nwchem 7.2.2-1build3 source package in Ubuntu

Changelog

nwchem (7.2.2-1build3) noble; urgency=medium

  * No-change rebuild for CVE-2024-3094

 -- William Grant <email address hidden>  Mon, 01 Apr 2024 18:00:53 +1100

Upload details

Uploaded by:
William Grant
Uploaded to:
Noble
Original maintainer:
Ubuntu Developers
Architectures:
any all
Section:
science
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section
Noble release universe science

Downloads

File Size SHA-256 Checksum
nwchem_7.2.2.orig.tar.bz2 159.2 MiB 47f19f2d59e988d33fc4fe067a97da5d15a7ed1167d5acd644dbe84065c19729
nwchem_7.2.2-1build3.debian.tar.xz 546.0 KiB 72de10a62c73bd40cf569829ee2dbb367a7bc1510a5576cf2680932601804662
nwchem_7.2.2-1build3.dsc 2.6 KiB 76c48d4cbbdab83a68dddbb6db711bdb2cea725f66560e63393dcc375aac4ae2

Available diffs

View changes file

Binary packages built by this source

nwchem: High-performance computational chemistry software (default MPI)

 NWChem is a computational chemistry program package. It provides methods
 which are scalable both in their ability to treat large scientific
 computational chemistry problems efficiently, and in their use of available
 parallel computing resources from high-performance parallel supercomputers to
 conventional workstation clusters.
 .
 NWChem can handle:
 .
  * Molecular electronic structure methods using gaussian
    basis functions for high-accuracy calculations of molecules
  * Pseudopotentials plane-wave electronic structure methods for calculating
    molecules, liquids, crystals, surfaces, semi-conductors or metals
  * Ab-initio and classical molecular dynamics simulations
  * Mixed quantum-classical simulations
  * Parallel scaling to thousands of processors
 .
 Features include:
  * Molecular electronic structure methods, analytic second derivatives:
   - Restricted/unrestricted Hartree-Fock (RHF, UHF)
   - Restricted Density Functional Theory (DFT) using many local,
     non-local (gradient-corrected) or hybrid (local, non-local, and HF)
     exchange-correlation potentials
  * Molecular electronic structure methods, analytic gradients:
   - Restricted open-shell Hartree-Fock (ROHF)
   - Unrestricted Density Functional Theory (DFT)
   - Second-order Moeller-Plesset perturbation theory (MP2), using RHF and UHF
     reference
   - MP2 with resolution of the identity approximation (RI-MP2)
   - Complete active space SCF (CASSCF)
   - Time-Dependent Density Functional Theory (TDDFT)
  * Molecular electronic structure methods, single-point energies:
   - MP2 spin-component scaled approach (SCS-MP2)
   - Coupled cluster singles and doubles, triples or pertubative triples
     (CCSD, CCSDT, CCSD(T)), with RHF and UHF reference
   - Configuration interaction (CISD, CISDT, and CISDTQ)
   - Second-order approximate coupled-cluster singles doubles (CC2)
   - State-specific multireference coupled cluster methods (MRCC)
     (Brillouin-Wigner (BW-MRCC) and Mukherjee (Mk-MRCC) approaches)
  * Further molecular electronic structure features:
