
UFL Specification and User Manual 0.3

November 16, 2010

Martin S. Alnæs, Anders Logg

www.fenics.org

Visit http://www.fenics.org/ for the latest version of this manual.
Send comments and suggestions to ufl-dev@fenics.org.

Contents

About this manual 11

1 Introduction 13

2 Form Language 15

2.1 Forms and Integrals . 16

2.2 Finite Element Spaces . 18

2.2.1 Cells . 18

2.2.2 Element Families . 19

2.2.3 Basic Elements . 21

2.2.4 Vector Elements . 21

2.2.5 Tensor Elements . 22

2.2.6 Mixed Elements . 22

2.2.7 EnrichedElement . 23

2.3 Form Arguments . 24

3

2.3.1 Basis functions . 24

2.3.2 Coefficient functions 25

2.4 Basic Datatypes . 27

2.4.1 Literals and geometric quantities 27

2.5 Indexing and tensor components 29

2.5.1 Defining indices . 30

2.5.2 Taking components of tensors 32

2.5.3 Making tensors from components 33

2.5.4 Implicit summation . 34

2.6 Basic algebraic operators . 34

2.7 Basic nonlinear functions . 35

2.8 Tensor Algebra Operators . 36

2.8.1 transpose . 36

2.8.2 tr . 36

2.8.3 dot . 37

2.8.4 inner . 38

2.8.5 outer . 39

2.8.6 cross . 40

2.8.7 det . 40

2.8.8 dev . 40

2.8.9 sym . 40

2.8.10 skew . 41

2.8.11 cofac . 41

2.8.12 inv . 41

2.9 Differential Operators . 42

2.9.1 Basic spatial derivatives 42

2.9.2 Compound spatial derivatives 43

2.9.3 Gradient . 43

2.9.4 Divergence . 44

2.9.5 Curl and rot . 45

2.9.6 Variable derivatives . 45

2.9.7 Functional derivatives 46

2.10 DG operators . 46

2.10.1 Restriction: v(’+’) and v(’-’) 47

2.10.2 Jump: jump(v) . 47

2.10.3 Average: avg(v) . 48

2.11 Conditional Operators . 48

2.11.1 Conditional . 48

2.11.2 Conditions . 49

2.12 User-defined operators . 49

2.13 Form Transformations . 50

2.13.1 Replacing arguments of a Form 50

2.13.2 Action of a form on a function 50

2.13.3 Energy norm of a bilinear Form 51

2.13.4 Adjoint of a bilinear Form 52

2.13.5 Linear and bilinear parts of a Form 52

2.13.6 Automatic Functional Differentiation 53

2.13.7 Combining form transformations 57

2.14 Tuple Notation . 58

2.15 Form Files . 59

3 Example Forms 61

3.1 The mass matrix . 61

3.2 Poisson’s equation . 62

3.3 Vector-valued Poisson . 63

3.4 The strain-strain term of linear elasticity 64

3.5 The nonlinear term of Navier–Stokes 65

3.6 The heat equation . 66

3.7 Mixed formulation of Stokes 67

3.8 Mixed formulation of Poisson 68

3.9 Poisson’s equation with DG elements 69

3.10 Quadrature elements . 70

3.11 More Examples . 74

4 Internal Representation Details 75

4.1 Structure of a Form . 75

4.2 General properties of expressions 76

4.2.1 operands . 76

4.2.2 reconstruct . 76

4.2.3 cell . 77

4.2.4 shape . 77

4.2.5 free indices . 77

4.2.6 index dimensions . 77

4.2.7 str(u) . 77

4.2.8 repr(u) . 77

4.2.9 hash(u) . 78

4.2.10 u == v . 78

4.2.11 About other relational operators 78

4.3 Elements . 78

4.4 Terminals . 79

4.5 Operators . 79

4.6 Extending UFL . 79

5 Algorithms 81

5.1 Formatting expressions . 81

5.1.1 str . 82

5.1.2 repr . 82

5.1.3 Tree formatting . 82

5.1.4 LATEXformatting . 83

5.1.5 Dot formatting . 83

5.2 Inspecting and manipulating the expression tree 83

5.2.1 Traversing expressions 83

5.2.2 Extracting information 84

5.2.3 Transforming expressions 84

5.3 Automatic differentiation implementation 87

5.3.1 Forward mode . 88

5.3.2 Reverse mode . 88

5.3.3 Mixed derivatives . 88

5.4 Computational graphs . 88

5.4.1 The computational graph 88

5.4.2 Partitioning the graph 91

A Commandline utilities 95

A.1 Validation and debugging: ufl-analyse 95

A.2 Formatting and visualization: ufl-convert 95

A.3 Conversion from FFC form files: form2ufl 96

B Installation 97

B.1 Installing from source . 97

B.1.1 Dependencies and requirements 97

B.1.2 Downloading the source code 98

B.1.3 Installing UFL . 99

B.1.4 Running the test suite 100

B.2 Debian (Ubuntu) package . 100

C License 101

About this manual

Intended audience

This manual is written both for the beginning and the advanced user. There
is also some useful information for developers. More advanced topics are
treated at the end of the manual or in the appendix.

Typographic conventions

• Code is written in monospace (typewriter) like this.

• Commands that should be entered in a Unix shell are displayed as
follows:

./configure

make

Commands are written in the dialect of the bash shell. For other shells,
such as tcsh, appropriate translations may be needed.

11

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

Enumeration and list indices

Throughout this manual, elements xi of sets {xi} of size n are enumerated
from i = 0 to i = n − 1. Derivatives in R

n are enumerated similarly:
∂

∂x0

, ∂
∂x1

, . . . , ∂
∂xn−1

.

Contact

Comments, corrections and contributions to this manual are most welcome
and should be sent to

ufl-dev@fenics.org

12

Chapter 1

Introduction

The Unified Form Language (UFL) is a domain specific language for defining
discrete variational forms and functionals in a notation close to pen-and-
paper formulation.

UFL [2] is part of the FEniCS project [4], and is usually used in combination
with other components from this project to compute solutions to partial
differential equations. The form compilers FFC [6] and SFC [1] use UFL as
their end-user interface, producing implementations of the UFC [3] interface
as their output. See the DOLFIN manual [5] for more details about using
UFL in an integrated problem solving environment.

This manual is intended for different audiences. If you are an end user and all
you want to do is to solve your PDEs with the FEniCS framework, Chapters 2
and 3 are for you. These two chapters explain how to use all operators
available in the language and present a number of examples to illustrate the
use of the form language in applications. The rest of the chapters contain
more technical details intended for developers who need to understand what
is happening behind the scenes and modify or extend UFL in the future.

Chapter 4 details the implementation of the language, in particular how ex-
pressions are represented internally by UFL. This can also be useful knowl-
edge to understand error messages and debug errors in your form files.

13

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

Chapter 5 explains many algorithms to work with UFL expressions, mostly
intended to aid developers of form compilers. The algorithms available in-
cludes helper functions for easy and efficient iteration over expression trees,
formatting tools to present expressions as text or images of different kinds,
utilities to analyse properties of expressions or checking their validity, au-
tomatic differentiation algorithms, as well as algorithms to work with the
computational graphs of expressions.

14

Chapter 2

Form Language

UFL consists of a set of operators and atomic expressions that can be used
to express variational forms and functionals. Below we will define all these
operators and atomic expressions in detail.

UFL is built on top of, or embedded in, the high level language Python. Since
the form language is built on top of Python, any Python code is valid in the
definition of a form (but not all Python code defines a multilinear form).
In particular, comments (lines starting with #) and functions (keyword def,
see section 2.12 below) are useful in the definition of a form. However, it
is usually a good idea to avoid using advanced Python features in the form
definition, to stay close to the mathematical notation.

The entire form language can be imported in Python with the line

from ufl import *

which is assumed in all examples below and can be omitted in .ufl files. This
can be useful for experimenting with the language in an interactive Python
interpreter.

15

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

2.1 Forms and Integrals

UFL is designed to express forms in the following generalized format:

a(v1, . . . , vr;w1, . . . , wn) = (2.1)
nc
∑

k=1

∫

Ωk

Ick(v1, . . . , vr;w1, . . . wn) dx

+
ne
∑

k=1

∫

∂Ωk

Iek(v1, . . . , vr;w1, . . . , wn) ds

+

ni
∑

k=1

∫

Γk

I ik(v1, . . . , vr;w1, . . . , wn) dS.

Here the form a depends on the form arguments v1, . . . , vr and the form

coefficients w1, . . . , wn, and its expression is a sum of integrals. Each term of
a valid form expression must be a scalar-valued expression integrated exactly
once. How to define form arguments and integrand expressions is detailed in
the rest of this chapter.

Integrals are expressed through multiplication with a measure, representing
an integral over either of

• the interior of the domain Ω (dx, cell integral);

• the boundary ∂Ω of Ω (ds, exterior facet integral);

• the set of interior facets Γ (dS, interior facet integral).

UFL declares the measures dx ↔ dx, ds ↔ ds, and dS ↔ dS.

As a basic example, assume v is a scalar-valued expression and consider the
integral of v over the interior of Ω. This may be expressed as

a = v*dx

and the integral of v over ∂Ω is written as

16

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

a = v*ds

Alternatively, measures can be redefined to represent numbered subsets of a
domain, such that a form can take on different expressions on different parts
of the domain. If c, e0 and e1 are scalar-valued expressions, then

a = c*dx + e0*ds(0) + e1*ds(1)

represents

a =

∫

Ω

c dx+

∫

∂Ω0

e0 ds+

∫

∂Ω1

e1 ds.

where
∂Ω0 ⊂ ∂Ω, ∂Ω1 ⊂ ∂Ω.

Generalizing this further we end up with the expression (2.1). Note that
the domain Ω and its subdomains and boundaries are not known to UFL.
These will not enter the stage until you start using UFL in a problem solving
environment like DOLFIN.

[Advanced] A feature for advanced users is attaching metadata to integrals.
This can be used to define different quadrature degrees for different terms in
a form, and to override other form compiler specific options separately for
different terms.

a = c0*dx(0, metadata0) + c1*dx(1, metadata1)

The convention is that metadata should be a dict with any of the following
keys:

• "integration order": Integer defining the polynomial order that should
be integrated exactly. This is a compilation hint, and the form compiler
is free to ignore this if for example exact integration is being used.

• "ffc": A dict with further FFC specific options, see the FFC manual.

17

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

• "sfc": A dict with further SFC specific options, see the SFC manual.

• Other string: A dict with further options specific to some other external
code.

Other standardized options may be added in later versions.

metadata0 = {"ffc": {"representation": "quadrature"}}

metadata1 = {"integration_order": 7,

"ffc": {"representation": "tensor"}}

a = v*u*dx(0, metadata1) + f*v*dx(0, metadata2)

2.2 Finite Element Spaces

Before we can explain how form arguments are declared, we need to show how
to define function spaces. UFL can represent very flexible general hierarchies
of mixed finite elements, and has predefined names for most common element
families.

2.2.1 Cells

A polygonal cell is defined by a basic shape and a degree1, written like

cell = Cell(shape, degree)

Valid shapes are ”interval”, ”triangle”, ”tetrahedron”, ”quadrilateral”, and
”hexahedron”. Some examples:

1Note that the other components of FEniCS does not yet handle cells of higher degree,

so this will only be useful in the future.

18

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

Cubic triangle cell

cell = Cell("triangle", 3)

Quadratic tetrahedron cell

cell = Cell("tetrahedron", 2)

Objects for linear cells of all basic shapes are predefined:

Predefined linear cells

cell = interval

cell = triangle

cell = tetrahedron

cell = quadrilateral

cell = hexahedron

In the rest of this document, a variable name cell will be used where any cell
is a valid argument, to make the examples dimension independent wherever
possible. Using a variable cell to hold the cell type used in a form is highly
recommended, since this makes most form definitions dimension independent.

2.2.2 Element Families

UFL predefines a set of names of known element families. When defining a
finite element below, the argument family is a string and its possible values
include:

• "Lagrange" or "CG", representing standard scalar Lagrange finite ele-
ments (continuous piecewise polynomial functions);

• "Discontinuous Lagrange" or "DG", representing scalar discontinu-
ous Lagrange finite elements (discontinuous piecewise polynomial func-
tions);

19

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

• "Crouzeix-Raviart" or "CR", representing scalar Crouzeix–Raviart
elements;

• "Brezzi-Douglas-Marini" or "BDM", representing vector-valued Brezzi–
Douglas–Marini H(div) elements;

• "Brezzi-Douglas-Fortin-Marini" or "BDFM", representing vector-valued
Brezzi–Douglas–Fortin–Marini H(div) elements;

• "Raviart-Thomas" or "RT", representing vector-valued Raviart–Thomas
H(div) elements.

• "Nedelec 1st kind H(div)" or "N1div", representing vector-valued
Nedelec H(div) elements (of the first kind).

• "Nedelec 2st kind H(div)" or "N2div", representing vector-valued
Nedelec H(div) elements (of the second kind).

• "Nedelec 1st kind H(curl)" or "N1curl", representing vector-valued
Nedelec H(curl) elements (of the first kind).

• "Nedelec 2st kind H(curl)" or "N2curl", representing vector-valued
Nedelec H(curl) elements (of the second kind).

• "Quadrature" or "Q", representing artificial “finite elements” with de-
grees of freedom being function evaluation at quadrature points;

• "Boundary Quadrature" or "BQ", representing artificial “finite ele-
ments” with degrees of freedom being function evaluation at quadrature
points on the boundary;

[Advanced] New elements can be added dynamically by the form compiler
using the function register element. See the docstring for details. To see
which elements are registered (including the standard built in ones listed
above) call the function show elements.

20

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

2.2.3 Basic Elements

A FiniteElement, some times called a basic element, represents a finite
element in some family on a given cell with a certain polynomial degree.
Valid families and cells are explained above.

