomscan be specified,
otherwise the residue is initially empty. The optional number is the PDB
residue number.

46

Reference for Module Scientific

Methods:

• isCTerminus()
Returns 1 if the residue is in C-terminal configuration, i.e. if it has a
second oxygen bound to the carbon atom of the peptide group.

• isNTerminus()
Returns 1 if the residue is in N-terminal configuration, i.e. if it
contains more than one hydrogen bound to be nitrogen atom of the
peptide group.

Class NucleotideResidue: Nucleotide residue in a PDB file

A subclass of Group.
Constructor: NucleotideResidue(name, atoms=None, number=None), where
nameis the PDB residue name. An optional list of atomscan be specified,
otherwise the residue is initially empty. The optional number is the PDB
residue number.

Methods:

• hasRibose()
Returns 1 if the residue has an atom named O2*.

• hasDesoxyribose()
Returns 1 if the residue has no atom named O2*.

• hasPhosphate()
Returns 1 if the residue has a phosphate group.

• hasTerminalH()
Returns 1 if the residue has a 3-terminal H atom.

Class PeptideChain: Peptide chain in a PDB file

A subclass of Chain.
Constructor: PeptideChain(residues=None, chain id=None, segment id=None),
where chain idis a one-letter chain identifier and segment idis a multi-character
chain identifier, both are optional. A list of AminoAcidResidue objects can be
passed as residues; by default a peptide chain is initially empty.

Methods:

47

Reference for Module Scientific

• isTerminated()
Returns 1 if the last residue is in C-terminal configuration.

Class NucleotideChain: Nucleotide chain in a PDB file

A subclass of Chain.

Constructor: NucleotideChain(residues=None, chain id=None,
segment id=None), where chain idis a one-letter chain identifier and
segment idis a multi-character chain identifier, both are optional. A list of
NucleotideResidue objects can be passed as residues; by default a nucleotide
chain is initially empty.

Class ResidueNumber: PDB residue number

Most PDB residue numbers are simple integers, but when insertion codes
are used a number can consist of an integer plus a letter. Such compound
residue numbers are represented by this class.

Constructor: ResidueNumber(number, insertion code)

Class Structure: A high-level representation of the contents of a
PDB file

Constructor: Structure(filename, model=0, alternate code="A"), where
filename is the name of the PDB file. Compressed files and URLs are
accepted, as for class PDBFile. The two optional arguments specify which
data should be read in case of a multiple-model file or in case of a file that
contains alternative positions for some atoms.

The components of a system can be accessed in several ways (s is
an instance of this class):

• s.residues is a list of all PDB residues, in the order in which they
occurred in the file.

• s.peptide chains is a list of PeptideChain objects, containing all
peptide chains in the file in their original order.

• s.nucleotide chains is a list of NucleotideChain objects, containing
all nucleotide chains in the file in their original order.

48

Reference for Module Scientific

• s.molecules is a list of all PDB residues that are neither amino acid
residues nor nucleotide residues, in their original order.

• s.objects is a list of all high-level objects (peptide chains, nucleotide
chains, and molecules) in their original order.

An iteration over a Structure instance by a for-loop is equivalent to an
iteration over the residue list.

Methods:

• deleteHydrogens()
Removes all hydrogen atoms.

• splitPeptideChain(number, position)
Splits the peptide chain indicated by number(0 being the first peptide
chain in the PDB file) after the residue indicated by position (0 being the
first residue of the chain). The two chain fragments remain adjacent
in the peptide chain list, i.e. the numbers of all following nucleotide
chains increase by one.

• splitNucleotideChain(number, position)
Splits the nucleotide chain indicated by number(0 being the first
nucleotide chain in the PDB file) after the residue indicated by position
(0 being the first residue of the chain). The two chain fragments
remain adjacent in the nucleotide chain list, i.e. the numbers of all
following nucleotide chains increase by one.

• joinPeptideChains(first, second)
Join the two peptide chains indicated by firstand secondinto one peptide
chain. The new chain occupies the position first; the chain at second is
removed from the peptide chain list.

• joinNucleotideChains(first, second)
Join the two nucleotide chains indicated by firstand secondinto one
nucleotide chain. The new chain occupies the position first; the chain at
second is removed from the nucleotide chain list.

• renumberAtoms()
Renumber all atoms sequentially starting with 1.

49

Reference for Module Scientific

• writeToFile(file)
Writes all objects to file (a PDBFile object or a string containing a file
name).

Module Scientific.IO.TextFile

Class TextFile: Text files with line iteration and transparent
compression

TextFile instances can be used like normal file objects (i.e. by calling
readline(), readlines(), and write()), but can also be used as sequences of
lines in for-loops.
TextFile objects also handle compression transparently. i.e.

it is possible to read lines from a compressed text file as if

it were not compressed. Compression is deduced from the file

name suffixes .Z(compress/uncompress), .gz(gzip/gunzip), and

.bz2 (bzip2).
Finally, TextFile objects accept file names that start with or

user to indicate a home directory, as well as URLs (for reading only).
Constructor: TextFile(filename, mode="r"), where filenameis the name of the
file (or a URL) and modeis one of "r"(read), "w"(write) or "a"

(append, not supported for .Z files).

50

Reference for Module Scientific

Module Scientific.MPI

Class MPICommunicator: MPI Communicator

There is no constructor for MPI Communicator objects. The default
communicator is given by Scientific.MPI.world, and other communicators
can only be created by methods on an existing communicator object.
A communicator object has two read-only attributes: rankis an

integer which indicates the rank of the current process in the

communicator, and size is an integer equal to the number of processes
that participate in the communicator.

Methods:

• duplicate()
Returns a new communicator object with the same properties as the
original one.

• send(data, destination, tag)
Sends the contents of data(a string or any contiguous NumPy array
except for general object arrays) to the processor whose rank is
destination, using tag as an identifier.

• nonblockingSend(data, destination, tag)
Sends the contents of data(a string or any contiguous NumPy array
except for general object arrays) to the processor whose rank is
destination, using tag as an identifier. The send is nonblocking, i.e. the
call returns immediately, even if the destination process is not ready
to receive.

