code-saturne 2.1.0-4ubuntu1 source package in Ubuntu

Changelog

code-saturne (2.1.0-4ubuntu1) precise; urgency=low

  * Backport fix from debian to allow install again. (LP: #916165)
 -- Andreas Moog <email address hidden>   Thu, 26 Jan 2012 20:40:05 +0100

Upload details

Uploaded by:
Andreas Moog on 2012-01-26
Uploaded to:
Precise
Original maintainer:
Ubuntu Developers
Architectures:
any all
Section:
science
Urgency:
Low Urgency

See full publishing history Publishing

Series Pocket Published Component Section
Precise release on 2012-01-26 universe science

Downloads

File Size SHA-256 Checksum
code-saturne_2.1.0.orig.tar.bz2 26.1 MiB cc95b44b2ebea98f88110b10b88e6c9698dce92f83db26c6a0b2b0f5f9efd0e1
code-saturne_2.1.0-4ubuntu1.debian.tar.gz 5.3 KiB 6c82b702031e6ac78aec67e395c2ad732ede70c72786cef7d65457568d9cbb94
code-saturne_2.1.0-4ubuntu1.dsc 2.6 KiB 02d8d9ba05e6eec23214bab536bb520cd5a35b8939b36c33399a8d2c850cd46e

Available diffs

View changes file

Binary packages built by this source

code-saturne: General purpose Computational Fluid Dynamics (CFD) software

 The basic capabilities of Code_Saturne enable the handling of either
 incompressible or expandable flows with or without heat transfer and
 turbulence. Dedicated modules are available for specific physics such
 as radiative heat transfer, combustion (gas, coal, heavy fuel oil, ...),
 magneto-hydrodynamics, compressible flows, two-phase flows
 (Euler-Lagrange approach with two-way coupling), extensions to
 specific applications (e.g. Mercure_Saturne for atmospheric
 environment).
 .
 It runs in parallel with MPI on distributed memory machines.
 Developed since 1997 at EDF R&D, it is based on a co-located Finite
 Volume approach that accepts meshes with any type of cell
 (tetrahedral, hexahedral, prismatic, pyramidal, polyhedral...) and any
 type of grid structure (unstructured, block structured, hybrid,
 conforming or with hanging nodes, ...).

code-saturne-bin: General purpose Computational Fluid Dynamics (CFD) software - binaries

 The basic capabilities of Code_Saturne enable the handling of either
 incompressible or expandable flows with or without heat transfer and
 turbulence. Dedicated modules are available for specific physics such
 as radiative heat transfer, combustion (gas, coal, heavy fuel oil, ...),
 magneto-hydrodynamics, compressible flows, two-phase flows
 (Euler-Lagrange approach with two-way coupling), extensions to
 specific applications (e.g. Mercure_Saturne for atmospheric
 environment).
 .
 It runs in parallel with MPI on distributed memory machines.
 Developed since 1997 at EDF R&D, it is based on a co-located Finite
 Volume approach that accepts meshes with any type of cell
 (tetrahedral, hexahedral, prismatic, pyramidal, polyhedral...) and any
 type of grid structure (unstructured, block structured, hybrid,
 conforming or with hanging nodes, ...).
 .
 This package contains the binary files.

code-saturne-data: General purpose Computational Fluid Dynamics (CFD) software - data

 The basic capabilities of Code_Saturne enable the handling of either
 incompressible or expandable flows with or without heat transfer and
 turbulence. Dedicated modules are available for specific physics such
 as radiative heat transfer, combustion (gas, coal, heavy fuel oil, ...),
 magneto-hydrodynamics, compressible flows, two-phase flows
 (Euler-Lagrange approach with two-way coupling), extensions to
 specific applications (e.g. Mercure_Saturne for atmospheric
 environment).
 .
 It runs in parallel with MPI on distributed memory machines.
 Developed since 1997 at EDF R&D, it is based on a co-located Finite
 Volume approach that accepts meshes with any type of cell
 (tetrahedral, hexahedral, prismatic, pyramidal, polyhedral...) and any
 type of grid structure (unstructured, block structured, hybrid,
 conforming or with hanging nodes, ...).
 .
 This package contains the data.

code-saturne-doc: General purpose Computational Fluid Dynamics (CFD) software - Documentation

 The basic capabilities of Code_Saturne enable the handling of either
 incompressible or expandable flows with or without heat transfer and
 turbulence. Dedicated modules are available for specific physics such
 as radiative heat transfer, combustion (gas, coal, heavy fuel oil, ...),
 magneto-hydrodynamics, compressible flows, two-phase flows
 (Euler-Lagrange approach with two-way coupling), extensions to
 specific applications (e.g. Mercure_Saturne for atmospheric
 environment).
 .
 It runs in parallel with MPI on distributed memory machines.
 Developed since 1997 at EDF R&D, it is based on a co-located Finite
 Volume approach that accepts meshes with any type of cell
 (tetrahedral, hexahedral, prismatic, pyramidal, polyhedral...) and any
 type of grid structure (unstructured, block structured, hybrid,
 conforming or with hanging nodes, ...).
 .
 This package contains the documentation.

code-saturne-include: General purpose Computational Fluid Dynamics (CFD) software - includes

 The basic capabilities of Code_Saturne enable the handling of either
 incompressible or expandable flows with or without heat transfer and
 turbulence. Dedicated modules are available for specific physics such
 as radiative heat transfer, combustion (gas, coal, heavy fuel oil, ...),
 magneto-hydrodynamics, compressible flows, two-phase flows
 (Euler-Lagrange approach with two-way coupling), extensions to
 specific applications (e.g. Mercure_Saturne for atmospheric
 environment).
 .
 It runs in parallel with MPI on distributed memory machines.
 Developed since 1997 at EDF R&D, it is based on a co-located Finite
 Volume approach that accepts meshes with any type of cell
 (tetrahedral, hexahedral, prismatic, pyramidal, polyhedral...) and any
 type of grid structure (unstructured, block structured, hybrid,
 conforming or with hanging nodes, ...).
 .
 This package contains the include files.