The notation is:

element = FiniteElement(family, cell, degree)

Some examples:

element = FiniteElement("Lagrange", interval, 3)

element = FiniteElement("DG", tetrahedron, 0)

element = FiniteElement("BDM", triangle, 1)

2.2.4 Vector Elements

A VectorElement represents a combination of basic elements such that each
component of a vector is represented by the basic element. The size is usually
omitted, the default size equals the geometry dimension.

The notation is:

element = VectorElement(family, cell, degree[, size])

Some examples:

element = VectorElement("CG", triangle, 2)

element = VectorElement("DG", tetrahedron, 0, size=6)

21

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

2.2.5 Tensor Elements

A TensorElement represents a combination of basic elements such that each
component of a tensor is represented by the basic element. The shape is usu-
ally omitted, the default shape is (d, d) where d is the geometry dimension.

The notation is:

element = TensorElement(family, cell, degree[, shape, symmetry])

Any shape tuple consisting of positive integers is valid, and the optional
symmetry can either be set to True which means standard matrix symmetry
(like Aij = Aji), or a dict like { (0,1):(1,0), (0,2):(2,0) } where the
dict keys are index tuples that are represented by the corresponding dict

value.

Examples:

element = TensorElement("CG", cell, 2)

element = TensorElement("DG", cell, 0, shape=(6,6))

element = TensorElement("DG", cell, 0, symmetry=True)

element = TensorElement("DG", cell, 0, symmetry={(0,0): (1,1)})

2.2.6 Mixed Elements

A MixedElement represents an arbitrary combination of other elements.
VectorElement and TensorElement are special cases of a MixedElement

where all subelements are equal.

General notation for an arbitrary number of subelements:

element = MixedElement(element1, element2[, element3, ...])

22

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

Shorthand notation for two subelements:

element = element1 * element2

NB! Note that multiplication is a binary operator, such that

element = element1 * element2 * element3

represents (e1 * e2) * e3, i.e. this is a mixed element with two subele-
ments (e1 * e2) and e3.

See section 2.3 for details on how defining functions on mixed spaces can
differ from functions on other finite element spaces.

Examples:

Taylor-Hood element

V = VectorElement("Lagrange", cell, 2)

P = FiniteElement("Lagrange", cell, 1)

TH = V * P

A tensor-vector-scalar element

T = TensorElement("Lagrange", cell, 2, symmetry=True)

V = VectorElement("Lagrange", cell, 1)

P = FiniteElement("DG", cell, 0)

ME = MixedElement(T, V, P)

2.2.7 EnrichedElement

The data type EnrichedElement represents the vector sum of two (or more)
finite elements.

Example: The Mini element can be constructed as

23

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

P1 = VectorElement("Lagrange", "triangle", 1)

B = VectorElement("Bubble", "triangle", 3)

Q = FiniteElement("Lagrange", "triangle", 1)

Mini = (P1 + B) * Q

2.3 Form Arguments

Form arguments are divided in two groups, basis functions and functions2.
A BasisFunction represents an arbitrary basis function in a given discrete
finite element space, while a Function represents a function in a discrete
finite element space that will be provided by the user at a later stage. The
number of BasisFunctions that occur in a Form equals the arity of the form.

2.3.1 Basis functions

The data type BasisFunction represents a basis function on a given finite
element. A BasisFunction must be created for a previously declared finite
element (simple or mixed):

v = BasisFunction(element)

Note that more than one BasisFunction can be declared for the same
FiniteElement. Basis functions are associated with the arguments of a
multilinear form in the order of declaration.

For a MixedElement, the function BasisFunctions can be used to construct
tuples of BasisFunctions, as illustrated here for a mixed Taylor–Hood ele-
ment:

2The term function in UFL maps to the term coefficient in UFC.

24

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

v, q = BasisFunctions(TH)

u, p = BasisFunctions(TH)

For a BasisFunction on a MixedElement (or VectorElement or TensorElement),
the function split can be used to extract basis function values on subspaces,
as illustrated here for a mixed Taylor–Hood element:

vq = BasisFunction(TH)

v, q = split(up)

A shorthand for this is in place called BasisFunctions:

v, q = BasisFunctions(TH)

For convenience, TestFunction and TrialFunction are special instances
of BasisFunction with the property that a TestFunction will always be
the first argument in a form and TrialFunction will always be the second
argument in a form (order of declaration does not matter). Their usage is
otherwise the same as for BasisFunction:

v = TestFunction(element)

u = TrialFunction(element)

v, q = TestFunctions(TH)

u, p = TrialFunctions(TH)

2.3.2 Coefficient functions

The data type Function represents a function belonging to a given finite
element space, that is, a linear combination of basis functions of the fi-
nite element space. A Function must be declared for a previously declared
FiniteElement:

25

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

f = Function(element)

Note that the order in which Functions are declared is important, directly
reflected in the ordering they have among the arguments to each Form they
are part of.

Function is used to represent user-defined functions, including, e.g., source
terms, body forces, variable coefficients and stabilization terms. UFL treats
each Function as a linear combination of unknown basis functions with un-
known coefficients, that is, UFL knows nothing about the concrete basis
functions of the element and nothing about the value of the function.

Note that more than one function can be declared for the same FiniteEle-
ment. The following example declares two BasisFunctions and two Functions
for the same FiniteElement:

v = BasisFunction(element)

u = BasisFunction(element)

f = Function(element)

g = Function(element)

For a Function on a MixedElement (or VectorElement or TensorElement),
the function split can be used to extract function values on subspaces, as
illustrated here for a mixed Taylor–Hood element:

up = Function(TH)

u, p = split(up)

A shorthand for this is in place called Functions:

u, p = Function(TH)

26

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

Spatially constant (or discontinuous piecewise constant) functions can conve-
niently be represented by Constant, VectorConstant, and TensorConstant.

c0 = Constant(cell)

v0 = VectorConstant(cell)

t0 = TensorConstant(cell)

These three lines are equivalent with first defining DG0 elements and then
defining a Function on each, illustrated here:

DG0 = FiniteElement("Discontinuous Lagrange", cell, 0)

DG0v = VectorElement("Discontinuous Lagrange", cell, 0)

DG0t = TensorElement("Discontinuous Lagrange", cell, 0)

c1 = Function(DG0)

v1 = Function(DG0v)

t1 = Function(DG0t)

2.4 Basic Datatypes

UFL expressions can depend on some other quantities in addition to the
functions and basis functions described above.

2.4.1 Literals and geometric quantities

Some atomic quantities are derived from the cell. For example, the (global)
spatial coordinates are available as a vector valued expression cell.x:

Linear form for a load vector with a sin(y) coefficient

v = TestFunction(element)

27

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

x = cell.x

L = sin(x[1])*v*dx

Another quantity is the (outwards pointing) facet normal cell.n. The nor-
mal vector is only defined on the boundary, so it can’t be used in a cell
integral.

Example functional M, an integral of the normal component of a function g

over the boundary:

n = cell.n

g = Function(VectorElement("CG", cell, 1))

M = dot(n, g)*ds

Python scalars (int, float) can be used anywhere a scalar expression is al-
lowed. Another literal constant type is Identity which represents an n× n
unit matrix of given size n, as in this example:

Geometric dimension

d = cell.d

d x d identiy matrix

I = Identity(d)

Kronecker delta

delta_ij = I[i,j]

[Advanced] Note that there are some differences from FFC. In particular,
using FacetNormal or cell.n does not implicitly add another coefficient
Function to the form, the normal should be automatically computed in UFC
code. Note also that MeshSize has been removed because the meaning is
ambiguous (does it mean min, max, avg, cell radius?), so use a Constant

instead.

28

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

2.5 Indexing and tensor components

UFL supports index notation, which is often a convenient way to express
forms. The basic principle of index notation is that summation is implicit
over indices repeated twice in each term of an expression. The following
examples illustrate the index notation, assuming that each of the variables i
and j have been declared as a free Index:

v[i]*w[i] ↔

n−1
∑

i=0

viwi = v ·w, (2.2)

Dx(v, i)*Dx(w, i) ↔

d−1
∑

i=0

∂v

∂xi

∂w

∂xi

= ∇v · ∇w, (2.3)

Dx(v[i], i) ↔
d−1
∑

i=0

∂vi
∂xi

= ∇ · v, (2.4)

Dx(v[i], j)*Dx(w[i], j) ↔

n−1
∑

i=0

d−1
∑

j=0

∂vi
∂xj

∂wi

∂xj

= ∇v : ∇w. (2.5)

Here we’ll try to very briefly summarize the basic concepts of tensor algebra
and index notation, just enough to express the operators in UFL.

Assuming an Euclidean space in d dimensions with d = 1, 2, or 3, and a
set of orthonormal basis vectors ii for i ∈ 0, . . . , d− 1, we can define the dot
product of any two basis functions as

ii · ij = δij, (2.6)

where δij is the Kronecker delta

δij ≡

{

1, i = j,

0, otherwise.
(2.7)

A rank 1 tensor (vector) quantity v can be represented in terms of unit vectors
and its scalar components in that basis. In tensor algebra it is common to

29

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

assume implicit summation over indices repeated twice in a product.

v = vkik ≡
∑

k

vkik. (2.8)

Similarly, a rank two tensor (matrix) quantity A can be represented in terms
of unit matrices, that is outer products of unit vectors:

A = Aijiiij ≡
∑

i

∑

j

Aijiiij. (2.9)

This generalizes to tensors of arbitrary rank:

C = Cιiι0 ⊗ · · · ⊗ iιr−1
(2.10)

≡
∑

ι0

· · ·
∑

ιr−1

Cιiι0 ⊗ · · · ⊗ iιr−1
, (2.11)

where C is a rank r tensor and ι is a multiindex of length r.

When writing equations on paper, a mathematician can easily switch between
the v and vi representations without stating it explicitly. This is possible
because of flexible notation and conventions. In a programming language, we
can’t use the boldface notation which associates v and v by convention, and
we can’t always interpret such conventions unambiguously. Therefore, UFL
requires that an expression is explicitly mapped from its tensor representation
(v,A) to its component representation (vi, Aij) and back. This is done using
Index objects, the indexing operator (v[i]), and the function as tensor.
More details on these follow.

In the following descriptions of UFL operator syntax, i-l and p-s are assumed
to be predefined indices, and unless otherwise specified the name v refers to
some vector valued expression, and the name A refers to some matrix valued
expression. The name C refers to a tensor expression of arbitrary rank.

2.5.1 Defining indices

A set of indices i, j, k, l and p, q, r, s are predefined, and these should
be enough for many applications. Examples will usually use these objects
instead of creating new ones to conserve space.

30

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

The data type Index represents an index used for subscripting derivatives
or taking components of non-scalar expressions. To create indices, you can
either make a single using Index() or make several at once conveniently
using indices(n).

i = Index()

j, k, l = indices(3)

Each of these represents an index range determined by the context; if used
to subscript a tensor-valued expression, the range is given by the shape of
the expression, and if used to subscript a derivative, the range is given by
the dimension d of the underlying shape of the finite element space. As we
shall see below, indices can be a powerful tool when used to define forms in
tensor notation.

[Advanced] If using UFL inside PyDOLFIN or another larger programming
environment, it is a good idea to define your indices explicitly just before your
form uses them, to avoid name collisions. The definition of the predefined
indices is simply

i, j, k, l = indices(4)

p, q, r, s = indices(4)

[Advanced] Note that in the old FFC notation, the definition

i = Index(0)

meant that the value of the index remained constant. This does not mean
the same in UFL, and this notation is only meant for internal usage. Fixed
indices are simply integers instead:

i = 0

31

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

2.5.2 Taking components of tensors

Basic fixed indexing of a vector valued expression v or matrix valued expres-
sion A:

• v[0]: component access, representing the scalar value of the first com-
ponent of v

• A[0,1]: component access, representing the scalar value of the first
row, second column of A

Basic indexing:

• v[i]: component access, representing the scalar value of some compo-
nent of v

• A[i,j]: component access, representing the scalar value of some com-
ponent i,j of A

More advanced indexing:

• A[i,0]: component access, representing the scalar value of some com-
ponent i of the first column of A

• A[i,:]: row access, representing some row i of A, i.e. rank(A[i,:]) ==
1

• A[:,j]: column access, representing some column j of A, i.e. rank(A[:,j])
== 1

• C[...,0]: subtensor access, representing the subtensor of A with the
last axis fixed, e.g., A[...,0] == A[:,0]

• C[j,...]: subtensor access, representing the subtensor of A with the
last axis fixed, e.g., A[j,...] == A[j,:]

32

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

2.5.3 Making tensors from components

If you have expressions for scalar components of a tensor and wish to convert
them to a tensor, there are two ways to do it. If you have a single expression
with free indices that should map to tensor axes, like mapping vk to v or Aij

to A, the following examples show how this is done.

vk = Identity(cell.d)[0,k]

v = as_tensor(vk, (k,))

Aij = v[i]*u[j]

A = as_tensor(Aij, (i,j))

Here v will represent unit vector i0, and A will represent the outer product
of v and u.

If you have multiple expressions without indices, you can build tensors from
them just as easily, as illustrated here:

v = as_vector([1.0, 2.0, 3.0])

A = as_matrix([[u[0], 0], [0, u[1]]])

B = as_matrix([[a+b for b in range(2)] for a in range(2)])

Here v, A and B will represent the expressions

v = i0 + 2i1 + 3i2, (2.12)

A =

[

u0 0
0 u1

]

, (2.13)

B =

[

0 1
1 2

]

. (2.14)

Note that the function as tensor generalizes from vectors to tensors of ar-
bitrary rank, while the alternative functions as vector and as matrix work
the same way but are only for constructing vectors and matrices. They are
included for readability and convenience only.