The return value is an MPIRequest object. It is used to wait till the
communication has actually happened.

• receive(data, source=None, tag=None)
Receives an array from the process with rank sourcewith identifier tag.
The default source=None means that messages from any process are
accepted. The value of datacan either be an array object, in which case it
must be contiguous and large enough to store the incoming data; it must
also have the correct shape. Alternatively, data can be a string

51

Reference for Module Scientific

specifying the data type (in practice, one would use Numeric.Int,
Numeric.Float, etc.). In the latter case, a new array object is created
to receive the data.

The return value is a tuple containing four elements: the array
containing the data, the source process rank (an integer), the message
tag (an integer), and the number of elements that were received (an
integer).

• receiveString(source=None, tag=None)
Receives a string from the process with rank sourcewith identifier tag.
The default source=None means that messages from any process are
accepted.

The return value is a tuple containing three elements: the string
containing the data, the source process rank (an integer), and the
message tag (an integer).

• nonblockingReceive(data, source=None, tag=None)
Receives an array from the process with rank sourcewith identifier tag.
The default source=None means that messages from any process are
accepted. The value of data must be a contiguous array object, large
enough to store the incoming data; it must also have the correct
shape. Unlike the blocking receive, the size of the array must be
known when the call is made, as nonblocking receives of unknown
quantities of data is not implemented. For the same reason there is no
nonblocking receiveString.

The return value is an MPIRequest object. It is used to wait until the
data has arrived, and will give information about the size, the source
and the tag of the incoming message.

• nonblockingProbe(source=None, tag=None)
Checks if a message from the process with rank sourceand with identifier
tagis available for immediate reception. The return value

is Noneif no message is available, otherwise a (source,

tag) tuple is returned.

• broadcast(array, root)
Sends data from the process with rank rootto all processes (including
root). The parameter arraycan be any contiguous NumPy array except

52

Reference for Module Scientific

for general object arrays. On the process root, it holds the data to be
sent. After the call, the data in arrayis the same for all processors. The
shape and data type of array must be the same in all processes.

• share(send, receive)
Distributes data from each process to all other processes in the
communicator. The array send(any contiguous NumPy array except for
general object arrays) contains the data to be sent by each process, the
shape and data type must be identical in all processes. The array
receivemust have the same data type as sendand one additional
dimension (the first one), whose length must be the number of processes
in the communicator. After the call, the value of receive[i]is equal to the
contents of the array sendin process i.

• barrier()
Waits until all processes in the communicator have called the same
method, then all processes continue.

• abort()
Aborts all processes associated with the communicator. For
emergency use only.

• reduce(sendbuffer, receivebuffer, operation, root)
Combine data from all processes using operation, and send the data to
the process identified by root.

operationis one of the operation objects defined globally

in the module: max, min, prod, sum, land, lor, lxor,

band, bor, bxor’, maxlocand minloc.

• allreduce(sendbuffer, receivebuffer, operation, root)
Combine data from all processes using operation, and send the data to
all processes in the communicator.

operationis one of the operation objects defined globally

in the module: max, min, prod, sum, land, lor, lxor,

band, bor, bxor’, maxlocand minloc.

53

Reference for Module Scientific

Class MPIError: MPI call failed

Class MPIRequest: MPI Request

There is no constructor for MPI Request objects. They are returned by
nonblocking send and receives, and are used to query the status of the
message.

Methods:

• wait()
Waits till the communication has completed. If the operation was a
nonblocking send, there is no return value. If the operation was a
nonblocking receive, the return value is a tuple containing four
elements: the array containing the data, the source process rank (an
integer), the message tag (an integer), and the number of elements
that were received (an integer).

Module Scientific.MPI.IO

Class LogFile: File for logging events from all processes

Constructor: LogFile(filename, communicator=None)

filename the name of the file

communicator the communicator in which the file is accesible.

The default value of None means to use the global world
communicator, i.e. all possible processes.

The purpose of LogFile objects is to collect short text output from all
processors into a single file. All processes can write whatever they want at
any time; the date is simply stored locally. After the file has been closed by
all processes, the data is sent to process 0, which then writes everything to
one text file, neatly separated by process rank number.
Note that due to the intermediate storage of the data, LogFile objects
should not be used for large amounts of data. Also note that all data is lost
if a process crashes before closing the file.

Methods:

54

Reference for Module Scientific

• write(string)
Write string to the file.

• flush()
Write buffered data to the text file.

• close()
Close the file, causing the real text file to be written.

55

Reference for Module Scientific

Module Scientific.NumberDict

Class NumberDict: Dictionary storing numerical
values

Constructor: NumberDict()
An instance of this class acts like an array of number with generalized
(non-integer) indices. A value of zero is assumed for undefined entries.
NumberDict instances support addition, and subtraction with other
NumberDict instances, and multiplication and division by scalars.

56

Reference for Module Scientific

Module Scientific.Physics

Module Scientific.Physics.PhysicalQuantities

Physical quantities with units.
This module provides a data type that represents a physical quantity
together with its unit. It is possible to add and subtract these quantities if
the units are compatible, and a quantity can be converted to another
compatible unit. Multiplication, subtraction, and raising to integer powers
is allowed without restriction, and the result will have the correct unit. A
quantity can be raised to a non-integer power only if the result can be
represented by integer powers of the base units.
The values of physical constants are taken from the 1986 recommended
values from CODATA. Other conversion factors (e.g. for British units)
come from various sources. I can’t guarantee for the correctness of all
entries in the unit table, so use this at your own risk!

Class PhysicalQuantity: Physical quantity with units

Constructor:

• PhysicalQuantity(value, unit), where valueis a number of arbitrary type
and unit is a string containing the unit name.

• PhysicalQuantity(string), where string contains both the value and the
unit. This form is provided to make interactive use more convenient.

PhysicalQuantity instances allow addition, subtraction, multiplication, and
division with each other as well as multiplication, division, and
exponentiation with numbers. Addition and subtraction check that the
units of the two operands are compatible and return the result in the units
of the first operand. A limited set of mathematical functions (from module
Numeric) is applicable as well:

sqrt equivalent to exponentiation with 0.5.

sin, cos, tan applicable only to objects whose unit is

compatible with rad.

