nvidia-cuda-toolkit 10.1.243-3 source package in Ubuntu

Changelog

nvidia-cuda-toolkit (10.1.243-3) experimental; urgency=medium

  [ Graham Inggs ]
  * Switch back to openjdk-8-jre for nvidia-visual-profiler and nvidia-nsight.

 -- Andreas Beckmann <email address hidden>  Sat, 11 Apr 2020 14:56:37 +0200

Upload details

Uploaded by:
Debian NVIDIA Maintainers on 2020-04-11
Uploaded to:
Experimental
Original maintainer:
Debian NVIDIA Maintainers
Architectures:
amd64 ppc64el all
Section:
devel
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section
Focal release on 2020-04-11 multiverse devel

Builds

Focal: [FULLYBUILT] amd64 [FULLYBUILT] ppc64el

Downloads

File Size SHA-256 Checksum
nvidia-cuda-toolkit_10.1.243-3.dsc 6.2 KiB a3a761fadea7f44b6aeb44d3f7f6bd0cf92956ee1ed07f95c8337270e7f5b4b1
nvidia-cuda-toolkit_10.1.243.orig-amd64.tar.xz 1.3 GiB 8432a081ca1485db7d779d4339391478b8fb3e7c12f979b0931aa191e14923aa
nvidia-cuda-toolkit_10.1.243.orig-ppc64el.tar.xz 1.1 GiB 87b2861d6320d81fdfd957465f20480d715f6978e25a582f809ac21196f5b60b
nvidia-cuda-toolkit_10.1.243.orig.tar.xz 196 bytes 343486740b3fd891b36e052733c7e68f85fd5902b2df1b68305b0bb52d121389
nvidia-cuda-toolkit_10.1.243-3.debian.tar.xz 60.4 KiB 881d60ed369f1090837aded69cf941a0e4e4ddc482b7bb63f5d74f9d128e4e7c

Available diffs

  • diff from 10.1.243-2 to 10.1.243-3 (pending)

No changes file available.

Binary packages built by this source

libaccinj64-10.1: NVIDIA ACCINJ Library (64-bit)

 The Compute Unified Device Architecture (CUDA) enables NVIDIA
 graphics processing units (GPUs) to be used for massively parallel
 general purpose computation.
 .
 ACCINJ is the OpenACC internal library for profiling.
 .
 This package contains the 64-bit ACCINJ runtime library.

libcublas10: NVIDIA cuBLAS Library

 The Compute Unified Device Architecture (CUDA) enables NVIDIA
 graphics processing units (GPUs) to be used for massively parallel
 general purpose computation.
 .
 The cuBLAS library is an implementation of BLAS (Basic Linear Algebra
 Subprograms) on top of the NVIDIA CUDA runtime. It allows the user to access
 the computational resources of NVIDIA Graphics Processing Unit (GPU), but
 does not auto-parallelize across multiple GPUs.
 .
 This package contains the cuBLAS runtime library.

libcublaslt10: No summary available for libcublaslt10 in ubuntu groovy.

No description available for libcublaslt10 in ubuntu groovy.

libcudart10.1: No summary available for libcudart10.1 in ubuntu groovy.

No description available for libcudart10.1 in ubuntu groovy.

libcufft10: NVIDIA cuFFT Library

 The Compute Unified Device Architecture (CUDA) enables NVIDIA
 graphics processing units (GPUs) to be used for massively parallel
 general purpose computation.
 .
 The FFT is a divide-and-conquer algorithm for efficiently computing discrete
 Fourier transforms of complex or real-valued data sets. It is one of the most
 important and widely used numerical algorithms in computational physics and
 general signal processing. The cuFFT library provides a simple interface for
 computing FFTs on an NVIDIA GPU, which allows users to quickly leverage the
 floating-point power and parallelism of the GPU in a highly optimized and
 tested FFT library.
 .
 This package contains the cuFFT runtime library.

libcufftw10: NVIDIA cuFFTW Library

 The Compute Unified Device Architecture (CUDA) enables NVIDIA
 graphics processing units (GPUs) to be used for massively parallel
 general purpose computation.
 .
 The FFT is a divide-and-conquer algorithm for efficiently computing discrete
 Fourier transforms of complex or real-valued data sets. It is one of the most
 important and widely used numerical algorithms in computational physics and
 general signal processing. The cuFFT library provides a simple interface for
 computing FFTs on an NVIDIA GPU, which allows users to quickly leverage the
 floating-point power and parallelism of the GPU in a highly optimized and
 tested FFT library.
 .
 This package contains the cuFFTW runtime library.

libcuinj64-10.1: No summary available for libcuinj64-10.1 in ubuntu groovy.