33

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

2.5.4 Implicit summation

Implicit summation can occur in only a few situations. A product of two
terms that shares the same free index is implicitly treated as a sum over that
free index:

• v[i]*v[i]:
∑

i vivi

• A[i,j]*v[i]*v[j]:
∑

j(
∑

i Aijvi)vj

A tensor valued expression indexed twice with the same free index is treated
as a sum over that free index:

• A[i,i]:
∑

i Aii

• C[i,j,j,i]:
∑

i

∑

j Cijji

The spatial derivative, in the direction of a free index, of an expression with
the same free index, is treated as a sum over that free index:

• v[i].dx(i):
∑

i vi

• A[i,j].dx(i):
∑

i

d(Aij)

dxi

Note that these examples are some times written vi,i and Aij,i in pen-and-
paper index notation.

2.6 Basic algebraic operators

The basic algebraic operators +, -, *, / can be used freely onUFL expressions.
They do have some requirements on their operands, summarized here:

Addition or subtraction, a + b or a - b:

34

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

• The operands a and b must have the same shape.

• The operands a and b must have the same set of free indices.

Division, a / b:

• The operand b must be a scalar expression.

• The operand b must have no free indices.

• The operand a can be non-scalar with free indices, in which division
represents scalar division of all components with the scalar b.

Multiplication, a * b:

• The only non-scalar operations allowed is scalar-tensor, matrix-vector
and matrix-matrix multiplication.

• If either of the operands have any free indices, both must be scalar.

• If any free indices are repeated, summation is implied.

2.7 Basic nonlinear functions

Some basic nonlinear functions are also available, their meaning mostly ob-
vious.

• abs(f): the absolute value of f.

• sign(f): the sign of f (+1 or -1).

• pow(f, g) or f**g

• sqrt(f)

• exp(f)

35

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

• ln(f)

• cos(f)

• sin(f)

These functions do not accept non-scalar operands or operands with free
indices or BasisFunction dependencies.

2.8 Tensor Algebra Operators

2.8.1 transpose

The transpose of a matrix A can be written as

AT = transpose(A)

AT = A.T

AT = as_matrix(A[i,j], (j,i))

The definition of the transpose is

AT[i,j] ↔ (A⊤)ij = Aji. (2.15)

For transposing higher order tensor expressions, index notation can be used:

AT = as_tensor(A[i,j,k,l], (l,k,j,i))

2.8.2 tr

The trace of a matrix A is the sum of the diagonal entries. This can be
written as

36

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

t = tr(A)

t = A[i,i]

The definition of the trace is

tr(A) ↔ trA = Aii =
n−1
∑

i=0

Aii. (2.16)

2.8.3 dot

The dot product of two tensors a and b can be written

General tensors

f = dot(a, b)

Vectors a and b

f = a[i]*b[i]

Matrices a and b

f = as_matrix(a[i,k]*b[k,j], (i,j))

The definition of the dot product of unit vectors is3

ii · ij = δij (2.17)

where δij is the Kronecker delta as explained earlier. The dot product of
higher order tensors follow from this, as illustrated with the following exam-
ples.

An example with two vectors

v · u = (viii) · (ujij) = viuj(ii · ij) = viujδij = viui (2.18)

3Assuming an orthonormal basis for a Euclidean space.

37

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

An example with a tensor of rank two

A ·B = (Aijiiij) · (Bklikil) (2.19)

= (AijBkl)ii(ij · ik)il (2.20)

= (AijBklδjk)iiil (2.21)

= AikBkliiil. (2.22)

This is the same as to matrix-matrix multiplication.

An example with a vector and a tensor of rank two

v ·A = (vjij) · (Aklikil) (2.23)

= (vjAkl)(ij · ik)il (2.24)

= (vjAklδjk)il (2.25)

= vkAklil (2.26)

This is the same as to vector-matrix multiplication.

This generalizes to tensors of arbitrary rank: The dot product applies to
the last axis of a and the first axis of b. The tensor rank of the product is
rank(a)+rank(b)-2.

2.8.4 inner

The inner product is a contraction over all axes of a and b, that is the sum
of all componentwise products. The operands must have the exact same
dimensions. For two vectors it is equivalent to the dot product.

If A and B are rank 2 tensors and C and D are rank 3 tensors their inner
products are

A : B = AijBij (2.27)

C : D = CijkDijk (2.28)

Using UFL notation, the following pairs of declarations are equivalent

38

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

Vectors

f = inner(a, b)

f = v[i]*b[i]

Matrices

f = inner(A, B)

f = A[i,j]*B[i,j]

Rank 3 tensors

f = inner(C, D)

f = C[i,j,k]*D[i,j,k]

2.8.5 outer

The outer product of two tensors a and b can be written

A = outer(a, b)

The general definition of the outer product of two tensors C of rank r and D
of rank s is

C ⊗ D = Cιa
0
...ιar−1

Dιb
0
...ιbs−1

iιa
0
⊗ · · · ⊗ iιar−2

⊗ iιb
1

⊗ · · · ⊗ iιbs−1

(2.29)

Some examples with vectors and matrices are easier to understand

v ⊗ u = viujiiij, (2.30)

v ⊗B = viBkliiikil, (2.31)

A⊗B = AijBkliiijikil. (2.32)

The outer product of vectors is often written simply as

v ⊗ u = vu, (2.33)

which is what we’ve done with iiij above.

The rank of the outer product is the sum of the ranks of the operands.

39

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

2.8.6 cross

The operator cross accepts as arguments two logically vector-valued expres-
sions and returns a vector which is the cross product (vector product) of the
two vectors:

cross(v, w) ↔ v ×w = (v1w2 − v2w1, v2w0 − v0w2, v0w1 − v1w0). (2.34)

Note that this operator is only defined for vectors of length three.

2.8.7 det

The determinant of a matrix A can be written

d = det(A)

2.8.8 dev

The deviatoric part of matrix A can be written

B = dev(A)

2.8.9 sym

The symmetric part of A can be written

B = sym(A)

The definition is

symA =
1

2
(A+AT) (2.35)

40

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

2.8.10 skew

The skew symmetric part of A can be written

B = skew(A)

The definition is

skewA =
1

2
(A−AT) (2.36)

2.8.11 cofac

The cofactor of a matrix A can be written

B = cofac(A)

The definition is

cofacA = det(A)A−1 (2.37)

The implementation of this is currently rather crude, with a hardcoded sym-
bolic expression for the cofactor. Therefore, this is limited to 1x1, 2x2 and
3x3 matrices.

2.8.12 inv

The inverse of matrix A can be written

Ainv = inv(A)

The implementation of this is currently rather crude, with a hardcoded sym-
bolic expression for the inverse. Therefore, this is limited to 1x1, 2x2 and
3x3 matrices.

41

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

2.9 Differential Operators

Three different kinds of derivatives are currently supported: spatial deriva-
tives, derivatives w.r.t. user defined variables, and derivatives of a form or
functional w.r.t. a function.

2.9.1 Basic spatial derivatives

Spatial derivatives hold a special place in partial differential equations from
physics and there are several ways to express those. The basic way is

Derivative w.r.t. x_2

f = Dx(v, 2)

f = v.dx(2)

Derivative w.r.t. x_i

g = Dx(v, i)

g = v.dx(i)

If v is a scalar expression, f here is the scalar derivative of v w.r.t. spatial
direction z. If v has no free indices, g is the scalar derivative w.r.t. spatial
direction xi, and g has the free index i. Written as formulas, this can be
expressed compactly using the v,i notation:

f =
∂v

∂x2

= v,2, (2.38)

g =
∂v

∂xi

= v,i. (2.39)

Note the resemblance of v,i and v.dx(i).

If the expression to be differentiated w.r.t. xi has i as a free index, implicit
summation is implied.

Sum of derivatives w.r.t. x_i for all i

g = Dx(v[i], i)

42

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

g = v[i].dx(i)

Here g will represent the sum of derivatives w.r.t. xi for all i, that is

g =
∑

i

∂v

∂xi

= vi,i.

Note the compact index notation vi,i with implicit summation.

2.9.2 Compound spatial derivatives

UFL implements several common differential operators. The notation is sim-
ple and their names should be self explaining:

Df = grad(f)

df = div(f)

cf = curl(v)

rf = rot(f)

The operand f can have no free indices.

2.9.3 Gradient

The gradient of a scalar u is defined as

grad(u) ≡ ∇u =
d−1
∑

k=0

∂u

∂xk

ik, (2.40)

which is a vector of all spatial partial derivatives of u.

The gradient of a vector v is defined as

grad(v) ≡ ∇v =
∂vi
∂xj

iiij, (2.41)

43

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

which written componentwise is

A = ∇v, Aij = vi,j (2.42)

In general for a tensor A of rank r the definition is

grad(A) ≡ ∇A = (
∂

∂xi

)(Aιiι0 ⊗ · · · ⊗ iιr−1
)⊗ ii =

∂Aι

∂xi

iι0 ⊗ · · · ⊗ iιr−1
⊗ ii,

(2.43)

where ι is a multiindex of length r.

In UFL, the following pairs of declarations are equivalent:

Dfi = grad(f)[i]

Dfi = f.dx(i)

Dvi = grad(v)[i, j]

Dvi = v[i].dx(j)

DAi = grad(A)[..., i]

DAi = A.dx(i)

for a scalar expression f, a vector expression v, and a tensor expression A of
arbitrary rank.

2.9.4 Divergence

The divergence of any nonscalar (vector or tensor) expression A is defined as
the contraction of the partial derivative over the last axis of the expression.

TODO: Detailed examples like for gradient.

In UFL, the following declarations are equivalent:

dv = div(v)

dv = v[i].dx(i)

44

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

dA = div(A)

dA = A[..., i].dx(i)

for a vector expression v and a tensor expression A.

2.9.5 Curl and rot

The operator curl accepts as argument a vector-valued expression and re-
turns its curl:

curl(v) ↔ curlv = ∇× v = (
∂v2
∂x1

−
∂v1
∂x2

,
∂v0
∂x2

−
∂v2
∂x0

,
∂v1
∂x0

−
∂v0
∂x1

). (2.44)

Note that this operator is only defined for vectors of length three.

2.9.6 Variable derivatives

UFL also supports differentiation with respect to user defined variables. A
user defined variable can be any4 expression that is defined as a variable.

The notation is illustrated here:

Define some arbitrary expression

u = Function(element)

w = sin(u**2)

Annotate expression w as a variable that can be used in diff

w = variable(w)

This expression is a function of w

F = I + diff(u, x)

4TODO: There are probably some things that don’t make sense.

45

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

The derivative of expression f w.r.t. the variable w

df = diff(f, w)

Note that the variable w still represents the same expression.

This can be useful for example to implement material laws in hyperelasticity
where the stress tensor is derived from a Helmholtz strain energy function.

Currently, UFL does not implement time in any particular way, but differ-
entiation w.r.t. time can be done without this support through the use of a
constant variable t:

t = variable(Constant(cell))

f = sin(x[0])**2 * cos(t)

dfdt = diff(f, t)

2.9.7 Functional derivatives

The third and final kind of derivatives are derivatives of functionals or forms
w.r.t. to a Function. This is described in more detail in section 2.13.6 about
form transformations.

2.10 DG operators

UFL provides operators for implementation of discontinuous Galerkin meth-
ods. These include the evaluation of the jump and average of a function (or
in general an expression) over the interior facets (edges or faces) of a mesh.

46

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

2.10.1 Restriction: v(’+’) and v(’-’)

When integrating over interior facets (*dS), one may restrict expressions to
the positive or negative side of the facet:

element = FiniteElement("Discontinuous Lagrange",

"tetrahedron", 0)

v = TestFunction(element)

u = TrialFunction(element)

f = Function(element)

a = f(’+’)*dot(grad(v)(’+’), grad(u)(’-’))*dS

Restriction may be applied to functions of any finite element space but will
only have effect when applied to expressions that are discontinuous across
facets.

2.10.2 Jump: jump(v)

The operator jump may be used to express the jump of a function across a
common facet of two cells. Two versions of the jump operator are provided.

If called with only one argument, then the jump operator evaluates to the
difference between the restrictions of the given expression on the positive and
negative sides of the facet:

jump(v) ↔ JvK = v+ − v−. (2.45)

If the expression v is scalar, then jump(v) will also be scalar, and if v is
vector-valued, then jump(v) will also be vector-valued.

If called with two arguments, jump(v, n) evaluates to the jump in v weighted
by n. Typically, n will be chosen to represent the unit outward normal of

47

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

the facet (as seen from each of the two neighboring cells). If v is scalar, then
jump(v, n) is given by

jump(v, n) ↔ JvKn = v+n+ + v−n−. (2.46)

If v is vector-valued, then jump(v, n) is given by

jump(v, n) ↔ JvKn = v+ · n+ + v− · n−. (2.47)

Thus, if the expression v is scalar, then jump(v, n) will be vector-valued,
and if v is vector-valued, then jump(v, n) will be scalar.

2.10.3 Average: avg(v)

The operator avg may be used to express the average of an expression across
a common facet of two cells:

avg(v) ↔ 〈v〉 =
1

2
(v+ + v−). (2.48)

The expression avg(v) has the same value shape as the expression v.

2.11 Conditional Operators

2.11.1 Conditional

UFL has limited support for branching, but for some PDEs it is needed. The
expression c in

c = conditional(condition, true_value, false_value)

evaluates to true value at run-time if condition evaluates to true, or to
false value otherwise.

This corresponds to the C++ syntax (condition ? true value: false value),
or the Python syntax (true value if condition else false value),

48

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

2.11.2 Conditions

• eq(a, b) represents the condition that a == b

• ne(a, b) represents the condition that a != b

• le(a, b) represents the condition that a ¡= b

• ge(a, b) represents the condition that a ¿= b

• lt(a, b) represents the condition that a ¡ b

• gt(a, b) represents the condition that a ¿ b

TODO: This is rather limited, probably need the operations ”and” and ”or”
as well, the syntax will be rather convoluted... Can we improve? Low priority
though.