   - Geometry optimization including transition state searches, constraints
     and minimum energy paths (via the Nudged Elastic Band (NEB) and Zero
     Temperature String methods)
   - Vibrational frequencies
   - Equation-of-motion (EOM)-CCSD, EOM-CCSDT, EOM-CCSD(T), CC2,
     Configuration-Interaction singles (CIS), time-dependent HF (TDHF) and
     TDDFT, for excited states with RHF, UHF, RDFT, or UDFT reference
   - Solvatisation using the Conductor-like screening model (COSMO) for RHF,
     ROHF and DFT, including analytical gradients
   - Hybrid calculations using the two- and three-layer ONIOM method
   - Relativistic effects via spin-free and spin-orbit one-electron
     Douglas-Kroll and zeroth-order regular approximations (ZORA) and
     one-electron spin-orbit effects for DFT via spin-orbit potentials
  * Pseudopotential plane-wave electronic structure:
   - Pseudopotential Plane-Wave (PSPW), Projector Augmented Wave (PAW) or band
     structure methods for calculating molecules, liquids, crystals, surfaces,
     semi-conductors or metals
   - Geometry/unit cell optimization including transition state searches
   - Vibrational frequencies
   - LDA, PBE96, and PBE0 exchange-correlation potentials (restricted and
     unrestricted)
   - SIC, pert-OEP, Hartree-Fock, and hybrid functionals (restricted and
     unrestricted)
   - Hamann, Troullier-Martins and Hartwigsen-Goedecker-Hutter norm-conserving
     pseudopotentials with semicore corrections
   - Wavefunction, density, electrostatic and Wannier plotting
   - Band structure and density of states generation
  * Car-Parrinello ab-initio molecular dynamics (CPMD):
   - Constant energy and constant temperature dynamics
   - Verlet algorithm for integration
   - Geometry constraints in cartesian coordinates
  * Classical molecular dynamics (MD):
   - Single configuration energy evaluation
   - Energy minimization
   - Molecular dynamics simulation
   - Free energy simulation (multistep thermodynamic perturbation (MSTP) or
     multiconfiguration thermodynamic integration (MCTI) methods with options
     of single and/or dual topologies, double wide sampling, and separation-
     shifted scaling)
   - Force fields providing effective pair potentials, first order
     polarization, self consistent polarization, smooth particle mesh Ewald
     (SPME), periodic boundary conditions and SHAKE constraints
  * Mixed quantum-classical:
   - Mixed quantum-mechanics and molecular-mechanics (QM/MM) minimizations and
     molecular dynamics simulations
   - Quantum molecular dynamics simulation by using any of the quantum
     mechanical methods capable of returning gradients.
 .
 This package provides example input scripts and depends on nwchem built for
 the default MPI implementation for the architecture.
 .
 The default MPI is openmpi for most debian systems. OpenMPI has known problems
 running nwchem over multiple nodes. If you need to compute large molecules
 using cluster computation, you may want to use the MPICH build provided by
 nwchem-mpich instead.