57

Reference for Module Scientific

Methods:

• convertToUnit(unit)
Changes the unit to unit and adjusts the value such that the
combination is equivalent. The new unit is by a string containing its
name. The new unit must be compatible with the previous unit of the
object.

• inUnitsOf(*units)
Returns one or more PhysicalQuantity objects that express the same
physical quantity in different units. The units are specified by strings
containing their names. The units must be compatible with the unit
of the object. If one unit is specified, the return value is a single
PhysicalObject. If several units are specified, the return value is a
tuple of PhysicalObject instances with with one element per unit such
that the sum of all quantities in the tuple equals the the original
quantity and all the values except for the last one are integers. This is
used to convert to irregular unit systems like hour/minute/second.
The original object will not be changed.

Functions

• isPhysicalQuantity()
Returns 1 if x is an instance of PhysicalQuantity.

Module Scientific.Physics.Potential

This module offers two strategies for automagically calculating the
gradients (and optionally force constants) of a potential energy function (or
any other function of vectors, for that matter). The more convenient
strategy is to create an object of the class PotentialWithGradients. It takes
a regular Python function object defining the potential energy and is itself
a callable object returning the energy and its gradients with respect to all
arguments that are vectors.
Example:

def _harmonic(k,r1,r2):

dr = r2-r1

return k*dr*dr

58

Reference for Module Scientific

harmonic = PotentialWithGradients(_harmonic)

energy, gradients = harmonic(1., Vector(0,3,1), Vector(1,2,0))

print energy, gradients

prints

3.0

[Vector(-2.0,2.0,2.0), Vector(2.0,-2.0,-2.0)]

The disadvantage of this procedure is that if one of the arguments is a
vector parameter, rather than a position, an unnecessary gradient will be
calculated. A more flexible method is to insert calls to two function from
this module into the definition of the energy function. The first,
DerivVectors(), is called to indicate which vectors correspond to gradients,
and the second, EnergyGradients(), extracts energy and gradients from the
result of the calculation. The above example is therefore equivalent to

def harmonic(k, r1, r2):

r1, r2 = DerivVectors(r1, r2)

dr = r2-r1

e = k*dr*dr

return EnergyGradients(e,2)

To include the force constant matrix, the above example has to be modified
as follows:

def _harmonic(k,r1,r2):

dr = r2-r1

return k*dr*dr

harmonic = PotentialWithGradientsAndForceConstants(_harmonic)

energy, gradients, force_constants = harmonic(1.,Vector(0,3,1),Vector(1,2,0))

print energy

print gradients

print force_constants

The force constants are returned as a nested list representing a matrix.
This can easily be converted to an array for further processing if the
numerical extensions to Python are available.

59

Reference for Module Scientific

Module Scientific.Signals

Module Scientific.Signals.Models

Class AutoRegressiveModel: Auto-regressive model for stochastic
process

This implementation uses the Burg algorithm to obtain the coefficients of
the AR model.
Constructor: AutoRegressiveModel(order, data, delta t=1.)

order the order of the model (an integer)

data the time series (sequence of floats)

delta t the sampling interval for the time series (default: 1.)

Methods:

• predictStep()
Return the next step in the series according to linear prediction. The
returned value is also appended internally to the current trajectory,
making it possible to call this method repeatedly in order to obtain a
sequence of predicted steps.

• spectrum(omega)
Return the frequency spectrum of the process at the angular frequencies
omega (an array).

• correlation(nsteps)
Return the autocorrelation function of the process (as estimated from the
AR model) up to nsteps times the sampling interval.

• memoryFunction(nsteps)
Return the memory function corresponding to the autocorrelation
function of the process up to nsteps times the sampling interval.

• frictionConstant()
Return the friction constant (the integral over the memory function)
of the process.

60

Reference for Module Scientific

Class AveragedAutoRegressiveModel: Averaged auto-regressive
model for stochastic process

An averaged model is constructed by averaging the model coefficients of
several auto-regressive models of the same order. An averaged model is
created empty, then individual models are added.
Constructor: AveragedAutoRegressiveModel(order, delta t)

order the order of the model (an integer)

delta t the sampling interval for the time series

Methods:

• add(model, weight=1)
Add the coefficients of modelto the average using weight.

61

Reference for Module Scientific

Module Scientific.Statistics

Functions

• mean()
Returns the mean (average value) of data (a sequence of numbers).

• weightedMean()
Weighted mean of a sequence of numbers with given standard
deviations.

datais a list of measurements, sigma a list with corresponding standard
deviations.

Returns weighted mean and corresponding standard deviation.

• variance()
Returns the variance of data (a sequence of numbers).

• standardDeviation()
Returns the standard deviation of data (a sequence of numbers).

• median()
Returns the median of data (a sequence of numbers).

• skewness()
Returns the skewness of data (a sequence of numbers).

• kurtosis()
Returns the kurtosis of data (a sequence of numbers).

• correlation()
Returns the correlation coefficient between data1and data2, which must
have the same length.

Module Scientific.Statistics.Histogram

62

Reference for Module Scientific

Class Histogram: Histogram in one variable

Constructor: Histogram(data, bins, range=None)

data a sequence of data points

bins the number of bins into which the data is to be sorted

range a tuple of two values, specifying the lower and the upper end of the
interval spanned by the bins. Any data point outside this interval will
be ignored. If no range is given, the smallest and largest data values
are used to define the interval.

The bin index and the number of points in a bin can be obtained by
indexing the histogram with the bin number. Application of len() yields the
number of bins. A histogram thus behaves like a sequence of bin index - bin
count pairs.

Methods:

• addData(data)
Add the values in data (a sequence of numbers) to the originally
supplied data. Note that this does not affect the default range of the
histogram, which is fixed when the histogram is created.

• normalize(norm=1.0)
Scales all counts by the same factor such that their sum is norm.

• normalizeArea(norm=1.0)
Scales all counts by the same factor such that the area under the
histogram is norm.