[Advanced] Because of details in the way Python behaves, we cannot over-
load the builtin comparison operators for this purpose, hence these named
operators.

2.12 User-defined operators

A user may define new operators, using standard Python syntax. As an
example, consider the strain-rate operator ǫ of linear elasticity, defined by

ǫ(v) =
1

2
(∇v + (∇v)⊤). (2.49)

This operator can be implemented as a function using the Python def key-
word:

def epsilon(v):

return 0.5*(grad(v) + grad(v).T)

49

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

Alternatively, using the shorthand lambda notation, the strain operator may
be defined as follows:

epsilon = lambda v: 0.5*(grad(v) + grad(v).T)

2.13 Form Transformations

When you have defined a Form, you can derive new related forms from it
automatically. UFL defines a set of common form transformations described
in this section.

2.13.1 Replacing arguments of a Form

The function replace lets you replace terminal objects with other values,
using a mapping defined by a Python dict. This can be used for example to
replace a Function with a fixed value for optimized runtime evaluation.

f = Function(element)

g = Function(element)

c = Constant(cell)

a = f*g*v*dx

b = replace(a, { f: 3.14, g: c })

The replacement values must have the same basic properties as the original
values, in particular value shape and free indices.

2.13.2 Action of a form on a function

The action of a bilinear form a is defined as

b(v;w) = a(v, w),

50

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

The action of a linear form L is defined as

f(;w) = L(w)

This operation is implemented in UFL simply by replacing the rightmost
basis function (trial function for a, test function for L) in a Form, and is used
like this:

L = action(a, w)

f = action(L, w)

To give a concrete example, these declarations are equivalent:

a = inner(grad(u), grad(v))*dx

L = action(a, w)

a = inner(grad(u), grad(v))*dx

L = inner(grad(w), grad(v))*dx

If a is a rank 2 form used to assemble the matrix A, L is a rank 1 form
that can be used to assemble the vector b = Ax directly. This can be used
to define both the form of a matrix and the form of its action without code
duplication, and for the action of a Jacobi matrix computed using derivative.

If L is a rank 1 form used to assemble the vector b, f is a functional that
can be used to assemble the scalar value f = b · w directly. This operation
is sometimes used in, e.g., error control with L being the residual equation
and w being the solution to the dual problem. (However, the discrete vector
for the assembled residual equation will typically be available, so doing the
dot product using linear algebra would be faster than using this feature.)
FIXME: Is this right?

2.13.3 Energy norm of a bilinear Form

The functional representing the energy norm |v|A = vTAv of a matrix A
assembled from a form a can be computed like this

51

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

f = energy_norm(a, w)

which is equivalent to

f = action(action(a, w), w)

2.13.4 Adjoint of a bilinear Form

The adjoint a′ of a bilinear form a is defined as

a′(u, v) = a(v, u).

This operation is implemented in UFL simply by swapping test and trial
functions in a Form, and is used like this:

aprime = adjoint(a)

2.13.5 Linear and bilinear parts of a Form

Some times it is useful to write an equation on the format

a(v, u)− L(v) = 0.

Before we can assemble the linear equation

Au = b,

we need to extract the forms corresponding to the left hand side and right
hand side. This corresponds to extracting the bilinear and linear terms of
the form respectively, or the terms that depend on both a test and a trial
function on one side and the terms that depend on only a test function on
the other.

This is easily done in UFL using lhs and rhs:

52

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

b = u*v*dx - f*v*dx

a, L = lhs(b), rhs(b)

Note that rhsmultiplies the extracted terms by −1, corresponding to moving
them from left to right, so this is equivalent to

a = u*v*dx

L = f*v*dx

As a slightly more complicated example, this formulation

F = v*(u - w)*dx + k*dot(grad(v), grad(0.5*(w + u)))*dx

a, L = lhs(F), rhs(F)

is equivalent to

a = v*u*dx + k*dot(grad(v), 0.5*grad(u))*dx

L = v*w*dx - k*dot(grad(v), 0.5*grad(w))*dx

2.13.6 Automatic Functional Differentiation

UFL can compute derivatives of functionals or forms w.r.t. to a Function.
This functionality can be used for example to linearize your nonlinear resid-
ual equation automatically, or derive a linear system from a functional, or
compute sensitivity vectors w.r.t. some coefficient.

A functional can be differentiated to obtain a linear form,

F (v;w) =
d

dw
f(;w)

53

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

and a linear form 5 can be differentiated to obtain the bilinear form corre-
sponding to its Jacobi matrix:

J(v, u;w) =
d

dw
F (v;w).

The UFL code to express this is (for a simple functional f(w) =
∫

Ω
1
2
w2 dx)

f = (w**2)/2 * dx

F = derivative(f, w, v)

J = derivative(F, w, u)

which is equivalent to:

f = (w**2)/2 * dx

F = w*v*dx

J = u*v*dx

Assume in the following examples that:

v = TestFunction(element)

u = TrialFunction(element)

w = Function(element)

The stiffness matrix can be computed from the functional
∫

Ω
∇w : ∇w dx,

by the lines

f = inner(grad(w), grad(w))/2 * dx

F = derivative(f, w, v)

J = derivative(F, w, u)

5Note that by “linear form” we only mean a form that is linear in its test function, not

in the function you differentiate with respect to.

54

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

which is equivalent to:

f = inner(grad(w), grad(w))/2 * dx

F = inner(grad(w), grad(v)) * dx

J = inner(grad(u), grad(v)) * dx

Note that here the basis functions are provided explicitly, which is some times
necessary, e.g., if part of the form is linearlized manually like in (TODO: An
example that makes sense would be nicer, this is just a random form.)

g = Function(element)

f = inner(grad(w), grad(w))*dx

F = derivative(f, w, v) + dot(w-g,v)*dx

J = derivative(F, w, u)

Derivatives can also be computed w.r.t. functions in mixed spaces. Con-
sider this example, an implementation of the harmonic map equations using
automatic differentiation.

X = VectorElement("Lagrange", cell, 1)

Y = FiniteElement("Lagrange", cell, 1)

x = Function(X)

y = Function(Y)

L = inner(grad(x), grad(x))*dx + dot(x,x)*y*dx

F = derivative(L, (x,y))

J = derivative(F, (x,y))

Here L is defined as a functional with two coefficient functions x and y from
separate finite element spaces. However, F and J become linear and bilinear
forms respectively with basis functions defined on the mixed finite element

55

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

M = X + Y

There is a subtle difference between defining x and y separately and this
alternative implementation (reusing the elements X,Y,M):

u = Function(M)

x, y = split(u)

L = inner(grad(x), grad(x))*dx + dot(x,x)*y*dx

F = derivative(L, u)

J = derivative(F, u)

The difference is that the forms here have one coefficient function u in the
mixed space, and the forms above have two coefficient functions x and y.

TODO: Move this to implementation part? If you wonder how this is all
done, a brief explanation follows. Recall that a Function represents a sum
of unknown coefficients multiplied with unknown basis functions in some
finite element space.

w(x) =
∑

k

wkφk(x) (2.50)

Also recall that a BasisFunction represents any (unknown) basis function
in some finite element space.

v(x) = φk(x), φk ∈ Vh. (2.51)

A form L(v;w) implemented in UFL is intended for discretization like

bi = L(φi;
∑

k

wkφk), ∀φi ∈ Vh. (2.52)

The Jacobi matrix Aij of this vector can be obtained by differentiation of bi
w.r.t. wj, which can be written

Aij =
dbi
dwj

= a(φi, φj ;
∑

k

wkφk), ∀φi ∈ Vh, ∀φj ∈ Vh, (2.53)

56

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

for some form a. In UFL, the form a can be obtained by differentiating L.
To manage this, we note that as long as the domain Ω is independent of
wj,

∫

Ω
commutes with d

dwj
, and we can differentiate the integrand expression

instead, e.g.,

L(v;w) =

∫

Ω

Ic(v;w) dx+

∫

∂Ω

Ie(v;w) ds, (2.54)

d

dwj

L(v;w) =

∫

Ω

dIc
dwj

dx+

∫

∂Ω

dIe
dwj

ds. (2.55)

In addition, we need that

dw

dwj

= φj, ∀φj ∈ Vh, (2.56)

which in UFL can be represented as

w = Function(element), (2.57)

v = BasisFunction(element), (2.58)

dw

dwj

= v, (2.59)

since w represents the sum and v represents any and all basis functions in
Vh.

Other operators have well defined derivatives, and by repeatedly applying
the chain rule we can differentiate the integrand automatically.

The notation here has potential for improvement, feel free to ask if something

is unclear, or suggest improvements.

2.13.7 Combining form transformations

Form transformations can be combined freely. Note that to do this, deriva-
tives are usually be evaluated before applying e.g. the action of a form,
because derivative changes the arity of the form.

element = FiniteElement("CG", cell, 1)

w = Function(element)

57

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

f = w**4/4*dx(0) + inner(grad(w), grad(w))*dx(1)

F = derivative(f, w)

J = derivative(F, w)

Ja = action(J, w)

Jp = adjoint(J)

Jpa = action(Jp, w)

g = Function(element)

Jnorm = energy_norm(J, g)

TODO: Find some more examples, e.g. from error control!

2.14 Tuple Notation

In addition to the standard integrand notation described above, UFL sup-
ports a simplified tuple notation by which L2 inner products may be ex-
pressed as tuples. Consider for example the following bilinear form as part
of a variational problem for a reaction–diffusion problem:

a(v, u) =

∫

Ω

∇v · ∇u+ vu dx

= (∇v,∇u) + (v, u)

In standard UFL notation, this bilinear form may be expressed as

a = inner(grad(v), grad(u))*dx + v*u*dx

In tuple notation, this may alternatively be expressed as

a = (grad(v), grad(u)) + (v, u)

In general, a form may be expressed as a sum of tuples or triples of the form

58

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

(v, w)

(v, w, dm)

where v and w are expressions of matching rank (so that inner(v, w) makes
sense), and dm is a measure. If the measure is left out, it is assumed that it
is dx.

The following example illustrates how to express a form containing integrals
over subdomains and facets:

a = (grad(v), grad(u)) + (v, b*grad(u), dx(2))

+ (v, u, ds) + (jump(v), jump(u), dS)

The following caveats should be noted:

• The only operation allowed on a tuple is addition. In particular, tuples
may not subtracted. Thus, a = (grad(v), grad(u)) - (v, u) must
be expressed as a = (grad(v), grad(u)) + (-v, u).

• Tuple notation may not be mixed with standard UFL integrand no-
tation. Thus, a = (grad(v), grad(u)) + inner(v, u)*dx is not
valid.

[Advanced] Tuple notation is strictly speaking not a part of the form
language, but tuples may be converted to UFL forms using the function
tuple2form available from the module ufl.algorithms. This is normally
handled automatically by form compilers, but the tuple2form utility may
useful when working with UFL from a Python script. Automatic conversion
is also carried out by UFL form operators such as lhs and rhs.

2.15 Form Files

UFL forms and elements can be collected in a form file with the extension
.ufl. Form compilers will typically execute this file with the global UFL

59

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

namespace available, and extract forms and elements that are defined after
execution. The compilers do not compile all forms and elements that are
defined in file, but only those that are exported. A finite element with the
variable name element is exported by default, as are forms with the names
M, L, and a. The default form names are intended for a functional, linear
form, and bilinear form respectively.

To export multiple forms and elements or use other names, an explicit list
with the forms and elements to export can be defined. Simply write

elements = [V, P, TH]

forms = [a, L, F, J, L2, H1]

at the end of the file to export the elements and forms held by these variables.

60

Chapter 3

Example Forms

The following examples illustrate basic usage of the form language for the
definition of a collection of standard multilinear forms. We assume that dx
has been declared as an integral over the interior of Ω and that both i and
j have been declared as a free Index.

The examples presented below can all be found in the subdirectory demo/ of
the UFL source tree together with numerous other examples.

3.1 The mass matrix

As a first example, consider the bilinear form corresponding to a mass matrix,

a(v, u) =

∫

Ω

v u dx, (3.1)

which can be implemented in UFL as follows:

element = FiniteElement("Lagrange", triangle, 1)

v = TestFunction(element)

u = TrialFunction(element)

61

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

a = v*u*dx

This example is implemented in the file mass.ufl in the collection of demon-
stration forms included with the UFL source distribution.

3.2 Poisson’s equation

The bilinear and linear forms form for Poisson’s equation,

a(v, u) =

∫

Ω

∇v · ∇u dx, (3.2)

L(v; f) =

∫

Ω

v f dx, (3.3)

can be implemented as follows:

element = FiniteElement("Lagrange", triangle, 1)

v = TestFunction(element)

u = TrialFunction(element)

f = Function(element)

a = dot(grad(v), grad(u))*dx

L = v*f*dx

Alternatively, index notation can be used to express the scalar product like
this:

a = Dx(v, i)*Dx(u, i)*dx

or like this:

62

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

a = v.dx(i)*u.dx(i)*dx

This example is implemented in the file poisson.ufl in the collection of
demonstration forms included with the UFL source distribution.

3.3 Vector-valued Poisson

The bilinear and linear forms for a system of (independent) Poisson equa-
tions,

a(v, u) =

∫

Ω

∇v : ∇u dx, (3.4)

L(v; f) =

∫

Ω

v · f dx, (3.5)

with v, u and f vector-valued can be implemented as follows:

element = VectorElement("Lagrange", triangle, 1)

v = TestFunction(element)

u = TrialFunction(element)

f = Function(element)

a = inner(grad(v), grad(u))*dx

L = dot(v, f)*dx

Alternatively, index notation may be used like this:

a = Dx(v[i], j)*Dx(u[i], j)*dx

L = v[i]*f[i]*dx

or like this:

63

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

a = v[i].dx(j)*u[i].dx(j)*dx

L = v[i]*f[i]*dx

This example is implemented in the file poisson system.ufl in the collection
of demonstration forms included with the UFL source distribution.

