pyspectral 0.13.0+ds-3 source package in Ubuntu

Changelog

pyspectral (0.13.0+ds-3) unstable; urgency=medium

  * debian/patches:
    - New 0003-Switch-to-platformdirs.patch (Closes: #1067988).

 -- Antonio Valentino <email address hidden>  Fri, 29 Mar 2024 18:05:06 +0000

Upload details

Uploaded by:
Debian GIS Project
Uploaded to:
Sid
Original maintainer:
Debian GIS Project
Architectures:
all
Section:
misc
Urgency:
Medium Urgency

See full publishing history Publishing

Series Pocket Published Component Section

Builds

Oracular: [FULLYBUILT] amd64

Downloads

File Size SHA-256 Checksum
pyspectral_0.13.0+ds-3.dsc 3.7 KiB daa3a85d959513cbe03bd809d7c68080dc68f31484f2ee37d3210b99dd9765ab
pyspectral_0.13.0+ds.orig.tar.xz 3.4 MiB ca6159af2e494fbe20eb638a4c194e8264a7426e410f9d160fb7ee77ecb4e263
pyspectral_0.13.0+ds-3.debian.tar.xz 117.1 KiB 5f39c0253f2db3501cd78508a0d1f6b15d4464332a1feeefe951c287cff013aa

Available diffs

No changes file available.

Binary packages built by this source

pyspectral-bin: Reading and manipulaing satellite sensor spectral responses -- scripts

 Reading and manipulaing satellite sensor spectral responses and the
 solar spectrum, to perform various corrections to VIS and NIR band data.
 .
 Given a passive sensor on a meteorological satellite PySpectral
 provides the relative spectral response (rsr) function(s) and offer
 some basic operations like convolution with the solar spectrum to
 derive the in band solar flux, for instance.
 .
 The focus is on imaging sensors like AVHRR, VIIRS, MODIS, ABI, AHI,
 OLCI and SEVIRI. But more sensors are included and if others are
 needed they can be easily added. With PySpectral it is possible to
 derive the reflective and emissive parts of the signal observed in any
 NIR band around 3-4 microns where both passive terrestrial emission
 and solar backscatter mix the information received by the satellite.
 Furthermore PySpectral allows correcting true color imagery for the
 background (climatological) atmospheric signal due to Rayleigh
 scattering of molecules, absorption by atmospheric gases and aerosols,
 and Mie scattering of aerosols.
 .
 This package provides utilities and executable scripts.

python3-pyspectral: Reading and manipulaing satellite sensor spectral responses

 Reading and manipulaing satellite sensor spectral responses and the
 solar spectrum, to perform various corrections to VIS and NIR band data.
 .
 Given a passive sensor on a meteorological satellite PySpectral
 provides the relative spectral response (rsr) function(s) and offer
 some basic operations like convolution with the solar spectrum to
 derive the in band solar flux, for instance.
 .
 The focus is on imaging sensors like AVHRR, VIIRS, MODIS, ABI, AHI,
 OLCI and SEVIRI. But more sensors are included and if others are
 needed they can be easily added. With PySpectral it is possible to
 derive the reflective and emissive parts of the signal observed in any
 NIR band around 3-4 microns where both passive terrestrial emission
 and solar backscatter mix the information received by the satellite.
 Furthermore PySpectral allows correcting true color imagery for the
 background (climatological) atmospheric signal due to Rayleigh
 scattering of molecules, absorption by atmospheric gases and aerosols,
 and Mie scattering of aerosols.

python3-pyspectral-doc: Reading and manipulaing satellite sensor spectral responses -- documentation

 Reading and manipulaing satellite sensor spectral responses and the
 solar spectrum, to perform various corrections to VIS and NIR band data.
 .
 Given a passive sensor on a meteorological satellite PySpectral
 provides the relative spectral response (rsr) function(s) and offer
 some basic operations like convolution with the solar spectrum to
 derive the in band solar flux, for instance.
 .
 The focus is on imaging sensors like AVHRR, VIIRS, MODIS, ABI, AHI,
 OLCI and SEVIRI. But more sensors are included and if others are
 needed they can be easily added. With PySpectral it is possible to
 derive the reflective and emissive parts of the signal observed in any
 NIR band around 3-4 microns where both passive terrestrial emission
 and solar backscatter mix the information received by the satellite.
 Furthermore PySpectral allows correcting true color imagery for the
 background (climatological) atmospheric signal due to Rayleigh
 scattering of molecules, absorption by atmospheric gases and aerosols,
 and Mie scattering of aerosols.
 .
 This package includes the PySpectral documentation in HTML format.