Class WeightedHistogram: Weighted histogram in one variable

Constructor: WeightedHistogram(data, weights, bins, range=None)

data a sequence of data points

weights a sequence of weights, same length as data

bins the number of bins into which the data is to be sorted

63

Reference for Module Scientific

range a tuple of two values, specifying the lower and the upper end of the
interval spanned by the bins. Any data point outside this interval will
be ignored. If no range is given, the smallest and largest data values
are used to define the interval.

In a weighted histogram, each point has a specific weight. If all weights are
one, the result is equivalent to a standard histogram. The bin index and
the number of points in a bin can be obtained by indexing the histogram
with the bin number. Application of len() yields the number of bins. A
histogram thus behaves like a sequence of bin index - bin count pairs.

Methods:

• addData(data, weights)
Add the values in data(a sequence of numbers) with the given weights to
the originally supplied data. Note that this does not affect the default
range of the histogram, which is fixed when the histogram is created.

64

Reference for Module Scientific

Module Scientific.Threading

Module Scientific.Threading.TaskManager

Class TaskManager: Parallel task manager for shared-memory
multiprocessor machines

This class provides a rather simple way to profit from shared-memory
multiprocessor machines by running several tasks in parallel. The calling
program decides how many execution threads should run at any given time,
and then feeds compute tasks to the task manager, who runs them as soon
as possible without exceeding the maximum number of threads.
The major limitation of this approach lies in Python’s Global Interpreter
Lock. This effectively means that no more than one Python thread can run
at the same time. Consequently, parallelization can only be achieved if the
tasks to be parallelized spend significant time in C extension modules that
release the Global Interpreter Lock.
Constructor: TaskManager(nthreads)

nthreads the maximum number of compute threads that should run in
parallel. Note: This does not include the main thread which
generated and feeds the task manager!

Methods:

• runTask(function, args)
Add a task defined by function. This must be a callable object, which will
be called exactly once. The arguments of the call are the elements of the
tuple args plus one additional argument which is a lock object. The
task can use this lock object in order to get temporary exclusive acces
to data shared with other tasks, e.g. a list in which to accumulate
results.

• terminate()
Wait until all tasks have finished.

65

Reference for Module Scientific

Module Scientific.TkWidgets

Class FilenameEntry: Filename entry widget

Constructor: FilenameEntry(master, text, pattern, must exist flag=1)

master the master widget

text the label in front of the filename box

pattern the filename matching pattern that determines the file list in the
file selection dialog

must exists flag allow only names of existing files

A FilenameEntry widget consists of three parts: an identifying

label, a text entry field for the filename, and a button

labelled browse which call a file selection dialog box for picking a file
name.

Methods:

• get()
Return the current filename. If must exist flag is true, verify that the
name refers to an existing file. Otherwise an error message is
displayed and a ValueError is raised.

Class FloatEntry: An entry field for float numbers

Constructor: FloatEntry(master, text, initial=None, lower=None, upper=None)

master the master widget

text the label in front of the entry field

initial an optional initial value (default: blank field)

upper an optional upper limit for the value

lower an optional lower limit for the value

66

Reference for Module Scientific

A FloatEntry widget consists of a label followed by a text entry field.

Methods:

• set(value)
Set the value to value.

• get()
Return the current value, verifying that it is a number and between
the specified limits. Otherwise an error message is displayed and a
ValueError is raised.

Class IntEntry: An entry field for integer numbers

Constructor: IntEntry(master, text, initial=None, lower=None, upper=None)

master the master widget

text the label in front of the entry field

initial an optional initial value (default: blank field)

upper an optional upper limit for the value

lower an optional lower limit for the value

A IntEntry widget consists of a label followed by a text entry field.

Methods:

• get()
Return the current value, verifying that it is an integer and between
the specified limits. Otherwise an error message is displayed and a
ValueError is raised.

Class ButtonBar: A horizontal array of buttons

Constructor: ButtonBar(master, left button list, right button list)

master the master widget

left button list a list of (text, action) tuples specifying the buttons on the
left-hand side of the button bar

right button list a list of (text, action) tuples specifying the buttons on the
right-hand side of the button bar

67

Reference for Module Scientific

Class StatusBar: A status bar

Constructor: StatusBar(master)

master the master widget

A status bar can be used to inform the user about the status of an ongoing
calculation. A message can be displayed with set() and removed with
clear(). In both cases, the StatusBar object makes sure that the change
takes place immediately. While a message is being displayed, the cursor
form is changed to a watch.

Module Scientific.TkWidgets.TkPlotCanvas

Class PolyLine: Multiple connected lines

Constructor: PolyLine(points, **—attr—)

points any sequence of (x, y) number pairs

attr • line attributes specified by keyword arguments: width:
the line width (default: 1)

• color: a string whose value is one of the color names defined in
Tk (default: ”black”)

• stipple: a string whose value is the name of a bitmap

defined in Tk, or Nonefor no bitmap (default: None)

Class VerticalLine: A vertical line

Constructor: VerticalLine(xpos, **—attr—)

xpos the x coordinate of the line

attr • line attributes specified by keyword arguments: width:
the line width (default: 1)

• color: a string whose value is one of the color names defined in
Tk (default: ”black”)

• stipple: a string whose value is the name of a bitmap

defined in Tk, or Nonefor no bitmap (default: None)

68

Reference for Module Scientific

Class HorizontalLine: A horizontal line

Constructor: HorizontalLine(ypos, **—attr—)

ypos the y coordinate of the line

attr • line attributes specified by keyword arguments: width:
the line width (default: 1)

• color: a string whose value is one of the color names defined in
Tk (default: ”black”)

• stipple: a string whose value is the name of a bitmap

defined in Tk, or Nonefor no bitmap (default: None)

Class PolyMarker: Series of markers

Constructor: PolyPoints(points, **—attr—)

points any sequence of (x, y) number pairs

attr

• marker attributes specified by keyword arguments: width:
the line width for drawing the marker (default: 1)

• color: a string whose value is one of the color names defined in Tk,
defines the color of the line forming the marker (default: black)

• fillcolor: a string whose value is one of the color names defined in
Tk, defines the color of the interior of the marker (default: black)

• marker: one of circle(default), dot, square, triangle,

triangle down, cross, plus

Class PlotGraphics: Compound graphics object

Constructor: PlotGraphics(objects)

objects a list whose elements can be instances of the classes PolyLine,
PolyMarker, and PlotGraphics.

