Binary package “libkido-planning0.1” in ubuntu eoan

Kinematics Dynamics and Optimization Library - planning library

 KIDO is a collaborative, cross-platform, open source library created by the
 Georgia Tech Graphics Lab and Humanoid Robotics Lab. The library provides data
 structures and algorithms for kinematic and dynamic applications in robotics
 and computer animation.
 KIDO is distinguished by it's accuracy and stability due to its use of
 generalized coordinates to represent articulated rigid body systems and
 computation of Lagrange's equations derived from D.Alembert's principle to
 describe the dynamics of motion.
 For developers, in contrast to many popular physics engines which view the
 simulator as a black box, KIDO gives full access to internal kinematic and
 dynamic quantities, such as the mass matrix, Coriolis and centrifugal forces,
 transformation matrices and their derivatives. KIDO also provides efficient
 computation of Jacobian matrices for arbitrary body points and coordinate
 frames. Contact and collision are handled using an implicit time-stepping,
 velocity-based LCP (linear-complementarity problem) to guarantee
 non-penetration, directional friction, and approximated Coulomb friction cone
 conditions. For collision detection, KIDO uses FCL developed by Willow Garage
 and the UNC Gamma Lab.
 KIDO has applications in robotics and computer animation because it features a
 multibody dynamic simulator and tools for control and motion planning.
 Multibody dynamic simulation in KIDO is an extension of RTQL8, an open source
 software created by the Georgia Tech Graphics Lab.
 This package contains the KIDO planning library.