3.4 The strain-strain term of linear elasticity

The strain-strain term of linear elasticity,

a(v, u) =

∫

Ω

ǫ(v) : ǫ(u) dx, (3.6)

where

ǫ(v) =
1

2
(∇v + (∇v)⊤) (3.7)

can be implemented as follows:

element = VectorElement("Lagrange", tetrahedron, 1)

v = TestFunction(element)

u = TrialFunction(element)

def epsilon(v):

Dv = grad(v)

return 0.5*(Dv + Dv.T)

a = inner(epsilon(v), epsilon(u))*dx

Alternatively, index notation can be used to define the form:

a = 0.25*(Dx(v[j], i) + Dx(v[i], j))* \

(Dx(u[j], i) + Dx(u[i], j))*dx

64

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

or like this:

a = 0.25*(v[j].dx(i) + v[i].dx(j))* \

(u[j].dx(i) + u[i].dx(j))*dx

This example is implemented in the file elasticity.ufl in the collection of
demonstration forms included with the UFL source distribution.

3.5 The nonlinear term of Navier–Stokes

The bilinear form for fixed-point iteration on the nonlinear term of the in-
compressible Navier–Stokes equations,

a(v, u;w) =

∫

Ω

(w · ∇u) · v dx, (3.8)

with w the frozen velocity from a previous iteration, can be implemented as
follows:

element = VectorElement("Lagrange", tetrahedron, 1)

v = TestFunction(element)

u = TrialFunction(element)

w = Function(element)

a = dot(grad(u)*w, v)*dx

alternatively using index notation like this:

a = v[i]*w[j]*Dx(u[i], j)*dx

or like this:

65

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

a = v[i]*w[j]*u[i].dx(j)*dx

This example is implemented in the file navier stokes.ufl in the collection
of demonstration forms included with the UFL source distribution.

3.6 The heat equation

Discretizing the heat equation,

u̇−∇ · (c∇u) = f, (3.9)

in time using the dG(0) method (backward Euler), we obtain the following
variational problem for the discrete solution uh = uh(x, t): Find un

h = uh(·, tn)
with un−1

h = uh(·, tn−1) given such that

1

kn

∫

Ω

v (un
h − un−1

h) dx+

∫

Ω

c∇v · ∇un
h dx =

∫

Ω

v fn dx (3.10)

for all test functions v, where k = tn − tn−1 denotes the time step . In the
example below, we implement this variational problem with piecewise linear
test and trial functions, but other choices are possible (just choose another
finite element).

Rewriting the variational problem in the standard form a(v, uh) = L(v) for
all v, we obtain the following pair of bilinear and linear forms:

a(v, un
h; c, k) =

∫

Ω

v un
h dx+ kn

∫

Ω

c∇v · ∇un
h dx, (3.11)

L(v; un−1
h , f, k) =

∫

Ω

v un−1
h dx+ kn

∫

Ω

v fn dx, (3.12)

which can be implemented as follows:

element = FiniteElement("Lagrange", triangle, 1)

66

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

v = TestFunction(element) # Test function

u1 = TrialFunction(element) # Value at t_n

u0 = Function(element) # Value at t_n-1

c = Function(element) # Heat conductivity

f = Function(element) # Heat source

k = Constant("triangle") # Time step

a = v*u1*dx + k*c*dot(grad(v), grad(u1))*dx

L = v*u0*dx + k*v*f*dx

This example is implemented in the file heat.ufl in the collection of demon-
stration forms included with the UFL source distribution.

3.7 Mixed formulation of Stokes

To solve Stokes’ equations,

−∆u+∇p = f, (3.13)

∇ · u = 0, (3.14)

we write the variational problem in standard form a(v, u) = L(v) for all v to
obtain the following pair of bilinear and linear forms:

a((v, q), (u, p)) =

∫

Ω

∇v : ∇u− (∇ · v) p+ q (∇ · u) dx, (3.15)

L((v, q); f) =

∫

Ω

v · f dx. (3.16)

Using a mixed formulation with Taylor-Hood elements, this can be imple-
mented as follows:

cell = triangle

P2 = VectorElement("Lagrange", cell, 2)

P1 = FiniteElement("Lagrange", cell, 1)

TH = P2 * P1

67

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

(v, q) = TestFunctions(TH)

(u, p) = TrialFunctions(TH)

f = Function(P2)

a = (inner(grad(v), grad(u)) - div(v)*p + q*div(u))*dx

L = dot(v, f)*dx

This example is implemented in the file stokes.ufl in the collection of
demonstration forms included with the UFL source distribution.

3.8 Mixed formulation of Poisson

We next consider the following formulation of Poisson’s equation as a pair of
first order equations for σ ∈ H(div) and u ∈ L2:

σ +∇u = 0, (3.17)

∇ · σ = f. (3.18)

We multiply the two equations by a pair of test functions τ and w and
integrate by parts to obtain the following variational problem: Find (σ, u) ∈
V = H(div)× L2 such that

a((τ, w), (σ, u)) = L((τ, w)) ∀ (τ, w) ∈ V, (3.19)

where

a((τ, w), (σ, u)) =

∫

Ω

τ · σ −∇ · τ u+ w∇ · σ dx, (3.20)

L((τ, w); f) =

∫

Ω

w · f dx. (3.21)

We may implement the corresponding forms in our form language using first
order BDM H(div)-conforming elements for σ and piecewise constant L2-
conforming elements for u as follows:

68

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

cell = triangle

BDM1 = FiniteElement("Brezzi-Douglas-Marini", cell, 1)

DG0 = FiniteElement("Discontinuous Lagrange", cell, 0)

element = BDM1 * DG0

(tau, w) = TestFunctions(element)

(sigma, u) = TrialFunctions(element)

f = Function(DG0)

a = (dot(tau, sigma) - div(tau)*u + w*div(sigma))*dx

L = w*f*dx

This example is implemented in the file mixed poisson.ufl in the collection
of demonstration forms included with the UFL source distribution.

3.9 Poisson’s equation with DG elements

We consider again Poisson’s equation, but now in an (interior penalty) dis-
continuous Galerkin formulation: Find u ∈ V = L2 such that

a(v, u) = L(v) ∀v ∈ V,

where

a(v, u;h) =

∫

Ω

∇v · ∇u dx

+
∑

S

∫

S

−〈∇v〉 · JuKn − JvKn · 〈∇u〉+ (α/h)JvKn · JuKn dS

+

∫

∂Ω

−∇v · JuKn − JvKn · ∇u+ (γ/h)vu ds

L(v; f, g) =

∫

Ω

vf dx+

∫

∂Ω

vg ds.

(3.22)

69

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

The corresponding finite element variational problem for discontinuous first
order elements may be implemented as follows:

cell = triangle

DG1 = FiniteElement("Discontinuous Lagrange", cell, 1)

v = TestFunction(DG1)

u = TrialFunction(DG1)

f = Function(DG1)

g = Function(DG1)

#h = MeshSize(cell) # TODO: Do we include MeshSize in UFL?

h = Constant(cell)

alpha = 1 # TODO: Set to proper value

gamma = 1 # TODO: Set to proper value

a = dot(grad(v), grad(u))*dx \

- dot(avg(grad(v)), jump(u))*dS \

- dot(jump(v), avg(grad(u)))*dS \

+ alpha/h(’+’)*dot(jump(v), jump(u))*dS \

- dot(grad(v), jump(u))*ds \

- dot(jump(v), grad(u))*ds \

+ gamma/h*v*u*ds

L = v*f*dx + v*g*ds

This example is implemented in the file poisson dg.ufl in the collection of
demonstration forms included with the UFL source distribution.

3.10 Quadrature elements

FIXME: The code examples in this section have been mostly converted to

UFL syntax, but the quadrature elements need some more updating, as well

as the text. In UFL, I think we should define the element order and not the

70

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

number of points for quadrature elements, and let the form compiler choose

a quadrature rule. This way the form depends less on the cell in use.

We consider here a nonlinear version of the Poisson’s equation to illustrate the
main point of the "Quadrature" finite element family. The strong equation
looks as follows:

−∇ · (1 + u2)∇u = f. (3.23)

The linearised bilinear and linear forms for this equation,

a(v, u; u0) =

∫

Ω

(1 + u2
0)∇v · ∇u dx+

∫

Ω

2u0u∇v · ∇u0 dx, (3.24)

L(v; u0, f) =

∫

Ω

v f dx−

∫

Ω

(1 + u2
0)∇v · ∇u0 dx, (3.25)

can be implemented in a single form file as follows:

NonlinearPoisson.ufl

element = FiniteElement("Lagrange", triangle, 1)

v = TestFunction(element)

u = TrialFunction(element)

u0 = Function(element)

f = Function(element)

a = (1+u0**2)*dot(grad(v), grad(u))*dx \

+ 2*u0*u*dot(grad(v), grad(u0))*dx

L = v*f*dx - (1+u0**2)*dot(grad(v), grad(u0))*dx

Here, u0 represents the solution from the previous Newton-Raphson iteration.

The above form will be denoted REF1 and serve as our reference implemen-
tation for linear elements. A similar form (REF2) using quadratic elements
will serve as a reference for quadratic elements.

Now, assume that we want to treat the quantities C = (1 + u2
0) and σ0 =

(1+u2
0)∇u0 as given functions (to be computed elsewhere). Substituting into

71

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

bilinear linear forms, we obtain

a(v, u) =

∫

Ω

C∇v · ∇u dx+

∫

Ω

2u0u∇v · ∇u0 dx, (3.26)

L(v; σ0, f) =

∫

Ω

v f dx−

∫

Ω

∇v · σ0 dx. (3.27)

Then, two additional forms are created to compute the tangent C and the
gradient of u0. This situation shows up in plasticity and other problems where
certain quantities need to be computed elsewhere (in user-defined functions).
The 3 forms using the standard FiniteElement (linear elements) can then
be implemented as:

FE1NonlinearPoisson.ufl

element = FiniteElement("Lagrange", triangle, 1)

DG = FiniteElement("Discontinuous Lagrange", triangle, 0)

sig = VectorElement("Discontinuous Lagrange", triangle, 0)

v = TestFunction(element)

u = TrialFunction(element)

u0 = Function(element)

C = Function(DG)

sig0 = Function(sig)

f = Function(element)

a = v.dx(i)*C*u.dx(i)*dx + v.dx(i)*2*u0*u*u0.dx(i)*dx

L = v*f*dx - dot(grad(v), sig0)*dx

FE1Tangent.ufl

element = FiniteElement("Lagrange", triangle, 1)

DG = FiniteElement("Discontinuous Lagrange", triangle, 0)

v = TestFunction(DG)

u = TrialFunction(DG)

u0= Function(element)

a = v*u*dx

L = v*(1.0 + u0**2)*dx

72

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

FE1Gradient.ufl

element = FiniteElement("Lagrange", triangle, 1)

DG = VectorElement("Discontinuous Lagrange", triangle, 0)

v = TestFunction(DG)

u = TrialFunction(DG)

u0 = Function(element)

a = dot(v, u)*dx

L = dot(v, grad(u0))*dx

The 3 forms can be implemented using the QuadratureElement in a similar
fashion in which only the element declaration is different:

QE1NonlinearPoisson.ufl

element = FiniteElement("Lagrange", triangle, 1)

QE = FiniteElement("Quadrature", triangle, 2)

sig = VectorElement("Quadrature", triangle, 2)

QE1Tangent.ufl

element = FiniteElement("Lagrange", triangle, 1)

QE = FiniteElement("Quadrature", triangle, 2)

QE1Gradient.ufl

element = FiniteElement("Lagrange", triangle, 1)

QE = VectorElement("Quadrature", triangle, 2)

Note that we use 2 points when declaring the QuadratureElement. This is
because the RHS of the Tangent.form is 2nd order and therefore we need 2
points for exact integration. Due to consistency issues, when passing func-
tions around between the forms, we also need to use 2 points when declaring
the QuadratureElement in the other forms.

73

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

Typical values of the relative residual for each Newton iteration for all 3
approaches are shown in Table 3.1. It is noted that the convergence rate is
quadratic as it should be for all 3 methods.

Iteration REF1 FE1 QE1

1 6.342e-02 6.342e-02 6.342e-02

2 5.305e-04 5.305e-04 5.305e-04

3 3.699e-08 3.699e-08 3.699e-08

4 2.925e-16 2.925e-16 2.475e-16

Table 3.1: Relative residuals for each approach for linear elements.

However, if quadratic elements are used to interpolate the unknown field u,
the order of all elements in the above forms is increased by 1. This influ-
ences the convergence rate as seen in Table 3.2. Clearly, using the standard
FiniteElement leads to a poor convergence whereas the QuadratureElement
still leads to quadratic convergence.

Iteration REF2 FE2 QE2

1 2.637e-01 3.910e-01 2.644e-01

2 1.052e-02 4.573e-02 1.050e-02

3 1.159e-05 1.072e-02 1.551e-05

4 1.081e-11 7.221e-04 9.076e-09

Table 3.2: Relative residuals for each approach for quadratic elements.

3.11 More Examples

Feel free to send additional demo form files for your favourite PDE to the
UFL mailing list.

74

Chapter 4

Internal Representation Details

This chapter explains how UFL forms and expressions are represented in
detail. Most operations are mirrored by a representation class, e.g., Sum and
Product, all which are subclasses of Expr. You can import all of them from
the submodule ufl.classes by

from ufl.classes import *

TODO: Automate the construction of class hierarchy figures using ptex2tex.

4.1 Structure of a Form

TODO: Add class relations figure with Form, Integral, Expr, Terminal, Op-
erator.