69

Reference for Module Scientific

Class PlotCanvas: Tk plot widget

Constructor: PlotCanvas(master, width, height, **—attributes—).
The arguments have the same meaning as for a standard Tk canvas. The
default background color is white and the default font is Helvetica at 10
points.
PlotCanvas objects support all operations of Tk widgets.
There are two attributes in addition to the standard Tk attributes:

zoom a logical variable that indicates whether interactive zooming (using
the left mouse button) is enabled; the default is 0 (no zoom)

select enables the user to select a range along the x axis by dragging the
mouse (with the left button pressed) in the area underthe x axis. If
selectis 0, no selection is possible. Otherwise the value of select must be
a callable object that is called whenever the selection changes, with a
single argument that can be None (no selection) or a tuple containing
two x values.

Methods:

• draw(graphics, xaxis=None, yaxis=None)
Draws the graphics object graphics, which can be a PolyLine,
PolyMarker, or PlotGraphics object. The arguments xaxisand
yaxisspecify how axes are drawn: Nonemeans that no axis is

drawn and the graphics objects are scaled to fill the

canvas optimally. "automatic"means that the axis is drawn and
a suitable value range is determined automatically. A sequence of two
numbers means that the axis is drawn and the value range is the
interval specified by the two numbers.

• clear()
Clears the canvas.

• redraw()
Redraws the last canvas contents.

• select(range)
Shows the given rangeas highlighted. range can be None (no selection)
or a sequence of two values on the x-axis.

70

Reference for Module Scientific

Module Scientific.TkWidgets.TkVisualizationCanvas

Class PolyLine3D: Multiple connected lines

Constructor: PolyLine(points, **—attr—), where pointsis any sequence of (x,
y, z) number triples and attrstands for line attributes specified by

keyword arguments, which are width(an integer) and color (a
string whose value is one of the color names defined in Tk). The default is
a black line of width 1.

Class VisualizationGraphics: Compound graphics object

Constructor: VisualizationGraphics(objects), where objects is a list whose
elements can be instances of the classes PolyLine3D and
VisualizationGraphics.

Class VisualizationCanvas: Tk visualization widget

Constructor: VisualizationCanvas(master, width, height, **—attributes—).
The arguments have the same meaning as for a standard Tk canvas. The
default background color is white and the default font is Helvetica at 10
points.
VisualizationCanvas objects support all operations of Tk widgets.
Interactive manipulation of the display is possible with click-and-drag
operations. The left mouse button rotates the objects, the middle button
translates it, and the right button scales it up or down.

Methods:

• draw(graphics)
Draws the graphics object graphics, which can be a PolyLine3D or a
VisualizationGraphics object.

• clear(keepscale=0)
Clears the canvas.

71

Reference for Module Scientific

Module Scientific.Visualization

The modules in this subpackage provide visualization of 3D objects using
different backends (VRML, VMD, VPython), but with an almost identical
interface. It is thus possible to write generic 3D graphics code in which the
backend can be changed by modifying a single line of code.

The intended application of these modules is scientific visualization. Many
sophisticated 3D objects are therefore absent, as are complex surface
definitions such as textures.

Module Scientific.Visualization.Color

This module provides color definitions that are used in the modules VRML,
VRML2, and VMD.

Class Color: RGB Color specification

Constructor: Color(rgb), where rgb is a sequence of three numbers between
zero and one, specifying the red, green, and blue intensities.

Color objects can be added and multiplied with scalars.

Class ColorScale: Mapping of a number interval to a color range

Constructor: ColorScale(range), where range can be a tuple of two numbers
(the center of the interval and its width), or a single number specifying the
widths for a default center of zero.

Evaluation: colorscale(number) returns the Color object corresponding to
number. If number is outside the predefined interval, the closest extreme
value of the interval is used.

The color scale is blue - green - yellow - orange - red.

Class SymmetricColorScale: Mapping of a symmetric number
interval to a color range

Constructor: SymmetricColorScale(range), where rangeis a single number
defining the interval, which is -—range— to range.

72

Reference for Module Scientific

Evaluation: colorscale(number) returns the Color object corresponding to
number. If number is outside the predefined interval, the closest extreme
value of the interval is used.
The colors are red for negative numbers and green for positive numbers,
with a color intensity proportional to the absolute value of the argument.

Functions

• ColorByName()
Returns a Color object corresponding to name. The known names are
black, white, grey, red, green, blue, yellow, magenta, cyan, orange,
violet, olive, and brown. Any color can be prefixed by ”light ” or
”dark ” to yield a variant.

Module Scientific.Visualization.VMD

This module provides definitions of simple 3D graphics objects and scenes
containing them, in a form that can be fed to the molecular visualization
program VMD. Scenes can either be written as VMD script files, or
visualized directly by running VMD.
There are a few attributes that are common to all graphics objects:

material a Material object defining color and surface properties

comment a comment string that will be written to the VRML file

reuse a boolean flag (defaulting to false). If set to one, the object may
share its VRML definition with other objects. This reduces the size of
the VRML file, but can yield surprising side effects in some cases.

This module is almost compatible with the modules VRML and VRML2,
which provide visualization by VRML browsers. There is no Polygon
objects, and the only material attribute supported is diffuse color. Note
also that loading a scene with many cubes into VMD is very slow, because
each cube is represented by 12 individual triangles.
Example:

from VMD import *

scene = Scene([])

73

Reference for Module Scientific

scale = ColorScale(10.)

for x in range(11):

color = scale(x)

scene.addObject(Cube(Vector(x, 0., 0.), 0.2,

material=Material(diffuse_color = color)))

scene.view()

Class Scene: VMD scene

A VMD scene is a collection of graphics objects that can be written to a
VMD script file or fed directly to VMD.

