pycuda 2017.1.1-2ubuntu2 source package in Ubuntu

Changelog

pycuda (2017.1.1-2ubuntu2) disco; urgency=medium

  * No-change rebuild to build without python3.6 support.

 -- Matthias Klose <email address hidden>  Sat, 03 Nov 2018 16:34:53 +0000

Upload details

Uploaded by:
Matthias Klose on 2018-11-03
Uploaded to:
Disco
Original maintainer:
Ubuntu Developers
Architectures:
amd64 all
Section:
python
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section

Builds

Disco: [FULLYBUILT] amd64

Downloads

File Size SHA-256 Checksum
pycuda_2017.1.1.orig.tar.xz 180.0 KiB 744a7126ce3a9ace705dbc2961a53173ec1fd6760b956e55c18613a3f506d6de
pycuda_2017.1.1-2ubuntu2.debian.tar.xz 10.3 KiB a6f1905edb34055b3cbaf3dd8e4f90b21723121e794087a0e8a7834006d1b438
pycuda_2017.1.1-2ubuntu2.dsc 2.7 KiB 6e7f61339efa7f5b91dc6556912ac730f62e9acd619b10a0f324db31df586c32

View changes file

Binary packages built by this source

python-pycuda: Python module to access Nvidia‘s CUDA parallel computation API

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.

python-pycuda-dbg: Python module to access Nvidia‘s CUDA API (debug extensions)

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.
 .
 This package contains debug extensions build for the Python debug interpreter.

python-pycuda-doc: module to access Nvidia‘s CUDA computation API (documentation)

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.
 .
 This package contains HTML documentation and example scripts.

python3-pycuda: Python 3 module to access Nvidia‘s CUDA parallel computation API

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.
 .
 This package contains Python 3 modules.

python3-pycuda-dbg: Python 3 module to access Nvidia‘s CUDA API (debug extensions)

 PyCUDA lets you access Nvidia‘s CUDA parallel computation API from Python.
 Several wrappers of the CUDA API already exist–so what’s so special about
 PyCUDA?
  * Object cleanup tied to lifetime of objects. This idiom, often called
    RAII in C++, makes it much easier to write correct, leak- and crash-free
    code. PyCUDA knows about dependencies, too, so (for example) it won’t
    detach from a context before all memory allocated in it is also freed.
  * Convenience. Abstractions like pycuda.driver.SourceModule and
    pycuda.gpuarray.GPUArray make CUDA programming even more convenient than
    with Nvidia’s C-based runtime.
  * Completeness. PyCUDA puts the full power of CUDA’s driver API at your
    disposal, if you wish.
  * Automatic Error Checking. All CUDA errors are automatically translated
    into Python exceptions.
  * Speed. PyCUDA’s base layer is written in C++, so all the niceties
    above are virtually free.
  * Helpful Documentation.
 .
 This package contains debug extensions for the Python 3 debug interpreter.