No description available for libcuinj64-10.1 in ubuntu groovy.

libcupti-dev: NVIDIA CUDA Profiler Tools Interface development files

 The CUDA Profiler Tools Interface (CUPTI) enables the creation of
 profiling and tracing tools that target CUDA applications. CUPTI
 provides a set of APIs targeted at ISVs creating profilers and other
 performance optimization tools. The CUPTI APIs are not intended to be
 used by developers in their CUDA applications.
 .
 This package contains the development files: headers and libraries.

libcupti-doc: NVIDIA CUDA Profiler Tools Interface documentation

 The CUDA Profiler Tools Interface (CUPTI) enables the creation of
 profiling and tracing tools that target CUDA applications. CUPTI
 provides a set of APIs targeted at ISVs creating profilers and other
 performance optimization tools. The CUPTI APIs are not intended to be
 used by developers in their CUDA applications.
 .
 This package contains the documentation and examples.

libcupti10.1: NVIDIA CUDA Profiler Tools Interface runtime library

 The CUDA Profiler Tools Interface (CUPTI) enables the creation of
 profiling and tracing tools that target CUDA applications. CUPTI
 provides a set of APIs targeted at ISVs creating profilers and other
 performance optimization tools. The CUPTI APIs are not intended to be
 used by developers in their CUDA applications.
 .
 This package contains the runtime library.

libcurand10: NVIDIA cuRAND Library

 The Compute Unified Device Architecture (CUDA) enables NVIDIA
 graphics processing units (GPUs) to be used for massively parallel
 general purpose computation.
 .
 The cuRAND library provides facilities that focus on the simple and efficient
 generation of high-quality pseudorandom and quasirandom numbers.
 A pseudorandom sequence of numbers satisfies most of the statistical
 properties of a truly random sequence but is generated by a deterministic
 algorithm. A quasirandom sequence of n-dimensional points is generated by a
 deterministic algorithm designed to fill an n-dimensional space evenly.
 .
 This package contains the cuRAND runtime library.

libcusolver10: NVIDIA cuSOLVER Library

 The cuSOLVER library contains LAPACK-like functions in dense and sparse
 linear algebra, including linear solver, least-square solver and eigenvalue
 solver.
 .
 This package contains the cuSOLVER runtime library.

libcusolvermg10: NVIDIA cuSOLVERmg Library

 The cuSOLVER library contains LAPACK-like functions in dense and sparse
 linear algebra, including linear solver, least-square solver and eigenvalue
 solver.
 .
 This package contains the cuSOLVERmg runtime library.

libcusparse10: NVIDIA cuSPARSE Library

 The Compute Unified Device Architecture (CUDA) enables NVIDIA
 graphics processing units (GPUs) to be used for massively parallel
 general purpose computation.
 .
 The cuSPARSE library contains a set of basic linear algebra subroutines used
 for handling sparse matrices. It is implemented on top of the NVIDIA CUDA
 runtime and is designed to be called from C and C++. The library routines can
 be classified into four categories:
  * Level 1: operations between a vector in sparse format and a vector in dense
 format
  * Level 2: operations between a matrix in sparse format and a vector in dense
 format
  * Level 3: operations between a matrix in sparse format and a set of vectors
 in dense format
  * Conversion: operations that allow conversion between different matrix
 formats
 .
 This package contains the cuSPARSE runtime library.

libnppc10: No summary available for libnppc10 in ubuntu groovy.

No description available for libnppc10 in ubuntu groovy.

libnppial10: NVIDIA Performance Primitives lib for Image Arithmetic and Logic

 NVIDIA NPP is a library of functions for performing CUDA accelerated
 processing.
 .
 This package contains the NVIDIA Performance Primitives runtime library for
 Image Arithmetic and Logic operations, which is a sub-library of nppi.

libnppicc10: No summary available for libnppicc10 in ubuntu groovy.

