pyspectral 0.8.6+ds-1 source package in Ubuntu

Changelog

pyspectral (0.8.6+ds-1) unstable; urgency=medium

  * Initial version (Closes: #917351)

 -- Antonio Valentino <email address hidden>  Wed, 26 Dec 2018 16:46:35 +0000

Upload details

Uploaded by:
Debian GIS Project on 2018-12-30
Uploaded to:
Sid
Original maintainer:
Debian GIS Project
Architectures:
all
Section:
misc
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section
Disco release on 2018-12-31 universe misc

Builds

Disco: [FULLYBUILT] amd64

Downloads

File Size SHA-256 Checksum
pyspectral_0.8.6+ds-1.dsc 2.4 KiB 9d985437c1c204facdafe9df414a924ca9059b46ce17afeebb28be9904b0c3e6
pyspectral_0.8.6+ds.orig.tar.xz 3.4 MiB 5d7ffb103b140e1878c894ff49fa6ffe1c83c965dde49dc51faa5920a9816f09
pyspectral_0.8.6+ds-1.debian.tar.xz 115.4 KiB 70887c9ab0196d162f56d781f6f27d394b14e27470ea3768c91745548a4cf46f

No changes file available.

Binary packages built by this source

pyspectral-bin: Reading and manipulaing satellite sensor spectral responses - scripts

 Reading and manipulaing satellite sensor spectral responses and the
 solar spectrum, to perform various corrections to VIS and NIR band data.
 .
 Given a passive sensor on a meteorological satellite PySpectral
 provides the relative spectral response (rsr) function(s) and offer
 some basic operations like convolution with the solar spectrum to
 derive the in band solar flux, for instance.
 .
 The focus is on imaging sensors like AVHRR, VIIRS, MODIS, ABI, AHI,
 OLCI and SEVIRI. But more sensors are included and if others are
 needed they can be easily added. With PySpectral it is possible to
 derive the reflective and emissive parts of the signal observed in any
 NIR band around 3-4 microns where both passive terrestrial emission
 and solar backscatter mix the information received by the satellite.
 Furthermore PySpectral allows correcting true color imagery for the
 background (climatological) atmospheric signal due to Rayleigh
 scattering of molecules, absorption by atmospheric gases and aerosols,
 and Mie scattering of aerosols.
 .
 This package provides utilities and executable scripts.

python3-pyspectral: Reading and manipulaing satellite sensor spectral responses

 Reading and manipulaing satellite sensor spectral responses and the
 solar spectrum, to perform various corrections to VIS and NIR band data.
 .
 Given a passive sensor on a meteorological satellite PySpectral
 provides the relative spectral response (rsr) function(s) and offer
 some basic operations like convolution with the solar spectrum to
 derive the in band solar flux, for instance.
 .
 The focus is on imaging sensors like AVHRR, VIIRS, MODIS, ABI, AHI,
 OLCI and SEVIRI. But more sensors are included and if others are
 needed they can be easily added. With PySpectral it is possible to
 derive the reflective and emissive parts of the signal observed in any
 NIR band around 3-4 microns where both passive terrestrial emission
 and solar backscatter mix the information received by the satellite.
 Furthermore PySpectral allows correcting true color imagery for the
 background (climatological) atmospheric signal due to Rayleigh
 scattering of molecules, absorption by atmospheric gases and aerosols,
 and Mie scattering of aerosols.

python3-pyspectral-doc: Reading and manipulaing satellite sensor spectral responses - documentation

 Reading and manipulaing satellite sensor spectral responses and the
 solar spectrum, to perform various corrections to VIS and NIR band data.
 .
 Given a passive sensor on a meteorological satellite PySpectral
 provides the relative spectral response (rsr) function(s) and offer
 some basic operations like convolution with the solar spectrum to
 derive the in band solar flux, for instance.
 .
 The focus is on imaging sensors like AVHRR, VIIRS, MODIS, ABI, AHI,
 OLCI and SEVIRI. But more sensors are included and if others are
 needed they can be easily added. With PySpectral it is possible to
 derive the reflective and emissive parts of the signal observed in any
 NIR band around 3-4 microns where both passive terrestrial emission
 and solar backscatter mix the information received by the satellite.
 Furthermore PySpectral allows correcting true color imagery for the
 background (climatological) atmospheric signal due to Rayleigh
 scattering of molecules, absorption by atmospheric gases and aerosols,
 and Mie scattering of aerosols.
 .
 This package includes the PySpectral documentation in HTML format.