pacemaker 1.1.17-1ubuntu1 source package in Ubuntu

Changelog

pacemaker (1.1.17-1ubuntu1) artful; urgency=medium

  * Merge with Debian unstable. Remaining changes:
    - d/control: Demote fence-agents to Suggests, avoiding main inclusion.
    - d/control: Promote crmsh | pcs to Recommends for upgraders from 14.04.

 -- Nishanth Aravamudan <email address hidden>  Wed, 09 Aug 2017 10:52:14 -0700

Upload details

Uploaded by:
Nish Aravamudan on 2017-08-21
Uploaded to:
Artful
Original maintainer:
Ubuntu Developers
Architectures:
any all
Section:
admin
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section

Downloads

File Size SHA-256 Checksum
pacemaker_1.1.17.orig.tar.gz 4.9 MiB 96e04751e85a266e2daa8c590000a151ff37f0bb7b873d77e38534299d399803
pacemaker_1.1.17-1ubuntu1.debian.tar.xz 42.6 KiB 8a4f8da8d49b51e7e7ce83820fb65b36011b1764694d0fa28b014bdcb5086de9
pacemaker_1.1.17-1ubuntu1.dsc 3.6 KiB 50e57bbb4023b645fceb37e3480fd8c13e30812d0d1765a305fa5bb16afe8006

Available diffs

View changes file

Binary packages built by this source

libcib-dev: cluster resource manager CIB library development

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the headers and other necessary files to build
 applications or libraries that use the Cluster Information Base library.

libcib4: cluster resource manager CIB library

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the Cluster Information Base library.

libcib4-dbgsym: debug symbols for libcib4
libcrmcluster-dev: cluster resource manager cluster library development

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the headers and other necessary files to build
 applications or libraries that use the cluster library.

libcrmcluster4: cluster resource manager cluster library

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the cluster library.

libcrmcluster4-dbgsym: debug symbols for package libcrmcluster4

 .
 This package contains the cluster library.

libcrmcommon-dev: cluster resource manager common library development

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the headers and other necessary files to build
 applications or libraries that use the common library.

libcrmcommon3: cluster resource manager common library

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the common library.

libcrmcommon3-dbgsym: debug symbols for libcrmcommon3
libcrmservice-dev: cluster resource manager service library development

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the headers and other necessary files to build
 applications or libraries that use the service library.

libcrmservice3: cluster resource manager service library

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the service library.

libcrmservice3-dbgsym: debug symbols for libcrmservice3
liblrmd-dev: cluster resource manager LRMD library development

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the headers and other necessary files to build
 applications or libraries that use the Local Resource Manager Daemon
 library.

liblrmd1: cluster resource manager LRMD library

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the Local Resource Manager Daemon library.

liblrmd1-dbgsym: debug symbols for package liblrmd1

 .
 This package contains the Local Resource Manager Daemon library.

libpe-rules2: cluster resource manager Policy Engine rules library

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the Policy Engine rules library.

libpe-rules2-dbgsym: debug symbols for libpe-rules2
libpe-status10: cluster resource manager Policy Engine status library

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the Policy Engine status library.

libpe-status10-dbgsym: debug symbols for package libpe-status10

 .
 This package contains the Policy Engine status library.

libpengine-dev: cluster resource manager Policy Engine library development

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the headers and other necessary files to build
 applications or libraries that use the Policy Engine library.

libpengine10: cluster resource manager Policy Engine library

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the Policy Engine library.

libpengine10-dbgsym: debug symbols for package libpengine10

 .
 This package contains the Policy Engine library.

libstonithd-dev: cluster resource manager STONITH daemon library development

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the headers and other necessary files to build
 applications or libraries that use the STONITH daemon library.

libstonithd2: cluster resource manager STONITH daemon library

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the STONITH daemon library.

libstonithd2-dbgsym: debug symbols for libstonithd2
libtransitioner2: cluster resource manager transitioner library

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the transitioner library.

libtransitioner2-dbgsym: debug symbols for libtransitioner2
pacemaker: cluster resource manager

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the Pacemaker daemons directly interacting with
 the cluster stack.

pacemaker-cli-utils: cluster resource manager command line utilities

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains those command line utilities of the Pacemaker
 cluster manager which work on remote nodes as well.

pacemaker-cli-utils-dbgsym: debug symbols for package pacemaker-cli-utils

 .
 This package contains those command line utilities of the Pacemaker
 cluster manager which work on remote nodes as well.

pacemaker-dbgsym: debug symbols for pacemaker
pacemaker-remote: cluster resource manager proxy daemon for remote nodes

 At its core, Pacemaker is a distributed finite state machine capable of
 co-ordinating the startup and recovery of inter-related services across
 a set of machines.
 .
 Pacemaker understands many different resource types (OCF, SYSV, systemd)
 and can accurately model the relationships between them (colocation,
 ordering).
 .
 It can even use technology such as Docker to automatically isolate the
 resources managed by the cluster.
 .
 This package contains the Pacemaker proxy daemon, which simulates cluster
 services on a node not running the cluster stack. Such "remote" nodes can
 run resources but don't participate in the quorum. This package is
 mutually exclusive with Pacemaker proper.

pacemaker-remote-dbgsym: debug symbols for pacemaker-remote