Constructor: Scene(objects=None, **—options—)

objects a list of graphics objects or None for an empty scene

options options as keyword arguments. The only option available is ”scale”,
whose value must be a positive number which specifies a scale factor
applied to all coordinates of geometrical objects except for molecule
objects, which cannot be scaled.

Methods:

• addObject(object)
Adds object to the list of graphics objects.

• writeToFile(filename, delete=0)
Writes the scene to a VRML file with name filename.

• view()
Start VMD for the scene.

Class Molecules: Molecules from a PDB file

Constructor: Molecules(pdb file)

74

Reference for Module Scientific

Class Sphere: Sphere

Constructor: Sphere(center, radius, **—attributes—)

center the center of the sphere (a vector)

radius the sphere radius (a positive number)

attributes any graphics object attribute

Class Cube: Cube

Constructor: Cube(center, edge, **—attributes—)

center the center of the cube (a vector)

edge the length of an edge (a positive number)

attributes any graphics object attribute

The edges of a cube are always parallel to the coordinate axes.

Class Cylinder: Cylinder

Constructor: Cylinder(point1, point2, radius, faces=(1, 1, 1),
**—attributes—)

point1, point2 the end points of the cylinder axis (vectors)

radius the radius (a positive number)

attributes any graphics object attribute

faces a sequence of three boolean flags, corresponding to the cylinder hull
and the two circular end pieces, specifying for each of these parts
whether it is visible or not.

75

Reference for Module Scientific

Class Cone: Cone

Constructor: Cone(point1, point2, radius, face=1, **—attributes—)

point1, point2 the end points of the cylinder axis (vectors). point1 is the tip of
the cone.

radius the radius (a positive number)

attributes any graphics object attribute

face a boolean flag, specifying if the circular bottom is visible

Class Line: Line

Constructor: Line(point1, point2, **—attributes—)

point1, point2 the end points of the line (vectors)

attributes any graphics object attribute

Class Arrow: Arrow

An arrow consists of a cylinder and a cone.
Constructor: Arrow(point1, point2, radius, **—attributes—)

point1, point2 the end points of the arrow (vectors). point2 defines the tip of
the arrow.

radius the radius of the arrow shaft (a positive number)

attributes any graphics object attribute

Class Material: Material for graphics objects

A material defines the color and surface properties of an object.
Constructor: Material(**—attributes—)
The accepted attributes are ”ambient color”, ”diffuse color”,
”specular color”, ”emissive color”, ”shininess”, and ”transparency”. Only
”diffuse color” is used, the others are permitted for compatibility with the
VRML modules.

76

Reference for Module Scientific

Functions

• DiffuseMaterial()
Returns a material with the diffuse colorattribute set to color.

Module Scientific.Visualization.VPython

Class Scene: VPython scene

A VPython scene is a collection of graphics objects that can be shown in a
VPython window. When the ”view” method is called, a new window is
created and the graphics objects are displayed in it.
Constructor: Scene(objects=None, **—options—)

objects a list of graphics objects or None for an empty scene

options options as keyword arguments: "title" (the window

title, default: "VPython scene"), "width" (the window

width, default: 300), "height" (the window height,

default: 300), "background" (the background color,

default: black)

Methods:

• addObject(object)
Adds object to the list of graphics objects.

• view()
Open a VPython window for the scene.

Class Sphere: Sphere

Constructor: Sphere(center, radius, **—attributes—)

center the center of the sphere (a vector)

radius the sphere radius (a positive number)

attributes any graphics object attribute

77

Reference for Module Scientific

Class Cube: Cube

Constructor: Cube(center, edge, **—attributes—)

center the center of the cube (a vector)

edge the length of an edge (a positive number)

attributes any graphics object attribute

The edges of a cube are always parallel to the coordinate axes.

Class Cylinder: Cylinder

Constructor: Cylinder(point1, point2, radius, **—attributes—)

point1, point2 the end points of the cylinder axis (vectors)

radius the radius (a positive number)

attributes any graphics object attribute

Class Arrow: Arrow

Constructor: Arrow(point1, point2, radius, **—attributes—)

point1, point2 the end points of the cylinder axis (vectors)

radius the radius (a positive number)

attributes any graphics object attribute

Class Cone: Cone

Constructor: Cone(point1, point2, radius, **—attributes—)

point1, point2 the end points of the cylinder axis (vectors). point1 is the tip of
the cone.

radius the radius (a positive number)

attributes any graphics object attribute

78

Reference for Module Scientific

Class PolyLines: Multiple connected lines

Constructor: PolyLines(points, **—attributes—)

points a sequence of points to be connected by lines

attributes any graphics object attribute

Class Line: Line

Constructor: Line(point1, point2, **—attributes—)

point1, point2 the end points of the line (vectors)

attributes any graphics object attribute

Class Polygons: Polygons

Constructor: Polygons(points, index lists, **—attributes—)

points a sequence of points

index lists a sequence of index lists, one for each polygon. The index list for a
polygon defines which points in points are vertices of the polygon.

attributes any graphics object attribute

Class Material: Material for graphics objects

A material defines the color and surface properties of an object.
Constructor: Material(**—attributes—)
The attributes are ”ambient color”, ”diffuse color”, ”specular color”,
”emissive color”, ”shininess”, and ”transparency”.

Functions

• DiffuseMaterial()
Returns a material with the diffuse colorattribute set to color.

• EmissiveMaterial()
Returns a material with the emissive colorattribute set to
color.

79

Reference for Module Scientific

Module Scientific.Visualization.VRML

This module provides definitions of simple 3D graphics objects and VRML
scenes containing them. The objects are appropriate for data visualization,
not for virtual reality modelling. Scenes can be written to VRML files or
visualized immediately using a VRML browser, whose name is taken from
the environment variable VRMLVIEWER (under Unix).
There are a few attributes that are common to all graphics objects:

material a Material object defining color and surface properties

comment a comment string that will be written to the VRML file

reuse a boolean flag (defaulting to false). If set to one, the object may
share its VRML definition with other objects. This reduces the size of
the VRML file, but can yield surprising side effects in some cases.

