code-saturne 6.0.0-1 source package in Ubuntu

Changelog

code-saturne (6.0.0-1) unstable; urgency=medium

  * Upload to unstable

 -- Gilles Filippini <email address hidden>  Thu, 17 Oct 2019 20:45:00 +0200

Upload details

Uploaded by:
Debian Science Team
Uploaded to:
Sid
Original maintainer:
Debian Science Team
Architectures:
any all
Section:
science
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section

Downloads

File Size SHA-256 Checksum
code-saturne_6.0.0-1.dsc 2.3 KiB d71424806dc8b7da8d63774c7e3dbcd8371a16395ac8d00922af17d7f06feb87
code-saturne_6.0.0.orig.tar.gz 18.2 MiB 167cfdd1bf2339f6ed364d34c31377cd9dd63e4e1aa823f480f20a1516d78cd7
code-saturne_6.0.0-1.debian.tar.xz 9.6 KiB 3e497e2abefbfb6e3d5e662ecdb696efad0f7131c3f4cc1545e75b25b21114d8

Available diffs

No changes file available.

Binary packages built by this source

code-saturne: General purpose Computational Fluid Dynamics (CFD) software

 The basic capabilities of Code_Saturne enable the handling of either
 incompressible or expandable flows with or without heat transfer and
 turbulence. Dedicated modules are available for specific physics such
 as radiative heat transfer, combustion (gas, coal, heavy fuel oil, ...),
 magneto-hydrodynamics, compressible flows, two-phase flows
 (Euler-Lagrange approach with two-way coupling), extensions to
 specific applications (e.g. Mercure_Saturne for atmospheric
 environment).
 .
 It runs in parallel with MPI on distributed memory machines.
 Developed since 1997 at EDF R&D, it is based on a co-located Finite
 Volume approach that accepts meshes with any type of cell
 (tetrahedral, hexahedral, prismatic, pyramidal, polyhedral...) and any
 type of grid structure (unstructured, block structured, hybrid,
 conforming or with hanging nodes, ...).

code-saturne-bin: General purpose Computational Fluid Dynamics (CFD) software - binaries

 The basic capabilities of Code_Saturne enable the handling of either
 incompressible or expandable flows with or without heat transfer and
 turbulence. Dedicated modules are available for specific physics such
 as radiative heat transfer, combustion (gas, coal, heavy fuel oil, ...),
 magneto-hydrodynamics, compressible flows, two-phase flows
 (Euler-Lagrange approach with two-way coupling), extensions to
 specific applications (e.g. Mercure_Saturne for atmospheric
 environment).
 .
 It runs in parallel with MPI on distributed memory machines.
 Developed since 1997 at EDF R&D, it is based on a co-located Finite
 Volume approach that accepts meshes with any type of cell
 (tetrahedral, hexahedral, prismatic, pyramidal, polyhedral...) and any
 type of grid structure (unstructured, block structured, hybrid,
 conforming or with hanging nodes, ...).
 .
 This package contains the binary files.

code-saturne-bin-dbgsym: debug symbols for code-saturne-bin
code-saturne-data: General purpose Computational Fluid Dynamics (CFD) software - data

 The basic capabilities of Code_Saturne enable the handling of either
 incompressible or expandable flows with or without heat transfer and
 turbulence. Dedicated modules are available for specific physics such
 as radiative heat transfer, combustion (gas, coal, heavy fuel oil, ...),
 magneto-hydrodynamics, compressible flows, two-phase flows
 (Euler-Lagrange approach with two-way coupling), extensions to
 specific applications (e.g. Mercure_Saturne for atmospheric
 environment).
 .
 It runs in parallel with MPI on distributed memory machines.
 Developed since 1997 at EDF R&D, it is based on a co-located Finite
 Volume approach that accepts meshes with any type of cell
 (tetrahedral, hexahedral, prismatic, pyramidal, polyhedral...) and any
 type of grid structure (unstructured, block structured, hybrid,
 conforming or with hanging nodes, ...).
 .
 This package contains the data.

code-saturne-doc: General purpose Computational Fluid Dynamics (CFD) software - Documentation

 The basic capabilities of Code_Saturne enable the handling of either
 incompressible or expandable flows with or without heat transfer and
 turbulence. Dedicated modules are available for specific physics such
 as radiative heat transfer, combustion (gas, coal, heavy fuel oil, ...),
 magneto-hydrodynamics, compressible flows, two-phase flows
 (Euler-Lagrange approach with two-way coupling), extensions to
 specific applications (e.g. Mercure_Saturne for atmospheric
 environment).
 .
 It runs in parallel with MPI on distributed memory machines.
 Developed since 1997 at EDF R&D, it is based on a co-located Finite
 Volume approach that accepts meshes with any type of cell
 (tetrahedral, hexahedral, prismatic, pyramidal, polyhedral...) and any
 type of grid structure (unstructured, block structured, hybrid,
 conforming or with hanging nodes, ...).
 .
 This package contains the documentation.

code-saturne-include: General purpose Computational Fluid Dynamics (CFD) software - includes

 The basic capabilities of Code_Saturne enable the handling of either
 incompressible or expandable flows with or without heat transfer and
 turbulence. Dedicated modules are available for specific physics such
 as radiative heat transfer, combustion (gas, coal, heavy fuel oil, ...),
 magneto-hydrodynamics, compressible flows, two-phase flows
 (Euler-Lagrange approach with two-way coupling), extensions to
 specific applications (e.g. Mercure_Saturne for atmospheric
 environment).
 .
 It runs in parallel with MPI on distributed memory machines.
 Developed since 1997 at EDF R&D, it is based on a co-located Finite
 Volume approach that accepts meshes with any type of cell
 (tetrahedral, hexahedral, prismatic, pyramidal, polyhedral...) and any
 type of grid structure (unstructured, block structured, hybrid,
 conforming or with hanging nodes, ...).
 .
 This package contains the include files.