Each Form owns multiple Integral instances, each associated with a different
Measure. An Integral owns a Measure and an Expr, which represents the
integrand expression. The Expr is the base class of all expressions. It has
two direct subclasses Terminal and Operator.

75

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

Subclasses of Terminal represent atomic quantities which terminate the ex-
pression tree, e.g. they have no subexpressions. Subclasses of Operator

represent operations on one or more other expressions, which may usually be
Expr subclasses of arbitrary type. Different Operators may have restrictions
on some properties of their arguments.

All the types mentioned here are conceptually immutable, i.e. they should
never be modified over the course of their entire lifetime. When a modified
expression, measure, integral, or form is needed, a new instance must be
created, possibly sharing some data with the old one. Since the shared data
is also immutable, sharing can cause no problems.

4.2 General properties of expressions

Any UFL expression has certain properties, defined by functions that every
Expr subclass must implement. In the following, u represents an arbitrary
UFL expression, i.e. an instance of an arbitrary Expr subclass.

4.2.1 operands

u.operands() returns a tuple with all the operands of u, which should all
be Expr instances.

4.2.2 reconstruct

u.reconstruct(operands) returns a new Expr instance representing the
same operation as u but with other operands. Terminal objects may simply
return self since all Expr instance are immutable. An important invariant
is that u.reconstruct(u.operands()) == u.

76

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

4.2.3 cell

u.cell() returns the first Cell instance found in u. It is currently assumed
in UFL that no two different cells are used in a single form. Not all expression
define a cell, in which case this returns None and u is spatially constant. Note
that this property is used in some algorithms.

4.2.4 shape

u.shape() returns a tuple of integers, which is the tensor shape of u.

4.2.5 free indices

u.free indices() returns a tuple of Index objects, which are the unas-
signed, free indices of u.

4.2.6 index dimensions

u.index dimensions() returns a dict mapping from each Index instance
in u.free indices() to the integer dimension of the value space each index
can range over.

4.2.7 str(u)

str(u) returns a human-readable string representation of u.

4.2.8 repr(u)

repr(u) returns a Python string representation of u, such that eval(repr(u))
== u holds in Python.

77

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

4.2.9 hash(u)

hash(u) returns a hash code for u, which is used extensively (indirectly) in
algorithms whenever u is placed in a Python dict or set.

4.2.10 u == v

u == v returns true if and only if u and v represents the same expression
in the exact same way. This is used extensively (indirectly) in algorithms
whenever u is placed in a Python dict or set.

4.2.11 About other relational operators

In general, UFL expressions are not possible to fully evaluate since the cell
and the values of form arguments are not available. Implementing relational
operators for immediate evaluation is therefore impossible.

Overloading relational operators as a part of the form language is not possible
either, since it interferes with the correct use of container types in Python
like dict or set.

4.3 Elements

All finite element classes have a common base class FiniteElementBase.
The class hierarchy looks like this:

TODO: Class figure.

TODO: Describe all FiniteElementBase subclasses here.

78

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

4.4 Terminals

All Terminal subclasses have some non-Expr data attached to them. ScalarValue
has a Python scalar, Function has a FiniteElement, etc.

Therefore, a unified implementation of reconstruct is not possible, but since
all Expr instances are immutable, reconstruct for terminals can simply
return self. This feature and the immutability property is used extensively
in algorithms.

TODO: Describe all Terminal representation classes here.

4.5 Operators

All instances of Operator subclasses are fully specified by their type plus
the tuple of Expr instances that are the operands. Their constructors should
take these operands as the positional arguments, and only that. This way,
a unified implementation of reconstruct is possible, by simply calling the
constructor with new operands. This feature is used extensively in algo-
rithms.

TODO: Describe all Operator representation classes here.

4.6 Extending UFL

Adding new types to the UFL class hierarchy must be done with care. If you
can get away with implementing a new operator as a combination of existing
ones, that is the easiest route. The reason is that only some of the properties
of an operator is represented by the Expr subclass. Other properties are
part of the various algorithms in UFL. One example is derivatives, which
are defined in the differentiation algorithm, and how to render a type to
the LATEX or dot formats. These properties could be merged into the class
hierarchy, but other properties like how to map a UFL type to some FFC or

79

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

SFC or DOLFIN type can not be part of UFL. So before adding a new class,
consider that doing so may require changes in multiple algorithms and even
other projects.

TODO: More issues to consider when adding stuff to ufl.

80

Chapter 5

Algorithms

Algorithms to work with UFL forms and expressions can be found in the
submodule ufl.algorithms. You can import all of them with the line

from ufl.algorithms import *

This chapter gives an overview of (most of) the implemented algorithms.
The intended audience is primarily developers, but advanced users may find
information here useful for debugging.

While domain specific languages introduce notation to express particular
ideas more easily, which can reduce the probability of bugs in user code,
they also add yet another layer of abstraction which can make debugging
more difficult when the need arises. Many of the utilities described here can
be useful in that regard.

5.1 Formatting expressions

Expressions can be formatted in various ways for inspection, which is par-
ticularly useful for debugging. We use the following as an example form for

81

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

the formatting sections below:

element = FiniteElement("CG", triangle, 1)

v = TestFunction(element)

u = TrialFunction(element)

c = Function(element)

f = Function(element)

a = c*u*v*dx + f*v*ds

5.1.1 str

Compact human readable pretty printing. Useful in interactive Python ses-
sions. Example output of str(a):

TODO

5.1.2 repr

Accurate description of expression, with the property that eval(repr(a))
== a. Useful to see which representation types occur in an expression, espe-
cially if str(a) is ambiguous. Example output of repr(a):

TODO

5.1.3 Tree formatting

Ascii tree formatting, useful to inspect the tree structure of an expression in
interactive Python sessions. Example output of tree format(a):

TODO

82

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

5.1.4 LATEXformatting

See chapter about commandline utilities.

5.1.5 Dot formatting

See chapter about commandline utilities.

5.2 Inspecting and manipulating the expression

tree

This subsection is mostly for form compiler developers and technically inter-
ested users.

TODO: More details about traversal and transformation algorithms for de-
velopers.

5.2.1 Traversing expressions

iter expressions

q = f*v

r = g*v

s = u*v

a = q*dx(0) + r*dx(1) + s*ds(0)

for e in iter_expressions(a):

print str(e)

83

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

post traversal

TODO: traversal.py

pre traversal

TODO: traversal.py

walk

TODO: traversal.py

traverse terminals

TODO: traversal.py

5.2.2 Extracting information

TODO: analysis.py

5.2.3 Transforming expressions

So far the algorithms presented has been about inspecting expressions in var-
ious ways. Some recurring patterns occur when writing algorithms to modify
expressions, either to apply mathematical transformations or to change their
representation. Usually, different expression node types need different treat-
ment.

To assist in such algorithms, UFL provides the Transformer class. This im-
plements a variant of the Visitor pattern to enable easy definition of trans-

84

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

formation rules for the types you wish to handle.

Shown here is maybe the simplest transformer possible:

class Printer(Transformer):

def __init__(self):

Transformer.__init__(self)

def expr(self, o, *operands):

print "Visiting", str(o), "with operands:"

print ", ".join(map(str,operands))

return o

element = FiniteElement("CG", triangle, 1)

v = TestFunction(element)

u = TrialFunction(element)

a = u*v

p = Printer()

p.visit(a)

The call to visit will traverse a and call Printer.expr on all expression
nodes in post–order, with the argument operands holding the return values
from visits to the operands of o. The output is:

TODO

Implementing expr above provides a default handler for any expression node
type. For each subclass of Expr you can define a handler function to over-
ride the default by using the name of the type in underscore notation, e.g.
basis function for BasisFunction. The constructor of Transformer and
implementation of Transformer.visit handles the mapping from type to
handler function automatically.

Here is a simple example to show how to override default behaviour:

85

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

class FunctionReplacer(Transformer):

def __init__(self):

Transformer.__init__(self)

expr = Transformer.reuse_if_possible

terminal = Transformer.always_reuse

def function(self, o):

return FloatValue(3.14)

element = FiniteElement("CG", triangle, 1)

v = TestFunction(element)

f = Function(element)

a = f*v

r = FunctionReplacer()

b = r.visit(a)

print b

The output of this code is the transformed expression b == 3.14*v. This
code also demonstrates how to reuse existing handlers. The handler Transformer.reuse if possible

will return the input object if the operands have not changed, and other-
wise reconstruct a new instance of the same type but with the new trans-
formed operands. The handler Transformer.always reuse always reuses
the instance without recursing into its children, usually applied to terminals.
To set these defaults with less code, inherit ReuseTransformer instead of
Transformer. This ensures that the parts of the expression tree that are not
changed by the transformation algorithms always reuse the same instances.

We have already mentioned the difference between pre–traversal and post–
traversal, and some times you need to combine the two. Transformer makes
this easy by checking the number of arguments to your handler functions to
see if they take transformed operands as input or not. If a handler function
does not take more than a single argument in addition to self, its children
are not visited automatically, and the handler function must call visit on
its operands itself.

86

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

Here is an example of mixing pre– and post–traversal:

class Traverser(ReuseTransformer):

def __init__(self):

ReuseTransformer.__init__(self)

def sum(self, o):

operands = o.operands()

newoperands = []

for e in operands:

newoperands.append(self.visit(e))

return sum(newoperands)

element = FiniteElement("CG", triangle, 1)

f = Function(element)

g = Function(element)

h = Function(element)

a = f+g+h

r = Traverser()

b = r.visit(a)

print b

This code inherits the ReuseTransformer like explained above, so the default
behaviour is to recurse into children first and then call Transformer.reuse if possible

to reuse or reconstruct each expression node. Since sum only takes self and
the expression node instance o as arguments, its children are not visited
automatically, and sum calls on self.visit to do this explicitly.

5.3 Automatic differentiation implementation

This subsection is mostly for form compiler developers and technically inter-
ested users.

TODO: More details about AD algorithms for developers.

87

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

5.3.1 Forward mode

TODO: forward ad.py

5.3.2 Reverse mode

TODO: reverse ad.py

5.3.3 Mixed derivatives

TODO: ad.py

5.4 Computational graphs

This section is for form compiler developers and is probably of no interest to
end-users.

An expression tree can be seen as a directed acyclic graph (DAG). To aid
in the implementation of form compilers, UFL includes tools to build a lin-
earized1 computational graph from the abstract expression tree.

A graph can be partitioned into subgraphs based on dependencies of subex-
pressions, such that a quadrature based compiler can easily place subexpres-
sions inside the right sets of loops.

5.4.1 The computational graph

TODO: finish graph.py

1Linearized as in a linear datastructure, do not confuse this with automatic differenti-

ation.

88

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

TODO

Consider the expression

f = (a+ b) ∗ (c+ d) (5.1)

where a, b, c, d are arbitrary scalar expressions. The expression tree for f
looks like this:

TODO: Make figures.

a b c d

\ / \ /

+ +

\ /

*

In UFL f is represented like this expression tree. If a,b,c,d are all distinct
Function instances, the UFL representation will look like this:

Function Function Function Function

\ / \ /

Sum Sum

\ /

Product

If we instead have the expression

f = (a+ b) ∗ (a− b) (5.2)

the tree will in fact look like this, with the functions a and b only represented
once:

Function Function

89

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

| \ / |

| Sum Product -- IntValue(-1)

| | |

| Product |

| | |

|---------- Sum ------|

The expression tree is a directed acyclic graph (DAG) where the vertices are
Expr instances and each edge represents a direct dependency between two
vertices, i.e. that one vertex is among the operands of another. A graph can
also be represented in a linearized data structure, consisting of an array of
vertices and an array of edges. This representation is convenient for many
algorithms. An example to illustrate this graph representation:

G = V, E

V = [a, b, a+b, c, d, c+d, (a+b)*(c+d)]

E = [(6,2), (6,5), (5,3), (5,4), (2,0), (2,1)]

In the following this representation of an expression will be called the com-

putational graph. To construct this graph from a UFL expression, simply
do

G = Graph(expression)

V, E = G

The Graph class can build some useful data structures for use in algorithms.

Vin = G.Vin() # Vin[i] = list of vertex indices j such that there is an edge

Vout = G.Vout() # Vout[i] = list of vertex indices j such that there is an edge

Ein = G.Ein() # Ein[i] = list of edge indices j such that E[j] is an edge to

Eout = G.Eout() # Eout[i] = list of edge indices j such that E[j] is an edge from

90

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

The ordering of the vertices in the graph can in principle be arbitrary, but
here they are ordered such that

vi ≺ vj, ∀j > i, (5.3)

where a ≺ b means that a does not depend on b directly or indirectly.

Another property of the computational graph built by UFL is that no identi-
cal expression is assigned to more than one vertex. This is achieved efficiently
by inserting expressions in a dict (a hash map) during graph building.

In principle, correct code can be generated for an expression from its com-
putational graph simply by iterating over the vertices and generating code
for each one separately. However, we can do better than that.

5.4.2 Partitioning the graph

To help generate better code efficiently, we can partition vertices by their de-
pendencies, which allows us to, e.g., place expressions outside the quadrature
loop if they don’t depend (directly or indirectly) on the spatial coordinates.
This is done simply by

P = partition(G) # TODO

TODO: finish dependencies.py

TODO

91

Bibliography

[1] M. Alnæs and K.-A. Mardal, SyFi, 2007. URL:
http://www.fenics.org/syfi/.

[2] M. S. Alnæs and A. Logg, UFL, 2009. URL:
http://www.fenics.org/ufl/.

[3] M. S. Alnæs, A. Logg, K.-A. Mardal, O. Skavhaug, and H. P.

Langtangen, UFC, 2009. URL: http://www.fenics.org/ufc/.

[4] J. Hoffman, J. Jansson, C. Johnson, M. G. Knepley, R. C.

