python-bumps 0.9.0-3 source package in Ubuntu

Changelog

python-bumps (0.9.0-3) unstable; urgency=medium

  * debian patch scipy_1.10.patch patches covariance handling to allow
    for changes in scipy 1.10 (stats.Covariance).
    See Upstream Issue #118. Closes: #1029693.
  * Standards-Version: 4.6.2

 -- Drew Parsons <email address hidden>  Thu, 26 Jan 2023 17:07:11 +0100

Upload details

Uploaded by:
Debian Science Team
Uploaded to:
Sid
Original maintainer:
Debian Science Team
Architectures:
any-amd64 any-i386 all powerpc
Section:
misc
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section
Lunar release universe misc

Builds

Lunar: [FULLYBUILT] amd64

Downloads

File Size SHA-256 Checksum
python-bumps_0.9.0-3.dsc 2.6 KiB 094a3ada91a9ef480abc3bcfe876d4ded69015ef3f26fbdd676ae11c18add59e
python-bumps_0.9.0.orig.tar.gz 3.5 MiB b0eeb89a976ed340983496d70a83416fa65e5ca3a2eec13967f892268836ab68
python-bumps_0.9.0-3.debian.tar.xz 13.9 KiB fef5736ab605bfef9dcdec34838a67c6be32bef61735364b31b200dc9121a0cc

Available diffs

No changes file available.

Binary packages built by this source

bumps-private-libs: data fitting and Bayesian uncertainty modeling for inverse problems (libraries)

 Bumps is a set of routines for curve fitting and uncertainty analysis
 from a Bayesian perspective. In addition to traditional optimizers
 which search for the best minimum they can find in the search space,
 bumps provides uncertainty analysis which explores all viable minima
 and finds confidence intervals on the parameters based on uncertainty
 in the measured values. Bumps has been used for systems of up to 100
 parameters with tight constraints on the parameters. Full uncertainty
 analysis requires hundreds of thousands of function evaluations,
 which is only feasible for cheap functions, systems with many
 processors, or lots of patience.
 .
 Bumps includes several traditional local optimizers such as
 Nelder-Mead simplex, BFGS and differential evolution. Bumps
 uncertainty analysis uses Markov chain Monte Carlo to explore the
 parameter space. Although it was created for curve fitting problems,
 Bumps can explore any probability density function, such as those
 defined by PyMC. In particular, the bumps uncertainty analysis works
 well with correlated parameters.
 .
 Bumps can be used as a library within your own applications, or as a
 framework for fitting, complete with a graphical user interface to
 manage your models.
 .
 This package installs the compiled libraries used by the Python modules.

bumps-private-libs-dbgsym: debug symbols for bumps-private-libs
python-bumps-doc: data fitting and Bayesian uncertainty modeling for inverse problems (docs)

 Bumps is a set of routines for curve fitting and uncertainty analysis
 from a Bayesian perspective. In addition to traditional optimizers
 which search for the best minimum they can find in the search space,
 bumps provides uncertainty analysis which explores all viable minima
 and finds confidence intervals on the parameters based on uncertainty
 in the measured values. Bumps has been used for systems of up to 100
 parameters with tight constraints on the parameters. Full uncertainty
 analysis requires hundreds of thousands of function evaluations,
 which is only feasible for cheap functions, systems with many
 processors, or lots of patience.
 .
 Bumps includes several traditional local optimizers such as
 Nelder-Mead simplex, BFGS and differential evolution. Bumps
 uncertainty analysis uses Markov chain Monte Carlo to explore the
 parameter space. Although it was created for curve fitting problems,
 Bumps can explore any probability density function, such as those
 defined by PyMC. In particular, the bumps uncertainty analysis works
 well with correlated parameters.
 .
 Bumps can be used as a library within your own applications, or as a
 framework for fitting, complete with a graphical user interface to
 manage your models.
 .
 This is the common documentation package.

python3-bumps: data fitting and Bayesian uncertainty modeling for inverse problems (Python 3)

 Bumps is a set of routines for curve fitting and uncertainty analysis
 from a Bayesian perspective. In addition to traditional optimizers
 which search for the best minimum they can find in the search space,
 bumps provides uncertainty analysis which explores all viable minima
 and finds confidence intervals on the parameters based on uncertainty
 in the measured values. Bumps has been used for systems of up to 100
 parameters with tight constraints on the parameters. Full uncertainty
 analysis requires hundreds of thousands of function evaluations,
 which is only feasible for cheap functions, systems with many
 processors, or lots of patience.
 .
 Bumps includes several traditional local optimizers such as
 Nelder-Mead simplex, BFGS and differential evolution. Bumps
 uncertainty analysis uses Markov chain Monte Carlo to explore the
 parameter space. Although it was created for curve fitting problems,
 Bumps can explore any probability density function, such as those
 defined by PyMC. In particular, the bumps uncertainty analysis works
 well with correlated parameters.
 .
 Bumps can be used as a library within your own applications, or as a
 framework for fitting, complete with a graphical user interface to
 manage your models.
 .
 This package installs the library for Python 3.