This module used the original VRML definition, version 1.0. For the newer
VRML 2 or VRML97, use the module VRML2, which uses exactly the
same interface. There is another almost perfectly compatible module VMD,
which produces input files for the molecular visualization program VMD.
Example:

from Scientific.Visualization.VRML import *

scene = Scene([])

scale = ColorScale(10.)

for x in range(11):

color = scale(x)

scene.addObject(Cube(Vector(x, 0., 0.), 0.2,

material=Material(diffuse_color = color)))

scene.view()

Class Scene: VRML scene

A VRML scene is a collection of graphics objects that can be written to a
VRML file or fed directly to a VRML browser.
Constructor: Scene(objects=None, cameras=None, **—options—)

80

Reference for Module Scientific

objects a list of graphics objects or None for an empty scene

cameras a list of cameras (not yet implemented)

options options as keyword arguments (none defined at the moment; this
argument is provided for compatibility with other modules)

Methods:

• addObject(object)
Adds object to the list of graphics objects.

• addCamera(camera)
Adds camers to the list of cameras.

• writeToFile(filename)
Writes the scene to a VRML file with name filename.

• view()
Start a VRML browser for the scene.

Class Sphere: Sphere

Constructor: Sphere(center, radius, **—attributes—)

center the center of the sphere (a vector)

radius the sphere radius (a positive number)

attributes any graphics object attribute

Class Cube: Cube

Constructor: Cube(center, edge, **—attributes—)

center the center of the cube (a vector)

edge the length of an edge (a positive number)

attributes any graphics object attribute

The edges of a cube are always parallel to the coordinate axes.

81

Reference for Module Scientific

Class Cylinder: Cylinder

Constructor: Cylinder(point1, point2, radius, faces=(1, 1, 1),
**—attributes—)

point1, point2 the end points of the cylinder axis (vectors)

radius the radius (a positive number)

attributes any graphics object attribute

faces a sequence of three boolean flags, corresponding to the cylinder hull
and the two circular end pieces, specifying for each of these parts
whether it is visible or not.

Class Cone: Cone

Constructor: Cone(point1, point2, radius, face=1, **—attributes—)

point1, point2 the end points of the cylinder axis (vectors). point1 is the tip of
the cone.

radius the radius (a positive number)

attributes any graphics object attribute

face a boolean flag, specifying if the circular bottom is visible

Class Line: Line

Constructor: Line(point1, point2, **—attributes—)

point1, point2 the end points of the line (vectors)

attributes any graphics object attribute

Class PolyLines: Multiple connected lines

Constructor: PolyLines(points, **—attributes—)

points a sequence of points to be connected by lines

attributes any graphics object attribute

82

Reference for Module Scientific

Class Polygons: Polygons

Constructor: Polygons(points, index lists, **—attributes—)

points a sequence of points

index lists a sequence of index lists, one for each polygon. The index list for a
polygon defines which points in points are vertices of the polygon.

attributes any graphics object attribute

Class Arrow: Arrow

An arrow consists of a cylinder and a cone.

Constructor: Arrow(point1, point2, radius, **—attributes—)

point1, point2 the end points of the arrow (vectors). point2 defines the tip of
the arrow.

radius the radius of the arrow shaft (a positive number)

attributes any graphics object attribute

Class Material: Material for graphics objects

A material defines the color and surface properties of an object.

Constructor: Material(**—attributes—)

The attributes are ”ambient color”, ”diffuse color”, ”specular color”,
”emissive color”, ”shininess”, and ”transparency”.

Functions

• DiffuseMaterial()
Returns a material with the diffuse colorattribute set to color.

• EmissiveMaterial()
Returns a material with the emissive colorattribute set to
color.

83

Reference for Module Scientific

Module Scientific.Visualization.VRML2

This module provides definitions of simple 3D graphics objects and VRML
scenes containing them. The objects are appropriate for data visualization,
not for virtual reality modelling. Scenes can be written to VRML files or
visualized immediately using a VRML browser, whose name is taken from
the environment variable VRML2VIEWER (under Unix).
There are a few attributes that are common to all graphics objects:

material a Material object defining color and surface properties

comment a comment string that will be written to the VRML file

reuse a boolean flag (defaulting to false). If set to one, the object may
share its VRML definition with other objects. This reduces the size of
the VRML file, but can yield surprising side effects in some cases.

This module used the VRML 2.0 definition, also known as VRML97. For
the original VRML 1, use the module VRML, which uses exactly the same
interface. There is another almost perfectly compatible module VMD,
which produces input files for the molecular visualization program VMD.
Example:

from Scientific.Visualization.VRML2 import *

scene = Scene([])

scale = ColorScale(10.)

for x in range(11):

color = scale(x)

scene.addObject(Cube(Vector(x, 0., 0.), 0.2,

material=Material(diffuse_color = color)))

scene.view()

Class Scene: VRML scene

A VRML scene is a collection of graphics objects that can be written to a
VRML file or fed directly to a VRML browser.
Constructor: Scene(objects=None, cameras=None, **—options—)

84

Reference for Module Scientific

objects a list of graphics objects or None for an empty scene

cameras a list of cameras

options options as keyword arguments (none defined at the moment; this
argument is provided for compatibility with other modules)

Methods:

• addObject(object)
Adds object to the list of graphics objects.

• addCamera(camera)
Adds camera to the list of cameras.

• writeToFile(filename)
Writes the scene to a VRML file with name filename.

• view()
Start a VRML browser for the scene.

Class Camera: Camera/viewpoint for a scene

Constructor: Camera(position, orientation, description, field of view)

position the location of the camera (a vector)

orientation an (axis, angle) tuple in which the axis is a vector and angle a
number (in radians); axis and angle specify a rotation with respect to
the standard orientation along the negative z axis

description a label for the viewpoint (a string)

field of view the field of view (a positive number)

Class NavigationInfo: Navigation Information

Constructor: NavigationInfo(speed, type)

speed walking speed in length units per second

type one of WALK, EXAMINE, FLY, NONE, ANY

85

Reference for Module Scientific

Class Sphere: Sphere

Constructor: Sphere(center, radius, **—attributes—)

center the center of the sphere (a vector)

radius the sphere radius (a positive number)

attributes any graphics object attribute

Class Cube: Cube

Constructor: Cube(center, edge, **—attributes—)

center the center of the cube (a vector)

edge the length of an edge (a positive number)

attributes any graphics object attribute

The edges of a cube are always parallel to the coordinate axes.