Kirby, A. Logg, L. R. Scott, and G. N. Wells, FEniCS, 2006.
URL: http://www.fenics.org/.

[5] J. Hoffman, J. Jansson, A. Logg, and G. N. Wells, DOLFIN,
2006. URL: http://www.fenics.org/dolfin/.

[6] A. Logg, FFC, 2007. URL: http://www.fenics.org/ffc/.

93

http://www.fenics.org/syfi/
http://www.fenics.org/ufl/
http://www.fenics.org/ufc/
http://www.fenics.org/
http://www.fenics.org/dolfin/
http://www.fenics.org/ffc/

Appendix A

Commandline utilities

A.1 Validation and debugging: ufl-analyse

The command ufl-analyse loads all forms found in a .ufl file, tries to
discover any errors in them, and prints various kinds of information about
each form. Basic usage is

ufl-analyse myform.ufl

For more information, type

ufl-analyse --help

A.2 Formatting and visualization: ufl-convert

The command ufl-convert loads all forms found in a .ufl file, compiles
them into a different form or extracts some information from them, and
writes the result in a suitable file format.

95

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

To try this tool, go to the demo/ directory of the UFL source tree. Some of
the features to try are basic printing of str and repr string representations
of each form:

ufl-convert --format=str stiffness.ufl

ufl-convert --format=repr stiffness.ufl

compilation of forms to mathematical notation in LATEX:

ufl-convert --filetype=pdf --format=tex --show=1 stiffness.ufl

LATEX output of forms after processing with UFL compiler utilities:

ufl-convert -tpdf -ftex -s1 --compile=1 stiffness.ufl

and visualization of expression trees using graphviz via compilation of forms
to the dot format:

ufl-convert -tpdf -fdot -s1 stiffness.ufl

Type ufl-convert --help for more details.

A.3 Conversion from FFC form files: form2ufl

The command form2ufl can be used to convert old FFC .form files to UFL
format. To convert a form file named myform.form to UFL format, simply
type

form2ufl myform.ufl

Note that although, the form2ufl script may be helpful as a guide to con-
verting old FFC .form files, it is not foolproof and may not always yield
valid UFL files.

96

Appendix B

Installation

The source code of UFL is portable and should work on any system with a
standard Python installation. Questions, bug reports and patches concerning
the installation should be directed to the UFL mailing list at the address

ufl-dev@fenics.org

UFL must currently be installed directly from source, but Debian (Ubuntu)
packages will be available in the future, for UFL and other FEniCS compo-
nents.

B.1 Installing from source

B.1.1 Dependencies and requirements

UFL currently has no external dependencies apart from a working Python
installation.

97

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

Installing Python

UFL is developed for Python 2.5, and does not work with previous versions.
To check which version of Python you have installed, issue the command
python -V:

python -V

Python 2.5.1

If Python is not installed on your system, it can be downloaded from

http://www.python.org/

Follow the installation instructions for Python given on the Python web page.
For Debian (Ubuntu) users, the package to install is named python.

B.1.2 Downloading the source code

TODO: This section isn’t yet correct, UFL hasn’t been released officially yet.

The latest release of UFL can be obtained as a tar.gz archive in the down-
load section at

http://www.fenics.org/

Download the latest release of UFL, for example ufl-x.y.z.tar.gz, and
unpack using the command

tar zxfv ufl-x.y.z.tar.gz

98

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

This creates a directory ufl-x.y.z containing the UFL source code.

If you want the very latest version of UFL, it can be accessed directly from
the development repository through hg (Mercurial):

hg clone http://www.fenics.org/hg/ufl

This version may contain features not yet present in the latest release, but
may also be less stable and even not work at all.

B.1.3 Installing UFL

UFL follows the standard installation procedure for Python packages. Enter
the source directory of UFL and issue the following command:

python setup.py install

This will install the UFL Python package in a subdirectory called ufl in the
default location for user-installed Python packages (usually something like
/usr/lib/python2.5/site-packages).

In addition, the executable ufl-analyse (a Python script) will be installed in
the default directory for user-installed Python scripts (usually in /usr/bin).

To see a list of optional parameters to the installation script, type

python setup.py install --help

If you don’t have root access to the system you are using, you can pass the
--home option to the installation script to installUFL in your home directory:

mkdir ~/local

python setup.py install --home ~/local

99

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

This installs the UFL package in the directory ~/local/lib/python and the
UFL executables in ~/local/bin. If you use this option, make sure to set
the environment variable PYTHONPATH to ~/local/lib/python and to add
~/local/bin to the PATH environment variable.

B.1.4 Running the test suite

To verify that the installation is correct, you may run the test suite. Enter
the sub directory test/ from within the UFL source tree and run the script
test.py

python test.py

This script runs all unit tests and imports UFL in the process.

B.2 Debian (Ubuntu) package

In preparation.

100

Appendix C

License

UFL is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.

The GNU GPL is included verbatim below.

GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for

software and other kinds of works.

The licenses for most software and other practical works are designed

to take away your freedom to share and change the works. By contrast,

the GNU General Public License is intended to guarantee your freedom to

share and change all versions of a program--to make sure it remains free

software for all its users. We, the Free Software Foundation, use the

GNU General Public License for most of our software; it applies also to

101

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

any other work released this way by its authors. You can apply it to

your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and charge for

them if you wish), that you receive source code or can get it if you

want it, that you can change the software or use pieces of it in new

free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you

these rights or asking you to surrender the rights. Therefore, you have

certain responsibilities if you distribute copies of the software, or if

you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must pass on to the recipients the same

freedoms that you received. You must make sure that they, too, receive

or can get the source code. And you must show them these terms so they

know their rights.

Developers that use the GNU GPL protect your rights with two steps:

(1) assert copyright on the software, and (2) offer you this License

giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains

that there is no warranty for this free software. For both users’ and

authors’ sake, the GPL requires that modified versions be marked as

changed, so that their problems will not be attributed erroneously to

authors of previous versions.

Some devices are designed to deny users access to install or run

modified versions of the software inside them, although the manufacturer

can do so. This is fundamentally incompatible with the aim of

protecting users’ freedom to change the software. The systematic

pattern of such abuse occurs in the area of products for individuals to

use, which is precisely where it is most unacceptable. Therefore, we

have designed this version of the GPL to prohibit the practice for those

products. If such problems arise substantially in other domains, we

stand ready to extend this provision to those domains in future versions

of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.

States should not allow patents to restrict development and use of

software on general-purpose computers, but in those that do, we wish to

102

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

avoid the special danger that patents applied to a free program could

make it effectively proprietary. To prevent this, the GPL assures that

patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and

modification follow.

TERMS AND CONDITIONS

0. Definitions.

"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of

works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this

License. Each licensee is addressed as "you". "Licensees" and

"recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work

in a fashion requiring copyright permission, other than the making of an

exact copy. The resulting work is called a "modified version" of the

earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based

on the Program.

To "propagate" a work means to do anything with it that, without

permission, would make you directly or secondarily liable for

infringement under applicable copyright law, except executing it on a

computer or modifying a private copy. Propagation includes copying,

distribution (with or without modification), making available to the

public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other

parties to make or receive copies. Mere interaction with a user through

a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"

to the extent that it includes a convenient and prominently visible

feature that (1) displays an appropriate copyright notice, and (2)

tells the user that there is no warranty for the work (except to the

extent that warranties are provided), that licensees may convey the

work under this License, and how to view a copy of this License. If

103

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

the interface presents a list of user commands or options, such as a

menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work

for making modifications to it. "Object code" means any non-source

form of a work.

A "Standard Interface" means an interface that either is an official

standard defined by a recognized standards body, or, in the case of

interfaces specified for a particular programming language, one that

is widely used among developers working in that language.

The "System Libraries" of an executable work include anything, other

than the work as a whole, that (a) is included in the normal form of

packaging a Major Component, but which is not part of that Major

Component, and (b) serves only to enable use of the work with that

Major Component, or to implement a Standard Interface for which an

implementation is available to the public in source code form. A

"Major Component", in this context, means a major essential component

(kernel, window system, and so on) of the specific operating system

(if any) on which the executable work runs, or a compiler used to

produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all

the source code needed to generate, install, and (for an executable

work) run the object code and to modify the work, including scripts to

control those activities. However, it does not include the work’s

System Libraries, or general-purpose tools or generally available free

programs which are used unmodified in performing those activities but

which are not part of the work. For example, Corresponding Source

includes interface definition files associated with source files for

the work, and the source code for shared libraries and dynamically

linked subprograms that the work is specifically designed to require,

such as by intimate data communication or control flow between those

subprograms and other parts of the work.

The Corresponding Source need not include anything that users

can regenerate automatically from other parts of the Corresponding

Source.

The Corresponding Source for a work in source code form is that

same work.

104

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

2. Basic Permissions.

All rights granted under this License are granted for the term of

copyright on the Program, and are irrevocable provided the stated

conditions are met. This License explicitly affirms your unlimited

permission to run the unmodified Program. The output from running a

covered work is covered by this License only if the output, given its

content, constitutes a covered work. This License acknowledges your

rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not

convey, without conditions so long as your license otherwise remains

in force. You may convey covered works to others for the sole purpose

of having them make modifications exclusively for you, or provide you

with facilities for running those works, provided that you comply with

the terms of this License in conveying all material for which you do

not control copyright. Those thus making or running the covered works

for you must do so exclusively on your behalf, under your direction

and control, on terms that prohibit them from making any copies of

your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under

the conditions stated below. Sublicensing is not allowed; section 10

makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological

measure under any applicable law fulfilling obligations under article

11 of the WIPO copyright treaty adopted on 20 December 1996, or

similar laws prohibiting or restricting circumvention of such

measures.

When you convey a covered work, you waive any legal power to forbid

circumvention of technological measures to the extent such circumvention

is effected by exercising rights under this License with respect to

the covered work, and you disclaim any intention to limit operation or

modification of the work as a means of enforcing, against the work’s

users, your or third parties’ legal rights to forbid circumvention of

technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you

receive it, in any medium, provided that you conspicuously and

105

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

appropriately publish on each copy an appropriate copyright notice;

keep intact all notices stating that this License and any

non-permissive terms added in accord with section 7 apply to the code;

keep intact all notices of the absence of any warranty; and give all

recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,

and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to

produce it from the Program, in the form of source code under the

terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified

it, and giving a relevant date.

b) The work must carry prominent notices stating that it is

released under this License and any conditions added under section

7. This requirement modifies the requirement in section 4 to

"keep intact all notices".

c) You must license the entire work, as a whole, under this

License to anyone who comes into possession of a copy. This

License will therefore apply, along with any applicable section 7

additional terms, to the whole of the work, and all its parts,

regardless of how they are packaged. This License gives no

permission to license the work in any other way, but it does not

invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display

Appropriate Legal Notices; however, if the Program has interactive

interfaces that do not display Appropriate Legal Notices, your

work need not make them do so.

A compilation of a covered work with other separate and independent

works, which are not by their nature extensions of the covered work,

and which are not combined with it such as to form a larger program,

in or on a volume of a storage or distribution medium, is called an

"aggregate" if the compilation and its resulting copyright are not

used to limit the access or legal rights of the compilation’s users

beyond what the individual works permit. Inclusion of a covered work

in an aggregate does not cause this License to apply to the other

parts of the aggregate.

106

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms

of sections 4 and 5, provided that you also convey the

machine-readable Corresponding Source under the terms of this License,

in one of these ways:

a) Convey the object code in, or embodied in, a physical product

(including a physical distribution medium), accompanied by the

Corresponding Source fixed on a durable physical medium

customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product

(including a physical distribution medium), accompanied by a

written offer, valid for at least three years and valid for as

long as you offer spare parts or customer support for that product

model, to give anyone who possesses the object code either (1) a

copy of the Corresponding Source for all the software in the

product that is covered by this License, on a durable physical

medium customarily used for software interchange, for a price no

more than your reasonable cost of physically performing this

conveying of source, or (2) access to copy the

Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the

written offer to provide the Corresponding Source. This

alternative is allowed only occasionally and noncommercially, and

only if you received the object code with such an offer, in accord

with subsection 6b.

d) Convey the object code by offering access from a designated

place (gratis or for a charge), and offer equivalent access to the

Corresponding Source in the same way through the same place at no

further charge. You need not require recipients to copy the

Corresponding Source along with the object code. If the place to

copy the object code is a network server, the Corresponding Source

may be on a different server (operated by you or a third party)

that supports equivalent copying facilities, provided you maintain

clear directions next to the object code saying where to find the

Corresponding Source. Regardless of what server hosts the

Corresponding Source, you remain obligated to ensure that it is

available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided

107

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

you inform other peers where the object code and Corresponding

Source of the work are being offered to the general public at no

charge under subsection 6d.

A separable portion of the object code, whose source code is excluded

from the Corresponding Source as a System Library, need not be

included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any

tangible personal property which is normally used for personal, family,

or household purposes, or (2) anything designed or sold for incorporation

into a dwelling. In determining whether a product is a consumer product,

doubtful cases shall be resolved in favor of coverage. For a particular

product received by a particular user, "normally used" refers to a

typical or common use of that class of product, regardless of the status

of the particular user or of the way in which the particular user

actually uses, or expects or is expected to use, the product. A product

is a consumer product regardless of whether the product has substantial

commercial, industrial or non-consumer uses, unless such uses represent

the only significant mode of use of the product.

"Installation Information" for a User Product means any methods,

procedures, authorization keys, or other information required to install

and execute modified versions of a covered work in that User Product from

a modified version of its Corresponding Source. The information must

suffice to ensure that the continued functioning of the modified object

code is in no case prevented or interfered with solely because

modification has been made.