No description available for libnppicc10 in ubuntu groovy.

libnppicom10: No summary available for libnppicom10 in ubuntu groovy.

No description available for libnppicom10 in ubuntu groovy.

libnppidei10: No summary available for libnppidei10 in ubuntu groovy.

No description available for libnppidei10 in ubuntu groovy.

libnppif10: NVIDIA Performance Primitives lib for Image Filters

 NVIDIA NPP is a library of functions for performing CUDA accelerated
 processing.
 .
 This package contains the NVIDIA Performance Primitives runtime library for
 Image Filters, which is a sub-library of nppi.

libnppig10: NVIDIA Performance Primitives lib for Image Geometry transforms

 NVIDIA NPP is a library of functions for performing CUDA accelerated
 processing.
 .
 This package contains the NVIDIA Performance Primitives runtime library for
 Image Geometry transforms, which is a sub-library of nppi.

libnppim10: NVIDIA Performance Primitives lib for Image Morphological operations

 NVIDIA NPP is a library of functions for performing CUDA accelerated
 processing.
 .
 This package contains the NVIDIA Performance Primitives runtime library for
 Image Morphological operations, which is a sub-library of nppi.

libnppist10: No summary available for libnppist10 in ubuntu groovy.

No description available for libnppist10 in ubuntu groovy.

libnppisu10: NVIDIA Performance Primitives lib for Image Support

 NVIDIA NPP is a library of functions for performing CUDA accelerated
 processing.
 .
 This package contains the NVIDIA Performance Primitives runtime library for
 Image Support, which is a sub-library of nppi.

libnppitc10: NVIDIA Performance Primitives lib for Image Threshold and Compare

 NVIDIA NPP is a library of functions for performing CUDA accelerated
 processing.
 .
 This package contains the NVIDIA Performance Primitives runtime library for
 Image Threshold and Compare, which is a sub-library of nppi.

libnpps10: NVIDIA Performance Primitives for signal processing runtime library

 NVIDIA NPP is a library of functions for performing CUDA accelerated
 processing. The initial set offunctionality in the library focuses on imaging
 and video processing and is widely applicable for developers in these areas.
 NPP will evolve over time to encompass more of the compute heavy tasks in a
 variety of problem domains. The NPP library is written to maximize
 flexibility, while maintaining high performance.
 .
 This package contains the NVIDIA Performance Primitives runtime library for
 signal processing.

libnvblas10: NVBLAS runtime library

 The Compute Unified Device Architecture (CUDA) enables NVIDIA
 graphics processing units (GPUs) to be used for massively parallel
 general purpose computation.
 .
 The NVBLAS Library is a GPU-accelerated Library that implements BLAS (Basic
 Linear Algebra Subprograms). It can accelerate most BLAS Level-3 routines by
 dynamically routing BLAS calls to one or more NVIDIA GPUs present in the
 system, when the characteristics of the call make it to speedup on a GPU.

libnvgraph10: No summary available for libnvgraph10 in ubuntu groovy.

No description available for libnvgraph10 in ubuntu groovy.

libnvidia-ml-dev: NVIDIA Management Library (NVML) development files

 The NVIDIA Management Library (NVML) provides a monitoring and management API.
 It provides a direct access to the queries and commands exposed via nvidia-smi.
 .
 This package contains the header file and depends on the driver-provided
 library.

libnvjpeg10: No summary available for libnvjpeg10 in ubuntu groovy.

No description available for libnvjpeg10 in ubuntu groovy.

libnvrtc10.1: No summary available for libnvrtc10.1 in ubuntu groovy.