Class Cylinder: Cylinder

Constructor: Cylinder(point1, point2, radius, faces=(1, 1, 1),
**—attributes—)

point1, point2 the end points of the cylinder axis (vectors)

radius the radius (a positive number)

attributes any graphics object attribute

faces a sequence of three boolean flags, corresponding to the cylinder hull
and the two circular end pieces, specifying for each of these parts
whether it is visible or not.

86

Reference for Module Scientific

Class Cone: Cone

Constructor: Cone(point1, point2, radius, face=1, **—attributes—)

point1, point2 the end points of the cylinder axis (vectors). point1 is the tip of
the cone.

radius the radius (a positive number)

attributes any graphics object attribute

face a boolean flag, specifying if the circular bottom is visible

Class Line: Line

Constructor: Line(point1, point2, **—attributes—)

point1, point2 the end points of the line (vectors)

attributes any graphics object attribute

Class PolyLines: Multiple connected lines

Constructor: PolyLines(points, **—attributes—)

points a sequence of points to be connected by lines

attributes any graphics object attribute

Class Polygons: Polygons

Constructor: Polygons(points, index lists, **—attributes—)

points a sequence of points

index lists a sequence of index lists, one for each polygon. The index list for a
polygon defines which points in points are vertices of the polygon.

attributes any graphics object attribute

87

Reference for Module Scientific

Class Arrow: Arrow

An arrow consists of a cylinder and a cone.
Constructor: Arrow(point1, point2, radius, **—attributes—)

point1, point2 the end points of the arrow (vectors). point2 defines the tip of
the arrow.

radius the radius of the arrow shaft (a positive number)

attributes any graphics object attribute

Class Material: Material for graphics objects

A material defines the color and surface properties of an object.
Constructor: Material(**—attributes—)
The attributes are ”ambient color”, ”diffuse color”, ”specular color”,
”emissive color”, ”shininess”, and ”transparency”.

Functions

• DiffuseMaterial()
Returns a material with the diffuse colorattribute set to color.

• EmissiveMaterial()
Returns a material with the emissive colorattribute set to
color.

88

Reference for Module Scientific

Module Scientific.indexing

This module provides a convenient method for constructing array

indices algorithmically. It provides one importable object,

index expression.
For any index combination, including slicing and axis

insertion, a[indices]is the same as

a[index expression[indices]]for any array a. However,

index expression[indices] can be used anywhere in Python code and
returns a tuple of indexing objects that can be used in the construction of
complex index expressions.
Sole restriction: Slices must be specified in the double-colon form, i.e. a[::]
is allowed, whereas a[:] is not.

89

	Introduction
	Installation
	Reference for Module Scientific
	Module Scientific.BSP
	Class ParValue: Global data
	Class ParConstant: Global constant
	Class ParData: Global data
	Class ParSequence: Global distributed sequence
	Class ParMessages: Global message list
	Class ParTuple: Global data tuple
	Class ParAccumulator: Global accumulator
	Class ParFunction: Global function
	Class ParRootFunction: Asymmetric global function
	Class ParIterator: Parallel iterator
	Class ParIndexIterator: Parallel index iterator
	Class ParClass: Global class
	Class ParBase: Distributed data base class
	Module Scientific.BSP.Console
	Module Scientific.BSP.IO

	Module Scientific.DictWithDefault
	Class DictWithDefault: Dictionary with default values

	Module Scientific.Functions
	Module Scientific.Functions.Derivatives
	Module Scientific.Functions.FindRoot
	Module Scientific.Functions.FirstDerivatives
	Module Scientific.Functions.Interpolation
	Module Scientific.Functions.LeastSquares
	Module Scientific.Functions.Polynomial
	Module Scientific.Functions.Rational
	Module Scientific.Functions.Romberg

	Module Scientific.Geometry
	Class Tensor: Tensor in 3D space
	Class Vector: Vector in 3D space
	Module Scientific.Geometry.Objects3D
	Module Scientific.Geometry.Quaternion
	Module Scientific.Geometry.TensorAnalysis
	Module Scientific.Geometry.Transformation

	Module Scientific.IO
	Module Scientific.IO.ArrayIO
	Module Scientific.IO.FortranFormat
	Module Scientific.IO.NetCDF
	Module Scientific.IO.PDB
	Module Scientific.IO.TextFile

	Module Scientific.MPI
	Class MPICommunicator: MPI Communicator
	Class MPIError: MPI call failed
	Class MPIRequest: MPI Request
	Module Scientific.MPI.IO

	Module Scientific.NumberDict
	Class NumberDict: Dictionary storing numerical values

	Module Scientific.Physics
	Module Scientific.Physics.PhysicalQuantities
	Module Scientific.Physics.Potential

	Module Scientific.Signals
	Module Scientific.Signals.Models

	Module Scientific.Statistics
	Functions
	Module Scientific.Statistics.Histogram

	Module Scientific.Threading
	Module Scientific.Threading.TaskManager

	Module Scientific.TkWidgets
	Class FilenameEntry: Filename entry widget
	Class FloatEntry: An entry field for float numbers
	Class IntEntry: An entry field for integer numbers
	Class ButtonBar: A horizontal array of buttons
	Class StatusBar: A status bar
	Module Scientific.TkWidgets.TkPlotCanvas
	Module Scientific.TkWidgets.TkVisualizationCanvas

	Module Scientific.Visualization
	Module Scientific.Visualization.Color
	Module Scientific.Visualization.VMD
	Module Scientific.Visualization.VPython
	Module Scientific.Visualization.VRML
	Module Scientific.Visualization.VRML2

	Module Scientific.indexing