If you convey an object code work under this section in, or with, or

specifically for use in, a User Product, and the conveying occurs as

part of a transaction in which the right of possession and use of the

User Product is transferred to the recipient in perpetuity or for a

fixed term (regardless of how the transaction is characterized), the

Corresponding Source conveyed under this section must be accompanied

by the Installation Information. But this requirement does not apply

if neither you nor any third party retains the ability to install

modified object code on the User Product (for example, the work has

been installed in ROM).

The requirement to provide Installation Information does not include a

requirement to continue to provide support service, warranty, or updates

for a work that has been modified or installed by the recipient, or for

the User Product in which it has been modified or installed. Access to a

network may be denied when the modification itself materially and

108

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

adversely affects the operation of the network or violates the rules and

protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,

in accord with this section must be in a format that is publicly

documented (and with an implementation available to the public in

source code form), and must require no special password or key for

unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this

License by making exceptions from one or more of its conditions.

Additional permissions that are applicable to the entire Program shall

be treated as though they were included in this License, to the extent

that they are valid under applicable law. If additional permissions

apply only to part of the Program, that part may be used separately

under those permissions, but the entire Program remains governed by

this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option

remove any additional permissions from that copy, or from any part of

it. (Additional permissions may be written to require their own

removal in certain cases when you modify the work.) You may place

additional permissions on material, added by you to a covered work,

for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you

add to a covered work, you may (if authorized by the copyright holders of

that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the

terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or

author attributions in that material or in the Appropriate Legal

Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or

requiring that modified versions of such material be marked in

reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or

authors of the material; or

109

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

e) Declining to grant rights under trademark law for use of some

trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that

material by anyone who conveys the material (or modified versions of

it) with contractual assumptions of liability to the recipient, for

any liability that these contractual assumptions directly impose on

those licensors and authors.

All other non-permissive additional terms are considered "further

restrictions" within the meaning of section 10. If the Program as you

received it, or any part of it, contains a notice stating that it is

governed by this License along with a term that is a further

restriction, you may remove that term. If a license document contains

a further restriction but permits relicensing or conveying under this

License, you may add to a covered work material governed by the terms

of that license document, provided that the further restriction does

not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you

must place, in the relevant source files, a statement of the

additional terms that apply to those files, or a notice indicating

where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the

form of a separately written license, or stated as exceptions;

the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly

provided under this License. Any attempt otherwise to propagate or

modify it is void, and will automatically terminate your rights under

this License (including any patent licenses granted under the third

paragraph of section 11).

However, if you cease all violation of this License, then your

license from a particular copyright holder is reinstated (a)

provisionally, unless and until the copyright holder explicitly and

finally terminates your license, and (b) permanently, if the copyright

holder fails to notify you of the violation by some reasonable means

prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is

reinstated permanently if the copyright holder notifies you of the

110

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

violation by some reasonable means, this is the first time you have

received notice of violation of this License (for any work) from that

copyright holder, and you cure the violation prior to 30 days after

your receipt of the notice.

Termination of your rights under this section does not terminate the

licenses of parties who have received copies or rights from you under

this License. If your rights have been terminated and not permanently

reinstated, you do not qualify to receive new licenses for the same

material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or

run a copy of the Program. Ancillary propagation of a covered work

occurring solely as a consequence of using peer-to-peer transmission

to receive a copy likewise does not require acceptance. However,

nothing other than this License grants you permission to propagate or

modify any covered work. These actions infringe copyright if you do

not accept this License. Therefore, by modifying or propagating a

covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically

receives a license from the original licensors, to run, modify and

propagate that work, subject to this License. You are not responsible

for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an

organization, or substantially all assets of one, or subdividing an

organization, or merging organizations. If propagation of a covered

work results from an entity transaction, each party to that

transaction who receives a copy of the work also receives whatever

licenses to the work the party’s predecessor in interest had or could

give under the previous paragraph, plus a right to possession of the

Corresponding Source of the work from the predecessor in interest, if

the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the

rights granted or affirmed under this License. For example, you may

not impose a license fee, royalty, or other charge for exercise of

rights granted under this License, and you may not initiate litigation

(including a cross-claim or counterclaim in a lawsuit) alleging that

any patent claim is infringed by making, using, selling, offering for

111

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this

License of the Program or a work on which the Program is based. The

work thus licensed is called the contributor’s "contributor version".

A contributor’s "essential patent claims" are all patent claims

owned or controlled by the contributor, whether already acquired or

hereafter acquired, that would be infringed by some manner, permitted

by this License, of making, using, or selling its contributor version,

but do not include claims that would be infringed only as a

consequence of further modification of the contributor version. For

purposes of this definition, "control" includes the right to grant

patent sublicenses in a manner consistent with the requirements of

this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free

patent license under the contributor’s essential patent claims, to

make, use, sell, offer for sale, import and otherwise run, modify and

propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express

agreement or commitment, however denominated, not to enforce a patent

(such as an express permission to practice a patent or covenant not to

sue for patent infringement). To "grant" such a patent license to a

party means to make such an agreement or commitment not to enforce a

patent against the party.

If you convey a covered work, knowingly relying on a patent license,

and the Corresponding Source of the work is not available for anyone

to copy, free of charge and under the terms of this License, through a

publicly available network server or other readily accessible means,

then you must either (1) cause the Corresponding Source to be so

available, or (2) arrange to deprive yourself of the benefit of the

patent license for this particular work, or (3) arrange, in a manner

consistent with the requirements of this License, to extend the patent

license to downstream recipients. "Knowingly relying" means you have

actual knowledge that, but for the patent license, your conveying the

covered work in a country, or your recipient’s use of the covered work

in a country, would infringe one or more identifiable patents in that

country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or

112

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

arrangement, you convey, or propagate by procuring conveyance of, a

covered work, and grant a patent license to some of the parties

receiving the covered work authorizing them to use, propagate, modify

or convey a specific copy of the covered work, then the patent license

you grant is automatically extended to all recipients of the covered

work and works based on it.

A patent license is "discriminatory" if it does not include within

the scope of its coverage, prohibits the exercise of, or is

conditioned on the non-exercise of one or more of the rights that are

specifically granted under this License. You may not convey a covered

work if you are a party to an arrangement with a third party that is

in the business of distributing software, under which you make payment

to the third party based on the extent of your activity of conveying

the work, and under which the third party grants, to any of the

parties who would receive the covered work from you, a discriminatory

patent license (a) in connection with copies of the covered work

conveyed by you (or copies made from those copies), or (b) primarily

for and in connection with specific products or compilations that

contain the covered work, unless you entered into that arrangement,

or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting

any implied license or other defenses to infringement that may

otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot convey a

covered work so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you may

not convey it at all. For example, if you agree to terms that obligate you

to collect a royalty for further conveying from those to whom you convey

the Program, the only way you could satisfy both those terms and this

License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have

permission to link or combine any covered work with a work licensed

under version 3 of the GNU Affero General Public License into a single

combined work, and to convey the resulting work. The terms of this

License will continue to apply to the part which is the covered work,

113

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

but the special requirements of the GNU Affero General Public License,

section 13, concerning interaction through a network will apply to the

combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of

the GNU General Public License from time to time. Such new versions will

be similar in spirit to the present version, but may differ in detail to

address new problems or concerns.

Each version is given a distinguishing version number. If the

Program specifies that a certain numbered version of the GNU General

Public License "or any later version" applies to it, you have the

option of following the terms and conditions either of that numbered

version or of any later version published by the Free Software

Foundation. If the Program does not specify a version number of the

GNU General Public License, you may choose any version ever published

by the Free Software Foundation.

If the Program specifies that a proxy can decide which future

versions of the GNU General Public License can be used, that proxy’s

public statement of acceptance of a version permanently authorizes you

to choose that version for the Program.

Later license versions may give you additional or different

permissions. However, no additional obligations are imposed on any

author or copyright holder as a result of your choosing to follow a

later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT

HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM

IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF

ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS

114

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY

GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE

USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF

DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD

PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided

above cannot be given local legal effect according to their terms,

reviewing courts shall apply local law that most closely approximates

an absolute waiver of all civil liability in connection with the

Program, unless a warranty or assumption of liability accompanies a

copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively

state the exclusion of warranty; and each file should have at least

the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

115

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short

notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate

parts of the General Public License. Of course, your program’s commands

might be different; for a GUI interface, you would use an "about box".

You should also get your employer (if you work as a programmer) or school,

if any, to sign a "copyright disclaimer" for the program, if necessary.

For more information on this, and how to apply and follow the GNU GPL, see

<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program

into proprietary programs. If your program is a subroutine library, you

may consider it more useful to permit linking proprietary applications with

the library. If this is what you want to do, use the GNU Lesser General

Public License instead of this License. But first, please read

<http://www.gnu.org/philosophy/why-not-lgpl.html>.

116

Index

BasisFunctions, 24
BasisFunction, 24
Constant, 25, 27
FacetNormal, 27
Functions, 25
Function, 25
Identity, 27
Index, 30
TensorConstant, 25
TestFunctions, 24
TestFunction, 24
TrialFunctions, 24
TrialFunction, 24
VectorConstant, 25, 27
cofac, 41
cross, 40
curl, 45
det, 40
dev, 40
dot, 37
inner, 38
inv, 41
outer, 39
rot, 45
skew, 41
split, 25
sym, 40
transpose, 36
tr, 36
form2ufl, 96

ufl-analyse, 95
ufl-convert, 95

algebraic operators, 34
avg, 46

backward Euler, 66
basis functions, 24
BDM elements, 68
boundary measure, 16
Brezzi–Douglas–Marini elements, 68

cell integral, 16
cofactor, 41
conditional operators, 48
constants, 27
contact, 12
coordinates, 27
cross product, 40
curl, 45

datatypes, 27
Debian package, 100
def, 50
dependencies, 97
determinant, 40
deviatoric, 40
DG operators, 46
differential operators, 42
Discontinuous Galerkin, 69
discontinuous Galerkin, 46
discontinuous Lagrange element, 19

117

UFL Specification and User Manual 0.3 Martin S. Alnæs, Anders Logg

dot product, 37
downloading, 98

elasticity, 64
enumeration, 12
examples, 61
exterior facet integral, 16

facet normal, 27
FE and QE, 70
finite element space, 18
fixed-point iteration, 65
form arguments, 24
form files, 59
form language, 15
form transformations, 50
forms, 16
functions, 24, 25

GNU General Public License, 101
GPL, 101

heat equation, 66

identity matrix, 27
index notation, 29
indexing, 29
indices, 12, 30
inner product, 38
installation, 97
integrals, 16
interior facet integral, 16
interior measure, 16
inverse, 41

jump, 46

Lagrange element, 19
lambda, 50
license, 101

linear elasticity, 64

mass matrix, 61
mixed formulation, 67
mixed Poisson, 68

Navier-Stokes, 65

operators, 35
outer product, 39

Poisson’s equation, 62
Python, 15

restriction, 46
rotation, 45

skew symmetric, 41
source code, 98
Stokes’ equations, 67
strain, 64
symmetric, 40

Taylor-Hood element, 67
tensor algebra operators, 36
tensor components, 29
time-stepping, 66
trace, 36
transpose, 36
tuple notation, 58
typographic conventions, 11

Ubuntu package, 100
ufl files, 59
user-defined operators, 49

vector constants, 27
vector product, 40
vector-valued Poisson, 63

118

	About this manual
	Introduction
	Form Language
	Forms and Integrals
	Finite Element Spaces
	Cells
	Element Families
	Basic Elements
	Vector Elements
	Tensor Elements
	Mixed Elements
	EnrichedElement

	Form Arguments
	Basis functions
	Coefficient functions

	Basic Datatypes
	Literals and geometric quantities

	Indexing and tensor components
	Defining indices
	Taking components of tensors
	Making tensors from components
	Implicit summation

	Basic algebraic operators
	Basic nonlinear functions
	Tensor Algebra Operators
	transpose
	tr
	dot
	inner
	outer
	cross
	det
	dev
	sym
	skew
	cofac
	inv

	Differential Operators
	Basic spatial derivatives
	Compound spatial derivatives
	Gradient
	Divergence
	Curl and rot
	Variable derivatives
	Functional derivatives

	DG operators
	Restriction: v('+') and v('-')
	Jump: jump(v)
	Average: avg(v)

	Conditional Operators
	Conditional
	Conditions

	User-defined operators
	Form Transformations
	Replacing arguments of a Form
	Action of a form on a function
	Energy norm of a bilinear Form
	Adjoint of a bilinear Form
	Linear and bilinear parts of a Form
	Automatic Functional Differentiation
	Combining form transformations

	Tuple Notation
	Form Files

	Example Forms
	The mass matrix
	Poisson's equation
	Vector-valued Poisson
	The strain-strain term of linear elasticity
	The nonlinear term of Navier–Stokes
	The heat equation
	Mixed formulation of Stokes
	Mixed formulation of Poisson
	Poisson's equation with DG elements
	Quadrature elements
	More Examples

	Internal Representation Details
	Structure of a Form
	General properties of expressions
	operands
	reconstruct
	cell
	shape
	free_indices
	index_dimensions
	str(u)
	repr(u)
	hash(u)
	u == v
	About other relational operators

	Elements
	Terminals
	Operators
	Extending UFL

	Algorithms
	Formatting expressions
	str
	repr
	Tree formatting
	LaTeXformatting
	Dot formatting

	Inspecting and manipulating the expression tree
	Traversing expressions
	Extracting information
	Transforming expressions

	Automatic differentiation implementation
	Forward mode
	Reverse mode
	Mixed derivatives

	Computational graphs
	The computational graph
	Partitioning the graph

	Commandline utilities
	Validation and debugging: ufl-analyse
	Formatting and visualization: ufl-convert
	Conversion from FFC form files: form2ufl

	Installation
	Installing from source
	Dependencies and requirements
	Downloading the source code
	Installing UFL
	Running the test suite

	Debian (Ubuntu) package

	License