No description available for libnvrtc10.1 in ubuntu groovy.

libnvtoolsext1: NVIDIA Tools Extension Library

 The NVIDIA Tools Extension SDK (NVTX) is a C-based API for marking events and
 ranges in your applications. Applications which integrate NVTX can use Nsight
 to capture and visualize these events and ranges.
 .
 This package contains the NVIDIA Tools Extension runtime library.

libnvvm3: NVIDIA NVVM Library

 NVIDIA's CUDA Compiler (NVCC) is based on the widely used LLVM open source
 compiler infrastructure.
 .
 The NVVM library is used by NVCC to compile CUDA binary code to run on NVIDIA
 GPUs.
 .
 This package contains the NVIDIA NVVM runtime library.

nsight-compute: NVIDIA Nsight Compute

 NVIDIA Nsight Compute is an interactive kernel profiler for CUDA applications.
 It provides detailed performance metrics and API debugging via a user
 interface and command line tool. In addition, its baseline feature allows
 users to compare results within the tool. Nsight Compute provides a
 customizable and data-driven user interface and metric collection and can be
 extended with analysis scripts for post-processing results.

nsight-systems: NVIDIA Nsight Systems

 NVIDIA Nsight Systems is a system-wide performance analysis tool designed to
 visualize an application’s algorithms, help you identify the largest
 opportunities to optimize, and tune to scale efficiently across any quantity
 or size of CPUs and GPUs; from large server to smallest SoCs.

nvidia-cuda-dev: NVIDIA CUDA development files

 The Compute Unified Device Architecture (CUDA) enables NVIDIA
 graphics processing units (GPUs) to be used for massively parallel
 general purpose computation.
 .
 This package contains the development files: headers and libraries.

nvidia-cuda-doc: NVIDIA CUDA and OpenCL documentation

 The Compute Unified Device Architecture (CUDA) enables NVIDIA
 graphics processing units (GPUs) to be used for massively parallel
 general purpose computation.
 .
 OpenCL (Open Computing Language) is a multi-vendor open standard for
 general-purpose parallel programming of heterogeneous systems that include
 CPUs, GPUs and other processors.
 .
 This package contains the developer documentation.

nvidia-cuda-gdb: NVIDIA CUDA Debugger (GDB)

 The Compute Unified Device Architecture (CUDA) enables NVIDIA
 graphics processing units (GPUs) to be used for massively parallel
 general purpose computation.
 .
 This package contains the cuda-gdb debugger.

nvidia-cuda-toolkit: NVIDIA CUDA development toolkit

 The Compute Unified Device Architecture (CUDA) enables NVIDIA
 graphics processing units (GPUs) to be used for massively parallel
 general purpose computation.
 .
 This package contains the nvcc compiler and other tools needed for building
 CUDA applications.
 .
 Running CUDA applications requires a supported NVIDIA GPU and the NVIDIA
 driver kernel module.

nvidia-cuda-toolkit-gcc: NVIDIA CUDA development toolkit (GCC compatibility)

 The Compute Unified Device Architecture (CUDA) enables NVIDIA
 graphics processing units (GPUs) to be used for massively parallel
 general purpose computation.
 .
 This package provides the /usr/bin/cuda-gcc, /usr/bin/cuda-g++ symlinks to
 simplify building packages that need to be built with a CUDA-compatible
 compiler.

nvidia-nsight: NVIDIA Nsight Eclipse Edition

 NVIDIA Nsight Eclipse Edition is a full-featured IDE powered by the Eclipse
 platform that provides an all-in-one integrated environment to edit, build,
 debug and profile CUDA-C applications.
 Nsight Eclipse Edition supports a rich set of commercial and free plugins.

nvidia-opencl-dev: NVIDIA OpenCL development files

 OpenCL (Open Computing Language) is a multi-vendor open standard for
 general-purpose parallel programming of heterogeneous systems that include
 CPUs, GPUs and other processors.
 .
 This metapackage provides the development files: headers and libraries.

nvidia-profiler: NVIDIA Profiler for CUDA and OpenCL

 The Compute Unified Device Architecture (CUDA) enables NVIDIA
 graphics processing units (GPUs) to be used for massively parallel
 general purpose computation.
 .
 OpenCL (Open Computing Language) is a multi-vendor open standard for
 general-purpose parallel programming of heterogeneous systems that include
 CPUs, GPUs and other processors.
 .
 This package contains the nvprof profiler.

nvidia-visual-profiler: NVIDIA Visual Profiler for CUDA and OpenCL

 The NVIDIA Visual Profiler is a cross-platform performance profiling tool
 that delivers developers vital feedback for optimizing CUDA C/C++ and OpenCL
 applications.