nwchem-data: High-performance computational chemistry software (data files)

 NWChem is a computational chemistry program package. It provides methods
 which are scalable both in their ability to treat large scientific
 computational chemistry problems efficiently, and in their use of available
 parallel computing resources from high-performance parallel supercomputers to
 conventional workstation clusters.
 .
 This package contains the basis sets, pseudopotentials and AMBER/CHARMM
 parameter files.

nwchem-mpich: High-performance computational chemistry software (MPICH build)

 NWChem is a computational chemistry program package. It provides methods
 which are scalable both in their ability to treat large scientific
 computational chemistry problems efficiently, and in their use of available
 parallel computing resources from high-performance parallel supercomputers to
 conventional workstation clusters.
 .
 NWChem can handle:
 .
  * Molecular electronic structure methods using gaussian
    basis functions for high-accuracy calculations of molecules
  * Pseudopotentials plane-wave electronic structure methods for calculating
    molecules, liquids, crystals, surfaces, semi-conductors or metals
  * Ab-initio and classical molecular dynamics simulations
  * Mixed quantum-classical simulations
  * Parallel scaling to thousands of processors
 .
 Features include:
  * Molecular electronic structure methods, analytic second derivatives:
   - Restricted/unrestricted Hartree-Fock (RHF, UHF)
   - Restricted Density Functional Theory (DFT) using many local,
     non-local (gradient-corrected) or hybrid (local, non-local, and HF)
     exchange-correlation potentials
  * Molecular electronic structure methods, analytic gradients:
   - Restricted open-shell Hartree-Fock (ROHF)
   - Unrestricted Density Functional Theory (DFT)
   - Second-order Moeller-Plesset perturbation theory (MP2), using RHF and UHF
     reference
   - MP2 with resolution of the identity approximation (RI-MP2)
   - Complete active space SCF (CASSCF)
   - Time-Dependent Density Functional Theory (TDDFT)
  * Molecular electronic structure methods, single-point energies:
   - MP2 spin-component scaled approach (SCS-MP2)
   - Coupled cluster singles and doubles, triples or pertubative triples
     (CCSD, CCSDT, CCSD(T)), with RHF and UHF reference
   - Configuration interaction (CISD, CISDT, and CISDTQ)
   - Second-order approximate coupled-cluster singles doubles (CC2)
   - State-specific multireference coupled cluster methods (MRCC)
     (Brillouin-Wigner (BW-MRCC) and Mukherjee (Mk-MRCC) approaches)
  * Further molecular electronic structure features:
   - Geometry optimization including transition state searches, constraints
     and minimum energy paths (via the Nudged Elastic Band (NEB) and Zero
     Temperature String methods)
   - Vibrational frequencies
   - Equation-of-motion (EOM)-CCSD, EOM-CCSDT, EOM-CCSD(T), CC2,
     Configuration-Interaction singles (CIS), time-dependent HF (TDHF) and
     TDDFT, for excited states with RHF, UHF, RDFT, or UDFT reference
   - Solvatisation using the Conductor-like screening model (COSMO) for RHF,
     ROHF and DFT, including analytical gradients
   - Hybrid calculations using the two- and three-layer ONIOM method
   - Relativistic effects via spin-free and spin-orbit one-electron
     Douglas-Kroll and zeroth-order regular approximations (ZORA) and
     one-electron spin-orbit effects for DFT via spin-orbit potentials
  * Pseudopotential plane-wave electronic structure:
   - Pseudopotential Plane-Wave (PSPW), Projector Augmented Wave (PAW) or band
     structure methods for calculating molecules, liquids, crystals, surfaces,
     semi-conductors or metals
   - Geometry/unit cell optimization including transition state searches
   - Vibrational frequencies
   - LDA, PBE96, and PBE0 exchange-correlation potentials (restricted and
     unrestricted)
   - SIC, pert-OEP, Hartree-Fock, and hybrid functionals (restricted and
     unrestricted)
   - Hamann, Troullier-Martins and Hartwigsen-Goedecker-Hutter norm-conserving
     pseudopotentials with semicore corrections
   - Wavefunction, density, electrostatic and Wannier plotting
   - Band structure and density of states generation
  * Car-Parrinello ab-initio molecular dynamics (CPMD):
   - Constant energy and constant temperature dynamics
   - Verlet algorithm for integration
   - Geometry constraints in cartesian coordinates
  * Classical molecular dynamics (MD):
   - Single configuration energy evaluation
   - Energy minimization
   - Molecular dynamics simulation
   - Free energy simulation (multistep thermodynamic perturbation (MSTP) or
     multiconfiguration thermodynamic integration (MCTI) methods with options
     of single and/or dual topologies, double wide sampling, and separation-
     shifted scaling)
   - Force fields providing effective pair potentials, first order
     polarization, self consistent polarization, smooth particle mesh Ewald
     (SPME), periodic boundary conditions and SHAKE constraints
  * Mixed quantum-classical:
   - Mixed quantum-mechanics and molecular-mechanics (QM/MM) minimizations and
     molecular dynamics simulations
   - Quantum molecular dynamics simulation by using any of the quantum
     mechanical methods capable of returning gradients.
 .
 This package provides nwchem built with MPICH. It is expected to run nwchem
 successfully over multiple nodes. If you need to compute large molecules
 using cluster computation, then this package might be a better choice than
 nwchem-openmpi.

nwchem-mpich-dbgsym: debug symbols for nwchem-mpich
nwchem-openmpi: High-performance computational chemistry software (OpenMPI build)

