h5py 2.7.0~rc3-1ubuntu1 source package in Ubuntu

Changelog

h5py (2.7.0~rc3-1ubuntu1) zesty; urgency=medium

  * Merge from Debian unstable, remaining changes:
    - Build without pie

 -- Gianfranco Costamagna <email address hidden>  Wed, 25 Jan 2017 19:40:32 +0100

Upload details

Uploaded by:
LocutusOfBorg on 2017-01-25
Uploaded to:
Zesty
Original maintainer:
Debian Science Team
Architectures:
any all
Section:
python
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section

Downloads

File Size SHA-256 Checksum
h5py_2.7.0~rc3.orig.tar.gz 258.8 KiB af509d1e817ef2788560149bb0ee0eda4c6e83a790e38a1d194ef8f874268cb4
h5py_2.7.0~rc3-1ubuntu1.debian.tar.xz 7.9 KiB 1842014818b370203ef6331e622d5be7405a2d01327cbdea3321a123ec18e99f
h5py_2.7.0~rc3-1ubuntu1.dsc 2.6 KiB 6bfa459e906e62422c9b345bb27f0fa194126328139882496fef76e0e1333696

View changes file

Binary packages built by this source

python-h5py: general-purpose Python interface to hdf5 (Python 2)

 HDF5 for Python (h5py) is a general-purpose Python interface to the
 Hierarchical Data Format library, version 5. HDF5 is a versatile, mature
 scientific software library designed for the fast, flexible storage of
 enormous amounts of data.
 .
 From a Python programmer's perspective, HDF5 provides a robust way to
 store data, organized by name in a tree-like fashion. You can create
 datasets (arrays on disk) hundreds of gigabytes in size, and perform
 random-access I/O on desired sections. Datasets are organized in a
 filesystem-like hierarchy using containers called "groups", and accessed
 using the tradional POSIX /path/to/resource syntax.
 .
 H5py provides a simple, robust read/write interface to HDF5 data from
 Python. Existing Python and Numpy concepts are used for the interface;
 for example, datasets on disk are represented by a proxy class that
 supports slicing, and has dtype and shape attributes. HDF5 groups are
 presented using a dictionary metaphor, indexed by name.
 .
 This package provides h5py for the Python 2 interpreter.

python-h5py-dbg: debug extension for h5py (Python 2)

 HDF5 for Python (h5py) is a general-purpose Python interface to the
 Hierarchical Data Format library, version 5. HDF5 is a versatile, mature
 scientific software library designed for the fast, flexible storage of
 enormous amounts of data.
 .
 From a Python programmer's perspective, HDF5 provides a robust way to
 store data, organized by name in a tree-like fashion. You can create
 datasets (arrays on disk) hundreds of gigabytes in size, and perform
 random-access I/O on desired sections. Datasets are organized in a
 filesystem-like hierarchy using containers called "groups", and accessed
 using the tradional POSIX /path/to/resource syntax.
 .
 H5py provides a simple, robust read/write interface to HDF5 data from
 Python. Existing Python and Numpy concepts are used for the interface;
 for example, datasets on disk are represented by a proxy class that
 supports slicing, and has dtype and shape attributes. HDF5 groups are
 presented using a dictionary metaphor, indexed by name.
 .
 This package provides h5py for the Python 2 debug interpreter.

python-h5py-doc: h5py documentation

 HDF5 for Python (h5py) is a general-purpose Python interface to the
 Hierarchical Data Format library, version 5. HDF5 is a versatile, mature
 scientific software library designed for the fast, flexible storage of
 enormous amounts of data.
 .
 From a Python programmer's perspective, HDF5 provides a robust way to
 store data, organized by name in a tree-like fashion. You can create
 datasets (arrays on disk) hundreds of gigabytes in size, and perform
 random-access I/O on desired sections. Datasets are organized in a
 filesystem-like hierarchy using containers called "groups", and accessed
 using the tradional POSIX /path/to/resource syntax.
 .
 H5py provides a simple, robust read/write interface to HDF5 data from
 Python. Existing Python and Numpy concepts are used for the interface;
 for example, datasets on disk are represented by a proxy class that
 supports slicing, and has dtype and shape attributes. HDF5 groups are
 presented using a dictionary metaphor, indexed by name.
 .
 This package provides the documentation for h5py.

python3-h5py: general-purpose Python interface to hdf5 (Python 3)

 HDF5 for Python (h5py) is a general-purpose Python interface to the
 Hierarchical Data Format library, version 5. HDF5 is a versatile, mature
 scientific software library designed for the fast, flexible storage of
 enormous amounts of data.
 .
 From a Python programmer's perspective, HDF5 provides a robust way to
 store data, organized by name in a tree-like fashion. You can create
 datasets (arrays on disk) hundreds of gigabytes in size, and perform
 random-access I/O on desired sections. Datasets are organized in a
 filesystem-like hierarchy using containers called "groups", and accessed
 using the tradional POSIX /path/to/resource syntax.
 .
 H5py provides a simple, robust read/write interface to HDF5 data from
 Python. Existing Python and Numpy concepts are used for the interface;
 for example, datasets on disk are represented by a proxy class that
 supports slicing, and has dtype and shape attributes. HDF5 groups are
 presented using a dictionary metaphor, indexed by name.
 .
 This package provides h5py for the Python 3 interpreter.

python3-h5py-dbg: debug extension for h5py (Python 3)

 HDF5 for Python (h5py) is a general-purpose Python interface to the
 Hierarchical Data Format library, version 5. HDF5 is a versatile, mature
 scientific software library designed for the fast, flexible storage of
 enormous amounts of data.
 .
 From a Python programmer's perspective, HDF5 provides a robust way to
 store data, organized by name in a tree-like fashion. You can create
 datasets (arrays on disk) hundreds of gigabytes in size, and perform
 random-access I/O on desired sections. Datasets are organized in a
 filesystem-like hierarchy using containers called "groups", and accessed
 using the tradional POSIX /path/to/resource syntax.
 .
 H5py provides a simple, robust read/write interface to HDF5 data from
 Python. Existing Python and Numpy concepts are used for the interface;
 for example, datasets on disk are represented by a proxy class that
 supports slicing, and has dtype and shape attributes. HDF5 groups are
 presented using a dictionary metaphor, indexed by name.
 .
 This package provides h5py for the Python 3 debug interpreter.