 NWChem is a computational chemistry program package. It provides methods
 which are scalable both in their ability to treat large scientific
 computational chemistry problems efficiently, and in their use of available
 parallel computing resources from high-performance parallel supercomputers to
 conventional workstation clusters.
 .
 NWChem can handle:
 .
  * Molecular electronic structure methods using gaussian
    basis functions for high-accuracy calculations of molecules
  * Pseudopotentials plane-wave electronic structure methods for calculating
    molecules, liquids, crystals, surfaces, semi-conductors or metals
  * Ab-initio and classical molecular dynamics simulations
  * Mixed quantum-classical simulations
  * Parallel scaling to thousands of processors
 .
 Features include:
  * Molecular electronic structure methods, analytic second derivatives:
   - Restricted/unrestricted Hartree-Fock (RHF, UHF)
   - Restricted Density Functional Theory (DFT) using many local,
     non-local (gradient-corrected) or hybrid (local, non-local, and HF)
     exchange-correlation potentials
  * Molecular electronic structure methods, analytic gradients:
   - Restricted open-shell Hartree-Fock (ROHF)
   - Unrestricted Density Functional Theory (DFT)
   - Second-order Moeller-Plesset perturbation theory (MP2), using RHF and UHF
     reference
   - MP2 with resolution of the identity approximation (RI-MP2)
   - Complete active space SCF (CASSCF)
   - Time-Dependent Density Functional Theory (TDDFT)
  * Molecular electronic structure methods, single-point energies:
   - MP2 spin-component scaled approach (SCS-MP2)
   - Coupled cluster singles and doubles, triples or pertubative triples
     (CCSD, CCSDT, CCSD(T)), with RHF and UHF reference
   - Configuration interaction (CISD, CISDT, and CISDTQ)
   - Second-order approximate coupled-cluster singles doubles (CC2)
   - State-specific multireference coupled cluster methods (MRCC)
     (Brillouin-Wigner (BW-MRCC) and Mukherjee (Mk-MRCC) approaches)
  * Further molecular electronic structure features:
   - Geometry optimization including transition state searches, constraints
     and minimum energy paths (via the Nudged Elastic Band (NEB) and Zero
     Temperature String methods)
   - Vibrational frequencies
   - Equation-of-motion (EOM)-CCSD, EOM-CCSDT, EOM-CCSD(T), CC2,
     Configuration-Interaction singles (CIS), time-dependent HF (TDHF) and
     TDDFT, for excited states with RHF, UHF, RDFT, or UDFT reference
   - Solvatisation using the Conductor-like screening model (COSMO) for RHF,
     ROHF and DFT, including analytical gradients
   - Hybrid calculations using the two- and three-layer ONIOM method
   - Relativistic effects via spin-free and spin-orbit one-electron
     Douglas-Kroll and zeroth-order regular approximations (ZORA) and
     one-electron spin-orbit effects for DFT via spin-orbit potentials
  * Pseudopotential plane-wave electronic structure:
   - Pseudopotential Plane-Wave (PSPW), Projector Augmented Wave (PAW) or band
     structure methods for calculating molecules, liquids, crystals, surfaces,
     semi-conductors or metals
   - Geometry/unit cell optimization including transition state searches
   - Vibrational frequencies
   - LDA, PBE96, and PBE0 exchange-correlation potentials (restricted and
     unrestricted)
   - SIC, pert-OEP, Hartree-Fock, and hybrid functionals (restricted and
     unrestricted)
   - Hamann, Troullier-Martins and Hartwigsen-Goedecker-Hutter norm-conserving
     pseudopotentials with semicore corrections
   - Wavefunction, density, electrostatic and Wannier plotting
   - Band structure and density of states generation
  * Car-Parrinello ab-initio molecular dynamics (CPMD):
   - Constant energy and constant temperature dynamics
   - Verlet algorithm for integration
   - Geometry constraints in cartesian coordinates
  * Classical molecular dynamics (MD):
   - Single configuration energy evaluation
   - Energy minimization
   - Molecular dynamics simulation
   - Free energy simulation (multistep thermodynamic perturbation (MSTP) or
     multiconfiguration thermodynamic integration (MCTI) methods with options
     of single and/or dual topologies, double wide sampling, and separation-
     shifted scaling)
   - Force fields providing effective pair potentials, first order
     polarization, self consistent polarization, smooth particle mesh Ewald
     (SPME), periodic boundary conditions and SHAKE constraints
  * Mixed quantum-classical:
   - Mixed quantum-mechanics and molecular-mechanics (QM/MM) minimizations and
     molecular dynamics simulations
   - Quantum molecular dynamics simulation by using any of the quantum
     mechanical methods capable of returning gradients.
 .
 This package provides nwchem built with OpenMPI.
 .
 OpenMPI has known problems running nwchem over multiple nodes. If you need
 to compute large molecules using cluster computation, you may want to use
 the MPICH build provided by nwchem-mpich instead.

nwchem-openmpi-dbgsym: debug symbols for nwchem-openmpi